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Abstract: Spherical fuzzy set (SFS) is one of the most important and extensive concept to
accommodate more uncertainties than existing fuzzy set structures. In this article, we will describe
a novel enhanced TOPSIS-based procedure for tackling multi attribute group decision making
(MAGDM) issues under spherical fuzzy setting, in which the weights of both decision-makers (DMs)
and criteria are totally unknown. First, we study the notion of SFSs, the score and accuracy functions
of SFSs and their basic operating laws. In addition, defined the generalized distance measure for SFSs
based on spherical fuzzy entropy measure to compute the unknown weights information. Secondly,
the spherical fuzzy information-based decision-making technique for MAGDM is presented. Lastly,
an illustrative example is delivered with robot selection to reveal the efficiency of the proposed
spherical fuzzy decision support approach, along with the discussion of comparative results, to prove
that their results are feasible and credible.

Keywords: spherical fuzzy set; spherical fuzzy entropy measure; extended TOPSIS method; group
decision making problems

1. Introduction

In recent research environment, multi-attribute group decision making (MAGDM) has played
a vital role in the decision support systems [1–7]. Robot selection for the manufacturing units are
multi-functional group decision making problems, which are often to resolved by an unprogrammed
decision making techniques and involvement of the long period contract with the company. A decision
group contains various decision makers/analysis such as development, research, engineering and
economic. In fact, the interest of single decision maker may not be same. The final result in group
decision making (GDM) method may be essentially changed by the importance level of each decision
maker. The growth of multi-functional team involvement in robot selection and estimation particularly
affected on buying firm with efficiency. A major issue in decision method is, how to represent the
attribute value. The issue in decision making problem arises due to crisp numbers. Because in some
cases it is difficult to prove the attribute by using crisp set. So, the decision makers can make choices
at a special level. The fuzzy set theory has been implemented in various field such as management,
engineering, social sciences to resolve group decision making issues, which involve uncertainty
and vagueness in data. The application of fuzzy set theory has remarkable significance in decision
making problems.
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There are lot of problems arises in decision making due to have uncertainty. To resolve these
issues, Zadeh developed the idea of fuzzy set (FS) in 1965 [8]. The concept of fuzzy set is associated
with membership grade of the components based on the interval [0,1]. Numerous properties of
the Zadeh theory of fuzzy set is noticeable. In the framework of fuzzy set theory, we deal with
the problem of making decisions that distinguish the items of a certain universe into more than
one appropriate category has been examined. Atanassov’s determined that there are lot of deficiencies
in FS. He observed that the concept of negative membership grade might also occurs there, which is
vital factor while organizing the entirely recommended pattern and effects of the problems. This type
of grade is accurately introduced by intuitionistic fuzzy (IF) set as a substitute of correct values.
The components of Atanassov’s IF set [9] is presented in an ordered pair that comprises of characteristic
of positive and negative membership grades which follows the condition that sum of both stated
functions is less than or equal to one.

There are some situations, where the sum of both positive and negative membership grades are
greater than 1, unlike the cases capture in IF sets. Then, the Pythagorean fuzzy (PyF) set are proposed
by Yager [10], which are characterized by the positive and negative membership grades satisfies the
condition that square sum of the stated functions is less than or equal to one. Many researcher got
the attraction and proposed many application of PyF set in decision making. Rahman et al. [11]
introduced the geometric aggregation operators for the group decision-making problem with the
interval valued PyF set environment. Liang and Xu [12] proposed the notion of hesitant PyF sets and
apply TOPSIS method for energy project selection model. Rahman et al. [13] introduced new algorithm
for the MAGDM problem using Einstein aggregation operator under PyF information. Utilizing the
notion of the immediate probabilities, Garg [14] introduced a series of aggregation operators under
PyF information. Garg [15] developed the generalized geometric aggregation operators utilizing
Einstein norms for multi-attribute group decision-making problems. Wei and Lu [16] developed
the power aggregation operators to deal with a MAGDM problems. Xu et al. [17] launched the
induced generalized OWA operators for PyF information. Xue et al. [18] developed the LINMAP
technique to track the best investment company in railway projects using PyF information. Yager [19]
launched the weighted averaging, geometric, ordered averaging and ordered geometric aggregation
operators for PyF information. Perez-Dominguez [20] developed a multi-objective optimization based
on the ratio analysis (MOORA) with PyF set information and applied it to decision making problems.
Khan et al. [21] proposed the Dombi aggregation operators using Dombi norm for PyF information
and discussed their application in decision making. Nguyen and Garg [22], proposed the exponential
based similarity measure for PyFS. Garg [23], developed the neutrality geometric operations under
PyF information. Athira et al. [24] presented the entropy and distance measure of Pyf soft set and
discussed their application in decision making.

