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Abstract: Cross-efficiency evaluation is an effective methodology for discriminating among a set of 
decision-making units (DMUs) through both self- and peer-evaluation methods. This evaluation 
technique is usually used for data envelopment analysis (DEA) models with constant returns to 
scale due to the fact that negative efficiencies never happen in this case. For cases of variable returns 
to scale (VRSs), the evaluation may generate negative cross-efficiencies. However, when the 
production technology is known to be VRS, a VRS model must be used. In this case, negative 
efficiencies may occur. Negative efficiencies are unreasonable and cause difficulties in calculating 
the final cross-efficiency. In this paper, we propose a cross-efficiency evaluation method, with the 
technology of VRS. The cross-efficiency intervals of DMUs were derived from the associated 
aggressive and benevolent formulations. More importantly, the proposed approach does not 
produce negative efficiencies. For comparison of DMUs with their cross-efficiency intervals, a 
numerical index is required. Since the concept of entropy is an effective tool to measure the 
uncertainty, this concept was employed to build an index for ranking DMUs with cross efficiency 
intervals. A real-case example was used to illustrate the approach proposed in this paper. 

Keywords data envelopment analysis; cross efficiency; Shannon’s entropy; variable returns to scale; 
ranking 

 

1. Introduction 

Data envelopment analysis (DEA) is a non-parametric method for efficiency evaluation of a 
group of homogeneous decision-making units (DMUs) that consume multiple inputs to produce 
multiple outputs. Since DEA is a non-parametric method, it does not require any predetermined 
information on the production function of the production entities before evaluation. That is, the 
evaluation results are obtained from the input and output data and obtained by comparing the 
production of each DMU with those of the others. For its effectiveness in identifying the best-practice 
frontier and ranking the DMUs, DEA has been widely applied in many different sectors and 
industries. However, traditional self-evaluated DEA models with total weight flexibility may 
evaluate many DMUs as DEA-efficient and cannot make any further distinctions among them. 
Therefore, one of the main shortfalls of the traditional DEA models is their inability to discriminate 
among DMUs that are all deemed efficient [1]. 

While allowing every DMU to select different multipliers to measure efficiency is a merit of the 
DEA technique, this makes the resulting efficiencies of the DMUs incomparable. The efficiencies are 
comparable only if they are calculated from the same set of weights. In cross-efficiency evaluation, 
each DMU defines its most favorable weights associated with the inputs and outputs for self-
efficiency evaluation. Using these weights, it can also evaluate the efficiencies of the other DMUs, 
which gives rise to peer-evaluated efficiencies. For each DMU under evaluation, we can obtain a final 
efficiency by aggregating its self-evaluated efficiency and its efficiencies peer-evaluated by the others. 
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In this case, every DMU has n efficiency scores calculated from n sets of weights selected by all n 
DMUs, including itself. The average of the n efficiency scores is the final efficiency for this DMU. 

Cross-efficiency evaluation almost always ranks the DMUs in a unique order [2] and eliminates 
unrealistic weight schemes without incorporating weight restrictions [3]. Due to these advantages, 
cross-efficiency evaluation has been extensively applied in performance evaluation. Since the seminal 
work of Sexton et al. [4] and Doyle and Green [2], a number of cross-efficiency models and 
applications have been reported in the literature. Under constant returns to scale (CRS), Liang et al. 
[5] proposed a game cross-efficiency model to generate a set of cross efficiencies that constitutes a 
Nash equilibrium point for the DMUs. Jahanshahloo et al. [6] incorporated a symmetric technique 
into the cross-efficiency evaluation that could choose symmetric weights for DMUs. There are some 
methods that select suitable weights from alternative solutions to avoid large differences among the 
weights. Setting lower bounds [7,8], using ordered weighted averaging operators [9], and evaluating 
the robustness of the proposed methodology [10] are some examples. Wu et al. [11] developed a target 
identification model to obtain reachable targets for all DMUs, and several secondary goals were 
proposed considering both the desirable and undesirable targets. 

