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Abstract: The entropy rate h of a natural language quantifies the complexity underlying the language.
While recent studies have used computational approaches to estimate this rate, their results rely
fundamentally on the performance of the language model used for prediction. On the other hand,
in 1951, Shannon conducted a cognitive experiment to estimate the rate without the use of any
such artifact. Shannon’s experiment, however, used only one subject, bringing into question the
statistical validity of his value of h = 1.3 bits per character for the English language entropy rate.
In this study, we conducted Shannon’s experiment on a much larger scale to reevaluate the entropy
rate h via Amazon’s Mechanical Turk, a crowd-sourcing service. The online subjects recruited
through Mechanical Turk were each asked to guess the succeeding character after being given the
preceding characters until obtaining the correct answer. We collected 172,954 character predictions
and analyzed these predictions with a bootstrap technique. The analysis suggests that a large number
of character predictions per context length, perhaps as many as 103, would be necessary to obtain a
convergent estimate of the entropy rate, and if fewer predictions are used, the resulting h value may
be underestimated. Our final entropy estimate was h ≈ 1.22 bits per character.

Keywords: entropy rate; natural language; crowd source; Amazon Mechanical Turk; Shannon entropy

1. Introduction

Entropy rates h of natural languages have been used to investigate the complexity underlying
these languages. The entropy rate of a sequence measures the amount of information per character [1]
and indicates that the number of possible sequences is 2hn for a sequence of length n.

Following the development of information theory and an abundance of data resources, recent
studies have used computational approaches for finding the entropy rates of natural languages.
Starting from the first attempt made by [2], which used a three-gram, word-level language model,
various compression algorithms have been utilized [3,4]. The most recent study makes use of a state-of
the art neural language model [5]. However, such computational attempts have a drawback; i.e., the
computation of h requires a computational language model with which to predict the probability
distribution of every character. As a result, the value of h reflects not only the complexity of the
language but also the performance of the model. Indeed, in natural language processing, such an
estimate of h is used as an indicator of the goodness-of-fit of a language model [6]. Recently reported
decreases in the upper bound of h, for which the current minimum for English is 1.08 bpc [7] are simply
highlighting improvements in the computational model.

Originally, Shannon’s study [1] and some work that followed [8–11] used cognitive methods to
estimate the entropy rate h. The original scientific interest in h had to do with the complexity of human
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language. Given this perspective, the performance of a computational model should not be involved
in obtaining a value of h.

The studies using cognitive approaches can be reconsidered from two perspectives. First, they
were all based on limited-scale experiments. In all of these studies, a subject was asked to predict the
n-th character given the preceding n− 1 characters. According to [11], Shannon’s spouse was his only
subject. Even the most recent cognitive study [11] relied on just eight subjects. Experimenting on such
a small scale raises the question of the statistical validity of the acquired estimate.

Second, none of the cognitive approaches considered the limit with respect to the context length n.
While the estimated values should be evaluated at infinite n by the definition of the entropy rate, the
reported values are obtained at some finite n. In Shannon [1], the value h = 1.3 bits per character (bpc)
for English was obtained at n = 100, and Moradi et al. [11] concluded that the estimated value does
not decrease beyond n ≥ 32 and reported a rate of h ≈ 1.6 bpc. For extrapolation, however, a large
number of observations becomes necessary in order to capture the dependence of the entropy rate on
n well.

To that end, we conducted a large-scale cognitive test to acquire the English language entropy
rate h through Amazon Mechanical Turk (AMT). AMT is a crowd-sourcing service offered by Amazon
that allowed us to gather a large number of participants in a short time and at a reasonable cost.
We focused on the entropy rate in English to make a fair comparison with Shannon [1] and other works.
Other languages possibly have different values of the entropy rate, as can be seen in the comparison
made in [4]. We collected a total of 172,954 character predictions from 683 different subjects. To the
best of our knowledge, the scale used in this experiment was more than two times larger than any
used in previous studies. At such a scale, the effects of factors that may influence the estimation of
the entropy rate can be examined. Our analysis implies that Shannon’s original experiment had an
insufficient sample size with which to find a convergent estimate. We finally obtained h ≈ 1.22 bpc for
English, which is smaller than Shannon’s original result of h = 1.3 bpc.

