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Abstract: Using a Lyapunov type functional constructed on the basis of thermodynamical arguments,
we investigate the finite amplitude stability of internal steady flows of viscoelastic fluids described by
the Giesekus model. Using the functional, we derive bounds on the Reynolds and the Weissenberg
number that guarantee the unconditional asymptotic stability of the corresponding steady internal
flow, wherein the distance between the steady flow field and the perturbed flow field is measured
with the help of the Bures–Wasserstein distance between positive definite matrices. The application of
the theoretical results is documented in the finite amplitude stability analysis of Taylor–Couette flow.
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1. Introduction

Flows of viscoelastic fluids exhibit the phenomenon dubbed “elastic turbulence” or “inertia-less
turbulence”. The flows of viscoelastic fluids can become—unlike the flows of the standard viscous
fluids—unstable or “turbulent” at very low values of the Reynolds number. This behaviour indicates
that the instability or transition to “turbulence” is driven by a nonstandard mechanism. Namely, it is
not driven by the nonlinearity due to the inertial term in balance of linear momentum, but it must
be attributed to the nonlinearity in the governing equation for the “elastic” part of the Cauchy stress tensor.
The key challenge is to identify the parameter values that prohibit the onset of “elastic” instability or
that trigger the “elastic” instability, and to describe the transition scenarios leading from the laminar to
the “turbulent” flow. This task requires one to perform some sort of nonlinear stability analysis, since
a nonlinear interaction between the finite amplitude perturbations might be decisive.

The phenomenon of “elastic turbulence” has been thoroughly investigated both from the
experimental as well as theoretical point of view (see reviews by Petrie and Denn [1], Larson [2],
Shaqfeh [3], Morozov and van Saarloos [4] or Li et al. [5]). In particular, the experiments reported
by Groisman and Steinberg [6] stimulated enormous research activity regarding the elastic turbulence.
On the other hand, theoretical results mainly follow from direct numerical simulations based on various
viscoelastic rate-type models (see Dubief et al. [7], Lieu et al. [8], Grilli et al. [9], Page and Zaki [10],
Biancofiore et al. [11], Valente et al. [12], Lee and Zaki [13] and Plan et al. [14] for some recent
contributions). The need to resort to sophisticated numerical simulations in order to get qualitative
insight into the flow dynamics is not surprising.

The reason is that the instabilities in viscoelastic fluids are very likely of subcritical nature
(see Meulenbroek et al. [15]). The subcritical nature of the instability implies, as remarked by Morozov
and van Saarloos [4], that
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[Linear stability] (if it exists) is not very relevant for the existence of dynamics of the patterns
that typically arise before the instability of the base state occurs.

(Note that a similar issue arises even for the standard Navier–Stokes fluid (see, for example, Baggett and
Trefethen [16] for a discussion of several low-dimensional models of subcritical transition).) This means
that the linear stability analysis, that is stability analysis with respect to infinitesimal perturbations, is of
limited applicability in the investigation of the transition scenarios, albeit it can still provide important
insight into the problem. (See, for example, Beris et al. [17], Blonce [18], Grillet et al. [19] and Pourjafar
and Sadeghy [20], Pourjafar and Sadeghy [21] for linear stability analysis of flows of viscoelastic fluids
described by the Giesekus viscoelastic rate-type model.) Moreover, quoting again Morozov and van
Saarloos [4]

[Subcritical instability] is governed by all kinds of nonlinear self-enhancing interactions and
so there is almost never a simple approximation scheme that allows one to explore the infinite
dimensional space of interactions in all details, and determine which direction corresponds
to the smallest threshold [for instability]. Thus, in practice, one can explore such situations,
in theoretical studies as well as in experiments, only for a given class of perturbations.

On top of that, even if the technique such as weakly nonlinear analysis is apparently successful, then,
as Meulenbroek et al. [15] put it,

One should also keep in mind that our expansion is only carried out to lowest order in the
nonlinearity, so one may wonder about the robustness of these results as long as higher order
terms in the expansion are unknown.

In what follows, we want to address the lack of analytical results for the stability problem of
flows of viscoelastic fluids subject to finite amplitude perturbations. In particular, using a Lyapunov type
technique, we investigate the stability of internal steady flows of viscoelastic fluids described by the
Giesekus model, and we derive bounds on the values of the Reynolds number and the Weissenberg number
that guarantee the flow stability subject to any (finite) perturbation. The result provides a sufficient condition
for stability, hence it can be seen as complementary result to the search for the smallest threshold for
instability via approximation methods. The derived bounds are interesting not only on their own.
What is perhaps equally interesting is the way the bounds are derived. The derivation heavily relies on
the underlying thermodynamical arguments and the notion of energy, which is an approach that seems to
be discouraged in the nonlinear stability analysis of viscoelastic fluids (see Doering et al. [22]).

The paper is organised as follows. In Section 2, we describe the Giesekus model, and we
briefly comment on its thermodynamical underpinnings. In particular, we identify the energy storage
mechanisms and the entropy production mechanisms that are implied by the evolution equations for the
Giesekus model. Once the thermodynamical background is summarised, we formulate the governing
equations for an internal steady flow (see Section 3), and we proceed with the stability analysis of
this non-equilibrium steady state. The stability is analysed using a Lyapunov type functional Vneq

constructed by the thermodynamically based method proposed by Bulíček et al. [23]. The functional
used in the stability analysis of a steady flow v̂ in a domain Ω is constructed in Section 4, and it is
given by the formula

Vneq

(
W̃
∥∥∥ Ŵ

)
=
∫

Ω

1
2
|ṽ|2 dv +

∫

Ω

Ξ
2

[
− ln det

(
I+ B̂κp(t)

−1
B̃κp(t)

)
+ Tr

(
B̂κp(t)

−1
B̃κp(t)

)]
dv, (1)

where ṽ denotes the perturbation of the velocity field, B̃κp(t) is related to the perturbation of the stress

field, and B̂κp(t) is related to the stress field in the steady flow. (See the corresponding sections for
the notation.) The fact that Equation (1) can serve as a Lyapunov type functional is closely related
to the proper choice of the distance function that characterises the proximity of the perturbation W
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and the corresponding steady state Ŵ . In our case, the distance function is introduced using the
Bures–Wasserstein distance

distP(d), BW (A,B) =def

{
TrA+ TrB− 2 Tr

[(
A

1
2 BA

1
2

) 1
2
]} 1

2

, (2)

(see Bhatia et al. [24]), which measures the distance between the symmetric positive semidefinite
matrices A and B. Once we generalise Equation (2) to the setting of spatially distributed fields of
symmetric positive semidefinite matrices, we exploit the concept of Lyapunov functional, and we
derive bounds on the Reynolds number and the Weissenberg number that guarantee the flow stability
with respect to any perturbation (see Theorem 1). These bounds are universal for any flow geometry.

The bounds on the Reynolds number and the Weissenberg number are then explicitly evaluated in
Section 6 in the case of Taylor–Couette type flow. Further, we also perform direct numerical simulations
that allow us to quantitatively document some features of the perturbation dynamics. The results are
commented in Section 7.

2. Giesekus Model

2.1. Governing Equations

The governing equations for the Giesekus fluid (see Giesekus [25]), in the absence of external
force, read

div v = 0, (3a)

ρ
dv
dt

= divT, (3b)

ν1

O

Bκp(t) = −µ
[
αB2

κp(t)
+ (1− 2α)Bκp(t) − (1− α)I

]
, (3c)

where v denotes the velocity, ρ denotes the density and Bκp(t) is an extra tensorial quantity whose
physical meaning is given below. Finally, the symbol T denotes the Cauchy stress tensor that is given
by the formulae

T = mI+Tδ, Tδ = 2νD+ µ
(
Bκp(t)

)
δ
, (3d)

where m denotes the mean normal stress (pressure) and D =def
1
2 (∇v+ (∇v)>) denotes the symmetric

part of the velocity gradient. Symbols ν, ν1, µ and α, α ∈ (0, 1) denote material parameters. Note that,
if α = 0, then one recovers the standard Maxwell/Oldroyd-B models. The value α = 0 is however not
covered in the presented stability analysis.

The remaining notation is the standard one: d
dt =def

∂
∂t + v • ∇ denotes the material time

derivative, and
O
A =def

dA
dt
−LA−AL>, (4)

denotes the upper convected derivative, where L =def ∇v, and the symbol Aδ =def A− 1
3 (TrA) I

denotes the traceless part of the corresponding tensor. In virtue of the incompressibility constraint in
Equation (3a), we have Dδ = D. Note that, if one uses a simple substitution S =def µ(Bκp(t) − I),
and if one redefines the pressure, p =def −m + 1

3 (TrS) I, then Equation (3c) and (3d) transform to

λ
O

S+ S+ αλ
ν1
S2 = 2ν1D and T = −pI+ 2νD+ S, where λ =def

ν1
µ . This is another frequently used form

of the governing equations for the Giesekus fluid.

2.2. Thermodynamic Basis

The Giesekus model has been originally derived without any reference to thermodynamics.
However, we want to design a Lyapunov type functional using concepts from non-equilibrium
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thermodynamics, hence we need to explore thermodynamical underpinnings of the model. The issue
of finding a thermodynamic basis for viscoelastic rate-type models is claimed to be resolved
by a plethora of theories for thermodynamics of complex fluids (see, for example, Leonov [26],
Mattos [27], Wapperom and Hulsen [28], Dressler et al. [29] or Ellero et al. [30]). (Notably,
the treatise by Dressler et al. [29] contains a rich bibliography, and describes the issue from the
viewpoint of the GENERIC formalism (see Grmela and Öttinger [31], Öttinger and Grmela [32]
and Pavelka et al. [33])). In the present analysis, we exploit the approach proposed by Rajagopal and
Srinivasa [34] that is relatively simple and that provides one a purely phenomenologically based
concept of visco-elastic response.

The fact that the approach by Rajagopal and Srinivasa [34] closely follows the phenomenological
concept of visco-elastic material is best seen in the interpretation of the quantity Bκp(t) that appears in
the formula for the Cauchy stress tensor. This quantity can be interpreted as the left Cauchy–Green
tensor associated with the elastic part of the fluid response. Using the approach by Rajagopal and
Srinivasa [34], the derivation of Maxwell/Oldroyd-B type models was discussed by Málek et al. [35]
(see also Hron et al. [36]). More complex viscoelastic rate-type models that document the applicability
of the approach in more involved settings are discussed in Málek et al. [37], Málek et al. [38] and
in Dostalík et al. [39]. Following Dostalík et al. [39], we know that the Giesekus fluid is a fluid with the
specific Helmholtz free energy ψ in the form

ψ =def −ciNSE
V θ

[
ln
(

θ

θref

)
− 1
]
+

µ

2ρ

(
TrBκp(t) − 3− ln detBκp(t)

)
, (5)

where θ denotes the absolute temperature, θref denotes a constant reference temperature, ciNSE
V is

a positive material parameter (specific heat capacity at constant volume) and µ is another positive
material parameter. The specific Helmholtz free energy describes the energy storage ability of the fluid,
and the chosen ansatz is the same as for the standard Maxwell/Oldroyd-B fluid. This implies that the
Giesekus fluid and Maxwell/Oldroyd-B fluids differ, from the perspective of the current approach,
only in their entropy production mechanisms (see below).

Specifying the Helmholtz free energy as a function of θ and Bκp(t) , one can use the standard

thermodynamical identities η = − ∂ψ
∂θ and e = ψ + θη, and obtain explicit formulae for the specific

entropy η, and the specific internal energy e

η = ciNSE
V ln

(
θ

θref

)
, e = ciNSE

V θ +
µ

2ρ

(
TrBκp(t) − 3− ln detBκp(t)

)
. (6a)

Note that adding the kinetic energy to the mechanical part of the internal energy e, that is to the
term µ

2ρ

(
TrBκp(t) − 3− ln detBκp(t)

)
, we can define the specific mechanical energy via

emech =def
1
2
|v|2 + µ

2ρ

(
TrBκp(t) − 3− ln detBκp(t)

)
. (6b)

Once the Helmholtz free energy, and consequently also the internal energy, is specified, one can
derive the evolution equation for the entropy that has the structure ρ

dη
dt + div jη = ξ, where jη denotes

the entropy flux and ξ stands for the entropy production. In the case of Giesekus fluid the entropy
production is given by the formula ξ = ζ

θ , where

ζ =def 2νD : D+
µ2

2ν1
Tr
[
αB2

κp(t)
+ (1− 3α)Bκp(t) + (1− α)B−1

κp(t)
+ (3α− 2)I

]
+ κ
|∇θ|2

θ
. (7)

(We use the notation A : A =def Tr
(
AA>

)
for the scalar product on the space of matrices, and |A| for

the corresponding Frobenius norm.) Since Bκp(t) is a symmetric positive definite matrix, it is easy to
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check that the entropy production in Equation (7) is a nonegative quantity, hence the second law of
thermodynamics is satisfied.

The fact that Bκp(t) is a symmetric positive definite matrix follows directly from the governing
equations in Equation (3) via an argument similar to that of Boyaval et al. [40]. It is also a consequence
of the fact that Bκp(t) is in the approach by Rajagopal and Srinivasa [34] constructed as the left

Cauchy–Green tensor, which means that Bκp(t) can be decomposed as Bκp(t) = Fκp(t)F
>
κp(t)

. We exploit
the positivity of Bκp(t) quite frequently in our analysis.

