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Abstract: Health data are generally complex in type and small in sample size. Such domain-specific
challenges make it difficult to capture information reliably and contribute further to the issue
of generalization. To assist the analytics of healthcare datasets, we develop a feature selection
method based on the concept of coverage adjusted standardized mutual information (CASMI).
The main advantages of the proposed method are: (1) it selects features more efficiently with
the help of an improved entropy estimator, particularly when the sample size is small; and (2) it
automatically learns the number of features to be selected based on the information from sample
data. Additionally, the proposed method handles feature redundancy from the perspective of
joint-distribution. The proposed method focuses on non-ordinal data, while it works with numerical
data with an appropriate binning method. A simulation study comparing the proposed method to
six widely cited feature selection methods shows that the proposed method performs better when
measured by the Information Recovery Ratio, particularly when the sample size is small.
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1. Introduction

Inspired by the recent advancement in big data, health informaticians are attempting to assist
health care providers and patients from a data perspective, with the hope of improving quality of care,
detecting diseases earlier, enhancing decision making, and reducing healthcare costs [1]. In the process,
health informaticians have been confronted with the issue of generalization [2]. Analyzing real health
data involves many practical problems that could contribute to the issue of generalization; for example,
the unknown amount of information (signal) versus error (noise), the curse of dimensionality, and
the generalizability of models. All these trivial problems boil down to the essential problem issued
by a limited sample. With the limitation of the sample size, the information from the sample cannot
represent the information of the population to a desirable extent. For this reason, a simple way to
address these trivial problems is to collect a sufficiently large sample, which is unfortunately often
impractical in healthcare because of multiple reasons. For example:

1. The term sufficiently large is relative to the dimensionality of data and the complexity of feature
spaces. Health data are generally large in dimensionality, particularly when dummy variables
(one-hot-encoding) are adopted to represent enormous categories of complex qualitative features
(such as extracted words from clinical notes). As a result, a dataset with a sample size of 1,000,000
may not be sufficient, depending on its feature spaces.

2. There may not be sufficient patient cases for a rare disease. Even if there are ample potential cases,
it may be cost-prohibitive for clinical trials to achieve a sufficient sample.
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Without a sufficiently large sample, dimension reduction becomes a major research direction in
health data analytics, as reducing dimensionality can partly relieve the issues from a limited sample.
These dimension reduction techniques mainly focus on feature selection and feature projection, where
feature selection can be further applied to the features created by feature projection. In this article, we
focus on feature selection. Feature selection has become an important research area, dating back at
least to 1997 [3,4]. Since then, many feature selection methods have been proposed and well discussed
in multiple recent review papers, such as [5–7]. To apply these feature selection methods to health
data, domain-specific challenges must be considered.

Health data can be numerical and categorical. For example, many machine readings (e.g., heart
rate, blood pressure, and blood oxygen level) are numerical, while gene expression data are categorical.
A healthcare dataset could contain numerical data only, categorical data only, or a combination of both
data types. The fundamental distinction between numerical data and categorical data is whether the
data space is ordinal or non-ordinal. As a result, data consisting of only numbers are not necessarily
numerical data; for example, gene expression data can be coded to numbers using dummy variables,
but it should be still considered as categorical. When the data space is ordinal (numerical data only),
classical methods—which detect the association using ordinal information—are more powerful in
capturing the associations in data. When the data space is non-ordinal (categorical data only), ordinal
information does not naturally exist; hence, continuing to use classical methods onto coded data loses
their original advantages and has additional estimation issues. Namely, involving dummy variables
increases the dimensionality of data and further exacerbates the estimation problem using a limited
sample. This particularly happens when an involved categorical feature has a complex feature space
that requires a tremendous number of dummy variables to represent all the different categories.

To handle categorical data for feature selection, only information–theoretic quantities (e.g., entropy
and mutual information [8]) serve the purpose. When a dataset is a combination of both data types,
it is inconclusive about whether to use classical or information–theoretic methods. In general, if
one believes that the numerical data in the dataset carry more information than the categorical data,
then classical methods can be used. If one believes the categorical data carry more information,
then information–theoretic methods should be used, and the numerical data should be binned
to categorical data. One should be advised that coding categorical data for classical methods
increases dimensionality and issues more difficulties in estimation, while binning numerical data
for information–theoretic methods inevitably loses ordinal information. It should also be noted that,
although ordinal information could provide extra information about associations among the data, the
ordinal information could also mislead a person’s judgement when associations actually exist, but
there is no visual pattern among the data. The way that classical methods work is very similar to our
visualization; if there is a pattern that can be visually observed, then it can also be detected by some
classical methods. However, not all associations among numerical data are visually observable, in
which case, classical methods would fail to detect the associations. On the other hand, if there is a
visual pattern among data, binning the data (losing the ordinal information) would not necessarily
lead to a loss of associations among data; it depends on the binning methods and performance of the
information–theoretic methods.

Classical feature selection methods include, but are not limited to, Fisher score [9], ReliefF [10],
trace ratio [11], Laplacian score [12], Zhao and Liu’s spectral feature selection (SPEC) [13],
lp-regularized [14], lp,q-regularized [14], efficient and robust feature selection (REFS) [15], multi-cluster
feature selection (MCFS) [16], unsupervised feature selection algorithm (UDFS) [17], nonnegative
discriminative feature selection (NDFS) [18], t-score [19], and least absolute shrinkage and selection
operator (LASSO) [20]. All these classical feature selection methods require information from
ordinal spaces, such as moments (e.g., mean and variance) and spacial information (e.g., nearest
location and norms). Information–theoretic feature selection methods include, but are not limit to,
mutual information maximisation (MIM) [21], mutual information feature selection (MIFS) [22], joint
mutual information (JMI) [23], minimal conditional mutual information maximisation (CMIM) [24,25],
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minimum redundancy maximal relevancy (MRMR) [26], conditional infomax feature extraction
(CIFE) [27], informative fragments (IF) [24], double input symmetrical relevance (DISR) [28], minimal
normalised joint mutual information maximisation (NJMIM) [29], chi-square score [30], gini index [31],
and CFS [32]. All these information–theoretic methods use ordered probabilities, which always exist in
non-ordinal spaces. For example, frequencies, category probabilities (proportions), Shannon’s entropy,
mutual information, and symmetric uncertainty are all functions of ordered probabilities.