2. Entropy Rate Estimation

2.1. Entropy Rate and n-Gram Entropy

Definition 1. Shannon entropy
Let X be a stochastic process {Xt}∞

t=1, where each element belongs to a finite character set X . Let X j
i =

Xi, Xi+1, . . . , Xj−1, Xj for i < j and P(X j
i ) be the probability of X j

i . The Shannon entropy of a stochastic process
H(Xn

1 ) is defined as
H(Xn

1 ) = −∑
Xn

1

P(Xn
1 ) log P(Xn

1 ). (1)

Definition 2. Entropy rate
The entropy rate h of a stochastic process X is defined as

h = lim
n→∞

1
n

H(Xn
1 ), (2)

if such a value exists [12]. The entropy rate h is the average amount of information per element in a
sequence of infinite length.

In the following, let Fn be the prediction complexity of Xn given Xn−1
1 , as follows:

Fn ≡ H(Xn|Xn−1
1 ). (3)

In other words, Fn quantifies the average uncertainty of the n-th character given a character string
with length n− 1. If the stochastic process X is stationary, Fn reaches the entropy rate h as n tends to
infinity, as follows [12]:

h = lim
n→∞

Fn. (4)
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In this work, h was estimated via Fn. A human subject was given Xn−1
1 characters and asked to

predict the next character Xn. We aimed to collect a large number of predictions from many subjects.
For a subject and a phrase, let a sample indicate the prediction of a Xn given a particular Xn−1

1 .
An experimental session is defined as a subject and phrase pair. For every experimental session,

a subject first predicts X1, then X2 given X1, then X3 given X2
1 , then X4 given X3

1 , . . . , Xn given Xn−1
1 ,

and so on. Therefore, in an experimental session, a number of observations are acquired for a given
phrase, with the maximum number of observations being the character length of the phrase.

2.2. Shannon’s Method

If a subject guesses a character given a string of length n, the answer will be correct or incorrect.
In Shannon’s setting and ours, the prediction of Xn by a subject is accomplished by making multiple guesses,
one character at a time, until he/she reaches the correct answer. In other words, a prediction for
character Xn in this setting consists of a series of guesses.

The number of guesses required to reach the correct answer reflects the predictability of that
character and should relate to the probability of that character Xn appearing after Xn−1

1 . Let qn
i denote

the probability that a subject requires i guesses in a prediction to find the correct letter following a block
of length n− 1.

Shannon deduced the following inequality [1]:

K

∑
i=1

i(qn
i − qn

i+1) log i ≤ Fn ≤ −
K

∑
i=1

qn
i log qn

i . (5)

Here, K is the number of characters in the set; in this work, K = 27, since the English alphabet
consists of 26 letters and the space symbol. This setting corresponds to the settings used in previous
works [9,11] using the cognitive approach to acquire the entropy rate in order for our results to be
comparable with those reported in these works. Note that this lower bound is the lower bound of the
upper bound of h and not the direct lower bound of h. For each context length n, the probability qn

i
can be calculated for a set of samples.

In Shannon’s original experiment, 100 phrases of length 100 were taken from Jefferson the Virginian,
a biography of ex-US President Thomas Jefferson authored by Dumas Malone. In each experimental
session, the subject (i.e., only his spouse, according to [11]) was asked to predict the next character
given a block of length n− 1. She continued in this manner for n = 1, 2, . . . , 15, and 100 for each phrase;
consequently, Shannon acquired 16 observations for each phrase. He used 100 different phrases;
therefore, he collected 16× 100 = 1600 observations from his spouse in total. He then calculated qn

i
for n = 1, 2, . . . , 15, and 100, each based on 100 observations, and the upper and lower bounds of h
were computed based on the leftmost and rightmost terms of the inequality (5), respectively. Shannon
observed a decrease in the bounds with respect to n and obtained an upper bound of h = 1.3 bpc for
n = 100.

Moradi et al. [11] conducted Shannon’s experiment under two different settings. In the first
experiment, they used 100 phrases of length n = 64 from Scruples II, a romance novel authored
by Judith Krantz. In the first setting, a single subject participated, and they calculated the upper
bounds from n = 1 to n = 64 based on 100 observations. They reported that the entropy rate reached
h ≈ 1.6 bpc at n = 32 and that larger values of n did not contribute to decreasing the upper bound.
In the second setting, the eight participants were given phrases extracted from four different books,
and the values of the upper bound at n = 32 were reported, which ranged between h = 1.62 and
h = 3.00 bpc.