Ashraf and Abdullah [25] present the novel idea of spherical fuzzy (SF) set to generalized the
concept of PyF set and picture fuzzy (PF) set [26] by considering the neutral membership grade with
condition that square sum of the positive, neutral and negative membership grades are less than or
equal to one. As a generalization of all the existing structure of FSs, SF set got much more attention of
the researchers to deal with uncertainty in decision making problems. Ashraf et al. [27] proposed the
algebraic aggregation operators (AOp) using algebraic t-norm and t-conorm to deal with uncertainty
in decision making problems (DMP). In [28] Ashraf el al. proposed the series of Dombi AOp for
SF information based on the Dombi norms to aggregate the attributes information to sort the best
alternative in DMPs. Jin et al. [29] proposed the logarithmic AOp using basic logarithmic operational
laws and discussed their application in real world DMP. Ashraf et al. [30] proposed the decision
making technique using the concept of distance measure under SF sets. Ashraf et al. [31] proposed the
SF set representation of SF t-norm and t-conorm. GRA method for SF information using the concept
of linguistic SF set is proposed by Ashraf et al. [32]. Kutlu and Kahraman [33] proposed the decision
making technique of WASPAS and in [34] proposed the VIKOR technique utilizing the SF information
and also discussed their applications in DMPs. Zeng et al. [35] proposed the SF rough set model and
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discuss its application in DMP using TOPSIS method. Rafiq et al. [36] proposed the cosine similarity
measures for SF information.

Over the years, numerous decision making procedures have been introduced in the literature,
of which technique for order preference by similarity to ideal solution (TOPSIS) is one of the extensively
and efficient used famous methods. Hwang and Yoon [37] presented the TOPSIS to deal multi-attribute
DMPs. Under which the alternative is the smallest distance from the positive ideal solution (PIS) and
the furthest distance from the negative ideal solution (NIS) in DMPs is the best alternative. In [38],
Chen presented the TOPSIS using FS environment to solve the DMPs. In recent time periods, numerous
scholars got attraction and apply TOPSIS to real life DMPs under different extended structures of
FS [39–53] in the fields of decision sciences [50,54,55]. It is also to be mentioned here that the existing
TOPSIS procedures [39–50] face the drawback that in solving DMPs, either DMs weights are known [46]
or criteria weights are known [43,49] or both [39,41,49,50,54,55]. Some scholars allocated unknown
weight information about DMs [56,57] in which criteria weights are known. Instead, some researchers
handled unknown criteria weights with known weight data of DMs in MCGDM problems. Though
the authors’ concerns, there can be no such tool available in the literary works to address MCGDM
problems where the weight data of DMs and criteria are completely unknown within SF information.

Motivated by the above discussion, we plan to introduce a new expanded TOPSIS procedure
under spherical fuzzy setting, in order to benefit of the advantages of the TOPSIS method and spherical
fuzzy sets. As, the generalized form of the existing structure of fuzzy sets such as IF set, PyF sets,
and PF sets is the spherical fuzzy set, thus, SF sets to address more uncertainty compared to FS, IF set,
PyF set, and PF set. Therefore, in this paper, a novel improved TOPSIS-based method is established to
address with such circumstances of unknown weight information of both DMs and criteria weights
and to solve the MAGDM problem after compute all the weights. In order to solve the DMPs, choosing
the ideal opinion, which is better connected to each DMs matrix, is quite essential. In the presented
procedure, ideal opinion is nominated under SF average method. Generalized distance measure
is established to find the differences between two SFSs. In the presented spherical fuzzy TOPSIS
(SF-TOPSIS) for solving MAGDM problems, generalized distance measures-based entropy measure is
introduced to find out the criteria weights under SF information used in this paper.