Finally, we introduce three more important quantities that play crucial role in the construction
of Lyapunov type functional via the method proposed by Bulíček et al. [23]. Namely, we introduce
the net total energy Etot, the net mechanical energy Emech and the net entropy S of the fluid occupying the
domain Ω,

Etot =def

∫

Ω
ρ

[
1
2
|v|2 + e

]
dv, Emech =def

∫

Ω
ρemech dv, S =def

∫

Ω
ρη dv. (8)

2.3. Scaling

The equations in Equation (3) governing the evolution of mechanical variables can be transformed
to a dimensionless form by introducing the characteristic length xchar, characteristic time tchar. (Note
that the tensor field Bκp(t) already is a dimensionless quantity.) Using the following relations between
the original quantities and their dimensionless versions denoted by stars x = xcharx?, t = tchart?,
v = xchar

tchar
v?, m = ν

tchar
m?, we obtain

div? v? = 0, (9a)

dv?

dt?
= div? T?, (9b)

O

Bκp(t)

?
= − 1

Wi

[
αB2

κp(t)
+ (1− 2α)Bκp(t) − (1− α)I

]
, (9c)

where the dimensionless Cauchy stress tensor T? is given by

T? =
1

Re
m?I+ (T?)δ, (T?)δ =

2
Re

(D?)δ + Ξ
(
Bκp(t)

)
δ
. (9d)

In Equation (9), we introduce three dimensionless numbers—the Reynolds number Re,

the Weissenberg number Wi and dimensionless shear modulus Ξ—via the formulae Re =def
ρx2

char
νtchar

,

Wi =def
ν1

µtchar
, and Ξ =def

µt2
char

ρx2
char

. It remains to introduce a scaling factor for the net mechanical energy

Emech, which is used for the construction of the Lyapunov type functional in Section 4. Using the

scaling Emech =
ρx5

char
t2
char

E?
mech, we obtain

E?
mech (W

?) =
∫

Ω?

[
1
2
|v?|2 + Ξ

2

(
TrBκp(t) − 3− ln detBκp(t)

)]
dv?. (10)

Hereafter, we omit the star denoting dimensionless quantities unless otherwise specified.
The scaling is chosen in such a way that, if Wi→ 0+, then Bκp(t) approaches the identity tensor.

Indeed, if Wi→ 0+ then, Equation (9c) implies that

O = αB2
κp(t)

+ (1− 2α)Bκp(t) − (1− α)I, (11)

and the solution of Equation (11) is Bκp(t) = I. Moreover, if Bκp(t) = I, then the second term
in Equation (10), that is the elastic contribution to the mechanical energy, vanishes, and the mechanical
energy of the fluid reduces to the kinetic energy only. Finally, if Bκp(t) = I, then the additional term
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in the Cauchy stress tensor in Equation (9d) vanishes. This means that for Wi → 0+ the governing
equations in Equation (9) reduce to the standard incompressible Navier–Stokes equations.

2.4. Boundary Conditions

The governing equations in Equation (9) must be supplemented with boundary conditions for
the velocity v. We are interested in internal flow problems, where one prescribes Dirichlet boundary
conditions on a part of the flow domain Ω ⊂ R3, and periodic boundary conditions on another part
of the domain. Such a domain is usually called the periodic cell. (For example, in the case of flow in
between two infinite concentric rotating cylinders, the Dirichlet boundary condition is prescribed on
the surfaces of the cylinders, while the periodic boundary condition is prescribed in the direction of
the axis of the cylinders.) On the parts of the boundary corresponding to the periodicity directions,
say Γ1, we therefore prescribe periodic boundary condition for v, while, on the remaining part of the
boundary, say Γ2, we prescribe the no-penetration and the no-slip boundary condition,

v • n|Γ2
= 0, (12a)

(I− n⊗ n)v|Γ2
= V , (12b)

where n is the unit outward normal to the boundary of Ω and V is a given velocity in the tangential
direction to the boundary. This means that the fluid adheres to the boundary, and, moreover, if V 6= 0,
then, in general, the energy is exchanged between the fluid and its surroundings. Indeed, the balance of
the net total energy reads dEtot

dt =
∫

∂Ω (Tv) • n ds−
∫

∂Ω jq • n ds, where ∂Ω denotes the boundary of
the domain Ω and jq denotes the heat flux. Consequently, if v 6= 0 on the boundary, then the term∫

∂Ω (Tv) • n ds does not, in general, vanish or is compensated by the second term on the right-hand
side, and the net total energy might even change in time.

Concerning the boundary conditions for the perturbation ṽ with respect to the reference state v̂
(see below), we see that, if v̂ satisfies Equation (12), then the perturbed state v = v̂ + ṽ also
satisfies Equation (12) provided that

ṽ|Γ2
= 0. (13)

The periodic boundary condition on Γ1 is preserved for the perturbation ṽ.
In the following, we frequently use the identity

∫

∂Ω
f • n ds = 0, (14)

where f : ∂Ω → R3 is a smooth function such that f fulfills the periodic boundary condition on Γ1

and f = 0 on Γ2. Note that the identity holds even if one part of the boundary, whether Γ1 or Γ2, is
not present.

3. Base Flow—Non-Equilibrium Steady State

3.1. Notation for the Stability Analysis

We are interested in the evolution of the triplet W =def [v, m,Bκp(t) ], which solves the evolution

equations in Equation (3). We further use the notation Ŵ = [v̂, m̂, B̂κp(t) ] for the triplet corresponding

to a non-equilibrium steady state solution, and W̃ = [ṽ, m̃, B̃κp(t) ] for the perturbation with respect to the
non-equilibrium steady state. This means that the triplet describing the complete perturbed state is given
as a sum of the reference state Ŵ and the perturbation W̃ with respect to the reference state

W = Ŵ + W̃ , (15a)

[v, m,Bκp(t) ] = [v̂, m̂, B̂κp(t) ] + [ṽ, m̃, B̃κp(t) ]. (15b)
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(Note that sometimes we work only with the pair W =def [v,Bκp(t) ], since the pressure is insubstantial
in our analysis.) The term non-equilibrium steady state is chosen in accordance with the practice
in thermodynamics, and it means that the entropy is produced at the steady state Ŵ . In particular,
the adjective non-equilibrium does not refer to the stability of the steady state.

3.2. Governing Equations in a Steady State

The steady state Ŵ = [v̂, m̂, B̂κp(t) ] whose stability we want to investigate is a solution to the equations in
Equation (9) where the partial time derivatives are identically equal to zero. In particular, we assume that the
state described by the triplet [v̂, m̂, B̂κp(t) ] solves the system

div v̂ = 0, (16a)

(v̂ • ∇) v̂ = divT(Ŵ), (16b)

(v̂ • ∇) B̂κp(t) − L̂B̂κp(t) − B̂κp(t) L̂
> = − 1

Wi

[
αB̂κp(t)

2
+ (1− 2α)B̂κp(t) − (1− α)I

]
. (16c)

subject to the boundary conditions in Equation (12) on Γ2, that is

v̂ • n|Γ2
= 0, (I− n⊗ n)v̂|Γ2

= V , (17)

and the periodic boundary conditions on Γ1. Here, the symbol T(Ŵ) denotes the Cauchy stress tensor
induced by the triplet [v̂, m̂, B̂κp(t) ], that is

T(Ŵ) =
1

Re
m̂I+ 2

Re
D̂+ Ξ

(
B̂κp(t)

)
δ
, (18)

where D̂ = 1
2 (L̂+ L̂>), and L̂ = ∇v̂.

Note that, if V = 0, that is if no mechanical energy is supplied to the fluid, then the system would
admit an equilibrium solution

[v̂, m̂, B̂κp(t) ] = [0, c, I], (19)

where c is an arbitrary number. (This is the standard ambiguity in the identification of the pressure
well known from the case of Navier–Stokes fluid.) Here, we use the adjective equilibrium to emphasise
that such a steady state would lead to zero entropy production. Indeed, if Bκp(t) = I and v = 0, then the
(mechanical part) of the entropy production in Equation (7) vanishes.

On the other hand, if V 6= 0, then one must in general expect that the steady fields v̂ and
B̂κp(t) are spatially inhomogeneous, and consequently the entropy production in Equation (7) is positive.
This means that the system produces the entropy; hence, it is, from the thermodynamical point of view,
out of equilibrium. Consequently, as discussed above, we use the adjective non-equilibrium and we refer
to the base flow as of non-equilibrium steady state.

3.3. Concept of Stability

Concerning the stability of the non-equilibrium steady state, we are interested in its asymptotic
stability. If we have a non-equilibrium steady state Ŵ that solves Equation (16), then we want to
know whether the perturbation W = Ŵ + W̃ of the non-equilibrium steady state Ŵ tends back to the
non-equilibrium steady state Ŵ as time goes to infinity. In our case, the evolution of the perturbed
state W is governed by the equations in Equation (9) that must be solved subject to the given boundary
conditions in Equation (12) and subject to initial conditions

v|t=0 = v̂ + ṽ0, Bκp(t)

∣∣∣
t=0

= B̂κp(t) +
(
B̃κp(t)

)
0

. (20)
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The non-equilibrium steady state Ŵ is said to be asymptotically stable provided that the solutions
that start close enough to the steady state not only remain close enough to the steady state but also
eventually converge to the steady state, that is the triplet W converges to Ŵ as time goes to infinity,

W t→+∞−−−−→ Ŵ , (21)

for all sufficiently small initial data ṽ0 and
(
B̃κp(t)

)
0

(see (Henry [41], Definition 4.1.2) or Yoshizawa [42]
for the formal definition and further discussion).

Ideally, one would like to obtain stronger results. Namely, one would like to have an unconditional
result that states that the non-equilibrium steady state is recovered as time goes to infinity regardless of
the choice of initial perturbation. This behaviour is expected if one deals with non-equilibrium steady
states that are driven by a small energy inflow that is by a small boundary velocity V , or, in other
words, if one deals with non-equilibrium steady states that are not far away from the equilibrium
steady state.

The key task in the stability analysis is the choice of a metric/norm on the state space to give a meaning
to the statement in Equation (21). Namely, we need to answer the question as how to characterise the
distance between Ŵ and W , since Equation (21) means

dist
(

Ŵ , W
)

t→+∞−−−−→ 0, (22)

where dist (·, ·) is a given metric that is not necessarily induced by a norm. Since Bκp(t) is at a given
spatial point x ∈ Ω a positive definite matrix, it seems reasonable to design the metric in such a
way that it reflects this fact. This means that we have to rely on a metric on the set of positive definite
matrices. There are several possible definitions of the metric on these sets (see Appendix A). If we use
the Bures–Wasserstein distance,

distP(d), BW (A,B) =def

{
TrA+ TrB− 2 Tr

[(
A

1
2 BA

1
2

) 1
2
]} 1

2

, (23)

(see Equation (A1) in Appendix A), and if we generalise this concept to the spatially distributed tensor
fields, then we can define the distance between Ŵ and W as

dist
(

Ŵ , W
)
=def

(
‖v̂− v‖2

L2(Ω) +
[
distPΩ(d), BW

(
B̂κp(t) ,Bκp(t)

)]2
) 1

2
, (24)

(see Equation (A7) and Appendix A for a discussion of the notation and correctness of this definition).
It turns out that this concept of distance nicely fits to the dynamical system we are interested in.

The term “stability” is used in many other contexts; hence, we briefly comment on these other
notions of stability. In particular, we emphasise what is in the present work not meant by the stability.
First, we are not interested in the stability in the sense of continuous dependence on initial data, which is
the concept of stability investigated in Dafermos [43] and various subsequent works especially in the
theory of hyperbolic systems (see Dafermos [44]). The stability in the sense of continuous dependence
on initial data means (see, for example, Schaeffer and Cain [45]) that

[. . . ] if the initial data for an initial value problem are altered slightly, then the perturbed
solution diverges from the original solution no faster than at a controlled exponential rate.

Apparently, the asymptotic stability we are interested in is a more ambitious concept, since we want the
perturbed solution to converge back to the original solution (non-equilibrium steady state). Second,
we are not interested in the stability of the steady state subject to infinitesimal perturbations, that is in the
linearised stability. We are interested in the evolution of finite amplitude perturbations.
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Finally, we emphasise that in our analysis we work with perturbations that are solution to the governing
equations in the classical sense. (All derivatives are understood as the classical derivatives, not as
generalised derivatives such as distributional derivatives and so forth.) In particular, we do not
consider the perturbations that solve the governing equations only in a weak sense, although it
is an important issue worth further investigation. The reader interested in the discussion of the
state-of-the-art rigorous mathematical theory of equations governing the motion of viscoelastic fluids
is kindly referred to the work of Masmoudi [46] or Barrett and Süli [47].

4. Lyapunov Functional

4.1. Concept of Lyapunov Functional

Let us briefly recall the concept of Lyapunov functional (see Henry [41]). We consider a system of
governing equations in the form

dX
dt

= F(X), (25)

where X̂ is a steady state, that is F(X̂) = 0, and where ‖·‖st denotes a norm on the underlying
state space. We say that the functional V(X̃‖X̂) is a strict Lyapunov functional of the steady state X̂
provided that:

1. There exists a neighbourhood of X̂ such that the functional is bounded from below by a function f
of the distance between the steady state X̂ and the perturbation X, that is

V
(

X̃
∥∥∥ X̂
)
≥ f

(∥∥∥X̂ − X
∥∥∥

st

)
, (26a)

where f is a continuous strictly increasing function such that f (0) = 0 and f (r) > 0 whenever
r > 0.

2. The time derivative of V(X̃‖X̂) is negative and bounded from above by a function g of the
distance between the steady state X̂ and the perturbation X, that is

d
dt
V
(

X̃
∥∥∥ X̂
)
≤ −g

(∥∥∥X̂ − X
∥∥∥

st

)
, (26b)

where g is a continuous strictly increasing function such that g(0) = 0 and g(r) > 0 whenever
r > 0.

If the given system of governing equations admits a strict Lyapunov functional near the state X̂,
then we know that the steady state X̂ is asymptotically stable (see (Henry [41], Theorem 4.1.4)). This
means that the solution X = X̃ + X̂ that starts in the neighbourhood of X̂ satisfies

∥∥∥X̂ − X
∥∥∥

st

t→+∞−−−−→ 0. (27)

While the concept of Lyapunov type functional is very simple, it is difficult to apply in a particular
setting. The main difficulty is to find a Lyapunov type functional. (Note that in the infinite dimensional
setting one can not easily exploit LaSalle’s invariance principle since it requires precompactness of the
trajectories, which is a qualitative property that goes beyond our assumption regarding the existence of
the classical solution. Consequently, having a Lyapunov type functional with Equation (26b) replaced
by the mere negativity everywhere except at the equilibrium, d

dtV(X̃‖X̂) < 0 for X̃ 6= 0, is not a viable
option.) Fortunately, since we are interested in equations describing a physical system, we can try to
search for the functional using physical concepts.

