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For a digraph �, the feedback vertex number �(�), (resp. the feedback arc number ��(�)) is the minimum number of vertices, (resp. 
arcs) whose removal leaves the resultant digraph free of directed cycles. In this note, we determine �(�) and ��(�) for the Cartesian 
product of directed cycles � = �→��1�

�→��2� . . .
�→���. Actually, it is shown that ��(�) = �1�2 . . . ��∑

�
�=11/��, and if �� ≥ . . . ≥ �1 ≥ 3

then �(�) = �2 . . . ��.

1. Introduction

Let � = (�, �) be an undirected graph. A set � ⊆ �(�) is called 
a feedback vertex set of � if � − � contains no cycle. �e feed-
back vertex number of �, denoted by �(�), is the cardinality 
of a minimum feedback vertex set of �. In general, it is 
NP-hard to determine the feedback vertex number of a graph 
� [1]. However, it becomes polynomial for speci�c families of 
graphs such as interval graphs [2], permutation graphs [3], 
graphs with maximum degree 3 [4], and �-trees. �e readers 
are referred to [5, 6] for a review of some earlier results and 
open problems, and [7–9] for some recent results on the feed-
back vertex number of graphs. Some bounds or exact values 
are established for various families of graph, for instance, out-
erplanar graphs [10], grids and butter�ies [11], cubic graphs 
[12, 13], bipartite graphs [14], generalized Petersen graphs 
[15], regular graphs [16, 17]. Bau et al. [18] investigated the 
feedback number of grid graphs.

Apart from its graph-theoretical importance, the feed-
back vertex problem has many applications, such as operat-
ing system [19, 20], arti�cial intelligence [21], synchronous 
distributed systems [22, 23], optical networks [24]. �e feed-
back vertex set and the feedback vertex number are also 
known as decycling set and the decycling number, respec-
tively, see [25].

In 2005, Pike and Zou [26] determined the feedback vertex 
number of the Cartesian products of two cycles as follows:

Our main concern in this note is the directed version of the 
feedback vertex number. A directed graph � is said to be acy-
clic if it does not contain any directed cycle. A feedback vertex 
set in a digraph � is a set � of vertices such that � − � is acyclic, 
and the feedback vertex number of � is the minimum size of 
such a set is denoted by �(�). We denote by �(�) the number 
of vertex-disjoint cycles of �. Clearly, �(�) ≥ �(�) for any 
digraph �. A feedback arc set of a digraph � is a set � of arcs 
such that � − � is acyclic. �e feedback arc number of �, 
denoted by ��(�), is the cardinality of a minimum feedback 
arc set of �. We denote by ��(�) the number of arc-disjoint 
cycles of ��. Clearly, ��(�) ≥ ��(�) for any digraph �.

Not much works were known for the feedback vertex num-
ber or the feedback arc number of directed graphs. Lien et al. 
[27] gave an upper bound for the feedback vertex number of 
generalized Kautz digraphs. Figueroa et al. [28] investigated 
the relation for the relationship between the minimum feed-
back arc set and the acyclic disconnection of a digraph. Even 
et al. [29] gave a �(log�loglog�)-approximation algorithm for 
the feedback vertex problem for a digraph of order �. For pla-
nar digraphs, the approximation ratio is not greater than 9/4 

(1)�(�����) =
{{{{{
{{{{{
{

⌈3�2 ⌉, if � = 4
⌈3�2 ⌉, if � = 4
⌈�� + 23 ⌉, otherwise.
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[30], and for tournament, it is 2.5 [31]. We refer to [32–34] for 
more results on feedback vertex set problems for tournaments 
and bipartite tournaments.

�e Cartesian product �1��2� . . . �� of directed digraph 
�1, �2, . . . , �� is the digraph with the vertex set 
�(�1) × �(�2) × . . . �(��), in which there is an arc directed 
from (�1, �2, . . . , ��) to (�1, �2, . . . , ��) if and only if there 
exists an integer � ∈ {1, . . . , �} such that ���� ∈ �(��) and 
�� = �� for any other � ̸= �. For any integer � ≥ 3, �→�� denotes 
the directed cycle of order �. Various kinds of properties of �→��1�
�→��2� . . .
�→��� are investigated. Trotter and Erdös [35] give 

a necessary and su¦cient condition for 
�→��1�
�→��2 being ham-

iltonian. Keating [36] gave a necessary and su¦cient condition 
for 
�→��1�
�→��2 being decomposed into directed Hamilton cycles. 

