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Abstract: To reduce the consumption of receiving devices, a number of devices at the receiving 
end undergo low-element treatment (the number of devices at the receiving end is less than that at 
the transmitting ends). The underdetermined blind-source separation system is a classic 
low-element model at the receiving end. Blind signal extraction in an underdetermined system 
remains an ill-posed problem, as it is difficult to extract all the source signals. To realize fewer 
devices at the receiving end without information loss, this paper proposes an image restoration 
method for underdetermined blind-source separation based on an out-of-order elimination 
algorithm. Firstly, a chaotic system is used to perform hidden transmission of source signals, 
where the source signals can hardly be observed and confidentiality is guaranteed. Secondly, 
empirical mode decomposition is used to decompose and complement the missing observed 
signals, and the fast independent component analysis (FastICA) algorithm is used to obtain part of 
the source signals. Finally, all the source signals are successfully separated using the out-of-order 
elimination algorithm and the FastICA algorithm. The results show that the performance of the 
underdetermined blind separation algorithm is related to the configuration of the transceiver 
antenna. When the signal is 3 × 4antenna configuration, the algorithm in this paper is superior to 
the comparison algorithm in signal recovery, and its separation performance is better for a lower 
degree of missing array elements. The end result is that the algorithms discussed in this paper can 
effectively and completely extract all the source signals. 

Keywords: underdetermined blind-source separation; chaotic system; empirical mode 
decomposition; FastICA 

1. Introduction 

To reduce professional equipment installation for intelligent communication, realize better 
information transmission with limited resources, and receive a large amount of source information 
using limited sensors at the receiving end, use of a low-element model at the receiving ends is 
becoming popular in the field of communication [1–3]. Application of low-element treatment for 
sensors at the receiving ends is highly suitable for areas involving information transmission such as 
biomedical engineering, seismic monitoring, signal enhancement, and radar and machinery [4–10]. 
As the information detected by sensors at each receiving end is the superposition of some source 
information, independent sources are required to obtain essential information [11]. Therefore, 
certain auxiliary information processing methods are required to handle the collected information 
and separate each desired source signal. 

Blind-source separation (BSS) involves separating the best estimation of the hidden source 
signals from certain observed signals (at the receiving end) when the theoretical model of the signal 
and the source signal are unknown [12–14]. Specifically, underdetermined blind-source separation 
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is a low-element model of sensors at the receiving end for signal processing, which remains an 
ill-posed and abstruse problem for information transmission [15–18]. At present, there are two 
types of solutions to address this issue. The first type is based on the statistical properties of source 
signals, such as uncorrelated autoregressive (AR) model signals [19], nonnegative tensor 
factorization [20], and beamforming based on a minimum mean square error [21]. The second type 
is based on the analytical method of signal sparsity, which mainly includes chaotic matrix 
estimation and source signal restoration methods. In general, a transform-domain sparse 
representation can yield better source signal estimation [22]. Common time-frequency analytical 
techniques include Cohen’s class time-frequency distributions [23], short-time Fourier transform 
(STFT) [24], and empirical mode decomposition [25]. As blind-source separation aims to address the 
problems of nonlinear signals and the time-frequency analysis uses the non-stationarity of signals, 
this paper also begins by discussing time-frequency analytical techniques for signal separation. 

Currently, although progress has been made in underdetermined blind-source separation 
based on time-frequency analysis, common methods used still have certain limitations. For 
example, although STFT can successfully separate the source information with underdetermined 
blind-source separation, the window function used obscures the time-frequency (TF) representation 
and is confined by the Heisenberg uncertainty principle, which further restricts the sparsity of a 
signal [26–28]. When a wavelet transform performs underdetermined blind-source separation, 
various wavelet bases and decomposition layers create a difference between the vortex and 
approximate signals, thus, influencing the separation of signals and making it difficult to select the 
wavelet base and decomposition layer number [29–33]. Empirical mode decomposition can cause 
modal aliasing when dealing with underdetermined blind-source separation, making the 
separation of source signals difficult [34,35]. 