If we were dealing with the stability of a homogeneous equilibrium steady state in a thermodynamically
isolated system, then a Lyapunov type functional could be constructed using the net entropy S and the
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net total energy Etot functional. It can be shown that the appropriate Lyapunov type functional is in
this setting reads

Veq

(
W̃
∥∥∥ Ŵ

)
= −

[
S(Ŵ + W̃)− 1

θ̂

{
Etot(Ŵ + W̃)− Etot(Ŵ)

}]
, (28)

where θ̂ is the spatially homogeneous temperature in the equilibrium steady state (see Bulíček et al. [23] for
details). The observation that Equation (28) can be used as a suitable Lyapunov type functional for
stability analysis of homogeneous equilibrium steady states in a thermodynamically isolated systems or
mechanically isolated systems immersed in a thermal bath is well known (see, for example, Šilhavý [48] or
Grmela and Öttinger [31], Öttinger and Grmela [32]), and in the continuum thermodynamics setting
it dates back to the works of Coleman [49], Gurtin [50], and Gurtin [51]. (The core idea can be found
in earlier works, see especially Duhem [52].) Unfortunately, the same functional cannot be used in
stability analysis of non-equilibrium spatially inhomogeneous steady states in thermodynamically open
systems. This fact is clear from Equation (28) itself. If one works with a spatially inhomogeneous steady
states, then θ̂ in Equation (28) is a function, and Equation (28) does not define a functional at all.

4.2. Construction of Lyapunov Type Functional for Stability Analysis of a Spatially Inhomogeneous Steady State

Recently, Bulíček et al. [23] proposed a method for construction of Lyapunov type functionals
for stability analysis of non-equilibrium spatially inhomogeneous steady states in thermodynamically
open systems. In the ongoing analysis, we use the same ideas as in Bulíček et al. [23], but we restrict
ourselves to the mechanical quantities only. This is a matter of convenience, since we are interested in
mechanical quantities only, and the temperature evolution has no feedback on the mechanical part of
the system of governing equations. Consequently, we do not need to work with the Lyapunov type
functional for the full thermomechanical problem, and we can construct a simpler Lyapunov type
functional solely for the mechanical quantities.

Using the net mechanical energy functional Emech introduced in Equation (10), one can see that
the net mechanical energy in a thermodynamically closed system must decay in time. Consequently,
the functional

Veq

(
W̃
∥∥∥ Ŵ

)
=def Emech

(
Ŵ + W̃

)
− Emech

(
Ŵ
)

(29)

can serve as a Lyapunov type functional for stability analysis of equilibrium spatially homogeneous
state in Equation (19).

Following the methodology outlined in Bulíček et al. [23], we use the Lyapunov type functional
for the equilibrium steady state in Equation (29), and we define the candidate for the Lyapunov type
functional for the non-equilibrium steady state as

Vneq

(
W̃
∥∥∥ Ŵ

)
=def Emech

(
Ŵ + W̃

)
− Emech

(
Ŵ
)
− DW Emech (W)|W=Ŵ

[
W̃
]

, (30)

where DW Emech (W)|W=Ŵ

[
W̃
]

denotes the Gâteaux derivative at point Ŵ in the direction W̃ .
(This is essentially the affine correction trick introduced in a different context by Ericksen [53]
(see also Dafermos [43]).) The (dimensionless) explicit formulae for the individual terms
in Equation (30) read

Emech

(
Ŵ + W̃

)
=
∫

Ω

[
1
2
|v̂ + ṽ|2 + Ξ

2

(
Tr
(
B̂κp(t) + B̃κp(t)

)
− 3− ln det

(
B̂κp(t) + B̃κp(t)

))]
dv, (31a)

Emech

(
Ŵ
)
=
∫

Ω

[
1
2
|v̂|2 + Ξ

2

(
Tr B̂κp(t) − 3− ln det B̂κp(t)

)]
dv, (31b)

DW Emech (W)|W=Ŵ

[
W̃
]
=
∫

Ω

{
v̂ • ṽ +

Ξ
2

[
Tr B̃κp(t) − Tr

(
B̂κp(t)

−1
B̃κp(t)

)]}
dv. (31c)
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Using Equation (31) in Equation (30), we get, after some algebraic manipulations, the explicit
formula for the proposed Lyapunov type functional

Vneq

(
W̃
∥∥∥ Ŵ

)
=
∫

Ω

1
2
|ṽ|2 dv +

∫

Ω

Ξ
2

[
− ln det

(
I+ B̂κp(t)

−1
B̃κp(t)

)
+ Tr

(
B̂κp(t)

−1
B̃κp(t)

)]
dv. (32)

It remains to show that the functional in Equation (32) has the properties in Equation (26)
introduced in Section 4.1. First, we show that the condition in Equation (26a) holds for a neighbourhood
of Ŵ , which means that we have to specify a norm on the state space.

The suitable norm is the norm introduced in Appendix A in Definition A3. This norm is a
“standard” Lebesgue type norm. However, it turns out that it is convenient to use this norm for a
characterisation of the evolution of a “shifted” state. The idea is the following. If we are given a
constant-in-time tensor field B̂κp(t) , which corresponds to the steady solution of Equation (9), and a state
W = [v,Bκp(t) ], then we can introduce the shifted state Z = [v,Zκp(t) ] that is defined as

W =
[
v,Bκp(t)

]
7→ Z =

[
v,Zκp(t)

]
, Zκp(t) =def

(
B̂κp(t)

− 1
2 Bκp(t) B̂κp(t)

− 1
2
) 1

2

. (33)

This shifted state seems to be ideal for the investigation of the perturbations to the steady state
B̂κp(t) . Indeed, the steady state for Equation (9) is Ŵ = [v̂, B̂κp(t) ], which is in virtue of Equation (33)
shifted to

Ẑ = [v̂, I]. (34)

Now, instead of investigating the behaviour of the perturbation Bκp(t) with respect to B̂κp(t) , we
can investigate the behaviour of the shifted perturbation Zκp(t) with respect to the identity I.

Lemma 1 (Relation between the proposed Lyapunov functional and a norm). Let Ŵ and W = Ŵ + W̃
denote two states of the system governed by equations in Equation (9), and let Ẑ and Z denote the corresponding
shifted states. Furthermore, let ‖·‖st denote the norm introduced in Definition A3. Then, there exists a positive
constant D(Ξ) such that

Vneq

(
W̃
∥∥∥ Ŵ

)
≥ D

∥∥∥Ẑ− Z
∥∥∥

2

st
. (35)

Proof. We note that Equation (32) for the Lyapunov type functional can be rewritten as

Vneq

(
W̃
∥∥∥ Ŵ

)
=

1
2
‖v̂− (v̂ + ṽ)‖2

L2(Ω)

+
∫

Ω

Ξ
2

[
Tr
(
B̂κp(t)

− 1
2
(
B̂κp(t) + B̃κp(t)

)
B̂κp(t)

− 1
2
)
− 3− ln det

(
B̂κp(t)

− 1
2
(
B̂κp(t) + B̃κp(t)

)
B̂κp(t)

− 1
2
)]

dv

=
1
2
‖v̂− (v̂ + ṽ)‖2

L2(Ω) +
∫

Ω

Ξ
2

[
TrZ2

κp(t)
− 3− ln detZ2

κp(t)

]
dv, (36)

where we use the cyclic property of the trace and the properties of the determinant. Making use of
Lemma A3 and the inequality in the integrand of the last term in Equation (36), we see that

Vneq

(
W̃
∥∥∥ Ŵ

)
≥ 1

2
‖v̂− (v̂ + ṽ)‖2

L2(Ω) +
Ξ
2

∫

Ω

∣∣∣I−Zκp(t)

∣∣∣
2

dv ≥ min
{

1
2

,
Ξ
2

}∥∥∥Ẑ− Z
∥∥∥

2

st
. (37)

The less straightforward part of the analysis of properties of proposed Lyapunov type functional
Vneq is the evaluation of its time derivative dVneq

dt . The formula for the time derivative is derived via a
lengthy algebraic manipulation described in Appendix B, and it is given below in Lemma 2. Note that,
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although we are working with a thermodynamically open system, the formula for the time derivative does not
contain boundary terms.

Lemma 2 (Explicit formula for the time derivative of the Lyapunov type functional). Let Ŵ and
W = Ŵ + W̃ denote two states of the system governed by equations in Equation (9), where the state Ŵ is the
steady state, that is it solves Equation (16). The formula for the time derivative of the functional Vneq(W̃‖Ŵ)

introduced in Equation (32) reads

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
= −

∫

Ω

2
Re

D̃ : D̃dv−
∫

Ω
Ξ B̃κp(t) : D̃dv−

∫

Ω
D̂ṽ • ṽ dv

−
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(ṽ • ∇) B̂κp(t)

]
dv +

∫

Ω

Ξ
2
B̂κp(t)

−1
:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv

−
∫

Ω
(1− α)

Ξ
2Wi

Tr

[(
B̂κp(t) + B̃κp(t)

)−1
(
B̃κp(t) B̂κp(t)

−1
)(

B̃κp(t) B̂κp(t)

−1
)>]

dv

−
∫

Ω
α

Ξ
2Wi

Tr
[
B̂κp(t)

−1
B̃κp(t)

2
]

dv. (38)

Proof. See Appendix B.

We note that the terms

−
∫

Ω

2
Re

D̃ : D̃dv, −
∫

Ω
α

Ξ
2Wi

Tr
[
B̂κp(t)

−1
B̃κp(t)

2
]

dv, (39a)

−
∫

Ω
(1− α)

Ξ
2Wi

Tr

[(
B̂κp(t) + B̃κp(t)

)−1
(
B̃κp(t) B̂κp(t)

−1
)(

B̃κp(t) B̂κp(t)

−1
)>]

dv, (39b)

are negative provided that ṽ 6= 0 and B̃κp(t) 6= O. If we were able to show that these damping
terms are strong enough to balance all the remaining terms on the right-hand side of Equation (38),
we would get the desired result (Equation (26b)) concerning the negativity of the time derivative.
This should be possible at least for sufficiently small Reynolds number Re and Weissenberg number
Wi. The hypothesis follows from the observation that as Re and Wi tend to zero, then the magnitude
of the damping terms increases, and it should outgrow the other terms in Equation (38) that do not
depend on Re and Wi. This observation is consistent with the expectation that low Reynolds number
and low Weissenberg number flows are stable.

Now, the objective is to show that the hypothesis is true, and that the proposed functional indeed
satisfies the condition in Equation (26b). In the quantification of the “sufficient smallness” of the
Weissenberg number Wi and the Reynolds number Re, we aim at a simple but very rough estimate
based on the elementary use of Friedrichs–Poincaré, Cauchy–Schwarz, Young and Korn (in)equalities
(see Nečas et al. [54] or Evans [55] or any other standard reference work on function spaces). A precise
characterisation of the Reynolds number and the Weissenberg number that guarantee the negativity of
the time derivative, and hence the stability, could be obtained by a variational technique known from
the standard energy method (see Joseph [56] or Straughan [57]). This is however beyond the scope of
the current contribution.

Lemma 3 (Estimate on the time derivative). Let Ŵ and W = Ŵ + W̃ denote two states of the system
governed by equations in Equation (9), where the state Ŵ is the steady state, that is it solves Equation (16).
Then, there exist constants C1(Ŵ , Re, Wi, Ξ, Ω) and C2(Ŵ , Re, Wi, Ξ) such that the time derivative of the
functional Vneq(W̃‖Ŵ) introduced in Equation (32) can be estimated from above as

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
≤ C1‖∇ṽ‖2

L2(Ω) + C2

∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
, (40)
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where we denote

C1 =def −
1

Re
+ CP sup

x∈Ω

∣∣∣λmin(D̂)
∣∣∣+ Ξ

2
sup
x∈Ω

∣∣∣∣B̂κp(t)

−1 − I
∣∣∣∣+ CP

Ξ
4

sup
x∈Ω

∣∣∣∣B̂κp(t)

−1
∣∣∣∣
2

sup
x∈Ω

∣∣∣∇B̂κp(t)

∣∣∣ , (41a)

C2 =def −α
Ξ

2Wi
inf
x∈Ω

λmin(B̂κp(t)

−1
) +

Ξ
2

sup
x∈Ω

∣∣∣∣B̂κp(t)

−1 − I
∣∣∣∣+

Ξ
4

sup
x∈Ω

∣∣∣∣B̂κp(t)

−1
∣∣∣∣
2

sup
x∈Ω

∣∣∣∇B̂κp(t)

∣∣∣ , (41b)

and where λmin(·) denotes the minimal eigenvalue of the corresponding matrix and CP denotes the domain
dependent constant from Friedrichs–Poincaré inequality.

Proof. See Appendix C.

Lemma 4 (Estimate on the time derivative in terms of the norm on the shifted state space). Let Ŵ
and W = Ŵ + W̃ denote two states of the system governed by equations in Equation (9), where the state
Ŵ is the steady state, that is it solves Equation (16), and let Ẑ and Z denote the corresponding shifted states
(see Equation (33)). Let us further assume that the constants C1 and C2 in Lemma 3 are negative. Then, there
exists a positive constant C(C1, C2, B̂κp(t)) such that

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
≤ −C

∥∥∥Ẑ− Z
∥∥∥

2

st
, (42)

where Vneq(W̃‖Ŵ) denotes the functional introduced in Equation (32) and ‖·‖st is the norm introduced in
Definition A3.

Proof. In virtue of Lemma 3, we already know the estimate in Equation (40). Making use of
Friedrichs–Poincaré inequality ‖v‖2

L2(Ω) ≤ CP‖∇v‖2
L2(Ω), where CP is the domain dependent constant.