The rest of this paper is arranged as following. Section 2 presents some knowledge related to FSs,
IFSs, PyFSs, PFSs and SFSs. Section 3 proposed the methodological development of spherical fuzzy
entropy measure. In Section 4, established the improved TOPSIS method to address the uncertainty
in MAGDM problems. Section 5 reports an illustration example of the designed MAGDM technique
for robot selection for manufacturing units and a comparison with existing decision making methods.
A conclusion of the paper is drawn in Section 7.

2. Preliminaries

In this section, we briefly remember the concepts of fuzzy sets, intuitionistic fuzzy sets,
Pythagorean fuzzy sets, picture fuzzy sets and spherical fuzzy sets. These concepts will be used
in further study.

Definition 1 ([8]). For a fixed set =. A FS ε in = is defined as

ε = {〈κ, ρε (κ)〉 |κ ∈ =} , (1)

for each κ ∈ =, the positive membership grade ρε : = → Θ specifies the degree to which the element κ belongs
to the fuzzy set ε, where Θ = [0, 1] be the unit interval.

Definition 2 ([9]). For a fixed set =. An IFS ε in = is defined as

ε = {〈κ, ρε (κ) , ñε (κ)〉 |κ ∈ =} , (2)
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for each κ ∈ =, the positive membership grade ρε : = → Θ and the negative membership grade ñε : = → Θ
specifies the degree of positive and negative membership of the element κ to the Pythagorean fuzzy set ε,
respectively, where Θ = [0, 1] be the unit interval. Furthermore, it is required that 0 ≤ ρε (κ) + ñε (κ) ≤ 1,
for each κ ∈ =.

Definition 3 ([10]). For a fixed set =. A PyFS ε in = is defined as

ε = {〈κ, ρε (κ) , ñε (κ)〉 |κ ∈ =} , (3)

for each κ ∈ =, the positive membership grade ρε : = → Θ and the negative membership grade ñε : = → Θ
specifies the degree of positive and negative membership of the element κ to the Pythagorean fuzzy set ε,
respectively, where Θ = [0, 1] be the unit interval. Furthermore, it is required that 0 ≤ ρ2

ε (κ) + ñ2
ε (κ) ≤ 1,

for each κ ∈ =.

Definition 4 ([26]). For a fixed set =. A PFS ε in = is defined as

ε = {〈κ, ρε (κ) ,kε (κ) , ñε (κ)〉 |κ ∈ =} , (4)

for each κ ∈ =, the positive membership ρε : = → Θ, neutral membership kε : = → Θ and the negative
membership ñε : = → Θ specifies the degree of positive, neutral and negative membership grades of the element
κ to the picture fuzzy set ε, respectively, where Θ = [0, 1] be the unit interval. Furthermore, it is required that
0 ≤ ρε (κ) +kε (κ) + ñε (κ) ≤ 1, for each κ ∈ =.

Definition 5 ([25]). For a fixed set =. A SFS ε in = is defined as

ε = {〈κ, ρε (κ) ,kε (κ) , ñε (κ)〉 |κ ∈ =} , (5)

for each κ ∈ =, the positive membership ρε : = → Θ, neutral membership kε : = → Θ and the negative
membership ñε : = → Θ specifies the degree of positive, neutral and negative membership grades of the element
κ to the spherical fuzzy set ε, respectively, where Θ = [0, 1] be the unit interval. Furthermore, it is required that
0 ≤ ρ2

ε (κ) +k2
ε (κ) + ñ2

ε (κ) ≤ 1, for each κ ∈ =.
Conventionally, υκ =

√
1− ρ2

ε (κ)−k2
ε (κ)− ñ2

ε (κ) is said to be degree of hesitancy of κ to ε. In what
follows, we symbolize by ŜzŜ (=) the collection of all spherical fuzzy sets in κ. For simplicity, we shall
symbolize the spherical fuzzy number (SFN) by the triplet ε = (ρε,kε, ñε) .