Jamison and Jamison [9] used 50 and 40 phrases, both taken from some unspecified source, for
each of two subjects, respectively. They conducted the experiment for n = 4, 8, 12, and 100 and
obtained h = 1.63 and h = 1.67 bpc for the two subjects at n = 100 based on 50 and 40 phrase
samples, respectively.



Entropy 2019, 21, 1201 4 of 15

Note how the reported values deviate greatly from Shannon’s h = 1.3 bpc. In all these experiments,
since the number of subjects was small, the number of observations was limited, making the statistical
validity questionable.

2.3. Cover King’s Method

While Shannon’s method only considers the likelihood of the correct answer for each Xn, Cover
and King wanted to collect the distribution for each Xn. Hence, instead of counting the number of
guesses required, a subject was asked to assign a probability distribution to the nth character given
the preceding string of length n− 1. Precisely, in Cover and King [10], a prediction by a subject is the
character distribution of Xn.

They designed this experiment using a gambling framework, following their theory of information
in gambling [13,14]. A subject assigned odds to every character which could be used for Xn; i.e.,
a probability distribution.

Cover and King [10] conducted two experiments separately. In the first experiment, phrases
were extracted from Jefferson the Virginian for 12 subjects. The maximum length of a phrase was set as
n = 75. The estimated value of the upper bound of h for the 12 subjects ranged between h = 1.29 bpc
and h = 1.90 bpc. In the second experiment, phrases were taken from Contact: The First Four Minutes
(a science book on psychology authored by Leonard M. Zunin); lengths of n = 220 were used, and two
subjects participated. The estimated values of h produced by the two subjects were h = 1.26 bpc and
h = 1.30 bpc.

We conducted Cover and King’s experiment using the similar framework, as explained in detail in
the following section. Compared with the experiment proposed by Shannon, however, their experiment
demanded too much from each subject since he/she had to set the odds for all 27 characters every
time. The majority of the subjects abandoned the experiment before completing the assignment, and
it was difficult to collect a large number of reliable observations. Therefore, we could not utilize this
method effectively and focused on Shannon’s framework instead.

2.4. Summary of the Scales Used in Previous Studies

Table 1 summarizes the experimental settings of the previous reports [1,9–11]. We refer to
the total number of observations as the sum of the count of the predictions made by the subjects
for different phrases and context lengths. For example, in Shannon’s case, the total number of
observations was 1600, as one subject was asked to make predictions for 16 different context lengths
(i.e., n = 1, 2, . . . , 15, and 100) for each of 100 different phrases. The third and fourth columns in the
table list the numbers of distinct subjects and phrases used in each study, respectively. Note that a
phrase could be tested by multiple subjects or a subject could test multiple phrases, depending on the
experimental setting.

Table 1. Comparison of the scales of cognitive experiments undertaken in previous works for the
entropy rate estimation in English [1,9–11] and that of the present work.

Total Number Number of Number of Max n Number of
of Samples Subjects Phrases for a Session Sample Per n

Shannon [1] 1600 1 100 100 100
Jamison and Jamison [9] 360 2 50 and 40 100 50 and 40

Cover and King [10] No.1 440 2 1 220 2
Cover and King [10] No.2 900 12 1 75 12

Moradi et al. [11] No.1 6400 1 100 64 100
Moradi et al. [11] No.2 3200 8 400 32 100

Our Experiment 172,954 683 225 87.51 1954.86
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The fifth and sixth columns present the average maximum value of n obtained in one session and
the mean number of observations per n, respectively, where n represents the offset of a character from
the beginning of a phrase. Both of these values were fixed in the previous works.

3. Cognitive Experiment Using Mechanical Turk

3.1. The Mechanical Turk Framework

Our experimental framework was implemented through Amazon Mechanical Turk, a workplace
service offered by Amazon. AMT puts up tasks called HITs (human intelligence tasks) and workers do
them. AMT has been used previously as a research tool for conducting large-scale investigations that
require human judgment, ranging from annotating image data [15,16], to collecting text and speech
data [17,18], behavioral research [19], judging music and documents [20,21], and identifying complex
patterns in brain activity [22].