Cross-efficiency evaluation is usually used for production technologies with CRS because 
negative efficiencies never happen in this case. However, when the production technology is known 
to be a variable return to scale (VRS), a VRS model must be used. In this case, negative efficiencies 
may occur. Negative efficiencies are unreasonable and cause difficulties in calculating the final cross-
efficiency. In the literature, only a couple of studies calculate cross efficiencies under the VRS 
technology. Wu et al. [12] and Soares de Mello et al. [13] proposed the idea of restricting the multiplier 
values to those that could only produce positive efficiencies for all DMUs. Lim and Zhu [14] 
translated the coordinates to let negative efficiencies become positive. Lin [15] adopted the range-
directional measure proposed in Portela et al. [16] to calculate efficiencies. 

Existing approaches for cross-efficiency evaluations are often averaging the entries of the cross-
efficiency matrix column-wise, that is, the average cross-efficiency, to further discriminate among the 
DEA efficient units. In this case, the problem of choosing the aggressive (lower bound efficiency) or 
benevolent formulation (upper bound efficiency) for decision-making might still remain. In this 
paper, we propose a cross-efficiency evaluation method, with the technology of VRS. The cross-
efficiency of a DMU is calculated as an interval, where the lower bound and upper bound are 
obtained by aggressive and benevolent formulations, respectively. In other words, the cross-
efficiency interval takes the aggressive and benevolent formulations into account at the same time, 
and the choice of aggressive/benevolent formulation can be avoided. More importantly, the proposed 
approach does not produce negative efficiencies. For comparison of DMUs with their cross-efficiency 
intervals, a numerical index is required. Since the concept of entropy [17] is an effective tool to 
measure the uncertainty, this concept is employed to construct an index for ranking DMUs with cross 
efficiency intervals. 

In the sections that follow, we first introduce the cross-efficiency evaluation under the 
assumption of VRS in Section 2. Then, Section 3 introduces the concept of Shannon’s entropy and 
develops a solution procedure to find the optimal entropy value for comparison of DMUs. A real-
case example is used to illustrate the approach proposed in this study in Section 4. Finally, some 
conclusions of this study are presented in Section 5. 

2. Negative Cross-Efficiency 

In this section, we illustrate the problem of negative cross-efficiency. Suppose that we have n 
DMUs, where every DMU j, j = 1, …, n, produces the same s outputs in different amounts, Yrj (r = 1, 
…, s), using the same m inputs, Xij (i = 1, …, m) in different amounts. The VRS model [18], which was 
developed by Banker, Chranes, and Cooper (BCC), for measuring the efficiency of DMU d under 
variable returns to-scale, has output- and input-oriented models. The output-oriented VRS model is 
formulated as: 
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where rdu  and idv  are the multipliers selected by DMU d to calculate efficiencies. A self-evaluated 
efficiency score of DMU d and the optimal weights are obtained from solving Model (1). For the 

special cases of 0dv  = 0 in (1), the model becomes the CCR model [19], with a technology of CRS, 

and the derived efficiency score is regarded as the CCR efficiency. In a VRS model, the variable 0dv  
gives an indication of the type of returns to scale that prevails at a particular DMU under evaluation. 

Especially, when the optimal solution in (1) *
0dv  < 0 (>0), it indicates that the DMU under 

evaluation is the increasing (decreasing) returns to scale. 
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rd rjr u Y= >  in the second constraint of Model (1), the term 01
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djE  > 0. In other words, the problem 
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Similarly, let 
*
idv  (i = 1, …, m), 

*
rdu  (r = 1, …, s), and 

*
0du  be an optimal solution of (3) for a 

given DMU d; then, the cross-efficiency is given by 
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We can repeat this process and use the weights selected by every DMU for calculating the 
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The cross-efficiency score I
jE  provides a peer-evaluation of DMU j, and the derived values 

can, thus, be used for ranking DMUs. However, due to the unrestricted variable 
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0du , the value of 
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0du  < 0, and the cross-efficiency calculated by 

Equation (4) may lead to a problematic situation. Negative efficiencies are obviously unreasonable, 
and we need to develop a procedure to tackle this problem. Note that negative efficiencies will not 
happen in the CCR model, nor in the VRS output-oriented model. 