Previous transmission carriers mainly consisted of voice information, and information 
transmission was performed in the forms of text, voice, and images [36]. Generally, images are 
considered more suitable for modern communication because they are intuitive, capable of carrying 
a large amount of information, and conducive to observation and summarization [37]. Existing 
studies on image separation methods based on underdetermined blind-source separation are not 
sufficient. Studies on low-element receiving ends of images will help address the issue of increasing 
communication demands.  

To resolve these problems, this paper proposes low-element image restoration based on an 
out-of-order elimination algorithm. The contributions of this study are as follows: first, chaotic 
hiding information is used in sensors with low-element receiving ends to protect information at the 
receiving end. Second, to solve the low-element problem at the receiving end and to prevent modal 
aliasing, this paper proposes empirical mode decomposition to construct multiple components to 
increase information through the decomposed simple component signals and suppress modal 
aliasing using the first intrinsic mode function. Finally, as all the source signals cannot be 
simultaneously extracted by underdetermined blind-source separation, this paper proposes an 
out-of-order elimination algorithm to reduce the extracted image information. Next, the mixed 
information can be used for blind extraction to eliminate repeated blind extractions and ensure 
complete information extraction. 

The rest of the paper is organized as follows: Section 2 introduces the principles of 3D digital 
chaotic systems and empirical mode decomposition, as well as the theoretical models of 
underdetermined blind-source separation. Section 3 discusses the development of an 
underdetermined blind-source separation method based on low-element images and introduces the 
design scheme and model for constructing multi-component complement system and an 
out-of-order elimination algorithm using empirical mode decomposition in detail. Section 4 shows 
the overall flow chart and performance evaluation methods. In Section 5, through simulation, the 
effect of chaos on information hiding and the approximation effect of blind extraction of source 
information by the proposed low-element algorithm are analyzed. Section 6 summarizes the 
algorithms used in this paper. 
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2. Basic Theoretical Method  

2.1. Underdeterminate Blind Signal Separation 

Underdetermined state blind extraction mathematical model shown in Figure 1. Here "blind" 
means that the transmitter signal s is unobservable and the characteristics of the hybrid system H
are unknown [38, 39]. Among them, the independent component analysis (ICA) technology can use 
the statistical conditions such as independent independence of transmitter signals s  statistics to 
reproduce an unobservable transmitter signal s  from the receiving signals x . In the independent 
component analysis algorithm, fast independent component analysis FastICA is widely used in 
blind-source separation because of its fast convergence and high stability [40]. Therefore, in the 
blind-source separation and blind extraction, the FastICA algorithm in independent component 
analysis will be used in this paper.  
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Figure 1. Underdetermined state blind extraction mathematical model. 

Set T
1 2( , , , )mx x x=x  be the m-dimensional zero-mean random receiving signals. It is n linear 

mixture of an unknown zero mean independent transmitter semaphore T
1 2( , , , )ns s s=s  . This linear 

mixed model can be expressed as: 
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j j
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=
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Among, 1 2[ , , , ]nh h h=H  is a m × n-order full-range transmitter signal mixing matrix; jh is the 
n-dimensional column vector of the mixing matrix. The Equation (1) is in the form of a matrix: 
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In the equation: each mixed signal ( )( 1, , )ix t i m=   is a random signal, and each receiving  
( )ix t  is a sample of the random signal ix when time is t . 

In mixed matrix H and transmitter signal s unknown circumstances, only with the sensor 
detects the mixed receiving signal x separate transmitter signals is most likely true s, can build a 
separation matrix ( )ij n nw ×=W . When s gets the best estimation of r dimension transmitter signal 

through the separation matrix W transform, it is output column vector 1 2( , ,..., )Tns s s′ ′ ′ ′=s . The 
solution (or the solution mix model) of this problem can be expressed as: 

's (t) = Wx(t) = WHs(t) = Gs(t)  (3) 

In the equation: G is a global transmission matrix. Under normal circumstances, when G=I (I is 
a n n× -order unit matrix), and 's (t) = s(t) , thus achieving transmitter signal separation. Where, N is 
the number of transmitter signals and M is the number of receiving signals. Among them, the 
number of mixed receiving signals is less than the number of transmitter signals, and an 
underdetermined mathematical model is obtained. 
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2.2. Chaotic System 