With AMT, the experimenter is able to collect a large number of observations on a wide range
of topics. Compared with standard in-laboratory studies, however, such an experiment is open to
anonymous subjects, and thus, control is limited. For example, in our case, a subject could use
any external information to predict the next character. In particular, we were unable to prohibit
subjects from conducting a search for the n− 1 characters to obtain the answer for the next character.
Furthermore, the English fluency of the subjects was unknown. Thus, the results should be examined
from this perspective as well; see Section 5.2.

An experimental user interface based on Shannon’s original proposal was developed. The most
important requirement of the design was the adequacy of the task load since a subject could easily lose
their concentration and abandon a prediction during the experiment. We designed the user interface
to be as simple as possible so as to lessen the psychological demand on the subjects.

3.2. Experimental Design

In this HIT, a subject was asked to start from the beginning fragment of a sentence, and then guess
character after character of the remainder of the sentence. Figure 1 shows the interface used in the
experiment. As shown, a subject received three types of information:

1. The number of characters still available for use.
2. The preceding n− 1 characters.
3. The set of incorrect characters already used.

In this framework, once a subject decides on their guess, they input it and press enter to submit it.
If the guess is correct, the context is updated to length n, and the task continues with the prediction of
the n + 1-th character. If the answer is incorrect, the subject must guess what the n-th character is until
obtaining the correct answer. Subjects were informed in advance of the number of characters in the
remaining phrase to avoid anyone abandoning the task.

Figure 1. Our user interface for our cognitive experiment on Amazon Mechanical Turk. It provides:
(i) the number of characters still available for use, (ii) the preceding n− 1 characters, and (iii) the set of
incorrect characters already used.

If a phrase is too long, subjects become easily distracted. Therefore, it was necessary to adjust the
length of time provided for an experimental session. Too short a time raises the cognitive load, whereas



Entropy 2019, 21, 1201 6 of 15

too long a time decreases a subject’s interest. After multiple trials across multiple options, such as
putting a constant cap on the time allowed for each guess, we chose to allow a maximum number of
guesses for every phrase. After some preliminary tests, this number was fixed to the character length
of the phrase. Therefore, a subject was able to complete the task only if they always guessed all of the
characters correctly. Most of the time, then, a subject was unable to finish a phrase.

The phrases were taken from the Wall Street Journal. In particular, 225 sentences were randomly
extracted for this experiment and used as the experimental phrases. Their average length was 150.97.
All characters were capitalized, and non-alphabetical symbols other than spaces were removed,
duplicating the settings in previous works [1,9–11]. Hence, the characters were limited to the 26 letters
of the alphabet, all in capital letters, and the space symbol. Table 2 lists the top ten most frequently
used words and two successive words used in the experiment. As shown, they are relatively simple
words that do not require specialized knowledge to predict correctly.

Table 2. The top ten most frequently used words along with two subsequent words appearing in the
phrases used in our experiment.

Rank Word Frequency Two Subsequent Words Frequency

1 market 15 interest rates 4
2 company 13 future contracts 3
3 investment 11 program trading 3
4 price 11 stock market 3
5 people 11 money managers 3
6 companies 10 same time 2
7 stock 9 wide variety 2
8 buy 9 time around 2
9 officials 7 higher dividends 2

10 growth 7 some firms 2

We considered multiple variations of Shannon’s experiment. The experiment could have consisted
of guessing a character of a different phrase every time; thus, increasing the cognitive load for the
subject by having them read through a different phrase every time. Another possibility was to proceed
even if the character guess was incorrect. Since multiple subjects participated, it would then still be
possible to acquire the probability of a correct guess. Such a method would decrease the task load
substantially. However, this idea was not adopted since some subjects could choose random characters
for all predictions. Finally, we reached the conclusion that Shannon’s framework was well designed
and utilized it in this work.

3.3. Experimental Outcomes

The last row of Table 1 provides the summary for the cognitive experiment. We collected
172,954 observations from 683 different subjects, whose residences were limited to the United States,
Canada, Great Britain, and Australia. The mean of the maximum values of n for each experimental
session was 87.51. The mean number of observations collected for n ≤ 70 was 1954.86.

These numbers are by far the largest collected for this type of experiment [1,9–11], in terms of
both the total number of observations and the number of subjects. While these values were fixed in the
previous works, they varied in our experiment due to the use of Mechanical Turk.