We see that, if C1 < 0 and C2 < 0, then Equation (40) implies

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
≤ −|C1|

CP
‖ṽ‖2

L2(Ω) − |C2|
∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
. (43)

Next, we use Lemma A4, which implies that

∣∣∣B̃κp(t)

∣∣∣ =
∣∣∣B̂κp(t) −Bκp(t)

∣∣∣ ≥
∣∣∣∣B̂κp(t)

− 1
2
∣∣∣∣
−2
∣∣∣∣∣∣
I−

(
B̂κp(t)

− 1
2 Bκp(t) B̂κp(t)

− 1
2
) 1

2

∣∣∣∣∣∣
=

∣∣∣∣B̂κp(t)

− 1
2
∣∣∣∣
−2 ∣∣∣I−Zκp(t)

∣∣∣ , (44)

where Zκp(t) denotes the shifted state introduced in Equation (33). Consequently, we see that

− |C2|
∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
= − |C2|

∫

Ω

∣∣∣B̃κp(t)

∣∣∣
2

dv ≤ − |C2|
(

sup
x∈Ω

∣∣∣∣B̂κp(t)

− 1
2
∣∣∣∣

)−4 ∫

Ω

∣∣∣I−Zκp(t)

∣∣∣
2

dv, (45)

which means that Equation (43) can be further manipulated to the form

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
≤ −min




|C1|
CP

, |C2|
(

sup
x∈Ω

∣∣∣∣B̂κp(t)

− 1
2
∣∣∣∣

)−4




(
‖ṽ‖2

L2(Ω) +
∥∥∥I−Zκp(t)

∥∥∥
2

L2(Ω)

)
. (46)

The inequality in Equation (46) gives in virtue of the definition of the norm ‖·‖st (see Definition A3
and the proposition in Equation (42)). (Recall that the transformation in Equation (33) implies that
Ẑκp(t) = I.)
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5. Main Result

Using the estimate from Lemma 4 and the relation between the metric and the functional Vneq

(see Lemma 1), it is straightforward to prove the following theorem.

Theorem 1 (Sufficient conditions for unconditional asymptotic stability). Let the pair Ŵ = [v̂, B̂κp(t) ]

solve the governing equations for the steady state in Equation (16) with the boundary conditions in Equation
(17). If the Reynolds number Re, the Weissenberg number Wi and the dimensionless shear modulus Ξ are such
that the constants C1 and C2 introduced in Equation (41) satisfy

C1 < 0, C2 < 0, (47)

then the spatially inhomogeneous non-equilibrium steady state Ŵ is unconditionally asymptotically stable,
that is

dist
(

Ŵ , W
)

t→+∞−−−−→ 0, (48)

holds for any initial perturbation W , where the metric dist (·, ·) is the metric introduced in Equation (A7).

Proof. We first investigate the stability in the shifted state space (see Equation (33)), that is we
investigate perturbation Z with respect to Ẑ = [v̂, I]. We introduce the functional Vneq(W̃‖Ŵ)

(see Equation (32) and the equivalent expression in Equation (36)). The functional satisfies the
condition in Equation (26a) (see Lemma 1). Furthermore, if C1 and C2 are negative, then Lemma 4
implies that the functional Vneq(W̃‖Ŵ) decreases along the trajectories in a desired manner, that is
it satisfies Equation (26b). Consequently, the functional Vneq(W̃‖Ŵ) is a genuine Lyapunov type
functional for any neighbourhood of the steady state Ẑ, hence Ẑ is unconditionally asymptotically

stable,
∥∥∥Ẑ− Z

∥∥∥
st

t→+∞−−−−→ 0.
The convergence in the norm on the shifted space seems to be an obscure characterisation of the

approach to the equilibrium. However, if we exploit the definition of the shifted state (see Equation (33),
and the equality in Equation (A17) proved in Lemma A3), we see that

∥∥∥Ẑ− Z
∥∥∥

st
=

(
‖v̂− v‖2

L2(Ω) +
∫

Ω

(
distP(d), BW

(
I, B̂κp(t)

− 1
2 Bκp(t) B̂κp(t)

− 1
2
))2

dv

) 1
2

≥ E dist
(

Ŵ , W
)

, (49)

where the last inequality follows from the estimate in Equation (A10) in Lemma A2. Here, E is a
positive constant that depends on Ŵ , and dist (·, ·) is the metric introduced in Definition A2 (Equation
(A7)). This metric is a natural one if we restrict ourselves to the set of positive definite tensor fields. The
inequality in Equation (49) then implies Equation (48).

We note that if we want to investigate the spatially homogeneous steady state Ŵ = [v̂, B̂κp(t) ] =def
[0, I], that is if we set the boundary condition V = 0, then

C1 = − 1
Re

, C2 = −α
Ξ

2Wi
, (50)

and the condition in Equation (47) is automatically satisfied without any restriction of the values of Reynolds
number and the Weissenberg number. If the steady state is non-trivial, that is if Ŵ = [v̂, B̂κp(t) ] 6= [0, I],
then the condition in Equation (47) must be evaluated. This is done in Section 6 for the Taylor–Couette
flow. (Note that B̂κp(t) and v̂ are solutions to Equation (16), hence they depend on the Weissenberg
and Reynolds number.) Naturally, one can expect that the condition will hold for a sufficiently small
Reynolds number and Weissenberg number.
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Having the Lyapunov type functional given by Equation (32), it is interesting to see how the
functional works in the case of close to the equilibrium setting, that is for B̂κp(t) ≈ I, and for small

perturbations, that is for small B̃κp(t) . We see that if B̃κp(t) is small and if B̂κp(t) is close to the identity, then

− ln det
(
I+ B̂κp(t)

−1
B̃κp(t)

)
+ Tr

(
B̂κp(t)

−1
B̃κp(t)

)
≈ 1

2
Tr

((
B̂κp(t)

−1
B̃κp(t)

)2
)
≈ 1

2

∣∣∣B̃κp(t)

∣∣∣
2

, (51)

and the proposed Lyapunov type functional Vneq can be approximated as Vneq ≈ Vnaive where

Vnaive

(
W̃
∥∥∥ Ŵ

)
=def

∫

Ω

1
2
|ṽ|2 dv +

∫

Ω

Ξ
4

∣∣∣B̃κp(t)

∣∣∣
2

dv. (52)

The functional Vnaive might be the first candidate for the Lyapunov type functional if the stability
is investigated using the popular “energy method” (see, for example, Straughan [57]). The functional
is clearly nonnegative, and it vanishes if and only if the perturbation vanishes. Moreover, the
candidate Vnaive for the Lyapunov type functional is much simpler than Vneq. Indeed, the proximity

of the perturbation to the non-equilibrium state [v̂, B̂κp(t) ] is measured using the standard Lebesgue

space norms, and Vnaive does not depend on the value of B̂κp(t) . Therefore, it seems that Vnaive is a
good candidate for the Lyapunov type functional for the analysis of arbitrary spatially inhomogeneous
non-equilibrium steady state [v̂, B̂κp(t) ].

The inappropriateness of Vnaive for the stability analysis is in fact apparent even in a very trivial
setting. Let us consider the spatially homogeneous equilibrium steady state B̂κp(t) = I, v̂ = 0 in a
mechanically isolated container, that is we set V = 0 in the boundary condition in Equation (12).
If we use the (exact) evolution equations for the perturbation velocity in Equation (A28b), and if we
evaluate the time derivative of Vnaive, then we get

dVnaive

dt

(
W̃
∥∥∥ Ŵ

)
=
∫

Ω
ṽ • ∂ṽ

∂t
dv +

∫

Ω

Ξ
2

Tr


B̃κp(t)

∂B̃κp(t)

∂t


 dv

= −
∫

Ω

2
Re

D̃ : D̃dv−
∫

Ω
Ξ B̃κp(t) : D̃dv−

∫

Ω
D̂ṽ • ṽ dv +

∫

Ω

Ξ
2

Tr


B̃κp(t)

∂B̃κp(t)

∂t


 dv, (53)

(see also Equation (A34)). The last term on the right-hand side of Equation (53) can be evaluated using
the (exact) evolution equation for B̃κp(t) (see Equation (A29)). Substituting Equation (A29) into Equation

(53) and using the fact that B̂κp(t) = I and v̂ = 0, yields

dVnaive

dt

(
W̃
∥∥∥ Ŵ

)
= −

∫

Ω

2
Re

D̃ : D̃dv−
∫

Ω

Ξ
2

Tr
[(
{ṽ • ∇} B̃κp(t)

)
B̃κp(t)

]
dv +

∫

Ω
Ξ Tr

(
D̃B̃κp(t)

2
)

dv

−
∫

Ω

Ξ
2Wi

Tr
[

αB̃κp(t)

3
+ 2αB̃κp(t)

2
+ (1− 2α)B̃κp(t)

2
]

dv. (54)

Using the standard manipulation

∫

Ω

Ξ
2

Tr
[(
{ṽ • ∇} B̃κp(t)

)
B̃κp(t)

]
dv =

∫

∂Ω

Ξ
4

∣∣∣B̃κp(t)

∣∣∣
2
(ṽ • n) ds−

∫

Ω

Ξ
4
(div ṽ)

∣∣∣B̃κp(t)

∣∣∣
2

dv, (55)
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we see that the second term on the right-hand side of Equation (54) vanishes in virtue
of the incompressibility constraint in Equation (A28a) and the boundary condition for ṽ.
Consequently, Equation (54) reduces to

dVnaive

dt

(
W̃
∥∥∥ Ŵ

)
= −

∫

Ω

2
Re

D̃ : D̃dv +
∫

Ω
Ξ Tr

(
D̃B̃κp(t)

2
)

dv

−
∫

Ω

Ξ
2Wi

Tr
[

αB̃κp(t)

3
+ 2αB̃κp(t)

2
+ (1− 2α)B̃κp(t)

2
]

dv. (56)

Let us now consider an initial perturbation that is chosen is such a way that
∫

Ω Ξ Tr(D̃B̃κp(t)

2
)dv >

0, which can certainly be done. This positive value will dominate the right-hand side of Equation (56)
provided that the Reynolds number and the Weissenberg number are large enough. Consequently,
Vnaive will (initially) increase, and it would be useless as the Lyapunov type functional unless we a
priori limit ourselves to small perturbations.

On the other hand, if we use the functional Vneq in the case B̂κp(t) = I and v̂ = 0, then we
immediately see that the constants C1 and C2 in Equation (40) are negative, and that the equilibrium
steady state is asymptotically stable with respect to any perturbation and any value of the Reynolds
and the Weissenberg number! (Note that Guillopé and Saut [58] obtained only a conditional stability
result in a Sobolev space norm for the equilibrium rest state B̂κp(t) = I and v̂ = 0 (see their Corollary
3.5 and assumptions of Theorem 3.3).) Based on the analysis presented above, we can therefore claim
that we have indeed benefited from a well constructed Lyapunov type functional Vneq and the choice of
metric. Unlike the naive Lyapunov type functional Vnaive, the proposed Lyapunov type functional Vneq

seems to properly reflect the nonlinearity of the governing equations and the related energy storage
mechanisms and the entropy production mechanisms.

6. Taylor–Couette Flow

Let us now consider a viscoelastic fluid described by the Giesekus model introduced in Section 2
with α = 1

2 , and let us investigate the stability of steady flow in the standard Taylor–Couette flow
geometry (see Figure 1). The objective is to show as how the theory introduced above works in a specific
setting. The choice α = 1

2 is motivated by the simplicity of the expressions for the corresponding
steady state.

The fluid is placed in between two infinite concentric cylinders of radii R1 and R2, with R1 < R2.
The cylinders are rotating with the angular velocities Ω1 (inner cylinder) and Ω2 (outer cylinder) along
the common axis. The geometry naturally leads to the use of cylindrical coordinates (r, ϕ, z); the
normed basis vectors are denoted as gr̂, gϕ̂ and gẑ (see Figure 1). Since the domain is unbounded in
the z-direction, we henceforth consider a periodic cell

Ω =def {(r, ϕ, z) ∈ R3 | R1 < r < R2, 0 ≤ ϕ < 2π, |z| < h} (57)

where h > 0 is arbitrary, and we use the notation Γ1 =def {(r, ϕ, z) ∈ R3 | R1 < r < R2, 0 ≤ ϕ <

2π, |z| = h} for the top and bottom base, and Γ2 =def {(r, ϕ, z) ∈ R3 | r ∈ {R1, R2}, 0 ≤ ϕ < 2π, |z| <
h} for the cylindrical walls of the domain. The flow is driven by the rotation of the cylinders along the
common axis.
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Figure 1. Cylindrical Taylor–Couette flow.

6.1. Base Flow—Non-Equilibrium Steady State

The first task in the stability analysis is to find the steady solution to the governing equations.
This solution is the spatially inhomogeneous non-equilibrium steady state Ŵ as introduced in
Section 3.2. The characteristic length and characteristic time have been chosen as xchar =def R1,
tchar =def

1
Ω1

. We use the periodic boundary condition on Γ1 and the no-slip boundary condition for
velocity field v on Γ2, that is v|r=R1

= R1Ω1gϕ̂, v|r=R2
= R2Ω2gϕ̂. These boundary conditions are

consistent with the requirements on boundary conditions specified in Section 2.4. In their dimensionless
form, the boundary conditions read

v?|r?=1 = gϕ̂, v?|r?= 1
η
=

ζ

η
gϕ̂, (58)

where we have introduced two dimensionless parameters η =def
R1
R2

and ζ =def
Ω2
Ω1

. Hereafter, we
work exclusively with the dimensionless variables and thus, for the sake of simplicity, we omit the star
denoting them.