Chaotic hiding information ensures secure communication. As low-element underdetermined 
blind-source separation is problematic, to ensure collection of secured information at the receiving 
end, this paper uses digital chaos to hide and confidentially transmit the transmitter information [41, 
42]. The kinetic equation of the chaotic system [44] used in chaotic hiding techniques is shown in 
(4): 

( )
( ) ( )
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( -1) ( -1) ( -1) ( -1) ( -1) ( - 
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where 0.54, 0.25, 0.79, 1.79, 1.69, 1.78a b c d e f= − = − = = − = − = − . When the initial values are: 
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it can iterate into a chaotic state. The chaotic three-dimensional (3D) diagram and the time-domain 
response diagram of variable x are shown in Figure 2. 

.  

(a) (b) 

Figure 2. A 3D discrete chaotic schematic: (a) three-dimensional view of the chaotic system and (b) 
time domain response graph of x variable of the chaotic system. 

The characteristic analysis of a chaotic system [43] reveals that it has a complex structure and 
irregular dynamic behavior. It is proven in [44] that a chaotic system possesses a good image 
encryption effect. Therefore, a 3D hyper-chaotic system works well for chaotic hiding information 
transmission. 

2.3. Empirical Mode Decomposition 

Empirical Mode Decomposition (Empirical Mode Decomposition—EMD) is the core algorithm 
of the Hilbert–Huang Transform (HHT) [45]. The EMD algorithm can handle complex and 
difficult-to-decompose non-stationary signals and decompose them into simple combinations of 
single-component signals, is a set of better-performing Intrinsic Mode Functions (IMF). The IMF 
must satisfy the following two conditions [46]: 

1. The number of signal zero crossings is equal to or at most equal to the number of extreme 
points of the IMF; 
2. The mean value of the upper envelope constructed by the local minimum value and the local 
maximum value is zero. 

The specific steps of the EMD algorithm [47, 48] are: First, find all the extreme points of the 
original data sequence ( )Y t , and use the cubic spline curve to fit the upper and lower extreme 
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points, and calculate the average of the upper and lower envelopes. Then, subtract the mean from 
( )Y t  to determine if the difference is IMF, and if not, repeat the above steps until the criterion is 

satisfied. The jIMF  component of signal ( )Y t is obtained after decomposition and the remaining 
terms nr : 

-1

1
( )

n

j n
j

Y t IMF r
=

= +  (5) 

According to the principle of EMD decomposition, the characteristic scale of the signal can be 
embodied in each IMF component, and the IMF component also represents the internal modal 
characteristics of the signal. At the same time, it is found that the most complete signal component 
of the signal ( )Y t is the first intrinsic mode function component 1IMF after decomposition. 

3. Building the Algorithm Model 

3.1. Construct Multi-Component Complementary Method 

The model of the multi-component complementary method is shown in Figure 3. In this model 
diagram, it is assumed that the number of receiving sensors is less than the number of transmitting 
sensors. It can be extended to the model that lacks multiple receiving sensors by missing two 
receiving sensors in this model. In this model, two virtual receiving sensors will be added to make 
the underdetermined blind-source separation system positive, which is M N=  in Figure 1. The 
supplementary two-way virtual receiving sensor equation is: 

1 1( ) , 1, 2,3, ,Nx k IMF k T− = =   (6) 

1 1( ) ( ) ( ), 1,2,...,Nx k x k IMF k k T= + =  (7) 

1
1
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=  =
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Figure 3. A virtual receiving array model with multicomponent complement method. 

Firstly, the first virtual signal 1Nx −  of the receiving sensor is constructed, which is the 1IMF  
obtained by the EMD of the receiving end 1x ; Secondly, the virtual signal Nx  of the second 
receiving sensor built is obtained by the odd and even combination of 1x  and 1IMF . In the 
underdetermined hybrid system, a new set of received signals can be combined through the above 
two Equations (6) and (7) to be converted into a positive definite system. 
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3.2. Out-of-Order Elimination Algorithm 

The construction of the above multi-component complementary method transforms the 
underdetermined blind-source separation into a positive definite model that can be extracted 
blindly. However, considering that only part of the signal may be obtained in one extraction, this 
paper proposes an algorithm of out-of-order elimination algorithm. The function of this algorithm 
is to subtract the successfully extracted signal from the mixed received sensor signal and use the 
remaining mixed signal information for more efficient blind extraction. The model of the algorithm 
is shown in Figure 4. 
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 ∑
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Figure 4. Implementation of extraction and reduction. 