Figure 2 shows the number of samples acquired for different context lengths n− 1. As the context
length n− 1 increased, the number of observations decreased because, in our experiment, the number
of guesses could reach the maximum number of guesses allowed for a phrase, as mentioned in the
previous section. For up to n = 70, over 85% of the subjects made guesses. Beyond n = 70, however,
the number of subjects making guesses decreased quickly. As we discuss later, having a large number of
observations is crucial for acquiring a good estimate of the entropy rate within a statistically reasonable
margin.
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Figure 2. The number of observations collected for the predictions made for the n-th character.
The vertical line indicates n = 70, which provided the minimum direct estimate of hexpmin = 1.407 in
our experiment.

3.4. Human Prediction Accuracy with Respect to Context Length

Shannon [1] originally reported that the upper bound decreases with respect to the context length
for up to n = 100. This result implies that a human is able to improve their prediction performance
with more context. However, the later experiment by [11] disagreed with Shannon’s [1], as they
reported that the upper bound did not decrease for n ≥ 32. Therefore, the question remains as to
whether longer contextual phrases help humans to predict future characters more accurately. Hence,
we examined whether the prediction performance of subjects improved with a longer contextual
phrase length, based on all observations collected.

Figure 3 shows the probability that a subject provided the correct n-th character with their first
guess. At n = 1 (i.e., the subject was asked to predict the first character of a phrase with no context
given), the probability was below 20%. The probability improved greatly from n = 1 to n = 2, as it
reached above 50% for n = 2. As n increased to n = 100, the probability roughly monotonically
increased to nearly 80%. Based on this result, a subject improves their accuracy in predicting the next
character as the context length n increases, at least up to n = 100, which supports Shannon’s claim.

Figure 3. The probability that the subject needed only one guess to make the correct prediction of
n-th character.
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This result also implies that the subjects of our experiment exhibited reasonable performances
since it was a major concern that the collected observations might be of low quality due to the online
experimental setting.

3.5. The Datapoints of the Bounds for n

Using all of the observations, the upper and lower bounds can be estimated with Equation (5) for
every n. The number of collected observations varies with respect to n, as shown in Figure 2. Figure 4
shows the plots of the upper and lower bounds computed for n = 1, 2, . . . , 70 using all of the collected
observations. The blue plot indicates the upper bound, whereas the red plot shows the lower bound.
For the upper bound, the blue plot exhibits a decreasing tendency, although the values fluctuate along
with n. Our main interest lies in the upper bound.

Figure 4. The plots of the upper bound (blue) and the lower bound (red) acquired from all observations
and their extrapolations via ansatz functions of f1 (dashed lines).

Plots of both bounds have large fluctuations for n > 70 due to the decrease in the sample size for
large n, which will be examined later in Section 5.1. The minimum experimental value of the upper
bound was hexpmin ≡ 1.407 bpc, which was located at n = 70. Since this is the minimum of the direct
experimental values, any computed entropy rate larger than this would appear to be invalid. In the
remainder of this paper, the observations collected up to n = 70 are utilized.

4. Extrapolation of the Bounds with an Ansatz Function

As mentioned in the Introduction, the other drawback of the previous studies utilizing the
cognitive approach to the entropy rate lies in not extrapolating the experimental values. Precisely,
in the previous cognitive experiments [1,10,11], the reported entropy rate values were the direct upper
bounds at the largest n used, such as n = 100 in [1].

As the entropy rate, by definition, is the value of Fn with n tending to infinity, its upper
and lower bounds, as n tends to infinity, must be considered and can be examined via some
extrapolation functions.

4.1. Ansatz Functions

As the mathematical nature of a natural language time series is unknown, such a function can only
be an ansatz function. The first ansatz function was proposed by Hilberg [23], who hypothesized that
the entropy rate decreases according to the power function with respect to n based on the experimental
results of Shannon [1]. This function is as follows:
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f1(n) = Anβ−1 + h, β < 1. (6)

Originally, this function was proposed without the h term. There have been theoretical arguments
as to whether h = 0 [2–5,7,24,25]; therefore, a function with the h term was considered in this work.

Takahira et al. [4] suggested another possibility that modifies the function f1(n) slightly, which is
as follows:

f2(n) = exp (Anβ−1 + h), β < 1. (7)

They observed that the stretched exponential function f2(n) leads to a smaller value of h by
roughly 0.2 bpc in a compression experiment for English characters.