Remark 1. If we put kε = 0 in Equation (5). than spherical fuzzy set is reduced to Pythagorean fuzzy set.
In other words we say that each Pythagorean fuzzy set is spherical fuzzy set but conversely is not true.

Also we can say that

Remark 2. Every picture fuzzy set is the spherical fuzzy set but conversely is not true.

Hence form above remarks we can say that Pythagorean and picture fuzzy sets are the particular
case of spherical fuzzy set.

Let ε1, ε2 ∈ ŜzŜ (=) . Ashraf and Abdullah [25] defined the following notions:

(1) ε1 v ε2 if and only if ρε1 (κ) ≤ ρε2 (κ) ,kε1 (κ) ≤ kε2 (κ) and ñε1 (κ) ≥ ñε2 (κ) for each κ ∈ =.
Clearly ε1 = ε2 if ε1 v ε2 and ε2 v ε1.

(2) ε1 u ε2 = {min (ρε1 (κ) , ρε2 (κ)) , min (kε1 (κ) ,kε2 (κ)) , max (ñε1 (κ) , ñε2 (κ)) |κ ∈ =} ,
(3) ε1 t ε2 = {max (ρε1 (κ) , ρε2 (κ)) , min (kε1 (κ) ,kε2 (κ)) , min (ñε1 (κ) , ñε2 (κ)) |κ ∈ =} ,
(4) εc

1 = {ñε1 (κ) ,kε1 (κ) , ρε1 (κ) |κ ∈ =} ,

where ε1, ε2 ∈ ŜzŜ (=) and κ ∈ =.
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Ashraf and Abdullah proposed the operations for spherical fuzzy numbers. Here we describe
three cases to discuss the validation of the proposed operators for dealing the spherical fuzzy
informations.

Definition 6 ([25]). Let ε1 = {ρε1 (κ) ,kε1 (κ) , ñε1 (κ)} and ε2 = {ρε2 (κ) ,kε2 (κ) , ñε2 (κ)} ∈
ŜzN (=) with Φ > 0. Then, the operational rules are as follows:

(1) ε1 ⊗ ε2 =
{

ρε1 ρε2 ,kε1kε2 ,
√

ñ2
ε1
+ ñ2

ε2
− ñ2

ε1
ñ2

ε2

}
;

(2) ε1 ⊕ ε2 =
{√

ρ2
ε1
+ ρ2

ε2
− ρ2

ε1
ρ2

ε2
,kε1kε2 , ñε1 ñε2

}
;

(3) εΦ
1 =

{
(ρε1)

Φ , (kε1)
Φ ,
√

1−
(
1− ñ2

ε1

)Φ
}

;

(4) Φ · ε1 =

{√
1−

(
1− ρ2

ε1

)Φ, (kε1)
Φ , (ñε1)

Φ
}

.

Definition 7 ([25]). Let εg =
{

ρεg (κ) ,kεg (κ) , ñεg (κ)
}
∈ ŜzN (=) (g = 1, 2, 3, ..., ñ). Then

(a) šč(εg) =
1
3 (2 + ρεg −kεg − ñεg) ∈ [0, 1] is said to be score value of εg.

(b) ãč(εg) =
(

ρ2
εg +k2

εg + ñ2
εg

)
∈ [0, 1] is said to be accuracy value of εg.

Definition 8 ([25]). Let ε1 = {ρε1 (κ) ,kε1 (κ) , ñε1 (κ)} and ε2 = {ρε2 (κ) ,kε2 (κ) , ñε2 (κ)} ∈
ŜzN (=) . Then

(1) If šč(ε1) < šč(ε2) then ε1 < ε2,
(2) If šč(ε1) > šč(ε2) then ε1 > ε2,
(3) If šč(ε1) = šč(ε2) then

(a) ãč(ε1) < ãč(ε2) then ε1 < ε2,
(b) ãč(ε1) > ãč(ε2) then ε1 > ε2,
(c) ãč(ε1) = ãč(ε2) then ε1 = ε2.