The algorithm adopts a hierarchical extraction structure and utilizes two different types of 
processing modules that are connected in a cascaded manner. The first layer is an extraction 
module, which is used for blind extraction of mixed signals by linear feature extraction. The second 
layer is the elimination module, which applies the principle of minimum absolute deviation and 
subtracts the signal successfully extracted by the first layer from the received signal.  

The j-th extraction module and the elimination module respectively extract the source signal 
from the input end and subtract the newly extracted source signal. The first subtraction module 
excludes the newly extracted transmitter signal from the input side mixed signal, and then gives the 
remaining subtracted mixed signal to the next (j+1) module for a new round of extraction and 
elimination. 

We will assume that the first source signal 
____

1( ) ( )( 1, )iy k s k i n≈ ∈  is successfully extracted, and 
then the successfully extracted information 1( )y k  is subtracted from the received mixed signal. 
The process of extracting and subtracting the remaining mixed signals can be used recursively until 
all the transmitter signals are extracted and terminated when no extraction signal is available. In 
this process, the following equation can be obtained: 

1 ( ) ( ) ( )j j j jx k x k w y k+ = −   (10) 

where w j can be optimized by minimizing the cost (energy) function: 

2
1 1,

1

1(w )= { (x )}= { }
2

m

j j j j p
p

J E E xρ + +
=
  (11) 

where 1{ ( )}jE xρ +  is the target function, and 2( ) ( )j j jy k w x k= . Intuitively, such a target function can 
be regarded as an energy function. When jy  of the extracted source signal is subtracted in the 
mixed signal of the source, the energy function should reach the minimum value. 
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4. Overall Flowchart and Performance Analysis Indicators 

4.1. Overall Flow Chart 

Figure 5 depicts an overall flow chart of low-element image restoration based on the 
out-of-order elimination algorithm, which describes the complete algorithmic process. First, to 
ensure that the observed signals at the receiving end are kept confidential, the x-component of the 
chaotic signal is used as the transmitter signal to transmit alongside other source information. 
Second, as low-element problems are encountered at the receiving end, the EMD algorithm is used 
to decompose the virtual signals for constructing multiple components to convert the low-element 
sensors at the receiving end into a positive definite state, to realize effective blind extraction of the 
mixed signals. Finally, as it is difficult to simultaneously extract all the transmitter signals of the 
low-element sensors at the receiving end, the proposed out-of-order elimination algorithm is used 
to accurately and quickly extract the non-extracted signals. 

 
Figure 5. Overall flow chart. 

4.2. Performance Analysis Index 

In this study, to better see the encryption effect of chaos on digital images, the encrypted image 
was analyzed according to the information entropy against statistical attack ability [49]. The 
information entropy describes the information uncertainty. For higher information uncertainty, 
more information is needed for factual clarification. Therefore, the larger the information entropy of 
the encrypted image, the more secure the corresponding encryption algorithm. The following 
equation was used to evaluate the information entropy of the original and encrypted images: 

2 1

20
( ) ( ) log ( ( ))

n

i ii
H x p x p x

−

=
= Σ  (12) 
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where ( )ip x represents the probability at ix and 2n is the number of image pixel values. For a 
grayscale image, there are 256 gray levels, and the ideal information entropy is close to 8. If the 
information entropy of an encrypted image is closer to 8, the corresponding encryption method is 
more secure, and the ability to resist entropy attacks is stronger. 