In the next section, we propose a methodology to calculate and rank cross-efficiencies for the 
input-oriented VRS model. 

3. Entropy with VRS Cross-Efficiencies 

3.1. VRS Cross-Efficiencies 
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where ddE  is the CCR efficiency of DMU d. This model is a linear fractional program, which can 
be linearized by applying the variable substitution technique of Charnes and Cooper [20] as follows: 
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Since the cross-efficiency is calculated by Equation (4), the problem of the negative efficiency 

arises when * *
01

s
rd rj dr u Y u= +  < 0. To avoid the occurrence of the negative efficiency, Wu et al. [12] 

and Soares de Mello et al. [13] proposed to add constraints 01 0s
rd rj dr u Y u= + ≥ , j = 1, …, n, to 

Equation (3). Following this idea, we add this constraint to Models (8) and (9), and they become: 
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In Models (10) and (11), the second constraint 01
s

rd rd dr u Y u= +  = 1
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dd id ijiE v X=  is the 

secondary goal, which is used to deal with the multiple optimum weights and produce the same 

efficiency ddE  for DMU d. We can find 
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rdu , and *

0du  from solving Model (10), according to 

the studies of Wu et al. [12] and Soares de Mello et al. [13], the values of 
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0du  of DMU 

d are put into Equation (4) to obtain the cross-efficiencies I
djE ; that is, 
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we have I
djE  > 0. In other words, the approach proposed in this paper does not produce negative 
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efficiencies. If there are n DMUs, then we have n different sets of 
*
idv , 

*
rdu , and *

0du . By putting the 

obtained n different sets of 
*
idv , 

*
rdu , and *

0du  into Equation (4), we have n different value of I
djE  

to find the final cross-efficiency 1
1 ,  1,...,nI

j djdE E j nn == = . With the same process, we can 

derive the final cross-efficiency for Model (11) as well. 

3.2. The Entropy 

The idea of Shannon’s entropy plays a central role in information theory. Based on Ormos and 
Zibriczky [21], entropy is a mathematically defined quantity, usually applied to describe the 
probability of results in a system. Since Shannon’s entropy provides a powerful tool for the 
measurement of uncertainty, this concept has been applied in many scientific fields, such as 
mechanics, statistics, transport, information theory, and mathematical programming problems. In the 
literature, several articles applied the entropy concept and DEA models for ranking DMUs. 
Soleimani-Damaneh and Zarepisheh [22] applied Shannon’s entropy to integrate a family of DEA 
efficiencies, which are calculated from different DEA models, into an index for distinguishing DMUs. 
The Shannon’s entropy was used by Xie et al. [23] to merge the efficiency scores and help discriminate 
traditional DEA models. Wang et al. [24] explored the DEA entropy model to construct the cross-
efficiency intervals for ranking DMUs. Lu and Liu [25] considered the benevolent and aggressive and 
formulations simultaneously for obtaining a number of cross-efficiency intervals, and the entropy 
was used to build a numerical index for the DMUs to be comparable. Rotela Junior et al. [26] adopted 
a DEA model in portfolio optimization, and Shannon entropy was included to ensure an efficient 
asset diversification while return and portfolio risk were maximized and minimized, respectively. 
Lee [27] applied the concept of Shannon’s entropy to combine cross-efficiency scores, which are 
measured from different cross-efficiency evaluation models, for discrimination of DMUs. According 
to the relative entropy and grey relational analysis methods, Si and Ma [28] proposed a cross-
efficiency method for a comparison of DMUs. However, these studies which measured the cross-
efficiency scores were all under the assumption of CRS. 

In this section, we employ Shannon’s entropy to integrate the derived cross-efficiency intervals 
for distinguishing DMUs. Since we take into account the aggressive and benevolent cross-efficiency 
at the same time, a family of cross-efficiency intervals is derived for each DMU. The idea of Lu and 
Liu [25], which calculated the entropy value of the cross-efficiency interval, is adopted to construct a 
numerical index for DMUs with cross efficiency intervals. 