Since the problem has the rotational symmetry, we search for the steady non-equilibrium state in
a special form. Namely, the solution to Equation (16) subject to boundary conditions in Equation (58)
is sought in the form

v̂ = vϕ̂(r)gϕ̂, m̂ = m̂(r), B̂κp(t) =




Br̂
r̂(r) Br̂

ϕ̂(r) 0

Bϕ̂
r̂(r) Bϕ̂

ϕ̂(r) 0
0 0 Bẑ

ẑ(r)


 (59)

Note that the chosen ansatz for the velocity field automatically satisfies the incompressibility condition.
The assumptions lead to the following expressions for the velocity gradient, the symmetric part of the
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velocity gradient, the convective term, the divergence of B̂κp(t) , and the upper convected derivative

of B̂κp(t) :

∇v̂ =




0 −ω 0
r dω

dr + ω 0 0
0 0 0


 , D̂ =




0 r
2

dω
dr 0

r
2

dω
dr 0 0
0 0 0


 ,

dv̂
dt

=



−rω2

0
0


 ,

div B̂κp(t) =




1
r

d
dr
(
rBr̂

r̂
)
− Bϕ̂

ϕ̂

r
dBϕ̂

r̂
dr +

Bϕ̂
r̂+Br̂

ϕ̂

r
0


 ,

O

B̂κp(t) =




0 −r dω
dr Br̂

r̂ 0
−r dω

dr Br̂
r̂ −2r dω

dr Bϕ̂
r̂ 0

0 0 0


 , (60)

where we introduce the angular velocity ω(r), vϕ̂(r) =def ω(r)r. Using Equation (60), we see that the
governing equations for the velocity field in Equation (16b) reduce to



−rω2

0
0


 =




d
dr

(
m̂ + Ξ

(
Br̂

r̂ − 1
3 (B

r̂
r̂ + Bϕ̂

ϕ̂ + Bẑ
ẑ)
))

+ Ξ
Br̂

r̂−Bϕ̂
ϕ̂

r
1
r2

d
dr

(
1

Re r3 dω
dr + Ξr2Br̂

ϕ̂

)

0


 , (61a)

while the governing equations in Equation (16c) for B̂κp(t) read

[
0 −r dω

dr Br̂
r̂ 0

−r dω
dr Br̂

r̂ −2r dω
dr Bϕ̂

r̂ 0
0 0 0

]
=

− 1
Wi




α
(
(Br̂

r̂)
2 + (Br̂

ϕ̂)
2
)
+ (1− 2α)Br̂

r̂ − (1− α) αBr̂
ϕ̂(B

r̂
r̂ + Bϕ̂

ϕ̂) + (1− 2α)Br̂
ϕ̂ 0

αBr̂
ϕ̂(B

r̂
r̂ + Bϕ̂

ϕ̂) + (1− 2α)Br̂
ϕ̂ α

(
(Br̂

ϕ̂)
2 + (Bϕ̂

ϕ̂)
2
)
+ (1− 2α)Bϕ̂

ϕ̂ − (1− α) 0

0 0 α(Bẑ
ẑ)

2 + (1− 2α)Bẑ
ẑ − (1− α)


 . (61b)

Assuming that dω
dr 6= 0 in (R1, R2), Equation (61b) can be solved for Br̂

r̂, Br̂
ϕ̂, Bϕ̂

ϕ̂ and Bẑ
ẑ. However,

for general α ∈ (0, 1), the formulae for the aforementioned quantities are too complex to be written
down here. Let us note however that for α = 1

2 the formulae simplify significantly; the solution to

Equation (61b) which satisfies the condition of B̂κp(t) being positive definite in this case reads

Bẑ
ẑ = 1, Br̂

ϕ̂ =
−1 +

√
1 + c2

c
, Br̂

r̂ =

√
2
c

Br̂
ϕ̂, Bϕ̂

ϕ̂ =

√
2
(

c +
1
c

)
Br̂

ϕ̂, (62)

where we denote c =def 2Wi r dω
dr . Substituting Equation (62) into the second equation in Equation

(61a) then yields an ordinary differential equation for the angular velocity ω

0 =
d
dr




1
Re

r3 dω

dr
+ Ξr2

−1 +

√
1 + 4Wi2 r2

(
dω
dr

)2

2Wi r dω
dr


 , (63)

supplemented by the boundary conditions ω|r=1 = 1, ω|r= 1
η
= ζ, which follow from Equation (58)

and the fact that vϕ̂(r) = ω(r)r. Equation (63) together with the boundary conditions constitute a
boundary value problem which needs to be solved numerically.
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6.2. Explicit Criterion for the Stability of Spatially Inhomogeneous Non-Equilibrium Steady State

Here, we explicitly compute constants C1, C2 defined by Equations (41a) and (41b) for the
Taylor–Couette problem and for the specific values of the dimensionless numbers Ξ, Re and Wi.
Let us recall that, for the sake of simplicity, we set α = 1

2 , and we consider the steady tensor field B̂κp(t)

given by Equation (62). We fix the values for the geometric parameter η and angular velocities ratio ζ

as η = 1
2 and ζ = 2.

The angular velocity ω is obtained by solving Equation (63) which is a boundary-value problem
for a second order nonlinear differential equation. The problem was solved numerically using the
function solve_bvp from SciPy library version 1.0.0, which implements a fourth-order collocation
algorithm with the control of residuals as described in Kierzenka and Shampine [59]. With the
angular velocity ω in hand, we immediately get the steady velocity field v̂ = ω(r)rgϕ̂, and the steady

left Cauchy–Green tensor field B̂κp(t) through Equation (62). The plots of the velocity field and the

components of B̂κp(t) are shown in Figure 2.
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Figure 2. Taylor–Couette flow, spatially inhomogeneous non-equilibrium steady state for various
values of Weissenberg number Wi, Giesekus parameter α = 1

2 , Reynolds number Re = 100,
dimensionless shear modulus Ξ = 0.1 and problem parameters η = 1

2 and ζ = 2.

Having computed the steady velocity field v̂ and the corresponding steady field B̂κp(t) , we can
evaluate the constants C1 and C2 in the estimate in Equation (40). The gradient of v̂ as well as the
gradient of B̂κp(t) are again computed numerically from the obtained numerical solution. Finally, the
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Poincaré constant for the cylindrical annulus is determined via an explicit solution of the corresponding
eigenvalue problem −∆u = λu for the Laplace operator with Dirichlet boundary condition, which
leads, for the geometrical parameter η = 1

2 , to the value CP ≈ 0.1025. The resulting stability regions in
the Re–Wi plane are shown in Figure 3 for a fixed value of the dimensionless shear modulus Ξ. As one
might expect the spatially inhomogeneous steady state is indeed unconditionally asymptotically stable
if the Weissenberg number Wi and the Reynolds number Re are small enough.
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(a) Dimensionless shear modulus Ξ = 0.1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Wi

Re

C1 < 0, C2 < 0
C1 < 0, C2 ≥ 0
C1 ≥ 0, C2 < 0
C1 ≥ 0, C2 ≥ 0

Unconditional

asymptotic

stability

(b) Dimensionless shear modulus Ξ = 1.

Figure 3. Taylor–Couette flow, numerical values of constants C1 and C2 for various values of the
Reynolds number Re, Weissenberg number Wi and the dimensionless shear modulus Ξ. Unconditional
asymptotic stability is granted provided that C1 < 0 and C2 < 0, numerical values of constants C1 and C2

are evaluated using Equation (41). Giesekus parameter α = 1
2 and problem parameters η = 1

2 and
ζ = 2.

6.3. Numerical Experiments—Evolution of Various Initial Perturbations

Finally, we document the theoretically predicted behaviour by numerical experiments.
The numerical experiments allow us to quantitatively track the evolution of key quantities such
as the net kinetic energy, and also to quantitatively monitor the energy exchange between the fluid
and its surroundings.

The governing equations were numerically solved using standard techniques. The weak forms of
the governing equations were discretised in the space using the finite element method, while the time
derivatives were approximated with the backward Euler method. The two-dimensional domain Ω
was discretised by regular quadrilaterals. The mesh divided the annular region Ω into 80 pieces in
the radial direction, and in 720 pieces in the azimuthal direction. The corresponding total number of
degrees of freedom in all numerical experiments was over 1.3× 106. The velocity field v and the Bκp(t)

field were approximated by biquadratic Q2 elements, and the pressure field m was approximated by
the piecewise linear discontinuous elements P1d (see Korelc and Wriggers [60] for details). The finite
element pair that was used for the velocity/pressure fields satisfied the Babuška-Brezzi condition,
the finite element for Bκp(t) field was chosen to be the same as for the velocity in order to provide
rich enough finite element space for the solution. The same finite elements were chosen for the
two-dimensional simulation of other viscoelastic rate-type fluids (Oldroyd, Burgers and their various
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nonlinear versions) by Hron et al. [61] and Málek et al. [62]. In the three-dimensional case, low order
elements can be used to decrease the overall cost of the calculation (see Tůma et al. [63]).

The numerical scheme was implemented in the AceGen/AceFEM system (see Korelc [64] and
Korelc [65]). The main advantage of the system is that it provides automatic differentiation used for
the computation of the exact tangent matrix needed by the Newton solver that treats all nonlinearities.
The final set of linear equations was solved by the direct solver Intel MKL Pardiso. The stopping
criterion for the Newton solver was set to 10−9.

Using the numerical scheme, we are ready to study the behaviour of various perturbations to the
non-equilibrium steady state. In all scenarios described below, we use the dimensionless parameters

Ξ = 0.1, Re = 50, Wi = 5, α =
1
2

(64)

and we fix the geometric parameter η and angular velocities ratio ζ as in Section 6.2, that is η = 1
2

and ζ = 2. The chosen values of η, ζ and Ξ correspond to the stability diagram shown in Figure 3a.
The values of Reynolds number and Weissenberg number are outside the region where we have proven
the decay of the proposed Lyapunov type functional. Nevertheless, as we show below, the Lyapunov
type functional is, in the cases being investigated below, still a decreasing function.

First, we start from the homogeneous steady state solution [v,Bκp(t) , m] = [0, I, 0], and we let the
system to spontaneously evolve up to the time instant t = 1000. (More precisely, the initial condition is
v = 0 inside the domain Ω, and Equation (17) holds on the boundary of Ω. After the first computational
time step, which is chosen as ∆t = 0.05, we get on the discrete level a divergence-free velocity field
with the appropriate boundary condition. This discrete velocity field provides us a consistent initial
condition for further computations. Therefore, we formally start the evolution not at t = 0, but at
t = 0.05.) At this time instant, the system is almost relaxed and is close to the steady solution.
The solution at t = 1000 is used as a starting point for solving the steady governing equations (without
the time derivatives) and the spatially inhomogeneous non-equilibrium steady state is obtained just in
two Newton iterations. (The finite element solution coincides with the semi-analytical steady solution
obtained in Section 6.1. This among others provides us a tool for the code verification.) Consequently,
the finite element solution is in what follows used as the spatially inhomogeneous non-equilibrium
steady state Ŵ .

Having obtained the numerical representation of the spatially inhomogeneous non-equilibrium
steady state, we proceed with two scenarios concerning the specification of the initial perturbation.

6.3.1. Scenario A—Localised Perturbation of the Left Cauchy–Green Field

In the first scenario, we keep the initial velocity field perturbation equal to zero,

ṽ|t=0 = 0, (65)

while the initial perturbation in Bκp(t) is localised in space (see the first snapshot in Figure 4). Since the
system is fully coupled, the perturbation in the Bκp(t) field triggers for t > 0 a nontrivial evolution of
the velocity perturbation ṽ (see Figure 5). This can be observed also in the plots showing the evolution
of the net elastic stored energy and the net kinetic energy (see Figure 6).
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Figure 4. Scenario A, snapshots of |B̃κp(t) | at different time instants.
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Figure 5. Scenario A, snapshots of |ṽ| at different time instants.

Finally, we also investigate the time evolution of the proposed Lyapunov type functional Vneq

and the naive Lyapunov type functional Vnaive, and the net mechanical energy flux going through the
boundary of Ω (see Figure 6). Although we work with the Reynolds number/Weissenberg number
pair outside the guaranteed stability region, we see that the value of Lyapunov type functional Vneq

still decreases in time, and that the perturbation vanishes for t → +∞. This indicates that the
estimates on the time derivative of the proposed Lyapunov type functional are, at least for a class
of perturbations, too strict and they might be improved. One should also note that the “net kinetic
energy” of the perturbation, that is the functional

∫
Ω

1
2 |ṽ|

2 dv, does not decrease for all t > 0 (see
Figure 6b). In fact, it experiences a transitional growth, and such a transient growth can be observed
even for the Reynolds number/Weissenberg number values within the stability region. This is a
natural observation. The elastic energy stored in the material can be released in the form of the kinetic
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energy. It is only the combination of the elastic energy and the kinetic energy that appears in the
Lyapunov type functional that leads to a quantity that decays at any time.

Further, the net mechanical energy flux through the boundary fluctuates around the value that
corresponds to the non-equilibrium steady state, and then it reaches the value that corresponds to the
spatially inhomogeneous non-equilibrium steady state (see Figure 6d). This can again happen even if
the Reynolds number/Weissenberg number take values within the stability region.
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Figure 6. Scenario A, time evolution of the net quantities.

6.3.2. Scenario B—Global Perturbation of the Velocity Field

In the second scenario, we start with a nonzero velocity perturbation ṽ, and the Bκp(t) field is kept
unchanged,

B̃κp(t)

∣∣∣
t=0

= O. (66)

The initial velocity v is prescribed as
v|t=0 = Ωrgϕ̂, (67)

where the angular velocity is the arithmetic mean of the two angular velocities Ω = Ω1+Ω2
2 . (Formally,

we apply the same procedure as discussed in the previous section. The initial condition is v = Ωrgϕ̂

inside the domain Ω, and Equation (17) holds on the boundary of Ω. The actual computation starts
after the first (formal) time step, when the discrete velocity field is divergence-free and it fulfills the
boundary condition.) Again, as in the previous case, the non-zero perturbation in one unknown field
(ṽ) triggers for t > 0 a nontrivial evolution of the other unknown field (B̃κp(t) ) (see Figures 7 and 8).
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Figure 7. Scenario B, snapshots of |B̃κp(t) | at different time instants.
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Figure 8. Scenario B, snapshots of |ṽ| at different time instants.

Moreover, this numerical experiment is instructive for yet another reason. In Figure 9c, we plot
the time evolution of the values of the functionals Vneq and Vnaive. Clearly, the functional Vnaive

(see Equation (52)), which is a naive candidate for the Lyapunov type functional, experiences a
transitional growth. Interestingly, the proposed complex Lyapunov type functional Vneq is still a
decreasing function, although the Reynolds number/Weissenberg number values are outside the
region, where we have actually proven the decay of the functional. This further indicates that the
functional Vnaive is indeed not a good candidate for a Lyapunov type functional (see also Section 5 for
further discussion).
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Figure 9. Scenario B, time evolution of the net quantities.