Generally, both qualitative and quantitative performance evaluations of BSSor blind extraction 
problem-solving algorithms can be performed. As the current study targets blind extraction of 
image information, a qualitative evaluation can be conducted using subjective visual analysis of the 
human eye. Primarily, the image information before and after the BSS or blind extraction is 
compared and analyzed to yield an intuitive discrimination. Quantitative evaluation is performed 
using performance indicators such as the structural similarity (SSIM) [50], mean-square error (MSE), 
and peak signal-to-noise ratio (PSNR). 

SSIM: From the perspective of image composition, structural information is defined as being 
independent of brightness and contrast, instead reflecting the properties of the object structure in 
the scene. The distortion is modeled as a combination of three different factors: brightness, contrast, 
and structure. The definition is: 

1 2
2 2 2 2

1 2

(2 )(2 )
SSIM ( , )

( )( )
x y xy

x y x y

c c
s y

c c
μ μ σ

μ μ σ σ
+ +

=
+ + + +

 (13) 

In the equation, x is the estimated value of the image information after blind separation or 
blind extraction, and y is the true value of the image information in the source signal. ,x yμ μ and 

,x yσ σ are their mean and variance, respectively, xyσ is their covariance. 2 2
1 1 2 2( ) , ( )c k L c k L= =  are 

two constants that are used to maintain stability. L is the dynamic range of the pixel value.
1 20.01, 0.03k k= = . When the two images are exactly the same, the SSIM value is equal to one. In this 

paper, when the SSIM approaches 1, it can be determined that the blind extracted image has high 
similarity to the source image information, which is an estimate of the source image information. 

MSE: The MSE is defined as: 
1 1

2

0 0

1 ˆ( (m, n) (m, n))
M N

m n
MSE s s

M N

− −

= =

= −
×   (14) 

where, ˆ,s s  represent the images before and after encryption, respectively, and M and N are the 
image height and width, respectively. A smaller MSE for an evaluation image restoration indicates 
higher-accuracy image restoration. 

PSNR: The PSNR is essentially identical to the MSE and is defined as: 
2

10
25510logPSNR
MSE

=  (15) 

Use of the PSNR is an objective image restoration evaluation method. In general, a higher 
PSNR value corresponds to less distortion. 

In addition, when the global transmission matrix in Equation (3) is the generalized 
permutation matrix [51], that is,G PD= ( P  is the permutation matrix, D  is the non-singular 
diagonal scale matrix). The source signal s  can be obtained from the signal 's , which is 1 's G s−= . 
Then, the estimated performance of G I=  is optimal, which means that the global matrix G  can 
also be used as a basis for the separation performance. When the global matrix is the dominant 
matrix, the separation performance is good. The dominant matrix is that for every row and column 
in the matrix, only one element approaches 1, while the rest of the elements approach 0. 

5. Simulation Results and Performance Evaluation 

5.1. Chaotic Hiding Observation Signals 

Selecting the grayscale image information from the four standard test image libraries is shown 
in Figure 6a–d, and they are converted from a two-dimensional array data into a one-dimensional 
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array of data, and then binarize one-dimensional data. The x-components in the Chen chaotic 
system are selected and these five signals are packaged as an n-source signal vector. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The image information of the source signal: (a) image information of the first source; (b) 
image information of the second source; (c) image information of the third source; and (d) image 
information of the fourth source. 

For the unknown channel of the analog channel, the system randomly generates a 3 5×  mixed 
receiving matrix and the encapsulated data to be aliased to obtain three mixed receiving signals. 
The randomly generated mixing matrix H in this system is: 

0.2971 0.1637 0.5011 0.4800 0.5358
0.5160 0.2446 0.8062 0.0803 0.9652
0.8847 0.3900 0.5785 0.6677 0.2592

 
 =  
  

H  (16) 

Decimalizing the data and performing a two-dimensional arraying to obtain three-channel 
image information as shown in Figure 7a–c. Observing the three-way image information of the 
mixed receiving signal, the image information is disorderly and disorderly, and the information in 
the image cannot be recognized. The content of the image information is better obscured by the 
signals of the 3D chaotic motion system and can no longer be recognized by human eyes. 
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(a) (b) 

(c) 

Figure 7. The image information of the observed signal in the multicomponent complement model: 
(a) image information of the first observation signal; (b) image information of the second 
observation signal; and (c) image information of the third observation signal. 