If the cross-efficiency of DMU j is a constant value, then the entropy for DMU j can be defined 
as: 

1
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where jK  is a constant value. In this study we derive the aggressive and benevolent cross-

efficiencies A
djE  and B

djE  from Models (10) and (11), respectively. That is, the cross-efficiency is 

an interval rather than a constant. In this case, we should rewrite Equation (12) to the following form: 
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where ˆ , A B
dj dj djE E E ∈  . 

To find the smallest uncertainty of a DMU with A
djE  and B

djE , we should find the minimum 

value of entropy represented in (13). With the smallest entropy (uncertainty) of each DMU, we can 
discriminate DMUs more easily. Based on Lu and Liu [25], Equation (13) can be transformed into 
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We also follow the idea of Lu and Liu [25] to let the constant ( ) 2A B
j j jK E E= +  in (14), 

where A
jE  and B

jE  are the final aggressive and benevolent cross-efficiencies that are calculated 

from Equation (5), respectively. According to Charnes and Cooper’s rule [20], we let 1
ˆ1 n
djdt E==   

and ˆdj djw tE=  by multiplying constraint (15) with t and replacing Model (14) with the following 

mathematical program: 
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Lu and Liu indicated that Model (16) is a concave function subject to linear constraints, and we 
can obtain the global optimum solution for (16). We can discriminate all DMUs with the derived 

value of *ˆ
jH , and the larger the value of *ˆ

jH  the better the DMU is. 

4. Example 

Lee [27] studied the problem of calculating the cross-efficiency scores for commercial banks in 
Taiwan. Three inputs and three outputs are considered when measuring the efficiencies, and the 
associated three input and three output items are listed as follows: 

Inputs: 
Labor cost. 
Physical capital (book value of fixed assets for business purposes). 
Purchase funds (including time and saving deposits, and other bank deposits). 
Outputs: 
Demand deposits (including checking, passbook, and temporary deposits). 
Short-term loans. 
Medium-and-long-term loans. 
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Table 1 lists the associated input and output data of the twenty-two bank. The dataset used by 
Lee [27] can demonstrate that our proposed approach is effective at distinguishing the efficient DMUs 
for complex problems. In this section we use this data set to explain how our proposed approach is 
applied to calculate the VRS cross-efficiencies and the entropy values of the commercial banks. 

By applying the idea set forth in this paper, we first used the BCC model (7) to measure the 
efficiency for every commercial bank. The results are shown in the second column of Table 1 under 
the heading “BCC.” It is noted that twelve commercial banks are efficient, and their ranks cannot be 
differentiated. We then used Models (10) and (11) to calculate the aggressive (lower bound) and 
benevolent (upper bound) efficiencies of every commercial bank, respectively, with the results shown 
in Table 2. No negative values appear in the calculated results. The final efficiencies, as calculated 
from Equation (5), are shown in the last column of Table 2. 

Table 1. Real data (in millions of Taiwanese dollars) and BCC efficiencies of 22 Taiwanese commercial 
banks in 2013. 

Bank Labor Capital 
Purchased 

Funds Deposits 
S-Term  
Loans 

ML-Term  
Loans BCC 

1 9492 23,935 1,029,108 336,735 297,352 844,783 0.9363 
2 848 2683 121,212 24,362 27,961 79,582 1.0000 
3 2351 3416 323,449 106,247 104,348 259,497 1.0000 
4 7306 14,299 815,246 279,769 339,261 617,217 1.0000 
5 1388 2744 162,563 23,395 69,956 108,206 1.0000 
6 1999 6195 125,917 15,016 30,227 69,487 0.9803 
7 2838 7644 307,145 56,564 71,591 158,042 0.6872 
8 3545 2814 325,073 48,824 48,539 247,323 0.9416 
9 3585 3343 280,959 56,041 64,251 202,585 0.8905 