7. Conclusions

We have investigated the stability of spatially inhomogeneous non-equilibrium steady states
(flows) of viscoelastic fluids described by the Giesekus model. We have derived bounds on the values
of the Reynolds number and the Weissenberg number that guarantee the flow stability subject to any
finite perturbation. The stability has been investigated using the Lyapunov type functional given by
the formula

Vneq

(
W̃
∥∥∥ Ŵ

)
=
∫

Ω

1
2
|ṽ|2 dv +

∫

Ω

Ξ
2

[
− ln det

(
I+ B̂κp(t)

−1
B̃κp(t)

)
+ Tr

(
B̂κp(t)

−1
B̃κp(t)

)]
dv. (68)

A few observations concerning the proposed Lyapunov type functional are at hand.
First, the proposed Lyapunov type functional has a relatively complicated form. In particular, it is

not quadratic in the perturbation B̃κp(t) , and it depends on the spatially inhomogeneous non-equilibrium

state B̂κp(t) . This makes it remarkably different from a naive Lyapunov type functional of the form

Vnaive

(
W̃
∥∥∥ Ŵ

)
=
∫

Ω

1
2
|ṽ|2 dv +

∫

Ω

Ξ
4

∣∣∣B̃κp(t)

∣∣∣
2

dv, (69)

which might be a first try if the stability problem were analysed using the popular “energy method”.
However, as we have shown, the complicated structure of the proposed functional Vneq leads to a
relatively simple and well structured formula for its time derivative, which in turn allows one to
formulate conditions that guarantee the negativity of the time derivative. Furthermore, the complicated
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structure of the proposed functional Vneq also leads to a simple relation between the functional and
the metric

dist
(

Ŵ , W
)
=def

(
‖v̂− v‖2

L2(Ω) +
[
distPΩ(d), BW

(
B̂κp(t) ,Bκp(t)

)]2
) 1

2
(70)

on the set of spatially distributed symmetric positive definite matrices.
Second, the Lyapunov type functional has been used in the investigation of stability of solution

to the complete system of nonlinear governing equations. In particular, the evolution equations for the
perturbation have been investigated without any simplification. This makes the present approach
different from the “energy budget” analysis (see, for example, Joo and Shaqfeh [66], Byars et al. [67],
Ganpule and Khomami [68], Smith et al. [69], Karapetsas and Tsamopoulos [70], Pettas et al. [71],
and especially the work by Grillet et al. [19] who investigated the Giesekus model). The “energy
budget” analysis, although valuable in the discussion of the nature of the instability mechanisms,
is based on the linearised momentum equation for the perturbation and linearised constitutive equation
for the “polymeric stress”. Consequently, the standard “energy budget” analysis is, unlike the present
approach, a tool that cannot be used in the finite amplitude stability analysis of the complete system
of nonlinear governing equations. One might also note that, despite the complexity of the proposed
Lyapunov type functional, the formula for its time derivative is in fact quite simple compared to the
formulae in the “energy budget” analysis. This happens even though the “energy budget” formulae
paradoxically stem from various simplifications of the original system of governing equations.

Third, the Lyapunov type functional has been designed using thermodynamical arguments.
In fact, the proposed Lyapunov type functional has been constructed from the net mechanical energy
functional Emech (see Equation (10), via Equation (30)). This makes the construction quite general, and
one might speculate that a similar approach is very likely applicable to other popular viscoelastic
rate-type models such as the PTT model (see Phan Thien and Tanner [72]) or the FENE-P model (see
Bird et al. [73]), as well as complex viscoelastic rate-type models with, for example, stress diffusion
terms (see Málek et al. [37] or Dostalík et al. [39]). Further, the construction of the Lyapunov type
functional has been based on the method proposed by Bulíček et al. [23], and this method is speculated
to work even for complex coupled thermo-mechanical systems. This naturally calls for the investigation
of the applicability of the method in more complex settings such as flows of viscoelastic rate-type
fluids with temperature dependent material parameters.

Fourth, thermodynamical type considerations such as the identification of the energy storage
mechanisms and entropy producing mechanisms are known to play an important role in the
rigorous mathematical theory of nonlinear partial differential equations governing the motion of
viscoelastic fluids (see, for example, Hu and Lelièvre [74], Boyaval et al. [40], Barrett and Boyaval [75],
Barrett and Boyaval [76], Barrett and Süli [47] or Bulíček et al. [77]). On the other hand, rigorous
mathematical analysis of long-time behaviour of viscoelastic fluids is usually done without a direct
appeal to thermodynamics, and the available results are quite limited especially if one considers
thermodynamically open systems (see, for example, Guillopé and Saut [78], Nohel and Pego [79],
Jourdain et al. [80] or Renardy [81]). (Usually, only stability of unidirectional steady flows in simple
geometries is considered.) Consequently, the approach proposed in the current contribution might
be of interest from the rigorous mathematical perspective as well. This means that one should deal
with the weak solution to the governing equations, and that one should investigate the applicability
of the presented arguments for a solution/perturbation that has only the smoothness that can be
actually proven.
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Appendix A. Distance between Positive Definite Matrices and Its Generalisation to Spatially
Distributed Tensor Fields

The function distP(d), BW (A,B) defined as

distP(d), BW (A,B) =def

{
TrA+ TrB− 2 Tr

[(
A

1
2 BA

1
2

) 1
2
]} 1

2

, (A1)

and referred to as the Bures–Wasserstein distance, is known to be a metric on the manifold of symmetric
(Hermitian) positive semidefinite matrices P(d) ⊂ Rd×d of arbitrary dimension d (see Bhatia et al. [24]).
(See also the work of Bhatia [82] for a thorough discussion of properties of symmetric positive
semidefinite matrices.) Another possibility regarding the definition of a metric on the manifold
of symmetric positive definite matrices is

distP(d), δ2
(A,B) =def

∣∣∣ln
(
A−

1
2 BA−

1
2

)∣∣∣ , (A2)

(see Bhatia [82]), where |·| denotes the Frobenius norm, |M| =def (Tr (MM?))
1
2 . (See the work of

Graham [83] for comments on the use of Equation (A2) in the context of fluid mechanics. For further
discussion regarding the metric on the set P(d), see also Hiai and Petz [84] and Hiai and Petz [85].)
Using the metric in Equation (A1) or Equation (A2), one can introduce a metric on the set of spatially
distributed symmetric positive semidefinite matrices.

Definition A1. Let PΩ(d) =def

{
X : x ∈ Ω ⊂ Rd 7→ X(x) ∈ P(d) ⊂ Rd×d

}
denote the set of mappings

from the spatial domain Ω ⊂ Rd to the set of symmetric positive semidefinite matrices P(d). Then, for A,B ∈
PΩ(d), the function

distPΩ(d), · (A,B) =def

[∫

Ω⊂Rd

(
distP(d), · (A,B)

)2
dv
] 1

2
, (A3)

defines a metric on the set PΩ(d).

The three fundamental properties of the metric—nonnegativity, symmetry and identity of
indiscernibles—are clearly satisfied in virtue of the properties of the pointwise Bures–Wasserstein/δ2

metric distP(d), · (A,B). It remains to show that the newly introduced metric satisfies the triangle
inequality, which is shown in Lemma A1.

Lemma A1 (Triangle inequality). Let distPΩ(d), · (A,B) be the function defined via Equation (A3), where
we use either the Bures–Wasserstein metric in Equation (A1) or the δ2 metric introduced in Equation (A2).
The function satisfies the triangle inequality

∀A,B,C ∈ PΩ(d) : distPΩ(d), · (A,B) ≤ distPΩ(d), · (A,C) + distPΩ(d), · (C,B) . (A4)

Proof. We see that

∫

Ω

(
distP(d), · (A,B)

)2
dv =

∫

Ω
distP(d), · (A,B)distP(d), · (A,B)dv

≤
∫

Ω
distP(d), · (A,C)distP(d), · (A,B)dv +

∫

Ω
distP(d), · (C,B)distP(d), · (A,B)dv, (A5)
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where we use the triangle inequality for the Bures–Wasserstein/δ2 metric distP(d), · (A,B). Using the
Hölder inequality in both integrals on the right-hand side, we arrive at

∫

Ω

(
distP(d), · (A,B)

)2
dv ≤

{[∫

Ω

(
distP(d), · (A,C)

)2
dv
] 1

2
+

[∫

Ω

(
distP(d), · (C,B)

)2
dv
] 1

2
}

×
[∫

Ω

(
distP(d), · (A,B)

)2
dv
] 1

2
, (A6)

which, upon dividing both sides by distPΩ(d), · (A,B), yields the desired result.

Now, we are in position to define a metric that will allow us to characterise the distance between
the states Y = [v,Bκp(t) ] and Y = [v,Bκp(t) ] of the dynamical system given by equations in Equation (3).
Note that in Definition A2 we do not assume that some of the states Y or Y is a steady state.

Definition A2. Let Y and Y be the states of the dynamical system governed by equations in Equation (9).
The function

dist
(
Y , Y

)
=def

(
‖v− v‖2

L2(Ω) +
[
distPΩ(d), BW

(
Bκp(t) ,Bκp(t)

)]2
) 1

2
, (A7)

defines a metric on the set of states. Here, distPΩ(d), BW (·, ·) denotes the metric on the set of spatially distributed
symmetric positive semidefinite matrices introduced in Definition A1, and ‖·‖L2(Ω) denotes the standard norm
on the Lebesgue space L2 (Ω).

Proof. It is straightforward to verify that Equation (A7) indeed defines a metric. The three fundamental
properties of the metric—nonnegativity, symmetry and identity of indiscernibles—are clearly satisfied
in virtue of the properties of the L2 (Ω) norm and the metric distPΩ(d), BW (·, ·). The triangle inequality

follows from the discrete Minkowski inequality (∑n
i=1(ai + bi)

p)
1
p ≤ (∑n

i=1 ap
i )

1
p + (∑n

i=1 bp
i )

1
p , (see,

for example, Evans [55]), and the triangle inequalities for the metric induced by the L2 (Ω) norm and
the metric distPΩ(d), BW (·, ·).

Besides the metric in Equation (A7), we also make use of the conventional norm/metric introduced
via Equation (A8). (The nomenclature “shifted state space” is explained in Section 4.2.) The fact
that Equation (A8) defines a norm is straightforward to show using the same argument as in the proof
of correctness of Definition A2.

Definition A3 (Norm/metric on the shifted state space). Let Z =def

[
v,Zκp(t)

]
and Z =def

[
v,Zκp(t)

]
be

the states of the dynamical system governed by the equations in Equation (3) with the transformation introduced
in Equation (33). The function

‖Z‖st =def

(
‖v‖2

L2(Ω) +
∫

Ω

∣∣∣Zκp(t)

∣∣∣
2

dv
) 1

2
, (A8)

defines a norm on the corresponding shifted state space, and the function

∥∥Z− Z
∥∥

st =def

(
‖v− v‖2

L2(Ω) +
∫

Ω

∣∣∣Zκp(t) −Zκp(t)

∣∣∣
2

dv
) 1

2
, (A9)

is the metric induced by the norm in Equation (A8).
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Lemma A2 (Pointwise inequality for Bures–Wasserstein metric I). Let A,B ∈ P(d), and let A be an
invertible matrix. If |·| denotes the standard Frobenius norm, then

distP(d), BW (A,B) ≤
∣∣∣A 1

2

∣∣∣distP(d), BW

(
I,A−

1
2 BA−

1
2

)
. (A10)

Proof. Bhatia et al. [24] (in their Theorem 1) showed that the Bures–Wasserstein metric can be
equivalently defined as

distP(d), BW (A,B) = min
U∈U(d)

∣∣∣A 1
2 −B

1
2 U
∣∣∣ , (A11)

where U is a matrix that belongs to the group of unitary matrices U(d) of dimension d× d. Making use
of the submultiplicativity of the Frobenius norm, we see that

distP(d), BW (A,B) = min
U∈U(d)

∣∣∣A 1
2 −B

1
2 U
∣∣∣ ≤

∣∣∣A 1
2

∣∣∣ min
U∈U(d)

∣∣∣I−A−
1
2 B

1
2 U
∣∣∣

=
∣∣∣A 1

2

∣∣∣ min
U∈U(d)

{
Tr
(
I−A−

1
2 B

1
2 U
) (

I−U?B
1
2 A−

1
2

)} 1
2

=
∣∣∣A 1

2

∣∣∣
{

Tr I+ Tr
[
A−

1
2 BA−

1
2

]
− max

U∈U(d)
Tr [U?X+X?U]

} 1
2

, (A12)

where X =def B 1
2 A− 1

2 . Following the argument given in Bhatia et al. [24], one can show that the
maximum value of the term Tr [U?X+X?U] is attained for the unitary matrix U that corresponds to
the unitary matrix V in the polar decomposition of X, X = VP. The matrix V in the polar decomposition

of X can be found explicitly as V = X (X?X)−
1
2 , which yields

V = B
1
2 A−

1
2

(
A−

1
2 BA−

1
2

)− 1
2 . (A13)

If we set U =def V in the last term on the right-hand side of Equation (A12), then we get

max
U∈U(d)

Tr [U?X+X?U] = 2 Tr
[(

A−
1
2 BA−

1
2

) 1
2
]

, (A14)

which implies Equation (A10) since, according to the definition of the Bures–Wasserstein metric
(see Equation (A1)), we have

distP(d), BW

(
I,A−

1
2 BA−

1
2

)
= Tr I+ Tr

(
A−

1
2 BA−

1
2

)
− 2 Tr

[(
A−

1
2 BA−

1
2

) 1
2
]

. (A15)

Lemma A3 (Pointwise inequality for Bures–Wasserstein metric II). Let A,B ∈ P(d), and let A and B be
invertible matrices. Then,

[
distP(d), BW

(
I,A−

1
2 BA−

1
2

)]2
≤ Tr

(
A−

1
2 BA−

1
2

)
− d− ln det

(
A−

1
2 BA−

1
2

)
. (A16)

Moreover, if |·| denotes the Frobenius norm, then

distP(d), BW

(
I,A−

1
2 BA−

1
2

)
=

∣∣∣∣I−
(
A−

1
2 BA−

1
2

) 1
2
∣∣∣∣ . (A17)

Proof. The proof follows from the spectral decomposition. Matrix A− 1
2 BA− 1

2 is a symmetric positive
definite matrix, hence it is unitarily similar to a diagonal matrix with the eigenvalues of A− 1

2 BA− 1
2
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at the diagonal. Consequently, if {λi}d
i=1 are eigenvalues of A− 1

2 BA− 1
2 , then the right-hand side

of Equation (A16) reads

Tr
(
A−

1
2 BA−

1
2

)
− d− ln det

(
A−

1
2 BA−

1
2

)
=

d

∑
i=1

λi − d−
d

∑
i=1

ln λi, (A18)

while on the left-hand side of Equation (A16) we use the definition of the metric (see Equation (A1)),
and we get

[
distP(d), BW

(
I,A− 1

2 BA− 1
2

)]2
= Tr I+ TrA− 1

2 BA− 1
2 − 2 Tr

[(
A− 1

2 BA− 1
2

) 1
2
]
= d + ∑d

i=1 λi − 2 ∑d
i=1
√

λi. (A19)

Instead of Equation (A16), we therefore need to prove the following inequality for the eigenvalues

d +
d

∑
i=1

λi − 2
d

∑
i=1

√
λi ≤

d

∑
i=1

λi − d−
d

∑
i=1

ln λi, (A20)

which reduces to

2

(
d−

d

∑
i=1

√
λi

)
+

d

∑
i=1

ln λi ≤ 0. (A21)

However, if λi > 0, which is our case since we are dealing with positive definite matrices, then it is
straightforward to check that

2
(

1−
√

λi

)
+ ln λi ≤ 0. (A22)

Indeed, the function on the left-hand side of Equation (A22) is a function that vanishes for λi = 1,
while its derivative reads − 1√

λi
+ 1

λi
, which implies that the function is increasing for 0 < λi < 1,

and it is decreasing for λi > 1. The point λi = 1 is therefore the point where 2(1−√λi) + ln λi reaches
its global maximum, and Equation (A22) holds. Equation (A21) and consequently also Equation (A20)
then follows via summation of Equation (A22) over the individual eigenvalues. The equality in
Equation (A17) is a straightforward consequence of the definition of the Frobenius norm,

∣∣∣∣I−
(
A−

1
2 BA−

1
2

) 1
2
∣∣∣∣
2

= Tr
[
I− 2

(
A−

1
2 BA−

1
2

) 1
2
+A−

1
2 BA−

1
2

]
, (A23)

and the definition of the Bures–Wasserstein metric (see Equation (A15)).