In many cases, all (or most) of the data in a healthcare dataset could be categorical. To analyze
the categorical data in such a dataset, information–theoretic feature selection methods are preferred
because they could capture the associations among features without using dummy variables, where
classical methods require dummy variables that would increase the dimensionality. Most existing
information–theoretic methods use entropy or mutual information (a function of entropy) to measure
associations among data. Information–theoretic methods that do not use entropy include Gini index
and chi-square score. Gini index focuses on whether a feature is separative, but does not indicate
probabilistic associations. Chi-square score relies on the performance of asymptotic normality on each
component, and when there are categories with low frequencies (e.g., less than five), the chi-square
score is very unstable. However, under a limited sample, we should expect at least a few, if not many,
categories would have relatively low frequencies. For the existing information–theoretic methods that
use entropy (we call these entropic methods), all of them estimate entropy with the classical maximum
likelihood estimator (the plug-in estimator). The plug-in entropy estimator performs very poorly
when the sample size is not sufficiently large [33,34], and we have discussed that the sample size is
usually relatively limited in healthcare datasets. As a result, to use entropic methods in healthcare
data analytics, the estimation of entropy under small samples must be improved.

In addition to estimation based on small samples, the unhelpful association is another issue
with these samples. While the issue of estimation can be addressed by using a better estimator, the
problem of unhelpful association is trickier. The unhelpful association is partially a result of sample
randomness, and it could be severe when the sample size is small. Suppose there is a healthcare dataset
with multiple features and one outcome, and there is a feature in the dataset that could distinguish the
values of the outcome based on the sample information, then there are three possible situations for
the feature:

Situation One The feature has abundant real information toward the outcome, and the real
information is well preserved by the sample data.

Situation Two The feature has abundant real information toward the outcome, but the real
information is not well preserved by the sample data.

Situation Three The feature has little real information but seems relevant to the outcome because of
randomness in the sample.

The term real information of a feature means the feature-carried information that could indicate
the values of the outcome at the population level. All three situations are conceptual classifications.
At the population level, situation one and two features are relevant features, and situation three
features are irrelevant features. It is clear that situation one features should be selected, while situation
three features should be dropped. For situation two, caution should be exercised. Intuitively, situation
two features should be kept as they are relevant features at the population level. However, as a
result of a limited sample, the information carried by these situation two features are very subtle.
There are at least two constitutional problems about the information from situation two features. First,
although the feature could distinguish the values of the outcome based on the sample information,
the sample-preserved information possibly provides only a meager coverage of all the possible values
of the feature. As a result, when there is a new observation (e.g., a new patient), it is very likely
that the new observation’s corresponding label has not been observed by the preserved information,
in which case no outcome information is available to assist prediction based on the information of
such a situation two feature. Second, because of the limited sample, the predictability of the situation
two features revealed by the sample may not be complete; hence, it could contribute as an error
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(noise). For example, based on the sample information, different values of a situation two feature could
possibly uniquely determine a corresponding value of the outcome (particularly when a feature space
is complex while the sample size is small), but this deterministic relationship revealed by a limited
sample is unlikely to be true at the population level. As a result, using this information in further
modeling and prediction would be wrong and could further contribute to the issue of generalization.
Therefore, we suggest omitting situation two features. In addition, one should note that a relevant
feature being categorized as situation two is a consequence of a limited sample. All situation two
features would eventually become situation one when the sample size grows (because more real
information would be revealed). As a summary, under a limited sample, situation one features should
be kept, and situation two and three features should be dropped.

Focusing on the domain-specific challenges from health data, we develop the proposed entropic
feature selection method based on the concept of coverage adjusted standardized mutual information
(CASMI). The proposed method aims at improving the performance of estimation and addressing the
issue of unhelpful association under relatively small samples. The rest of the article is organized as
follows. The concept, intuition, and estimation of CASMI are discussed in Section 2. The proposed
method is described in detail in Section 3 and evaluated by a simulation study in Section 4. A brief
discussion is in Section 5.

2. CASMI and Its Estimation

In this section, we introduce the concept, intuition, and estimation of CASMI. Before we proceed,
let us state the notations first.

Let X = {xi; i = 1, · · · , K1} and Y = {yj; j = 1, · · · , K2} be two finite alphabets with
cardinalities K1 < ∞ and K2 < ∞, respectively. Consider the Cartesian product X ×Y with a
joint probability distribution p = {pi,j}. Let the two marginal distributions be respectively denoted
by px = {pi,·} and py = {p·,j}, where pi,· = ∑j pi,j and p·,j = ∑i pi,j. Assume that pi,· > 0 and p·,j > 0
for all 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2 and that there are K = ∑i,j 1[pi,j > 0] non-zero entries in {pi,j}. We
re-enumerate these K positive probabilities in one sequence and denote it as {pk; k = 1, · · · , K}. Let X
and Y be random variables following distributions px and py, respectively. For every pair of i and j, let
fi,j be the observed frequency of the random pair (X, Y) taking value (xi, yj), where i = 1, · · · , K1 and
j = 1, · · · , K2, in an independent and identically distributed (iid) sample of size n from X ×Y under
p, and let p̂i,j = fi,j/n be the corresponding relative frequency. Consequently, we write p̂ = { p̂k}
(i.e., { p̂i,j}), p̂x = { p̂i,·}, and p̂y = { p̂·,j} as the sets of observed joint and marginal relative frequencies.
Shannon’s mutual information (MI) between X and Y is defined as

MI(X, Y) = H(X) + H(Y)− H(X, Y), (1)

where

H(X) = −∑
i

pi,· ln pi,·,

H(Y) = −∑
j

p·,j ln p·,j,

H(X, Y) = −∑
i

∑
j

pi,j ln pi,j = −
K

∑
k=1

pk ln pk.