10 1775 1128 204,472 21,517 36,705 150,177 1.0000 
11 10,717 28,674 1,226,897 508,605 384,511 1,023,549 1.0000 
12 9308 11,294 1,078,604 250,407 310,403 783,664 0.8749 
13 9346 22,617 1,271,363 336,838 289,442 744,008 0.7941 
14 6455 18,487 841,496 305,603 187,843 643,889 1.0000 
15 3074 2150 395,750 66,537 92,533 307,930 1.0000 
16 12,502 14,519 1,347,592 580,389 462,928 1,188,269 1.0000 
17 9277 17,464 715,304 163,804 158,695 547,688 0.7989 
18 3642 6915 505,286 105,395 103,643 341,020 0.8566 
19 8049 11,002 616,242 232,732 218,083 594,174 1.0000 
20 20,295 34,229 997,936 146,904 348,395 941,957 1.0000 
21 11,405 27,730 1,243,848 476,748 404,671 1,028,704 0.9464 
22 14,354 38,694 1,825,537 442,195 376,648 1,531,299 1.0000 
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Table 2. Lower bound and upper bound variable return to scale (VRS) cross-efficiencies of commercial banks in Taiwan. 

Bank 1 2 3 4 5 6 7 8 9 10 11 
 L U L U L U L U L U L U L U L U L U L U L U 
1 0.9363 0.9363 0.9105 0.9119 1.0000 1.0000 0.8746 0.8746 0.8508 0.8520 0.6167 0.6191 0.6237 0.6244 0.8579 0.8587 0.7828 0.7840 0.9079 0.9088 0.9621 0.9623 
2 0.0894 0.9136 1.0000 1.0000 0.3610 1.0000 0.1161 0.8573 0.6112 0.9120 0.4245 0.7190 0.2990 0.6499 0.2394 0.8770 0.2367 0.8162 0.4779 0.9468 0.0792 0.9337 
3 0.5012 0.9136 0.3557 1.0000 1.0000 1.0000 0.8573 0.8945 0.8976 0.9120 0.1692 0.7190 0.3592 0.6499 0.4019 0.8770 0.5019 0.8162 0.6411 0.9468 0.5515 0.9337 
4 0.5894 0.8132 0.0154 0.9311 0.8629 0.9573 1.0000 1.0000 0.7068 1.0000 0.0211 0.8238 0.3084 0.6731 0.1862 0.5197 0.3111 0.7018 0.1662 0.5862 0.6699 0.9464 
5 0.6727 0.8955 0.5484 1.0000 0.9121 1.0000 0.9081 1.0000 1.0000 1.0000 0.2577 0.7603 0.5018 0.6698 0.2588 0.8207 0.3522 0.8077 0.3703 0.9051 0.7745 0.9221 
6 0.3748 0.3758 1.0000 1.0000 0.6067 0.6075 0.5237 0.5249 0.9993 1.0000 0.9803 0.9803 0.5341 0.5346 0.4350 0.4355 0.5583 0.5588 0.6348 0.6351 0.3842 0.3852 
7 0.8208 0.8246 1.0000 1.0000 0.9736 0.9747 0.9723 0.9742 1.0000 1.0000 0.8763 0.8773 0.6872 0.6872 0.5696 0.5808 0.7351 0.7403 0.6409 0.6514 0.9505 0.9505 
8 0.7852 0.7856 0.7716 0.7727 0.9609 0.9610 0.7875 0.7877 0.7966 0.7973 0.4938 0.4950 0.5281 0.5287 0.9416 0.9416 0.8626 0.8629 1.0000 1.0000 0.7938 0.7942 
9 0.7886 0.7890 0.9991 1.0000 1.0000 1.0000 0.8346 0.8390 0.9905 1.0000 0.7231 0.7253 0.6274 0.6290 0.8864 0.8885 0.8905 0.8905 1.0000 1.0000 0.8124 0.8143 