Lemma A4 (Inequality for the Frobenius norm). Let A,B ∈ P(d), let A and B be invertible matrices,
and let |·| denote the Frobenius norm. Then,

|A−B| ≥
∣∣∣A− 1

2

∣∣∣
−2
∣∣∣∣I−

(
A−

1
2 BA−

1
2

) 1
2
∣∣∣∣ . (A24)

Proof. We observe that
∣∣∣A− 1

2

∣∣∣ |A−B|
∣∣∣A− 1

2

∣∣∣ ≥
∣∣∣I−A− 1

2 BA− 1
2

∣∣∣, where we have used the
submultiplicativity of the Frobenius norm, |XY| ≤ |X| |Y|. Next, we use the spectral decomposition of
the symmetric positive definite matrix A− 1

2 BA− 1
2 , and we find that

∣∣∣I−A− 1
2 BA− 1

2

∣∣∣
2
= ∑d

i=1 (1− λi)
2 = ∑d

i=1

(
1− λ

1
2
i

)2 (
1 + λ

1
2
i

)2
≥ ∑d

i=1

(
1− λ

1
2
i

)2
=

∣∣∣∣I−
(
A− 1

2 BA− 1
2

) 1
2
∣∣∣∣
2

, (A25)

where {λi}d
i=1 denote the positive eigenvalues of A− 1

2 BA− 1
2 .
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Appendix B. Formula for the Time Derivative

Let us now derive Equation (38) for the time derivative of the proposed Lyapunov type functional.
Straightforward differentiation of Equation (32) under the integral sign yields

dVneq
dt

(
W̃
∥∥∥ Ŵ

)
=
∫

Ω ṽ • ∂ṽ
∂t dv−

∫
Ω

Ξ
2 Tr

[(
B̂κp(t) + B̃κp(t)

)−1 ∂B̃κp(t)
∂t

]
dv +

∫
Ω

Ξ
2 Tr

(
B̂κp(t)

−1 ∂B̃κp(t)
∂t

)
dv. (A26)

In the following, we treat the individual terms of Equation (A26) separately. To proceed further,
we need to formulate the evolution equations for the perturbation W̃ , which gives us the formulae for
the partial time derivatives of ṽ and B̃κp(t) .

Appendix B.1. Evolution Equations for Perturbation

The perturbed field W = Ŵ + W̃ must satisfy the governing equations in Equation (9), which
means that

div (v̂ + ṽ) = 0, (A27a)

∂

∂t
(v̂ + ṽ) + [(v̂ + ṽ) • ∇] (v̂ + ṽ) = divT(Ŵ + W̃), (A27b)

and

∂

∂t

(
B̂κp(t) + B̃κp(t)

)
+[(v̂ + ṽ) • ∇]

(
B̂κp(t) + B̃κp(t)

)
−
(
L̂+ L̃

) (
B̂κp(t) + B̃κp(t)

)
−
(
B̂κp(t) + B̃κp(t)

) (
L̂+ L̃

)>

= − 1
Wi

[
α
(
B̂κp(t) + B̃κp(t)

)2
+ (1− 2α)

(
B̂κp(t) + B̃κp(t)

)
− (1− α)I

]
, (A27c)

where
T(Ŵ + W̃) =

1
Re

(m̂ + m̃) I+ 2
Re

(
D̂+ D̃

)
+ Ξ

(
B̂κp(t) + B̃κp(t)

)
δ
, (A27d)

and where we have used the notation L̂ = ∇v̂, L̃ = ∇ṽ and similarly for the symmetric part of the
velocity gradient D̂ and D̃. Now, we are in position to exploit the fact that the non-equilibrium steady
state Ŵ solves Equation (16). Using Equation (16) in Equation (A27) yields

div ṽ = 0, (A28a)

∂ṽ
∂t

= divT(W̃)− (ṽ • ∇) v̂− [(v̂ + ṽ) • ∇] ṽ, (A28b)

where
T(W̃) =

1
Re

m̃I+ 2
Re

D̃+ Ξ
(
B̃κp(t)

)
δ
, (A28c)

and

∂B̃κp(t)

∂t
= − [(v̂ + ṽ) • ∇]

(
B̂κp(t) + B̃κp(t)

)
+
(
L̂+ L̃

) (
B̂κp(t) + B̃κp(t)

)
+
(
B̂κp(t) + B̃κp(t)

) (
L̂+ L̃

)>

− 1
Wi

[
α
(
B̂κp(t) + B̃κp(t)

)2
+ (1− 2α)

(
B̂κp(t) + B̃κp(t)

)
− (1− α)I

]
, (A28d)
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which can be in virtue of Equation (16c) further simplified to

∂B̃κp(t)

∂t
= − (ṽ • ∇) B̃κp(t) − (v̂ • ∇) B̃κp(t) − (ṽ • ∇) B̂κp(t) + L̂B̃κp(t) + L̃B̂κp(t) + L̃B̃κp(t) + B̃κp(t) L̂

>

+ B̂κp(t) L̃
> + B̃κp(t) L̃

> − 1
Wi

[
αB̃κp(t)

2
+ α

(
B̂κp(t) B̃κp(t) + B̃κp(t) B̂κp(t)

)
+ (1− 2α)B̃κp(t)

]
. (A29)

In the subsequent analysis, it is however more convenient to work with Equation (A28d) instead
of Equation (A29). Equation (A29) is exploited only in Section 5. The system in Equation (A28) of
evolution equations for the perturbation W̃ must be solved subject to the boundary condition in
Equation (13) and periodic boundary condition on Γ1.

Having identified the formulae for the time derivatives of ṽ and B̃κp(t) , we can go back
to Equation (A26), and we can start to evaluate the individual terms on the right-hand side of
Equation (A26) for the time derivative of the Lyapunov type functional.

Appendix B.2. First Term of Equation (A26)

Using the evolution equation for the velocity perturbation in Equation (A28b), we see that

∫

Ω
ṽ • ∂ṽ

∂t
dv =

∫

Ω
ṽ • divT(W̃)dv−

∫

Ω
ṽ • [(ṽ • ∇) v̂] dv−

∫

Ω
ṽ • [{(v̂ + ṽ) • ∇} ṽ] dv, (A30)

The first term of the last equation can be manipulated as follows
∫

Ω
ṽ • divT(W̃)dv =

∫

Ω
div

(
T(W̃)ṽ

)
dv−

∫

Ω
∇ṽ : T(W̃)dv = −

∫

Ω
∇ṽ : T(W̃)dv, (A31)

where we have used the Stokes theorem and the identity in Equation (14). The second term on the
right-hand side of Equation (A30) can be written as

∫

Ω
ṽ • [(ṽ • ∇) v̂] dv =

∫

Ω
D̂ṽ • ṽ dv. (A32)

The third term on the right-hand side of Equation (A30) vanishes in virtue of the standard manipulation

∫

Ω
ṽ • {[(v̂ + ṽ) • ∇] ṽ} dv =

1
2

∫

Ω
[(v̂ + ṽ) • ∇] |ṽ|2 dv

=
1
2

∫

Ω
div

[
(v̂ + ṽ) |ṽ|2

]
dv− 1

2

∫

Ω
|ṽ|2 div (v̂ + ṽ) dv = 0, (A33)

where we again use Equation (14) as well as the incompressibility condition in Equation (A27a).
Substituting Equations (A31), (A32) and (A33) back into Equation (A30) yields

∫
Ω ṽ • ∂ṽ

∂t dv =

−
∫

Ω∇ṽ : T(W̃)dv−
∫

Ω D̂ṽ • ṽ dv. Finally, using the explicit formula for the Cauchy stress tensor
in Equation (A28c), we obtain

∫

Ω
ṽ • ∂ṽ

∂t
dv = −

∫

Ω

2
Re

D̃ : D̃dv−
∫

Ω
Ξ B̃κp(t) : D̃dv−

∫

Ω
D̂ṽ • ṽ dv. (A34)
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Appendix B.3. Second Term of Equation (A26)

Using the evolution in Equation (A28d) for B̃κp(t) yields

∫

Ω

Ξ
2

Tr



(
B̂κp(t) + B̃κp(t)

)−1 ∂B̃κp(t)

∂t


 dv

=
∫

Ω

Ξ
2

Tr
[
−
(
B̂κp(t) + B̃κp(t)

)−1
{(v̂ + ṽ) • ∇}

(
B̂κp(t) + B̃κp(t)

)]
dv

+
∫

Ω

Ξ
2

Tr
[(

B̂κp(t) + B̃κp(t)

)−1 (
L̂+ L̃

) (
B̂κp(t) + B̃κp(t)

)]
dv

+
∫

Ω

Ξ
2

Tr
[(

B̂κp(t) + B̃κp(t)

)−1 (
B̂κp(t) + B̃κp(t)

) (
L̂+ L̃

)>]
dv

−
∫

Ω

Ξ
2Wi

Tr
[(

B̂κp(t) + B̃κp(t)

)−1
(

α
(
B̂κp(t) + B̃κp(t)

)2
+ (1− 2α)

(
B̂κp(t) + B̃κp(t)

)
− (1− α)I

)]
dv. (A35)

We can immediately see that the second and the third terms vanish due to the incompressibility
condition in Equation (A27a) and the invariance of the trace under cyclic permutations. The first term
on the right-hand side of Equation (A35) can be shown to vanish as well via the standard manipulation

∫

Ω

Ξ
2

Tr
[(

B̂κp(t) + B̃κp(t)

)−1
{(v̂ + ṽ) • ∇}

(
B̂κp(t) + B̃κp(t)

)]
dv

=
∫

Ω

Ξ
2

div
[
(ṽ + v̂) ln det

(
B̂κp(t) + B̃κp(t)

)]
dv−

∫

Ω

Ξ
2

div (ṽ + v̂) ln det
(
B̂κp(t) + B̃κp(t)

)
dv = 0. (A36)

(The last equality again follows from the Stokes theorem, the identity in Equation (14) and
the incompressibility condition in Equation (A27a). Moreover, we have also used the fact that
u • (∇ ln detA) = Tr

(
A−1 (u • ∇)A

)
.) Finally, we see that

∫

Ω

Ξ
2

Tr



(
B̂κp(t) + B̃κp(t)

)−1 ∂B̃κp(t)

∂t


 dv

= −
∫

Ω

Ξ
2Wi

Tr
[

α
(
B̂κp(t) + B̃κp(t)

)
+ (1− 2α)I− (1− α)

(
B̂κp(t) + B̃κp(t)

)−1
]

. (A37)

Appendix B.4. Third Term of Equation (A26)

Let us first make use of the equation for the steady flow in Equation (16c) to derive a useful identity.