5.2. Security Analysis of the Observed Signals at the Receiving End 

5.2.1. Entropy 

For a grayscale image, the closer the information entropy of the encrypted image to 8, the more 
secure the corresponding encryption method, and the stronger the ability to resist entropy attacks. 
In this study, 3D chaos was selected for entropy analysis of the concealed and encrypted images, as 
detailed in Table 1. 

Table 1. Image entropy analysis after chaotic hiding. 

Image Observation 
Signal (a) 

Observation 
Signal (b) 

Observation 
Signal (c) 

Lorenz 
chaos 

7.8234 7.8853 7.8156 

3D chaos 7.9926 7.9954 7.9927 
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The four images were encrypted through chaotic masking (four image data plus one chaotic 
data can be understood as five channels of signal transmission) and underdetermined blind source 
analysis channels to obtain three-way hiding images. From Table 1, the five signals are encrypted 
by chaotic hiding and underdetermined blind-source separation channels to obtain three-way 
encrypted images. Table 1 shows that that when two types of 3D hyper-chaotic systems (Lorenz 
and 3D chaos) are used for chaotic hiding transmission of information from four source signals 
(Lena, Cameraman, Lake, and Peppers), the information entropy values of the three mixed 
receiving signals received by the low-element receiving ends are close to 8. Therefore, the two 
chaotic signals can provide a good encryption effect and have the ability to resist entropy attacks. 
The 3D chaotic system is selected for transmission of chaotic hiding information in this study, as the 
entropy value obtained by it is better than that of Lorenz chaos. 

5.2.2. Statistical Analysis  

For Lena, Cameraman, Lake, and Peppers four gray image hiding operations, draw a clear 
image of the statistics histogram, respectively, and the corresponding hiding statistical histogram of 
the image. The result is shown in Figure 8, you can see from the picture clear image pixel gray value 
of occurrence probability is very uneven, but after the hiding image of each pixel gray value 
probability is very uniform, shows that the hiding image pixel gray value taken the probability of 
all possible values tend to be equal. Therefore, this algorithm can effectively resist the attack of 
statistical analysis. 

  

(a) (b) 

 
(c) 

Figure 8. Statistical histograms of hiding images. (a)–(c) is the statistical histogram of the hiding 
image in Figure 7. 
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5.2.3. Differential Attack Analysis  

The ability of an image hiding to resist differential attacks can be analyzed with the two 
indicators：Number of Pixels Change Rate (NPCR) and the Unified Average Changing Intensity 
(UACI) [52]. The calculation equation for NPCR and UACI are defined as follows: 

( )
1 1

1 , 100%
m n

i j
NPCR D i j

m n = =

= ×
×   (17) 

( ) ( ) ( )
( ) ( )

1 2

1 2

0, , , ,
,

1, , , .
C i j C i j

D i j
C i j C i j

== 
≠

 (18) 

( ) ( )1 2

1 1

, ,1 100%
255

m n

i j

C i j C i j
UACI

m n = =

−
= ×

×   (19) 

Where 1C is the normal hiding image and 2C is the hiding image when the value of one pixel in 
the original image is changed, M N×  is the size of the hiding image. NPCR and UACI under the 
experimental data are shown in Table 2, indicating that the hiding scheme proposed in this paper 
can effectively resist differential attacks. 

Table 2. Average Number of Pixels Change Rate (NPCR) and the Unified Average Changing 
Intensity (UACI) values. 

 UACI% (ideal: 33.4635%) NPCR% (ideal: 99.6093%) 
 Figure 7a Figure 7b Figure 7c Figure 7a Figure 7b Figure 7c 

Lena 33.3611 33.3864 33.3973 99.5955 99.5672 99.5769 

Lake 33.3194 33.3504 33.3644 99.5291 99.5122 99.5674 

Peppers 33.2977 33.3717 33.3935 99.5753 99.5342 99.6062 

Cameraman 33.3509 33.3509 33.4132 99.4998 99.5552 99.5716 

5.3. Blind Extraction of Underdetermined Blind-Source Separation 

With the above underdetermined blind-source separation, three mixed receiving images are 
obtained. To separate the mixed receiving images under chaotic hiding, the study applies the 
method of constructing multi-component complementation discussed in Section 3. The first 
received signal is selected, and the first intrinsic mode component obtained after the EMD 
decomposition is used as the fourth received signal. This intrinsic mode function is compensated 
with the first received signal to obtain the fifth received signal, thereby forming a new received 
signal vector. 