We define the CASMI as follows:

Definition 1 (CASMI). κ∗, the coverage adjusted standardized mutual information (CASMI) of a feature X to
an outcome Y, is defined as

κ∗(X, Y) = κ(X, Y) · (1− π0(X)), (2)
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where

κ(X, Y) =
MI(X, Y)

H(Y)
, (3)

and (1− π0) is the sample coverage that was first introduced by Good [35] as “the proportion of the population
represented by (the species occurring in) the sample”.

2.1. Intuition of CASMI

Many entropic concepts can measure the associations among non-ordinal data; for example, MI,
Kullback–Leibler divergence [36], conditional mutual information [37], and weighted variants [38].
Among them, MI is the fundamental concept as all the other entropic association measurements are
developed based on or equivalent to MI. For this reason, we develop the CASMI starting with MI. It is
well known that MI ≥ 0, and MI(X, Y) = 0 if and only if X and Y are independent. However, MI is
not bounded from above; hence, using the values of MI to compare the degrees of dependence among
different pairs of random variables is inconvenient. Therefore, it is necessary to standardize the mutual
information, which yields to the so-called standardized mutual information (SMI) or normalized
variants. Reference [39] provides several forms of SMI, such as MI/H(X) (also known as information
gain ratio if X is a feature and Y is the outcome), MI/H(Y), and MI/H(X, Y). All these forms of SMI
can be proven to be bounded by [0, 1], where 0 stands for independence between X and Y, and 1 stands
differently for different SMIs. For MI/H(X) (information gain ratio), 1 means that, given the value of
Y (outcome), the value of X (feature) is determinate. For MI/H(Y), 1 means that, given the value of
X, the value of Y is determinate. For MI/H(X, Y), 1 means a one-to-one correspondence between X
and Y.

The goal of feature selection is to separate the predictive features from non-predictive features.
In this regard, MI/H(Y) = 1 is the most desirable because MI/H(X) = 1 does not indicate the
predictability of X, and MI/H(X, Y) = 1 is too strong and unnecessary. Therefore, we select κ in (3) as
the SMI in CASMI.

As we have discussed, detecting unhelpful associations under small samples is important in
health data analytics as involving unhelpful associations would bring too much noise or unnecessary
dimensions to model-building or prediction. In other words, we would like to detect situation two and
three features in a limited sample. The common characteristic among situation two and three features
is the information revealed by the limited sample covers little of the total information in the population.
For this reason, we use sample coverage (1− π0), the concept introduced by Good, to detect these
features. A feature with high predictability but low sample coverage must belong to either situation
two or three. In CASMI, we multiply the SMI by the sample coverage. Under this setting, although
features from situations 2 and 3 have high SMI values, their CASMI scores would be low because of
their low sample coverages; hence, these features would not be selected in a greedy selection. On
the other hand, the CASMI score for a situation one feature would be high because both SMI and the
sample coverage are high. As a result, by selecting features greedily, situation one features would be
selected, while situation two and three features would be dropped.

The purpose of CASMI is to capture the association between a feature and the outcome, with a
penalized term from the sample coverage, so that features under situations 2 and 3 would be eliminated.
By selecting features under only situation one, the issue of generalization under small samples is
expected to be reduced.

It may be interesting to note that the CASMI is an information–theoretic quantity that is related to
both the population and the sample. It is neither a parameter nor a statistic, and it is only observable
when both the population and the sample are known. Next, we introduce its estimation.
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2.2. Estimation

To estimate κ∗ (CASMI), we need to estimate π0 and κ. π0(X) can be estimated by Turing’s
formula [35]

T1(X) = N1(X)/n, (4)

where N1(X) is the number of singletons in the sample. For example, if a sample of English letters
consists of {a, a, a, b, c, c, d, e, e, f }, then the corresponding N1 = 3 (b, d, and f are the three singletons).
Discussions on the performance of estimating π0 by T1 can be found in [39,40]. In experimental
categorical data, singletons could possibly indicate the sample size is small. As the sample size grows,
the chance of obtaining a singleton in the sample approaches zero. It may be interesting to note
that using (4) to estimate the sample coverage would automatically separate ID-like features. This is
because an ID-like feature is naturally all (or almost all) singletons and would result in a zero (or very
small) estimated sample coverage that further leads to a zero (or very low) CASMI score; hence, such
an ID-like feature would not be selected.

Estimating κ(X, Y) is equivalent to estimating MI(X, Y) and H(Y). As we have discussed, thus
far, all the existing entropic information–theoretic methods use the plug-in estimator of entropy (Ĥ).
However, the plug-in entropy estimator has a huge bias, particularly when the sample size is small.
Reference [33] showed that the bias of Ĥ is

E(Ĥ)− H = −K− 1
2n

+
1

12n2

(
1−

K

∑
k=1

1
pk

)
+O

(
n−3

)
,

(We write f = O(g(n)) to denote lim supn→∞ | f (n)/g(n)| < ∞.) where n is the sample size and K is
the cardinality of the space on which the probability distribution {pk} lives. Based on the expressions
of the bias, it is easy to see that the plug-in estimator underestimates the real entropy, and the bias
approaches 0 as n (sample size) approaches infinity, with a rate of n−1 (power decay). Because of the
power decaying rate, the bias is not small when sample size (n) is relatively low.