Schümann and Grassberger [3] introduced another function f3(n) based on their experimental
result:

f3(n) = Anβ−1 log n + h, β < 1. (8)

These three ansatz functions f1, f2, and f3 will be evaluated based on their fit to the data points
discussed in the previous section. For f1 and f3, h is the estimated value at infinite n, whereas in the
case of f2, the estimated value of the upper and lower bounds at infinity is eh.

4.2. Comparison among Ansatz Functions Using All Estimates

Every ansatz function was fitted to the plots of the upper and lower bounds via the
Levenberg–Marquardt algorithm for minimizing the square error. The ansatz functions’ fits to the data
points mentioned in Section 3.5, are shown in Figure 4 for f1 and in Figure A1 in the Appendix A for
f2 and f3.

For f1 and f2, the fits converged well and the errors were also moderate. The mean-root-square
error of f1 was 0.044, quite close to the error of f2, which was 0.043. Both the entropy rate estimates
also converged to similar values of h; namely, h = 1.393 and h = 1.353 bpc, respectively, for the upper
bounds. The values of β, were 0.484 and 0.603 for f1 and f2, respectively, suggesting monotonic decay
in both cases.

On the other hand, f3 presented some problems. The function did not fit well, and the error
was 0.069. Above all, f3’s extrapolated upper bound was h = 1.573 bpc. The value is larger than the
minimum experimental value hexpmin = 1.407 bpc considered in Section 3.5.

This tendency of f3 to overestimate the value h may be the result of f3(n) having been designed
based on the convergence of the entropy rate of some random sequence. Therefore, a suitable ansatz
function would be either f1 or f2. As seen, they provide similar results, which is consistent with the
original observation provided in [4]. Consequently, we focus on f1, the most conventional ansatz, in
the following section.

5. Analysis via the Bootstrap Technique

Section 2.3 mentioned that the scale of our experiment was significantly larger than the scales
used in previous experiments [1,9,11]. The large number of observations allowed us to investigate
the effect of the number of observations via the bootstrap technique, which uses subsets of the
experimental samples.

5.1. The Effect of the Sample Size

B sets of observations, each of which include S records of the experimental sessions, were sampled
without redundancy. Let S be referred to as the sample size in the following discussion. As defined in
Section 2.1, a record of an experimental session consists of a series of the number of guesses for each
context of length n− 1 produced by the same subject for a phase.

For each set, the upper bound of every n is the rightmost term in Equation (5), and an acquired set
of points is extrapolated with the ansatz function f1. We obtain B different values of h. In addition to
their mean value, it would be reasonable to examine the interval between some bounds for the entropy
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rate estimate. We consider these bounds based on the fixed percentile of B values of h. We set B = 1000
and acquired the means and both bounds at 5% upper/lower percentiles for different values of S.

Figure 5 shows the histograms of h values for S = 100, 500, 1000, and 1500. At S = 100,
the estimated values vary widely, and the 5% percentile bounds are h = 1.124 bpc and h = 1.467 bpc,
as shown in Table 3. The previous experiments, including Shannon’s study [1,9,11], used a maximum
of S = 100 observations for certain values of n. Our results suggest that the values reported by these
works have large intervals around them and should not be considered to be general results.

Furthermore, for small S, the estimated values also tend to be biased towards smaller values.
The mean value at S = 100 was h = 1.340 bpc, which is about 0.07 bpc smaller than the value
h = 1.412 bpc obtained for S = 1000. This underestimation occurred due to the fact that an event with
small probability cannot be sampled when the sample size is small. Such events with small probabilities
then contribute to increasing the entropy. When their contributions are ignored, the estimate tends to be
smaller than its true value. Consequently, Shannon’s original experiment could have underestimated
the upper bound.

These observations suggest that a large sample size is necessary to obtain convergence of the
upper bound. As observed in the values reported in Table 3, the histograms Figure 5, the red data
points, and the shaded area in Figure 6, the differences between the 5% upper/lower percentile bounds
decrease with larger sample size S. At S = 1000, the difference between the bounds is smaller than
0.1 bpc, which is a reasonably acceptable margin of error.

(a) S = 100. (b) S = 500.

(c) S = 1000. (d) S = 1500.