Recently, the previous result is extended by Bogdanowicz [37] 
with the decomposition into directed cycles of equal length. 
�e domination number [38–41], respectively, the total dom-
ination number [42] of the Cartesian product of two directed 
cycles are investigated.

We shall determine the exact values of �(�) and ��(�) for 
the Cartesian product of directed cycles � = �→��1�

�→��2� . . .
�→���.

2. Main Results

In this section, we denote 
�→��1�
�→��2� . . .
�→��� by �(�1, �2, . . . , ��) 

or, simply by �. For convenience, label the vertices of � as 
(�1, �2, . . . , ��), where �� ∈ {0, 1, . . . , �� − 1} for each 
� ∈ {1, 2, . . . , �}. For an integer � ∈ {0, 1, . . . �� − 1}, let �� be 
the subgraph of � induced by the set of vertices

It is clear that �� ≅
�→��1�
�→��2� . . .
��→���−1 for each �.

Theorem 1. For any � ≥ 2 integers �1, . . . , �� with �� ≥ 3 for 
each � ∈ {1, . . . , �},

Proof. First, we show that ��(�) ≥ �1�2 . . . ��∑
�
�=11/�� by 

showing that.

We proceed with induction on �. Let � = 2. By our notation, 
�� ≅
�→��1 for each � ∈ {0, 1, . . . , �2 − 1}. Note that �� and �� are 

vertex-disjoint (and thus arc-disjoint). Moreover, since 
�\∪�2−1�=0 �(��) ≅ �2

�→��1, �
�(�) ≥ �1 + �2. Now assume that � ≥ 3.  

Since �� ≅
�→��1�
�→��2� . . .
��→���−1 for each � ∈ {0, 1, . . . �� − 1}, by 

the induction hypothesis,

(2)
{(�1, �2, . . . , ��−1, �) : 0 ≤ �� ≤ �� − 1 for each � ∈ {1, . . . , k − 1}}.

(3)��(�→��1�
�→��2� . . .
�→���) = �1�2 . . . ��

�
∑
�=1

1
��
.

(4)��(�) ≥ �1�2 . . . ��
�
∑
�=1

1
��
.

(5)��(�) ≥ �1�2 . . . ��−1
�
∑
�=1

1
��
.

for each � ∈ {0, 1, . . . �� − 1}. Aªer removing these 
�1�2 . . . ��∑

�−1
�=1 1/�� cycles from �, it results in exactly 

�1�2 . . . ��−1 arc-disjoint directed cycles. �is gives

Next we show that ��(�) ≤ �1�2 . . . ��∑
�
�=11/�� by �nding a 

 feedback arc set of � with cardinality �1�2 . . . ��∑
�
�=11/��.  

Such a set feedback arc set �� for �(�1, �2, . . . , ��) is con-
structed recursively as follows. For convenience, let 
�1 := {(�1 − 1, 0)}. Note that �1 is a feedback arc set of 

�→��1. 
For    � ≥ 2, �� = {(�1, . . . , ��−1, �)(�1, . . . , ��−1, �) : (�1, . . . , ��−1)
(�1, . . . , ��−1) ∈ ��−1, 0 ≤ � ≤ �� − 1} ∪ {(�1, . . . , ��−1, �� − 1)
(�1, . . . , ��−1, 0) : (�1, . . . , ��−1) ∈ �(��−1)}. By the above con-
struction and the induction hypothesis,

Moreover, since �\�� ≅
→
��1 �

→
��2 � ⋅ ⋅ ⋅

→
��� is acyclic, we con-

clude that �� is a feedback arc set of �. �is proves 
��(�) ≤ �1�2 . . . ��∑

�
�=11/��. ☐

For an illustration, for the case when � = 2, we have 
� = �→��1�

�→��2, and �2 = {(�1 − 1, 0)(0, 0), (�1 − 1, 1)(0, 1), . . . ,
(�1 − 1, �2 − 1)(�2 − 1, 0)(0, �2 − 1)(0, 0), (1, �2 − 1)(1, 0), . . . ,
(�1 − 1, �2 − 1)(�1 − 1, 0)}, that is, the set of arcs colored in 
red as shown in Figure 1.