To improve the estimation under a small sample, we adopt the following Ĥz [41] as the estimator
of H:

Ĥz =
n−1

∑
v=1

1
v

n1+v[n− (1 + v)]!
n! ∑

k

[
p̂k

v−1

∏
j=0

(
1− p̂k −

j
n

)]
. (5)

Compared to the power decaying bias of Ĥ, Ĥz has an exponentially decaying bias

E(Ĥz)− H = O
(
(1− p∧)n

n

)
,

where p∧ = min{pk > 0}.
To help understand the differences between the power decaying bias and exponentially decaying

bias, we conduct a simulation. In the simulation, the real underlying distribution is pk = k/2001000,
where k = 1, 2, . . . , 2000 (i.e., a triangle distribution). Under this setting, the true entropy H = 7.408005.
To compare the two estimators, we independently generate 10,000 samples following the triangle
distribution for each of the six sample size settings in Table 1 (i.e., we generate 60,000 random samples
in total). The average values of Ĥ and Ĥz under different sample sizes are summarized in Table 1.

The calculation shows that Ĥ would consistently underestimate H more than Ĥz.
The underestimation is more severe when the sample size is smaller. Therefore, from a theoretical
perspective, we expect that adopting Ĥz in estimating the entropies in CASMI would provide a better
estimation, particularly under small samples. Furthermore, we expect that CASMI would capture the
associations among features and the outcome more accurately under small samples because of the
improvement in estimation. Interested readers can find additional discussions on comparison among
more entropy estimators in [41], and comparison about mutual information estimators using Ĥ and
Ĥz in [42].
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Table 1. Estimation comparison between Ĥ and Ĥz.

n 100 300 500 1000 1500 2000

avg. of Ĥ 4.56 5.57 6.00 6.51 6.75 6.89

avg. of Ĥz 5.11 6.09 6.49 6.92 7.11 7.21

Consequently, we let

M̂Iz(X, Y) = Ĥz(X) + Ĥz(Y)− Ĥz(X, Y), (6)

and we estimate κ as

κ̂z(X, Y) =
M̂Iz(X, Y)

Ĥz(Y)
. (7)

As a summary, we estimate κ∗ by the following estimator, which is the scoring function of the
selection stage in the proposed method.

κ̂∗(X, Y) = κ̂z(X, Y) · (1− T1(X)), (8)

where κ̂z is defined in (7) and T1 is defined in (4). κ̂∗ adopts an entropy estimator with an exponentially
decaying bias to improve the performance in estimating κ∗ and to capture the associations when the
sample size is not sufficiently large. Furthermore, we expect that involving the sample coverage would
separate and drop situation two and three features under small samples.

3. CASMI-Based Feature Selection Method

In this section, we introduce the proposed feature selection method in detail. The proposed
method contains two stages. Before we present the two stages, let us first discuss data preprocessing.

3.1. Data Preprocessing

To use the proposed method, all features and the outcome data must be preprocessed to
categorical data. Continuous numerical data must be discretized, and there are numerous discretization
methods [43]. While binning continuous features, the estimated sample coverage (4) should be checked
to avoid over-discretization, which increases the risk of wrongly shifting a feature from situation one
to situation two.

If the data are already categorical, one may need to combine some of the categories to improve
the sample coverage, when necessary. When most observations of a feature are singletons, then the
coverage is close to 0, in which case it is difficult to draw any reliable and generalizable statistical
inference. Therefore, for features that are believed to carry real information but have low sample
coverages (below 50%), it is suggested to regroup them to create repeats and improve coverages. Note
that not all features are worth regrouping; for example, if a feature is the IDs of patients, regrouping
should be avoided as there is no reason to believe an ID can contribute to the outcome. The proposed
method does not select features with low sample coverages; hence, ID-like features are eliminated
automatically.

When a feature contains missing (or invalid) data that cannot be recovered by the data collector,
without deleting the feature, there are several possible remedies, such as deleting the observation,
making an educated guess, predicting the missing values, and listing all missing values as NA.
While it is the user’s preference on how to handle the missing data, one should be advised that
manipulating (guessing or predicting) the missing data could create (or enhance) false associations;
therefore, one should be cautious. Assigning all the missing values as NA generally would not create
false associations, but it may reduce the predictive information of the feature. The performance of
each remedy method could vary from situation to situation. Additional discussions on handling
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missing data can be found in [44–46]. We suggest dealing with the missing data at the beginning of the
data preprocessing.

The processed data should contain only categorical features and outcome(s). A feature with only
integer values could be considered as categorical as long as the sample coverage is satisfactory.

3.2. Stage 1: Eliminate Independent Features

In this stage, we eliminate the features that are believed to be independent of the outcome
based on a statistical test. This step filters out the features that are very unlikely to be useful; hence,
the computation time for feature selection is reduced.

Suppose there are p features, X1, X2, . . . , Xp, and one outcome, Y, in a dataset. Note that there
could be multiple outcome attributes in a dataset. Because each outcome attribute has its own related
features, when making a feature selection, we consider one outcome attribute at a time.

In finding independent features, we adopt a chi-squared test of independence using M̂Iz as
the statistic.

Theorem 1 ([47]). Provided that MI = 0,

χ2 = 2nM̂Iz + (K1 − 1)(K2 − 1) L→ χ2 ((K1 − 1)(K2 − 1)) , (9)

where M̂Iz is defined in (6). K1 and K2 are the effective cardinalities of the selected feature X and the outcome Y,

respectively. We write L→ to denote convergence in distribution.