Multiplying Equation (16c) by B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
from the left, taking the trace and integrating over

the domain Ω yields

∫

Ω
Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(v̂ • ∇) B̂κp(t)

]
dv−

∫

Ω
Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1 (
L̂B̂κp(t) + B̂κp(t) L̂

>
)]

dv

= −
∫

Ω

1
Wi

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(

αB̂κp(t)

2
+ (1− 2α)B̂κp(t) − (1− α)I

)]
dv. (A38)

Consequently, using the invariance of the trace under cyclic permutations and rearranging the terms
we obtain the identity

∫

Ω
Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(v̂ • ∇) B̂κp(t)

]
dv =

∫

Ω
Tr
[
B̂κp(t)

−1 (
L̂B̃κp(t) + B̃κp(t) L̂

>
)]

dv

−
∫

Ω

1
Wi

Tr
[

αB̃κp(t) + (1− 2α)B̂κp(t)

−1
B̃κp(t) − (1− α)B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
]

dv. (A39)
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Having the identity, let us now go back to Equation (A26), and let us manipulate the third term
on the right-hand side of Equation (A26). Employing the evolution equation in Equation (A28d) for
B̃κp(t) yields

∫

Ω

Ξ
2

Tr


B̂κp(t)

−1 ∂B̃κp(t)

∂t


 dv =

∫

Ω

Ξ
2

Tr
[
−B̂κp(t)

−1
{(v̂ + ṽ) • ∇}

(
B̂κp(t) + B̃κp(t)

)]
dv

+
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1 (
L̂+ L̃

) (
B̂κp(t) + B̃κp(t)

)]
dv+

∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1 (
B̂κp(t) + B̃κp(t)

) (
L̂+ L̃

)>]
dv

−
∫

Ω

Ξ
2Wi

Tr
[
B̂κp(t)

−1
{

α
(
B̂κp(t) + B̃κp(t)

)2
+ (1− 2α)

(
B̂κp(t) + B̃κp(t)

)
− (1− α)I

}]
dv. (A40)

The first term on the right-hand side of Equation (A40) reduces to

∫
Ω

Ξ
2 Tr

[
−B̂κp(t)

−1
{(v̂ + ṽ) • ∇}

(
B̂κp(t) + B̃κp(t)

)]
dv = −

∫
Ω

Ξ
2 Tr

[
B̂κp(t)

−1
{(v̂ + ṽ) • ∇} B̃κp(t)

]
dv, (A41)

where we use a similar manipulation as in Equation (A36). Moreover, the expression can be further
transformed as follows

∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
{(v̂ + ṽ) • ∇} B̃κp(t)

]
dv

=
∫

Ω

Ξ
2
{(v̂ + ṽ) • ∇}Tr

(
B̂κp(t)

−1
B̃κp(t)

)
dv−

∫

Ω

Ξ
2

Tr
[
B̃κp(t) {(v̂ + ṽ) • ∇} B̂κp(t)

−1
]

dv

=
∫

Ω

Ξ
2

div
[
(v̂ + ṽ)Tr

(
B̂κp(t)

−1
B̃κp(t)

)]
dv−

∫

Ω

Ξ
2

div (v̂ + ṽ)Tr
(
B̂κp(t)

−1
B̃κp(t)

)
dv

−
∫

Ω

Ξ
2

Tr
[
B̃κp(t) {(v̂ + ṽ) • ∇} B̂κp(t)

−1
]

dv = −
∫

Ω

Ξ
2

Tr
[
B̃κp(t) {(v̂ + ṽ) • ∇} B̂κp(t)

−1
]

dv

=
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
{(v̂ + ṽ) • ∇} B̂κp(t)

]
dv, (A42)

where we use the Stokes theorem, the identity in Equation (14), the incompressibility condition in
Equation (A27a), and the identity Tr

[
A (u • ∇)B−1] = −Tr

[
AB−1 {(u • ∇)B}B−1] that follows

from the fact that ∇
(
B−1) = −B−1 (∇B)B−1. Note that a part of the expression on the right-hand

side of Equation (A42) is the same as the left-hand side of Equation (A39).
Thus far, we have found that

∫

Ω

Ξ
2

Tr


B̂κp(t)

−1 ∂B̃κp(t)

∂t


 dv = −

∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
{(v̂ + ṽ) • ∇} B̂κp(t)

]
dv

+
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1 (
L̂+ L̃

) (
B̂κp(t) + B̃κp(t)

)]
dv+

∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1 (
B̂κp(t) + B̃κp(t)

) (
L̂+ L̃

)>]
dv

−
∫

Ω

Ξ
2Wi

Tr
[
B̂κp(t)

−1
{

α
(
B̂κp(t) + B̃κp(t)

)2
+ (1− 2α)

(
B̂κp(t) + B̃κp(t)

)
− (1− α)I

}]
dv, (A43)

which—upon exploiting the identity in Equation (A39) in the first term—reduces to
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∫

Ω

Ξ
2

Tr


B̂κp(t)

−1 ∂B̃κp(t)

∂t


 dv

= −
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(ṽ • ∇) B̂κp(t)

]
dv +

∫

Ω

Ξ
2
B̂κp(t)

−1
:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv

−
∫

Ω

Ξ
2Wi

Tr
[

α

(
B̂κp(t) + B̃κp(t) + B̂κp(t)

−1
B̃κp(t)

2
)
+ (1− α)

(
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1 − B̂κp(t)

−1
)
+ (1− 2α)I

]
dv, (A44)

where we again use the incompressibility condition.

Appendix B.5. Explicit Formula for the Time Derivative of Lyapunov Type Functional

Using Equations (A34), (A37) and (A44) in Equation (A26), we obtain

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
= −

∫

Ω

2
Re

D̃ : D̃dv−
∫

Ω
Ξ B̃κp(t) : D̃dv−

∫

Ω
D̂ṽ • ṽ dv

−
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(ṽ • ∇) B̂κp(t)

]
dv +

∫

Ω

Ξ
2
B̂κp(t)

−1
:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv

−
∫

Ω
(1− α)

Ξ
2Wi

Tr
[(

B̂κp(t) + B̃κp(t)

)−1
− B̂κp(t)

−1
+ B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
]

dv

−
∫

Ω
α

Ξ
2Wi

Tr
[
B̂κp(t)

−1
B̃κp(t)

2
]

dv, (A45)

and using the resolvent identity A−1
1 −A−1

2 = A−1
1 (A2 −A1)A−1

2 we can rearrange the next to the last
term in Equation (A45), and we see that the time derivative of the proposed Lyapunov type functional
is indeed Equation (38).

Appendix C. Estimate on the Time Derivative

Proof of Lemma 3. For the sake of completeness, let us recall that the Korn equality reads

2
∫

Ω
Du : Du dv =

∫

Ω
∇u : ∇u dv +

∫

Ω
(div u)2 dv, (A46)

where u is a (smooth) vector field that vanishes on Γ2 and satisfies the periodic boundary condition on
Γ1, and Du denotes the symmetric part of the corresponding gradient ∇u. The Friedrichs–Poincaré
inequality reads ‖u‖2

L2(Ω) ≤ CP‖∇u‖2
L2(Ω), where CP is the domain dependent constant, u is a (smooth)

vector field that vanishes on Γ2 and satisfies the periodic boundary condition on Γ1, and ‖w‖2
L2(Ω) =def∫

Ω |w|
2 dv denotes the standard Lebesgue space norm, and |w| denotes the standard Euclidean norm.

Now, we are in position to find an estimate on the right-hand side of Equation (38). In estimating
the time derivative in Equation (38), we can completely ignore the next-to-the last nonpositive term on
the right-hand side of Equation (38). We can thus write

dVneq

dt

(
W̃
∥∥∥ Ŵ

)
≤ −

∫

Ω

2
Re

D̃ : D̃dv−
∫

Ω
Ξ B̃κp(t) : D̃dv−

∫

Ω
D̂ṽ • ṽ dv

−
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(ṽ • ∇) B̂κp(t)

]
dv +

∫

Ω

Ξ
2
B̂κp(t)

−1
:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv

−
∫

Ω
α

Ξ
2Wi

Tr
(
B̂κp(t)

−1
B̃κp(t)

2
)

dv. (A47)

This means that we lose a term that has the negative sign, and that the estimate on the stability
range will be more demanding than it would have to be. We also need to restrict ourselves to α 6= 0.
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Let us now bound the individual terms involved in Equation (A47). The first term can be in virtue of
Korn equality rewritten as

−
∫

Ω

2
Re

D̃ : D̃dv = − 1
Re
‖∇ṽ‖2

L2(Ω). (A48)

The third term on the right-hand side of Equation (A47) can be estimated using the spectral estimate
λmin(D̂) |ṽ|2 ≤ D̂ṽ • ṽ ≤ λmax(D̂) |ṽ|2 for the symmetric matrix D̂, where λmin(D̂) denotes the
smallest eigenvalue of D̂ and λmax(D̂) denotes the largest eigenvalue of D̂ at the given spatial point x.
The spectral estimate yields

−
∫

Ω
D̂ṽ • ṽ dv ≤ −

∫

Ω
λmin(D̂) |ṽ|2 dv ≤ sup

x∈Ω

∣∣∣λmin(D̂)
∣∣∣ ‖ṽ‖2

L2(Ω). (A49)

Further, using the Poincaré inequality, we get

−
∫

Ω
D̂ṽ • ṽ dv ≤ sup

x∈Ω

∣∣∣λmin(D̂)
∣∣∣ ‖ṽ‖2

L2(Ω) ≤ CP sup
x∈Ω

∣∣∣λmin(D̂)
∣∣∣ ‖∇ṽ‖2

L2(Ω). (A50)

The last term in Equation (A47) can be estimated as

−
∫

Ω
α

Ξ
2Wi

Tr
(
B̂κp(t)

−1
B̃κp(t)

2
)

dv ≤ −α
Ξ

2Wi
inf
x∈Ω

λmin(B̂κp(t)

−1
)
∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
, (A51)

where λmin(B̂κp(t)) denotes the smallest eigenvalue of the given symmetric positive definite matrix B̂κp(t)

at the given spatial point x. (Note that λmin(B̂κp(t)) is in virtue of the positivity of B̂κp(t) a positive
number.)

Estimates on the rest of the terms are obtained easily by the application of Cauchy–Schwarz and
Young inequalities and the submultiplicative property of the matrix norm. First, we group the second
and the fifth term in Equation (A47), and we get

−
∫

Ω
Ξ B̃κp(t) : D̃dv +

∫

Ω

Ξ
2
B̂κp(t)

−1
:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv

= −
∫

Ω

Ξ
2
I :
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv +
∫

Ω

Ξ
2
B̂κp(t)

−1
:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv

=
∫

Ω

Ξ
2

(
B̂κp(t)

−1 − I
)

:
(
L̃B̃κp(t) + B̃κp(t) L̃

>
)

dv ≤ Ξ
2

sup
x∈Ω

∣∣∣∣B̂κp(t)

−1 − I
∣∣∣∣
(∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
+ ‖∇ṽ‖2

L2(Ω)

)
. (A52a)

The fourth term in Equation (A47) is in virtue of the Poincaré inequality estimated as

−
∫

Ω

Ξ
2

Tr
[
B̂κp(t)

−1
B̃κp(t) B̂κp(t)

−1
(ṽ • ∇) B̂κp(t)

]
dv

≤ Ξ
4

sup
x∈Ω

∣∣∣∣B̂κp(t)

−1
∣∣∣∣
2

sup
x∈Ω

∣∣∣∇B̂κp(t)

∣∣∣
(∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
+ ‖ṽ‖2

L2(Ω)

)

≤ Ξ
4

sup
x∈Ω

∣∣∣∣B̂κp(t)

−1
∣∣∣∣
2

sup
x∈Ω

∣∣∣∇B̂κp(t)

∣∣∣
(∥∥∥B̃κp(t)

∥∥∥
2

L2(Ω)
+ CP‖∇ṽ‖2

L2(Ω)

)
, (A52b)

where we introduce the notation
∣∣∣∇B̂κp(t)

∣∣∣
2

=def ∑3
k,l,m=1

(
∂B̂κp(t)

kl

∂xm

)2

for the norm of the

corresponding third order tensor. Altogether, the estimates in Equations (A48), (A51) and (A52)
give us Equation (40).
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77. Bulíček, M.; Málek, J.; Průša, V.; Süli, E. A PDE-analysis for a class of thermodynamically compatible
viscoelastic rate type fluids with stress diffusion. In Mathematical Analysis in Fluid Mechanics: Selected
Recent Results; Danchin, R., Farwig, R., Neustupa, J., Penel, P., Eds.; Contemporary Mathematics; American
Mathematical Society: Providence, RI, USA, 2018; Volume 710, pp. 25–53. doi:10.1090/conm/710/14362.

78. Guillopé, C.; Saut, J.C. Global existence and one-dimensional nonlinear stability of shearing motions
of viscoelastic fluids of Oldroyd type. RAIRO Modélisation Math. Anal. Numér. 1990, 24, 369–401.
doi:10.1051/m2an/1990240303691.

79. Nohel, J.; Pego, R. Nonlinear stability and asymptotic behavior of shearing motions of a non-newtonian
fluid. SIAM J. Math. Anal. 1993, 24, 911–942. doi:10.1137/0524056.

80. Jourdain, B.; Le Bris, C.; Lelièvre, T.; Otto, F. Long-time asymptotics of a multiscale model for polymeric
fluid flows. Arch. Ration. Mech. Anal. 2006, 181, 97–148. doi:10.1007/s00205-005-0411-4.

81. Renardy, M. Some global stability results for shear flows of viscoelastic fluids. J. Math. Fluid Mech. 2009,
11, 100–109. doi:10.1007/s00021-007-0253-y.

82. Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2015.
83. Graham, M.D. Polymer turbulence with Reynolds and Riemann. J. Fluid Mech. 2018, 848, 1–4.

doi:10.1017/jfm.2018.353.
84. Hiai, F.; Petz, D. Riemannian metrics on positive definite matrices related to means. Linear Algebra Appl.

2009, 430, 3105–3130. doi:10.1016/j.laa.2009.01.025.
85. Hiai, F.; Petz, D. Riemannian metrics on positive definite matrices related to means. II. Linear Algebra Appl.

2012, 436, 2117–2136. doi:10.1016/j.laa.2011.10.029.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/0377-0257(77)80021-9
https://doi.org/10.1016/0377-0257(80)85007-5
https://doi.org/10.1142/S0218202511005581
https://doi.org/10.1093/imanum/drx061
https://doi.org/10.1090/conm/710/14362
https://doi.org/10.1051/m2an/1990240303691
https://doi.org/10.1137/0524056
https://doi.org/10.1007/s00205-005-0411-4
https://doi.org/10.1007/s00021-007-0253-y
https://doi.org/10.1017/jfm.2018.353
https://doi.org/10.1016/j.laa.2009.01.025
https://doi.org/10.1016/j.laa.2011.10.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Giesekus Model
	Governing Equations
	Thermodynamic Basis
	Scaling
	Boundary Conditions

	Base Flow—Non-Equilibrium Steady State
	Notation for the Stability Analysis
	Governing Equations in a Steady State
	Concept of Stability

	Lyapunov Functional
	Concept of Lyapunov Functional
	Construction of Lyapunov Type Functional for Stability Analysis of a Spatially Inhomogeneous Steady State

	Main Result
	Taylor–Couette Flow
	Base Flow—Non-Equilibrium Steady State
	Explicit Criterion for the Stability of Spatially Inhomogeneous Non-Equilibrium Steady State
	Numerical Experiments—Evolution of Various Initial Perturbations
	Scenario A—Localised Perturbation of the Left Cauchy–Green Field
	Scenario B—Global Perturbation of the Velocity Field


	Conclusions
	Distance between Positive Definite Matrices and Its Generalisation to Spatially Distributed Tensor Fields
	Formula for the Time Derivative
	Evolution Equations for Perturbation
	First Term of Equation (A26)
	Second Term of Equation (A26)
	Third Term of Equation (A26)
	Explicit Formula for the Time Derivative of Lyapunov Type Functional

	Estimate on the Time Derivative
	References