Theorem 2. For any � ≥ 2 integers �1, �2, . . . , �� with 
�� ≥ . . . ≥ �1 ≥ 3,

Proof. Let � = �→��1�
�→��2� . . .
�→���.

First, we show that �(�) ≥ �2 . . . �� by showing that

(6)

��(�) ≥ �1�2 . . . ��−1��
�−1
∑
�=1

1
��
+ �1�2 . . . ��−1 = �1�2 . . . ��

�
∑
�=1

1
��
.

(7)

������
���� =
������−1
������ + �1�2 . . . ��−1

= �1�2 . . . ��−1��
�−1
∑
�=1

1
��
+ �1�2 . . . ��−1

= �1�2 . . . ��
�
∑
�=1

1
��
.

(8)�(�→��1 →
�→��2� . . .
�→���) = �2�3 . . . ��.

0 1 2 3 4 5 –2n1 –1n1

2

1

3

–2n2

–1n2

Figure 1: �e feedback arc set �2 of � = �→��1�
�→��2.
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We proceed with induction on �. For the case when � = 2,  
�� ≅
�→��1 for each � ∈ {0, 1, . . . , �2 − 1}. It follows that � contains 

�2 vertex-disjoint copies of 
�→��1, and thus �(�) ≥ �2. Now  

assume that � ≥ 3. For every integer � ∈ {0, 1, . . . �� − 1}, 
�� ≅
�→��1�
�→��2� . . .
��→���−1, and hence, by the induction 

hypothesis,

Moreover, since �� and �� are vertex-disjoint for any 
0 ≤ � < � ≤ �� − 1, we have

As an example for the case when �1 = 3 and �2 = 4, we have 
� = �→�3�

�→�4 and �� = {(1, 0)(0, 1)(2, 2)(1, 3)}, see Figure 2 for 
an illustration. Clearly, �� is a feedback vertex set of � with 
|�2| = 4.

For any � ≥ 2, and � ∈ {0, 1, . . . , �� − 1}, let

Since for any given value of (�2, . . . , ��−1, ��) with 
0 ≤ �� ≤ �� − 1, there exists unique value of �1 with 
0 ≤ �1 ≤ �1 − 1 satisfying �1 + �2 + . . . + �� ≡ 1mod�1, imply-
ing that |��| = ����−1 . . . �2.

To show that �� is a feedback vertex set of �, we consider 
any directed cycle 

�→� = v1v2 . . . v�v1 of �, where 
v� = (��1, ��2, . . . , ���) for each � ∈ {1, . . . , �}. Since for each �, 
v�v�+1 ∈ �(�), we have

Moreover, since � ≥ �1 = min{�1, �2, . . . , ��}, there exists an 
integer � ∈ {1, . . . , �} such that

implying that v� = (�
�
1, �
�
2, . . . , �

�
�) ∈ ��, and thus �� is a feed-

back vertex set of �. �is proves

3. Conclusion

In this note, we determined the two important parameters 
�(�) and ��(�) for the Cartesian product of directed cycles 

(9)�(�) ≥ �2 . . . ��.

(10)�(��) ≥ �2 . . . ��−1.

(11)�(�) ≥ �2 . . . ��−1��.

(12)
�� := {(�1, �2, . . . , ��−1, ��) : �1 + �2 + . . . + ��
≡ 1mod�1, 0 ≤ �� ≤ �� − 1}.

(13)��+11 + ��+12 + . . . + ��+1� ≡ ��1 + ��2 + . . . + ��� + 1mod�1.

(14)��1 + �
�
2 + . . . + �

�
� ≡ 1mod�1,

(15)�(�) ≤ �2�3 . . . ��.

� = �→��1�
�→��2� . . .
�→���. Actually, it is shown that 

��(�) = �1�2 . . . ��∑
�
�=11/�� and if �� ≥ . . . ≥ �1 ≥ 3, then 

�(�) = �2 . . . �� ⋅ ⋅ ⋅ .
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