Compared to Pearson’s chi-squared test of independence, testing independence using Theorem 1
has more statistical power, particularly when the sample size is small [47]. We test hypothesis
H0 : MI(X, Y) = 0 against Ha : MI(X, Y) > 0 between the outcome and each of the features. At a
user-chosen level of significance (α), any feature whose test decision fails to reject H0 is eliminated at
this stage. It is suggested to let α = 0.10. A smaller α increases the chance of Type-II error (eliminating
useful features); a larger α reduces the ability of the elimination, which results in a longer selection
computation time in the next stage.

Let X1, X2, . . . , Xs denote the s features (out of the p features) that have passed the test of
independence. The other (p − s) features are eliminated at this stage. Note that the X1, . . . , Xs

are temporary notations for features. Namely, the X1 in {X1, . . . , Xp} := {X}p and the X1 in
{X1, . . . , Xs} := {X}s are different if the X1 in {X}p is eliminated in this stage. Note that we do
not consider feature redundancy at Stage 1. Redundant features could all pass the test of independence
as long as they appear to be relevant to the outcome based on sample data. Feature redundancy would
be considered at Stage 2.

3.3. Stage 2: Selection

In this stage, we make a greedy selection among the s remaining features from Stage 1.
The selection algorithm is:

1. X(1) = argXi∈{X}s
max [κ̂∗(Xi, Y)];

2. X(2) = argXi∈{X}s\{X(1)}max
[
κ̂∗(X(1) × Xi, Y)

]
;

3. X(3) = argXi∈{X}s\{X(1),X(2)}max[κ̂∗(X(1) × X(2) × Xi, Y)];

· · ·
The algorithm stops at time c when κ̂∗(X(1) × · · · × X(c+1), Y) < κ̂∗(X(1) × · · · × X(c), Y).
The features selected by the proposed method are X(1), . . . , X(c). The algorithm workflow is
provided in Figure 1.
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START

Find the 1st feature, X(1):
for i = 1 to s do:

κ̂∗i = κ̂∗(Xi, Y).
X(1) = Xi that made the max κ̂∗i .

{X}s

Remove X(1)

−−−−−−→ {X}s−1.

Check if
{X}s−1 is

empty.

Outcome:
feature selected: X(1).

END

Find the 2nd feature, X(2):
for i = 1 to s− 1 do:

κ̂∗i = κ̂∗(X(1) × Xi, Y).
X(2) = Xi that made the max κ̂∗i .

{X}s−1

Remove X(2)

−−−−−−→ {X}s−2.

Check if
κ̂∗(X(1) × X(2), Y)

<
κ̂∗(X(1), Y)

Check if
{X}s−2 is

empty.

Outcome:
features selected: X(1), X(2).

END

Find the 3rd feature, X(3):
for i = 1 to s− 2 do:

κ̂∗i = κ̂∗(X(1) × X(2) × Xi, Y).
X(3) = Xi that made the max κ̂∗i .

{X}s−2

Remove X(3)

−−−−−−→ {X}s−3.

Check if
κ̂∗ (X(1) × X(2) × X(3) , Y)

<
κ̂∗ (X(1) × X(2) , Y)

Check if
{X}s−3 is

empty.

Outcome:
features selected: X(1), X(2), X(3).

END

Find the (c + 1)th feature, X(c+1):
for i = 1 to s− c do:

κ̂∗i = κ̂∗(X(1) × ...× X(c) × Xi , Y).
X(c+1) = Xi that made the max κ̂∗i .

{X}s−c

Remove X(c+1)

−−−−−−→ {X}s−(c+1).

Check if
κ̂∗ (X(1) × ...× X(c+1) , Y)

<
κ̂∗ (X(1) × ...× X(c) , Y)

Check if
{X}s−(c+1)
is empty.

Outcome:
features selected:
X(1), X(2), ..., X(c).

END

Outcome:
features selected:
X(1), X(2), ..., X(c+1).

END

Continue until an END.

Yes
No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Figure 1. Algorithm workflow for Stage 2.
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To clarify the notations, κ̂∗(X(1) × Xi, Y) stands for the estimated CASMI of the joint feature
X(1) × Xi to the outcome Y, and {X}s is the collection of the s remaining features.

The proposed method handles feature redundancy by considering joint-distributions among
features. Taking X(1) and X(2) as examples, the first step yields the feature X(1), which is the most
relevant feature (measured by the estimated CASMI) to the outcome. In the second step, we joint
the selected X(1) with each of the remaining (s− 1) features, and we evaluate the estimated CASMIs
between each of the joint-features and the outcome. The joint-feature with the highest estimated
CASMI is selected, which becomes X(2). It should be noted that X(1) and X(2) are neither necessarily
independent nor necessarily the least dependent. Selecting X(2) only indicates that based on the
information provided from X(1), X(2) provides the most additional information about the outcome
among the remaining (s− 1) features. In addition, CASMI is an information–theoretic quantity that
does not use ordinal information of features; therefore, both linear and nonlinear redundancy are
captured, evaluated, and considered.

The proposed method automatically stops at time c when the term max[κ̂∗(·, Y)] starts to decrease.
In some situations, a researcher may want to select a desired number of features (d) that is different
from c. For example, let c = 10, and suppose Researcher A would like to select d1 = 6 features, while
Researcher B wants d2 = 15. When c = 10 and d1 = 6, because 6 ≤ 10, Researcher A can stop the
algorithm at the time 6. When c = 10 and d2 = 15, because 15 > 10, Researcher B needs to select five
additional features. We propose two choices on how to select the additional features.