The received signal vector is processed by FastICA algorithm to obtain the estimated signal, 
and the estimated signal value is decimalized and two-dimensional arrayed. The image information 
obtained after blind separations are shown in Figure 9. 

With human subjective visual judgment, it was found that there are four images information 
similar to the image information in Figure 6, which can be calculated by similarity with similar 
image information in Figure 6, respectively. Figure 9a and Figure 6a The SSIM is 0.9869, the SSIM in 
Figure 9b and Figure 6(a is 0.9869, the SSIM in Figure 9c and Figure 6a is 0.9869, Figure 9d and 
Figure 6d SSIM is 0.9990. Based on the evaluation of SSIM, it can be judged that Figure 6a and 
Figure 6d have been successfully evaluated. Through calculation, it can be seen that Figure 9a, 
Figure 9b and Figure 9c are the same image, so the simulation experiment extracts three different 
image information. The global transmission matrix in this simulation is: 
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0.0488 0.0583 0.0659 0.0649 0.0034
0.0273 0.0166 0.1378 0.0113 0.9982
0.0545 0.1065 0.2644 0.9943 0.0137
0.0217 0.0227 0.0310 0.0049 0.0570
0.9967 0.9922 0.9517 0.0984 0.0149

G

 
 
 
 =
 
 
  

 (20) 

Observing the matrix, the dominance is 3, corresponding to the three different image 
information extracted in the simulation. Substituting the values of Figure 9a and Figure 9d into 

Equation (11) in turn yields two values. Respectively 1

0.2970
w = 0.5159

0.8847

 
 
 
 
 

  and 2

0.4801
w = 0.0803

0.6676

 
 
 
 
 

 . 

  
(a) (b) 

  
(c) (d) 

 
(e) 



Entropy 2019, 21, 1192 14 of 19 

 

Figure 9. Multi-component complement method first extracts signal image information. (a)–(c) three 
effective Lena graphs were extracted blind at the first blind extraction; (d) the effective Lake 
information was extracted blind at the first blind extraction; and (e) information of no interest. 

In Equation (10), the original mixed signal value is successively subtracted from the value of 
the extracted image information in the original mixed receiving signal, and then a new set of mixed 
signal values can be obtained, and the new mixed signal matrix is subjected to FastICA algorithm 
blind-source separation. Three-way estimated signal values are obtained, and decimal conversion is 
performed on it, and the image information shown in Figure 10 is two-dimensionalized. 

By comparing the mixed receiving of Figure 10 with the figure, it is found that Figure 10a is an 
estimate of Figure 6c and Figure 10b is an estimate of Figure 6b. Respectively, the SSIM between 
them was 0.9943 and 0.9930. The second blind extraction of the multi-component complementary 
method has effectively extracted the remaining image information. 

  
(a) (b) 

 
(c) 

Figure 10. Image information of the second extraction of signal in multicomponent complement 
method. (a) The second blind extraction of the remaining information of valid Peppers image 
information; (b) The second blind extraction of the remaining information of valid Cameraman 
image information; and (c) Information of no interest. 

Shannon's theory points out that the channel capacity of additive Gaussian white noise channel 
is the lower limit, which exists widely in all resistive components and has wide spectrum 
characteristics similar to the chaotic masking signal in this paper. Therefore, in order to verify the 
effectiveness of the experiment, white Gaussian noise with different intensity is added to the 
channel to verify the image hiding method of BSS. The results are presented in table 3. 
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Table 3. Relationship between noise intensity and correlation coefficient. 