10 0.0471 0.8614 0.4206 1.0000 0.3303 1.0000 0.0789 0.8292 0.4112 0.9299 0.1821 0.7088 0.1476 0.6334 0.4009 0.9131 0.3376 0.8559 1.0000 1.0000 0.0393 0.8744 
11 0.7680 0.7809 0.1502 0.9606 0.8736 1.0000 0.8420 0.9239 0.3354 0.6323 0.0987 0.4504 0.3521 0.5632 0.1930 0.4347 0.2592 0.5038 0.0881 0.4768 1.0000 1.0000 
12 0.5897 0.5945 0.3221 0.3239 0.9995 1.0000 1.0000 1.0000 0.9225 0.9261 0.1582 0.1583 0.3966 0.3979 0.3208 0.3251 0.4335 0.4338 0.4571 0.4593 0.6600 0.6651 
13 0.8319 0.8860 0.0646 0.5700 0.8966 1.0000 0.8588 1.0000 0.5001 0.5326 0.0278 0.1916 0.3752 0.4639 0.2998 0.5707 0.3162 0.4783 0.2337 0.5953 0.9825 0.9992 
14 0.8686 0.8760 0.2888 0.6178 0.9263 1.0000 0.8329 0.8516 0.3364 0.5356 0.0538 0.2147 0.3757 0.4731 0.4880 0.5618 0.3955 0.4821 0.4448 0.5869 1.0000 1.0000 
15 0.2920 0.8408 0.0339 0.8761 0.5014 1.0000 0.3453 0.8251 0.1272 0.8585 0.0267 0.5675 0.1044 0.5803 0.5697 0.9248 0.3590 0.8473 0.6447 1.0000 0.3000 0.8545 
16 0.3674 0.9011 0.0089 1.0000 0.7179 1.0000 0.6651 0.8703 0.3878 0.8690 0.0355 0.7239 0.1715 0.6490 0.2400 0.8035 0.3352 0.7884 0.1819 0.8565 0.4212 0.9640 
17 0.8334 0.8507 0.9938 1.0000 0.9083 0.9289 0.7831 0.7993 0.9107 0.9144 0.8448 0.8795 0.6383 0.6425 0.8677 0.8710 0.8441 0.8505 0.9218 0.9297 0.8395 0.8596 
18 0.8296 0.8298 0.7668 0.7692 1.0000 1.0000 0.7840 0.7840 0.6637 0.6649 0.2778 0.2790 0.4903 0.4910 0.6309 0.6310 0.5058 0.5061 0.7427 0.7430 0.8922 0.8923 
19 0.8711 0.9011 0.0726 1.0000 0.7089 1.0000 0.8599 0.8703 0.3611 0.8690 0.0105 0.7239 0.3501 0.6490 0.5814 0.8035 0.5376 0.7884 0.4172 0.8565 0.9095 0.9640 
20 0.8355 0.8441 0.0105 0.4589 0.6977 0.8253 1.0000 1.0000 0.5445 0.8324 0.0784 0.4280 0.3808 0.5330 0.3785 0.5367 0.4526 0.6247 0.2576 0.5173 0.8933 0.8984 
21 0.8840 0.8845 0.3617 0.3763 0.9992 1.0000 1.0000 1.0000 0.6875 0.6957 0.1316 0.1394 0.4612 0.4655 0.4691 0.4739 0.4269 0.4322 0.4948 0.5020 0.9829 0.9836 
22 0.8021 0.9350 0.1168 0.8760 0.7938 1.0000 0.7362 0.8730 0.2739 0.8205 0.0125 0.5556 0.3064 0.6067 0.4926 0.8342 0.3646 0.7490 0.4463 0.8854 0.8742 0.9655 

Ave. 0.6536 0.8288 0.4642 0.8384 0.8196 0.9661 0.7573 0.8809 0.6507 0.8434 0.2955 0.5791 0.4100 0.5816 0.4868 0.7038 0.4909 0.6963 0.5532 0.7722 0.7169 0.8892 
Bank 12 13 14 15 16 17 18 19 20 21 22 