Figure 5. Histograms for the estimated values of the upper bound of the entropy rate h for different
sample sizes. (a) S = 100; (b) S = 500; (c) S = 1000; (d)S = 1500.
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Figure 6. The estimated upper bounds with ansatz function f1 using: (1) 1000 experimental sessions
with the best prediction performances (blue), and (2) all experimental sessions (red), with the values
reported in Table 3. The blue and red points indicate the mean values for the B = 1000 sets, and the
shaded areas indicate the 5% percentile bounds.

Table 3. The means and the 5% percentile-bound-intervals for the upper bound of h found by using
the ansatz function f1 for S = 100, 500, 1000, and 1500. The number of sets is B = 1000. The error
is large for a small sample sizes, such as S = 100, as the difference between the 5% percentile upper
and lower bounds is larger than 0.3 bpc. This difference decreases with increasing S and eventually
becomes smaller than ±0.1 bpc for S ≥ 1000.

Sample Size S Mean 5% Upper 5% Lower

100 1.340 1.467 1.124
200 1.383 1.468 1.263
300 1.391 1.459 1.302
400 1.398 1.456 1.327
500 1.405 1.455 1.349
1000 1.412 1.438 1.383
1500 1.411 1.444 1.374

5.2. The Effect of Variation on Subjects’ Estimation Performances

Our experiment was conducted with anonymous subjects, and therefore, was less controlled than
an in-laboratory experiment. Such factors could influence the entropy rate estimate; therefore, the bias
is examined in this section.

Although the residences of the participants were limited to native English speaking countries, as
mentioned in Section 3.3, we could not control the native tongues of our participants. Although our
phrases were extracted from the Wall Street Journal and the terms and expressions were easy to
understand, even for non-natives (see Table 2), the results might be biased. In addition, the experiment
was not supervised on site; therefore, subject conditions could have varied.

In principle, the entropy rate measures the maximal predictability of the text. Therefore, each
estimated value should be obtained based on the maximal performance of the subject. Here, we
consider estimating the entropy rate with only the best-performed experimental sessions. We first
defined the performance of an experimental session as the average number of guesses required to
predict the succeeding character Xn. The experimental sessions for which the maximal n was less than
70 were filtered out in order to keep the sample size the same for all n = 1 . . . 70.
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Next, the experimental sessions were sorted by performance, and the S = 1000 best sessions are
selected. Note that this S was necessary for obtaining convergence, as seen in the previous section.

We evaluated the mean and 5% percentile bounds of the best-performing set by measuring the
upper bound h from B = 1000 sets of S = 100, 150, 200, . . . , 1000 sub-samples. At S = 1000, there is
only one possible set; therefore, h can have just one value. The results are shown in Figure 6. The blue
data points in the middle show the means, and the blue-colored areas around them shows the intervals
contained within the 5% percentile bounds. Similar to the results for all experiment sessions (shown as
red data points and a red-shaded area), the widths of the intervals are quite large for small sample
sizes, such as S = 100, and decrease towards S = 1000. The mean value of the upper bound increased
with respect to S, which is also similar to the result for all experiment sessions.

Using just the selected experimental sessions, the final estimated value converged to h ≈ 1.22 bpc,
which is smaller than the value estimated when using all experimental sessions hexpmin and those
acquired by previous cognitive experiments.

6. Discussion

6.1. Computational versus Cognitive Methods

In parallel with the cognitive approach, computational approaches have also attempted to estimate
the entropy rate’s upper bound for natural language. Such an approach requires that some language
model be used, and previous estimates have been found with, for example, the n-gram language
model [2], compression algorithm model [3,4], and neural language model [5,7]. In particular,
Brown et al. [2] constructed the word-level n-gram language model and obtained h = 1.63 bpc,
whereas Takahira et al. [4] conducted a compression experiment using giga byte-scale newspaper
corpora and obtained an estimate of h = 1.32.

In addition to the compression algorithms and n-gram language models, recent works have also
employed neural language models, which potentially have higher capacities for accurately predicting
future characters. Recently, Dai et al. [7] reported h = 1.08 bpc when using Transformer XL on
text8. This dataset is a collection of natural language text taken from Wikipedia and cleaned to the
point of having only 26 alphabet characters and space corresponding to the setting of the Shannon’s
experiment. That h value was smaller than our estimated value, suggesting that humans may not
be able to outperform computational models in character guessing games. Nevertheless, it is worth
considering the differences in the conditions of the experiments.