Definition 9 ([25]). Let εg =
{

ρεg (κ) ,kεg (κ) , ñεg (κ)
}
∈ ŜzN (=) (g = 1, 2, 3, ..., n). Then,

the Algebraic averaging aggregation operator for ŜzN (=) is denoted by SFWA and defined as follows:

SFEWA (ε1, ε2, ε3, ..., ε ñ) =
n

∑
g=1

κgεg,

=
{√

1−Πn
g=1(1− ρ2

εg)
κg , Πn

g=1(kεg)
κg , Πn

g=1(ñεg)
κg
}

(6)

where κg (g = 1, 2, ..., n) represents the weights of εg (g = 1, 2, 3, ..., n) with κg ≥ 0 and ∑n
g=1 κg = 1.

3. Methodological Development of Spherical Fuzzy Entropy Measure

This section proposed the generalized distance and weighted generalized distance measures for
spherical fuzzy sets. After that, utilizing the generalized distance measures, we proposed the novel
entropy measure for SFS to measure the fuzziness of SFS.

3.1. SF Distance Measure

Definition 10. Let for any i = {i1,i2, ...,in} , { =
{
{1, {2, ..., {n

}
∈ ŜzS (=) , where ig ={

ρig (κ) ,kig (κ) , ñig (κ)
}

and {g =
{

ρ{g
(κ) ,k{g

(κ) , ñ{g
(κ)

}
g = {1, 2, 3, ..., n} . Then,

the generalized distance measure (GDM) between i and { is defined for any Φ > 0 (∈ R) as
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dG
(
i, {

)
=

 1
2n

n

∑
g=1


∣∣∣∣(ρig

)2
−
(

ρ{g

)2
∣∣∣∣Φ +

∣∣∣∣(kig

)2
−
(
k{g

)2
∣∣∣∣Φ +∣∣∣∣(ñig

)2
−
(

ñ{g

)2
∣∣∣∣Φ




1
Φ

. (7)

Definition 11. Let for any i = {i1,i2, ...,in} , { =
{
{1, {2, ..., {n

}
∈ ŜzS (=) , where ig ={

ρig (κ) ,kig (κ) , ñig (κ)
}

and {g =
{

ρ{g
(κ) ,k{g

(κ) , ñ{g
(κ)

}
g = {1, 2, 3, ..., n} . Then,

the weighted generalized distance measure (WGDM) between i and { is defined for any Φ > 0 (∈ R) as

dWG
(
i, {

)
=

 1
2n

n

∑
g=1

κg


∣∣∣∣(ρig

)2
−
(

ρ{g

)2
∣∣∣∣Φ +

∣∣∣∣(kig

)2
−
(
k{g

)2
∣∣∣∣Φ +∣∣∣∣(ñig

)2
−
(

ñ{g

)2
∣∣∣∣Φ




1
Φ

, (8)

where κg (g = 1, 2, ..., n) represents the weights with condition that κg ≥ 0 and ∑n
g=1 κg = 1.

Remark 3.

(1) If Φ = 1, then, the distance defined in Definitions 10 and 11 reduced to Hamming distance.
(2) If Φ = 2, then, the distance defined in Definitions 10 and 11 reduced to Euclidean distance.
(3) If Φ = +∞, then, the distance defined in Definitions 10 and 11 reduced to Chebychev distance.

Definition 12. Let εg =
{

ρεg (κ) ,kεg (κ) , ñεg (κ)
}
∈ ŜzN (=) g = {1, 2, }. Then the GDM defined in

Definition 10 reduced as follows

dG (ε1, ε2) =

1
2


∣∣∣(ρε1)

2 − (ρε2)
2
∣∣∣Φ +

∣∣∣(kε1)
2 − (kε2)

2
∣∣∣Φ +∣∣∣(ñε1)

2 − (ñε2)
2
∣∣∣Φ




1
Φ

, Φ > 0 (∈ R) . (9)

For any two ε1, ε2 ∈ ŜzN (=) , the above defined GDMs satisfied the following properties

(1) 0 ≤ d (ε1, ε2) ≤ 1,
(2) d (ε1, ε2) = 1, iff ε1 = ε2,
(3) d (ε1, ε2) = d (ε2, ε1) .