 L U L U L U L U L U L U L U L U L U L U L U 
1 0.8436 0.8437 0.7055 0.7059 0.9163 0.9166 0.9488 0.9488 0.9999 1.0000 0.7965 0.7974 0.8333 0.8335 0.9990 1.0000 0.8195 0.8214 0.9422 0.9423 0.9877 0.9882 
2 0.0912 0.8216 0.0908 0.6831 0.1314 0.8913 0.2760 0.9442 0.0679 0.9713 0.0915 0.7986 0.2330 0.8233 0.1054 1.0000 0.0418 0.8361 0.0744 0.9164 0.0591 0.9498 
3 0.8216 0.8723 0.5106 0.6831 0.4177 0.8913 0.9442 1.0000 0.9713 1.0000 0.3316 0.7986 0.5370 0.8233 0.6542 1.0000 0.3661 0.8361 0.5865 0.9164 0.4009 0.9498 
4 0.6888 0.8595 0.5933 0.6508 0.4808 0.7896 0.6186 0.6944 1.0000 1.0000 0.3365 0.6274 0.4943 0.6090 0.6417 0.9874 0.3952 0.6587 0.6988 0.9206 0.4872 0.5846 
5 0.7168 0.8185 0.6646 0.6755 0.6164 0.8487 0.6130 0.9082 0.8018 0.9660 0.3598 0.7741 0.5844 0.7905 0.5769 1.0000 0.3699 0.8514 0.7666 0.9129 0.5662 0.8842 
6 0.3695 0.3705 0.2973 0.2981 0.3306 0.3314 0.4665 0.4672 0.4069 0.4081 0.3489 0.3497 0.3870 0.3876 0.4997 0.5008 0.4368 0.4380 0.3949 0.3960 0.2540 0.2548 
7 0.6861 0.6915 0.6527 0.6537 0.8125 0.8144 0.6448 0.6547 1.0000 1.0000 0.6479 0.6552 0.6314 0.6373 0.9966 1.0000 0.6544 0.6677 0.9201 0.9209 0.6073 0.6180 
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8 0.8316 0.8317 0.6035 0.6037 0.7492 0.7496 0.9997 1.0000 0.9966 0.9967 0.7303 0.7308 0.7591 0.7593 0.9997 1.0000 0.7897 0.7904 0.7978 0.7982 0.8159 0.8162 
9 0.7858 0.7883 0.6077 0.6081 0.7529 0.7569 0.9319 0.9331 0.9593 0.9610 0.7246 0.7249 0.7477 0.7483 1.0000 1.0000 0.7856 0.7917 0.8126 0.8131 0.7535 0.7548 

10 0.0999 0.8145 0.0499 0.6486 0.0610 0.8354 0.5249 0.9661 0.0777 0.9631 0.0646 0.7785 0.1632 0.8057 0.1025 1.0000 0.0330 0.8247 0.0407 0.8655 0.0292 0.8877 
11 0.5862 0.6497 0.7136 0.7731 0.9110 0.9627 0.4333 0.5423 1.0000 1.0000 0.3679 0.4719 0.5585 0.6384 0.6203 0.7494 0.2251 0.2338 0.9024 0.9108 0.6217 0.6695 
12 0.8749 0.8749 0.5953 0.5989 0.4976 0.5039 0.8440 0.8442 1.0000 1.0000 0.3594 0.3627 0.5694 0.5739 0.6679 0.6693 0.3963 0.3978 0.6887 0.6930 0.4803 0.4880 
13 0.7960 0.7998 0.7941 0.7941 0.8666 1.0000 0.6309 0.8317 1.0000 1.0000 0.4484 0.5601 0.6582 0.8219 0.6752 0.7412 0.3927 0.4283 0.9336 0.9337 0.8349 1.0000 
14 0.7761 0.7769 0.7852 0.7963 1.0000 1.0000 0.7550 0.8023 0.9972 1.0000 0.5199 0.5534 0.7746 0.8039 0.6975 0.7420 0.3872 0.4101 0.9262 0.9301 0.9632 1.0000 
15 0.5701 0.8415 0.2689 0.6449 0.2801 0.8135 1.0000 1.0000 0.6947 1.0000 0.2468 0.7558 0.3540 0.8013 0.4299 0.9999 0.2298 0.7903 0.3118 0.8504 0.3406 0.8777 
16 0.7609 0.7766 0.3800 0.6876 0.3144 0.9091 0.8568 0.8867 1.0000 1.0000 0.2401 0.7622 0.3513 0.7795 0.5573 1.0000 0.2607 0.7482 0.4470 0.9322 0.2963 0.8757 
17 0.7406 0.7580 0.5983 0.6161 0.7892 0.8109 0.8603 0.8791 0.8820 0.9011 0.7989 0.7989 0.7369 0.7558 1.0000 1.0000 0.9224 0.9533 0.8320 0.8501 0.8321 0.8568 
18 0.7842 0.7846 0.7407 0.7408 0.9260 0.9262 0.9135 0.9139 0.8894 0.8899 0.5467 0.5469 0.8566 0.8566 0.6848 0.6848 0.4334 0.4335 0.8427 0.8428 1.0000 1.0000 
19 0.7766 0.7999 0.6303 0.6876 0.7670 0.9091 0.6937 0.8568 1.0000 1.0000 0.7460 0.7622 0.6119 0.7795 1.0000 1.0000 0.7482 1.0000 0.9111 0.9322 0.8757 0.8859 
20 0.7889 0.7947 0.6248 0.6325 0.6743 0.7075 0.5816 0.6920 0.9666 0.9813 0.6538 0.6996 0.5271 0.6099 0.9641 1.0000 1.0000 1.0000 0.9083 0.9163 0.7381 0.7393 
21 0.8718 0.8722 0.8132 0.8157 0.9047 0.9061 0.8290 0.8305 1.0000 1.0000 0.5264 0.5297 0.7938 0.7940 0.7256 0.7296 0.4730 0.4769 0.9464 0.9464 0.9651 0.9674 
22 0.7534 0.8458 0.7087 0.7146 0.8738 0.9246 0.7617 0.9478 0.8787 1.0000 0.5062 0.7734 0.7321 0.8378 0.6401 0.9702 0.4221 0.7709 0.8259 0.9424 1.0000 1.0000 