Choice one. Keep running the proposed algorithm until time 15.
Choice two. Use any other user-preferred feature selection methods to select the five

additional features.

Choice two could be complicated. If the user-preferred feature selection method has a ranking
on the selected features, such as filter methods, then Researcher B can find the additional features by
looking for the top five features other than the already-selected 10 features. If the user-preferred feature
selection method (e.g., LASSO) does not have a ranking among the selected features, Researcher B can
start with selecting 15 features using the preferred method, and then check if there are exactly five new
features in the group compared to the 10 features selected by the proposed method. If the number of
new features in the group is more than five, then the number of selected features (in the user-preferred
method) needs to be reduced, until a point that there are exactly five new features in the group, so that
the five additional features can be determined.

After the two stages, the proposed method is completed. The performance of the proposed
method is evaluated in the following section.

4. Simulations

In this section, we provide a simulation study to evaluate the performance of the proposed feature
selection method. We first discuss the evaluation metric and then introduce the simulation setup
and results.

4.1. Evaluation Metric

The proposed feature selection method selects only relevant features but does not provide
an associated model or classifier. In evaluating such a feature selection method, there are two
possible approaches [48]. The first approach is to embed a classifier and compare the accuracy
of the classification process based on a real dataset. The results obtained with this approach are
difficult to generalize as they depend on the specific classifier used in the comparison. The second
approach is based on a scenario defined by an initial set of features and a relation between these
features and the outcome. Under this situation, a feature selection method could be evaluated by the
truth. Focusing on the evaluation of the selected features, we adopt the second approach to evaluate
the proposed feature selection method based on the truth. Under this approach, there are several
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strategies. One can calculate the percentage (success rate) of all relevant features that are selected.
For example, let us consider an outcome T that is relevant to three features F1, F2, and F3, where F1

contributes the most information (variability) of T, F2 contributes the second most, and F3 contributes
the least. Also, there is an irrelevant feature F4 in the dataset. Suppose there are four different selection
results: S1 = {F1}, S2 = {F1, F4}, S3 = {F2, F4}, and S4 = {F3, F4}. Evaluating their performances
using the success rate would achieve the same result (33.3% or 1/3) for all of them as they all identify
one correct feature out of the three. The success rate is simple to calculate because the ground truth is
known, and it works well when we focus on the number of correctly selected features or if we assume
all the relevant features contribute evenly to the outcome. However, under the restriction of a limited
sample, it may be more important to select the group of features that could jointly and efficiently
provide the most information instead of selecting all relevant features regardless of the degrees of
relevance and redundancy. Although ignoring low relevant or vastly redundant features may lose
information, dropping them would further reduce the dimensionality and benefit the estimation.
This can be considered as a trade-off between estimation (noise) and dimensionality (information):
the higher the dimensionality, the harder the estimation; the more the information, the more the noise.
When the estimation is overly difficult, or when there is too much noise, the results could be biased
and hardly generalizable.

Because the success rate does not take the degrees of relevance and redundancy into consideration,
we introduce the following evaluation metric to measure the ratio of the relevant information from
the joint of selected features to the total relevant information from the joint of all the relevant features
using mutual information.

Definition 2 (Information Recovery Ratio (IRR)).

IRR =
MI(Xselected, Y)
MI(Xrelevant, Y)

, (10)

where Xselected is the random variable that follows the joint-distribution of the selected features, and Xrelevant is
the random variable that follows the joint-distribution of all the features on which Y depends.

The IRR is not calculable in real datasets because (1) there is no knowledge on which features
are relevant to the outcome, and (2) the true underlying distributions and associations (including
redundancy) of the features and outcomes in real data are unknown. Given the setup of a simulation,
we have all the knowledge; hence, the IRR for any group of selected features is calculable.

The IRR represents the percentage of relevant information in the joint of selected features.
It considers feature redundancy by evaluating the mutual information between the joint-feature
and the outcome. The range of the IRR is [0, 1]. If no relevant features are selected, the IRR is 0. If
all the features in the dataset are selected regardless of relevance, the IRR is 1 for certain; therefore,
when comparing the performance using the IRR, the number of selected features must be controlled.
When the numbers of selected features from different methods are the same, a larger IRR means the
joint of the selected features contains more relevant information; hence, the method is more efficient
in dimension reduction. The efficiency of a feature selection method is desirable, particularly under
small samples.

To make a comparison between the IRR and the success rate, both evaluate the performance of
feature selection methods only when the ground truth is known. The success rate focuses on the ratio
of the number of relevant features selected to the total number of relevant features, while the IRR
focuses on the ratio of the relevant information in the joint of the selected features to the total relevant
information.
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4.2. Simulation Setup

A good evaluation scenario must include a representative set of features, containing relevant,
redundant, and irrelevant ones [48]. In the simulation, we generate 10 X variables (X1, . . . , X10) and
one outcome (Y). Among these variables, X1, X2, X3, X4 (or X6), and X5 are relevant features; X6 (or X4)
is a redundant feature; X7, X8, X9, and X10 are irrelevant features. The detailed settings are as follows.