Noise Intensity 0 5 10 15 
Lena 0.9869 0.9899 0.9845 0.9899 
Lake 0.9930 0.9942 0.9939 0.9930 
Peppers 0.9943 0.9930 0.9905 0.9956 
Cameraman 0.9990 0.9989 0.9969 0.9980 

As apparent from the table, the noise at the source has little effect on the image hiding, and the 
effect of the image hiding was also reduced as the noise intensity changed. 

The results show that the performance of the underdetermined blind separation algorithm is 
related to the configuration of the transceiver antenna. We defined the missing degree as: 

( ) /N M N−  (21) 

where, N is the number of transmitter signals and M is the number of mixed receiving signals. The 

above results indicate that the transmitter signal of the simulation experiment was basically 

restored in the absence of noise. As the above simulation was performed under noiseless conditions, 

the algorithm performance was examined when the SNR value was changed several times for 

transmitter and receiver signals of 5 3× . The line graph of Figure 11 reveals that the hiding images 

were all successfully extracted, and the image effect extracted by the first BSS (for Lena and Lake) is 

better than the second BSS (Cameraman and Peppers). 

 

Figure 11. Decryption effects of 5 3× signals of source and receiver at different signal-to-noise ratio 
(SNRs). 

Finally, to evaluate the overall performance of the proposed algorithm, the number of 
transmitter and receiver sensors was changed to 2 3,3 4,3 5,× × × and 4 5× simulation experiments 
were performed. The algorithm encryption matrix was randomly generated and the simulation 
results at different SNRs are shown in Figure 12. 

M
SE
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(a) (b) 

Figure 12. Comparisons of (a) mean-square error (MSE) and (b) peak signal-to-noise ratio (PSNR) 
values when the number of source signals and receiving sensors are different. 

The simulation results reveal that, as the degree of loss of the receiving antenna element 
increases, the separation performance gradually decreases. Taking 3 4×  and 2 3×  antennas as an 
example, the missing degree of the 3 4×  antenna is 1/4, and the missing degree of the 2 × 3 antenna 
is 1/3, thus, the MSE index is poor for the 2 3×  configuration. For the same receiving array, as for 
the 3 5×  and 4 5× configuration schemes, it can also be seen that the MSE index under the 3 5×
configuration is poor. In summary, the algorithm proposed in this paper can achieve 
underdetermined blind extraction under different antenna configurations, and its separation 
performance is better for a lower degree of missing array elements. 

 
Figure 13.  Performance comparison of proposed algorithm and that in [53]. 

Previously, Zhen [53] analyzed the underdetermined BSS based on a speech signal for a 3 4×  
antenna configuration. To compare the advantages of the proposed algorithm, the algorithm used 
in this study was also simulated in the same configuration and compared with the results in [53]. 
The experiment results are shown in Figure 13. From the MSE values according to the SNR, it is 
apparent that the algorithm proposed in this paper is superior to that in the literature [53] as 
regards signal restoration. 

In the overall experiment, several aspects should be considered: firstly, the chaotic masking 
technology is universal for encryption, and the appropriate chaotic system can be selected 
according to the required situation. Secondly, the core part of this paper is the multi-component 
complementary method and out-of-order Elimination Algorithm proposed in Section 3. Only 
through the combination of the two algorithms can we successfully extract the interested sending 

M
SE

PS
N

R
 (d

B)

M
SE
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end signals step-by-step. Finally, our experiment mainly considers the degree of noise and missing 
degree at the source, which will be further studied in the future. 

5. Conclusions 

In this paper, an image blind extraction algorithm based on an out-of-order elimination 
algorithm is proposed, and a virtual multicomponent array is constructed to transform the 
undetermined blind-source separation into a positive definite model. By combining the 
multi-component complementarity method and an out-of-order elimination algorithm, the image 
information which is concealed by chaos is extracted successfully. Experiments show that the EMD 
decomposition technique is used to extract the strongest representation of the received signal, and 
the virtual receiving signal vector is obtained by the parity cross sequence compensation method in 
the multi-component complement method. By using the algorithm of out-of-order elimination, the 
image information can be extracted completely. There are still some deficiencies in this algorithm. 
In the future, we will analyze the influence of signal source noise, channel noise and receiving 
sensor noise on the modified algorithm, and verify the effectiveness and universality of this 
algorithm. 
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