The primary factor is the context length. Dai et al. [7]’s model utilized several hundred context
lengths to acquire their results. The high performance of the neural language models can be explained,
at least partially, by their ability to utilize long contexts. However, humans are also able to utilize long
contexts, at least as long as n ≈ 102, to improve their prediction performances, whereas our experiment
used the context lengths of up to n = 70 to obtain the upper bound for h.

Furthermore, while a cognitive experiment obtains the upper bound of the entropy rate from
the number of guesses, when using the computational model, the estimate is calculated based on
the probability assigned to the correct character. With a distribution at hand, the upper bound of the
computational model can be evaluated more tightly and precisely. The design of an experiment that
incorporates a longer context length and character probability distributions is a direction of research
that may be pursued in future work.

6.2. Application to Other Languages and Words

This work focused on English, which is the most studied language within the context of entropy
rate estimation. Shannon’s experiment is applicable to other languages if the alphabet size of the
writing system is comparable with that of English.

In contrast, for ideographic languages such as Chinese and Japanese, which have much larger
alphabet sizes, it is practically impossible to conduct Shannon’s experiment. A prediction could involve
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thousands of trials until a subject reaches the correct character. Therefore, a new experimental design
is required to estimate the entropy rate for these languages with large alphabet sizes.

Such an experimental setting would be also applicable to the estimation of the entropy rate at the
word level, which could be interesting to investigate via a cognitive approach. Humans partly generate
text word by word and character by character (sound by sound). Thus, any analysis could reveal new
information about linguistic communication channels, including their distortions, as studied in [26,27].

6.3. Nature of h Revealed by Cognitive Experimentation

Provided with some previous work and the good fit of an ansatz extrapolation function while
assuming that h ≥ 0 and using what we consider reliable data points, we arrived at h = 1.22.

There is more than one way, however, to investigate the true value of h. Figure 4 shows how data
points for larger n become lower than the estimated ansatz, perhaps suggesting that the values tend to
zero even for larger n. It could be the case that h goes to zero. Indeed, a function without an h term (i.e.,
h = 0) would fit reasonably well if the upper bound is evaluated only with relatively small datapoints
of n such as n ≤ 70. Overall, our analysis does not rule out the possibility of the zero entropy rate.

One observation gained from this work that highlighted the sample size is that data points are
distributed and statistical margins must be considered. Hence, h should be considered as having a
distribution and not as a single value. One such way of analysis was described in Section 5.

7. Conclusions

This paper presented a large-scale cognitive experiment for estimating the entropy rate for English.
Using AMT, we conducted Shannon’s experiment online and collected 172,954 character predictions in
total across 683 subjects. It was by far the largest cognitive experiment conducted thus far, and the
scale enabled us to analyze the factors that influence the estimation.

While Shannon implied that subjects’ prediction performances improved with increasing context
length, others disagreed with his implication. Our experiment showed that subjects’ prediction
performances improved consistently with increasing context length, at least up to 100 characters.

Further, we investigated the influence of the number of observations on the estimation via the
bootstrap technique. One of the most important insights gained is that the number of prediction
observations must be at least 1000 in order to produce an estimate with a reasonable margin of
error. In the case of small samples, the value of h could be potentially underestimated. Hence,
Shannon’s original experiment and other previous experiments provided estimates that could have
been underestimated. We believe that this present work reports a statistically reliable estimate with a
reasonable margin of error.

Due to the online environment, the performances of the subjects varied, and the upper bound
should be evaluated based on filtered results. With a sufficient number of well-performing samples,
we obtained an upper bound of h ≈ 1.22 bpc, which is slightly smaller than Shannon’s reported value
of h = 1.3 bpc.

Future work could include finding a new experimental design, one in which the participants use
longer contexts to predict the next character; thus, reducing the cognitive load. Such an experiment
would contribute to the tighter evaluation of the upper bound of the entropy rate. It would be also
interesting to examine the entropy rates of other languages and at the word level while still utilizing a
cognitive experiment.
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Appendix A

The fits of f2 and f3 to the same data points (as opposed to f1, shown in Figure 4) are shown in
Figure A1.

(a) f2(n). (b) f3(n).

Figure A1. The plots of the upper bounds (blue) and lower bounds (red) acquired from all observations
and their extrapolations via the ansatz functions f2 and f3 (shown as the dashed lines).
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