Y = X1 + X2 + X3
3 − 0.5 · X2

4 + |X5|+ X6 + ε, (11)

where

X1 =− 3.5 · 1[Z1 < −3]− 1.4 · 1[−3 ≤ Z1 ≤ −0.5]

+ 1[0.5 ≤ Z1 ≤ 3] + 2.2 · 1[Z1 > 3],

X2 =− 5 · 1[Pois1 = 0]− 3 · 1[Pois1 = 1]

+ 2.4 · 1[Pois1 = 3 or 4] + 5.4 · 1[Pois1 ≥ 5],

X3 =− 2 · 1[U1 ≤ −0.6]− 1[−0.6 < U1 < −0.2]

+ 1[0.2 < U1 < 0.6] + 2 · 1[U1 ≥ 0.6],

X4 =(B1 − 2) · 1[B1 6= 4] + 5 · 1[B1 = 4],

X5 =− 2.5 · 1[Z2 < −0.5]− 2 · 1[−0.5 ≤ Z2 ≤ −0.2]

+ 1.7 · 1[−0.2 ≤ Z2 ≤ 0.2] + 2 · 1[0.2 ≤ Z2 ≤ 0.6]

+ 4 · 1[Z2 > 0.6],

X6 =X4,

X7 =(Pois2 − 2) · 1[Pois2 < 2] + 2 · 1[Pois2 ≥ 2],

X8 =− 2 · 1[U2 ≤ −0.6]− 1[−0.6 < U2 < −0.2]

+ 1[0.2 < U2 < 0.6] + 2 · 1[U2 ≥ 0.6],

X9 =B2 − 1.2,

X10 =− 2 · 1[Z3 < −1.5]− 1.5 · 1[−1.5 ≤ Z3 ≤ −0.7]

+ 1.5 · 1[0.7 ≤ Z3 ≤ 1.5] + 2 · 1[Z3 > 1.5],

ε =− 1[U3 ≤
1
3
] + 1[U3 ≥

2
3
],

and

Z1, Z2, Z3 ∼N(0, 1),

Pois1, Pois2 ∼Poisson(2),

B1 ∼Binomial(4, 0.1),

B2 ∼Binomial(6, 0.2),

U1, U2 ∼Uni f orm(−1, 1),

U3 ∼Uni f orm(0, 1).

This simulation setup is fair for all methods compared. The settings were not designed to be more
complex is because of the following reasons.
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1. No matter whether the settings are simple or complex, it is fair to all methods. The purpose of this
simulation is to evaluate the performance of the proposed method, particularly when the sample
size is relatively small. The complexity of the feature spaces and the relationships among the
features and the outcome would determine the threshold of what constitutes a sufficiently large
sample. As they are not complex, we can sample with smaller sizes to evaluate the performances
in simulation. This is true to all feature selection methods in comparison as they select features
based on the same sample data with the same sample size.

2. Ordinal information in the settings will not affect simulation results. The proposed feature
selection method is one of the entropic methods. In the simulation, we would compare
the performance of the proposed method to only other entropic methods because of the
domain-specific challenges discussed in Section 1. During the simulation, we assign numerical
values to the X variables so that we can generate the value of the outcome Y based on a model.
However, entropic methods do not use the ordinal information from the numerical data because
the inputs of the entropic methods are the frequencies of different classes. Therefore, involving a
complicated model (linear or nonlinear) does not affect the entropic methods because they regard
the numbers as labels without ordinal information. However, complicating the model could
make the outcome variable Y more complex and result in a higher threshold of a sufficiently
large sample, which does not affect the comparison and evaluation among different methods, as
discussed previously.

3. These settings lead to an efficient calculation for ground truth during the simulation. In calculating
IRR, we need the two joint-distributions, Xselected × Y and Xrelevant × Y. To obtain the true
joint-distributions, we have to enumerate the combinations among all possible values of the
selected relevant features and of all the relevant features with their probabilities, respectively.
Complicating the relevant X variables would make the calculation of the joint-distributions
unnecessarily complex.

Note that, in real-world data, we do not need such calculations in reason three because the true
joint-distributions and the IRR are not calculable. Hence, when applying the proposed method on
real-world high dimensional and complex data, the main calculation is just estimating CASMI, which
can be calculated in seconds.

With the simulation setup, one can consider that we create a dataset for evaluation. In this case,
we know the ground truth that the features X1, X2, X3, X4 (or X6), and X5 should be selected. We would
evaluate the performances by calculating the IRRs for features selected by different methods.

4.3. Simulation Results

In the simulation, we compare the IRR of the proposed feature selection method to the IRRs of six
widely cited entropic feature selection methods: MIM, JMI, CMIM, MRMR, DISR, and NJMIM.

These six entropic methods all require users to set the number of features to be selected, while the
proposed method can automatically decide the most appropriate number of features based on data.
As we must control the number of selected features to validate the comparison of IRRs, we use the
number of selected features from the proposed method as the number of features to be selected in
the six entropic methods in each iteration. It should be noted that we are not claiming the number
of features determined by the proposed method is correct. We set them to be the same for only the
purpose of validating the comparison. As a matter of fact, the relevant features would not be entirely
selected until the sample size is sufficiently large, and the threshold of a sufficiently large sample varies
from method to method.
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For each sample size N in {50, 100, 150, . . . , 2750, 2800}, we re-generate the entire dataset 10,000
times and calculate the average IRRs of each method. The average IRR results are plotted in Figure 2.
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Figure 2. The average IRRs for seven methods, where CASMI refers to the proposed method.
The proposed method is the most efficient method when the sample size is limited. In the simulation,
the threshold of a sufficiently large sample for the proposed method is approximately N = 1500, which
is the smallest among all methods. The vertical index is the IRR, not the success rate. An IRR of 0.8
means 80% of the total mutual information has been accounted for by the selected features. It does not
mean 80% of relevant features are selected. The proposed method does not select all relevant features
when the sample size is small because some relevant features are in situation two under a limited
sample (eliminating situation two features is discussed in Section 1). As the sample size grows, all
situation two features eventually become situation one features.