Ave. 0.6825 0.7858 0.5650 0.6688 0.6397 0.8272 0.7331 0.8429 0.8450 0.9563 0.4724 0.6642 0.5861 0.7396 0.6927 0.8988 0.4810 0.6891 0.7050 0.8674 0.6322 0.8204 
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With the derived cross-efficiency intervals, we then applied Model (16) to calculate the 
corresponding entropy for commercial banks. The entropy cross-efficiency values and their 
associated ranks of banks are reported in Table 3. Since the higher the entropy cross-efficiency the 
more efficient the bank is, Bank number 3 is in first place, followed by Banks 16, 4, and 15 
subsequently. This indicates that the approach proposed in this paper works well for complex 
problems for discriminating efficient DMUs. 

Table 3. Entropy cross-efficiencies, and ranks for 22 commercial banks. 

Bank ˆ jH  Rank 

1 2.2119 10 
2 1.7546 18 
3 2.7260 1 
4 2.4644 3 
5 2.2349 8 
6 1.1154 22 
7 1.4895 21 
8 1.7657 17 
9 1.7826 16 

10 1.9505 14 
11 2.3925 5 
12 2.2165 9 
13 1.8491 15 
14 2.1808 11 
15 2.4034 4 
16 2.7101 2 
17 1.6881 20 
18 2.0056 13 
19 2.3890 6 
20 1.7065 19 
21 2.3479 7 
22 2.1412 12 

5. Conclusions 

Cross efficiency is an aggregate efficiency measured from the viewpoints of all DMUs. The 
results are, thus, more representative and persuasive than those of its counterparts. However, most 
studies are restricted to production technologies with CRS due to the possibility of producing 
negative efficiencies under VRS. In this paper, we proposed a cross-efficiency evaluation method, 
with the technology of VRS. Each DMU has a cross-efficiency interval, where aggressive and 
benevolent formulations are derived from, respectively. Since the concept of entropy is an effective 
tool to measure the uncertainty, this concept is used to construct an index for ranking DMUs with 
cross efficiency intervals. 

The most important merit of the proposed approach is that this model does not produce negative 
efficiencies, which makes it appropriate for cases of VRS DEA models. A real-world case shows that 
the final efficiencies calculated from the cross efficiencies help identify the rankings of a set of DMUs. 
Cross-efficiency evaluation has been extended to different evaluation models. In this study, the input 
and output data were measured by exact values. However, in some cases, the inputs and outputs of 
DMUs may be stochastic. The derivation of the stochastic measure and its applications will be another 
direction for future studies. 
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