Based on the results, we can see that the average IRR of the proposed method is consistently
higher than or equivalent to all the other methods. This is because, under the restriction of a limited
sample, the proposed method has a much smaller estimation bias so that it captures the associations
among features and the outcome more accurately than the existing methods that estimate with the
plug-in estimators. Table 2 presents the 95% confidence intervals for IRRs based on features selected by
different methods under different sample sizes. Based on the table, we can roughly rank the proposed
methods and the six methods as follows: CASMI > DISR > NJMIM > MRMR > MIM ∼ CMIM > JMI.
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Meanwhile, we recorded the average computation time of the proposed method when
implementing feature selection in R. The plot of results is shown in Figure 3. The computation
time when N = 50 was 0.03 s; the time when N = 2800 was 1.97 s; the longest time during the
simulation was 3.37 s.
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Figure 3. The average computation time of the proposed method when implementing feature selection
in R.

Based on the simulation result in Figure 2, different methods achieve 1 (on average IRRs)
at different sample sizes. One should realize that the threshold of a sufficiently large sample
greatly depends on the probability spaces of the underlying associated features and the outcome.
The probability spaces of real datasets are generally significantly more complicated than that of the
simulation. Consequently, in reality, particularly in health data, the majority of samples should be
considered small; hence, the efficiency of a feature selection method is very important.

The simulation codes are available at [49]. The proposed feature selection method using CASMI
is implemented in the R package at [50].
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Table 2. The 95% Confidence Intervals for IRRs based on features selected by different methods under
different sample sizes.

n CASMI CI MIM CI JMI CI CMIM CI MRMR CI DISR CI NJMIM CI

50 [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40]
100 [0.21, 0.57] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40]
150 [0.26, 0.62] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40]
200 [0.32, 0.62] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40]
250 [0.37, 0.62] [0.40, 0.40] [0.21, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.21, 0.40]
300 [0.37, 0.62] [0.40, 0.40] [0.21, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
350 [0.37, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
400 [0.37, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
450 [0.62, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
500 [0.81, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.57]
550 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57]
600 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57]
650 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
700 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
750 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
800 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
850 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.57, 0.57]
900 [0.81, 0.81] [0.40, 0.62] [0.40, 0.40] [0.40, 0.62] [0.40, 0.81] [0.40, 0.57] [0.57, 0.57]
950 [0.81, 0.81] [0.57, 0.81] [0.40, 0.40] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57] [0.57, 0.57]

1000 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57]
1050 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57]
1100 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57]
1150 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1200 [0.81, 1] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1250 [0.81, 1] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1300 [0.81, 1] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1350 [0.81, 1] [0.57, 0.81] [0.57, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1400 [0.81, 1] [0.81, 0.81] [0.57, 0.57] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 0.81]
1450 [0.81, 1] [0.81, 0.81] [0.57, 0.57] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 0.81]
1500 [1, 1] [0.81, 0.81] [0.57, 0.57] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 0.81]
1550 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 1]
1600 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 1]
1650 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 1]
1700 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.81, 1]
1750 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [1, 1] [0.81, 1]
1800 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 1] [1, 1] [0.81, 1]
1850 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
1900 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
1950 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2000 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2050 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2100 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2150 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2200 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2250 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2300 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2350 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2400 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2450 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2500 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2550 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1] [1, 1]
2600 [1, 1] [1, 1] [0.81, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2650 [1, 1] [1, 1] [0.81, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2700 [1, 1] [1, 1] [0.81, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2750 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2800 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
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5. Discussion

In this article, we have proposed a new entropic feature selection method based on CASMI.
Compared to existing methods, the proposed method has two unique advantages: (1) it is very efficient
as the joint of selected features provides the most relevant information compared to features selected
by other methods, particularly when the sample size is relatively small, and (2) it automatically learns
the number of features to be selected from data. The proposed method handles feature redundancy
from the perspective of joint-distributions. Although we initially developed the proposed method for
the domain-specific challenges in healthcare, the proposed method can be used in many other areas
where there is an issue of a limited sample.

The proposed method is an entropic information–theoretic method. It aims at assisting data
analytics on non-ordinal spaces. However, the proposed method can also be used on numerical data
with an appropriate binning technique. Furthermore, using the proposed method on binned numerical
data could discover different information as the entropic method looks at the data from a non-ordinal
perspective.

In detecting unhelpful associations (situation two and three features), we implement an
adjustment from the sample coverage. The level of this adjustment can be modified by users.
For example, users can replace the scoring function of the proposed method by CASMI* with a
tuning parameter (u) as follows:

κ∗(X, Y) = κ(X, Y) · (1− π0(X))u,

and estimate it by
κ̂∗(X, Y) = κ̂z(X, Y) · (1− T1(X))u,

where u is any fixed positive number. The u can be considered as a parameter to determine the
requirement for a feature to qualify situation one. A larger u stands for a heavier penalty from the
sample coverage; hence, a feature needs to contain more real information to be categorized to situation
one. A smaller u stands for a less penalty from the sample coverage; hence, a feature with less real
information could be categorized to situation one. However, users should be cautious when using a
small u because it may mistakenly classify an irrelevant feature (situation three) to situation one, and
further exacerbates the issue of generalization. We suggest beginning the proposed feature selection
method with u = 1. After completing feature selection, if a user desires to select more or less features,
the user could re-run the proposed method with a smaller or larger u, respectively, and keep modifying
the value of u until satisfactory.

The proposed method only selects features but does not provide a classifier; however, to draw
inferences on outcomes, a classifier is needed. To this end, additional techniques are required, such
as machine learning (e.g., regressions and random forest). Into the future, it may be interesting to
explore (1) methods that can distinguish features under situation two and three when the sample size
is small; and (2) the possibilities of extending the proposed method to tree-based algorithms (e.g.,
random forest) to help determine which leaves and branches should be omitted. In addition, it may be
interesting to investigate the performance of existing entropic methods if we use the Ĥz, instead of Ĥ,
to estimate the entropies in their score functions.
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