3.2. SF Entropy Measure

In this section, we propose a new entropy measure for SFS based distance measure, for this we
follows the concept of Guo and Song [58].

Definition 13. Let for any i = {i1,i2, ...,in} ∈ ŜzS (κ) , where ig =
{

ρig (κ) ,kig (κ) , ñig (κ)
}

is
SFNs for each g = {1, 2, 3, ..., n} . Then, the entropy measure for SFS i is defined as

E (i) = 1
n

n

∑
g=1

{1− d
(
ig,ic

g

)} 1 +
(

υig

)2

2

 . (10)

Theorem 1. Let for any i = {i1,i2, ...,in} , { =
{
{1, {2, ..., {n

}
∈ ŜzS (=) , where ig ={

ρig (κ) ,kig (κ) , ñig (κ)
}

and {g =
{

ρ{g
(κ) ,k{g

(κ) , ñ{g
(κ)

}
are SFNs for each g =

{1, 2, 3, ..., n} .Then the entropy measures E (i) and E
(
{
)

satisfies the following properties:
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(1) E (i) = 0 iff i is the crisp set,
(2) E (i) ≤ E

(
{
)

if i ≤ {, that is ρi (κ) ≤ ρ{ (κ) ,ki (κ) ≤ k{ (κ) and ñi (κ) ≥ ñ{ (κ) for each
κ ∈ =,

(3) E (i) ≤ E (ic) .

Proof.

(1) For a crisp set, we have ρi (κ) = 1, ki (κ) = 0 and ñi (κ) = 0 for each κ ∈ =. Hence, E (i) = 0.

Conversely, suppose that E (i) = 0.
Since ρi (κ) , ki (κ) and ñi (κ) ∈ [0, 1] for each κ ∈ =, 1 + υ2

i 6= 0. Therefore,

1− d (i,ic) = 0 (11)

Only possibility if ρi (κ) ≤ 1 and ñi (κ) ≤ 1. Equation 11 holds when ρi (κ) = 1 or ñi (κ) = 1
for each κ ∈ =.

Hence, i is the crisp set.

(2) Suppose i ≤ {. Then, ρi (κ) ≤ ρ{ (κ) ,ki (κ) ≤ k{ (κ) and ñi (κ) ≥ ñ{ (κ) for each κ ∈ =.

For this we have to show that E
(
{
)
− E (i) ≥ 0.

E
(
{
)
− E (i) = 1

2n ∑n
g=1

[(
1−

∣∣∣ρ2
{
− ñ2

{

∣∣∣) (2− ρ2
{
−k2

{
− ñ2

{

)
−
(
1−

∣∣ρ2
i − ñ2

i
∣∣) (2− ρ2

i −k2
i − ñ2

i
)]

= 1
2n ∑n

g=1

[(
1 +

(
ρ2
{
− ñ2

{

)) (
2− ρ2

{
−k2

{
− ñ2

{

)
−
(
1 +

(
ρ2
i − ñ2

i
)) (

2− ρ2
i −k2

i − ñ2
i
)]

= 1
2n ∑n

g=1

[ (
2 + ρ2

{
−k2

{
− 3ñ2

{
− ρ2

{
k2
{
+k2

{
ñ2
{
− ρ4

{
+ ñ4

{

)
−(

2 + ρ2
i −k2

i − 3ñ2
i − ρ2

ik
2
i +k2

iñ2
i − ρ4

i + ñ4
i
) ]

= 1
2n ∑n

g=1

 (
ρ2
{
− ρ2

i

)
+
(
k2
i −k2

{

)
+ 3

(
ñ2
i − ñ2

{

)
+
(

ρ2
ik

2
i − ρ2

{
k2
{

)
+(

k2
{
ñ2
{
−k2

iñ2
i

)
+
(

ρ4
i − ρ4

{

)
+
(

ñ4
{
− ñ4

i

)  ≥ 0

Since, all power are even, then implies that

E (i) ≤ E
(
{
)

.

(3) Since, we have

E (i) =
1
n

n

∑
g=1

{1− d
(
ig,ic

g

)} 1 +
(

υig

)2

2


=

1
n

n

∑
g=1

[{
1−

∣∣∣ρ2
i − ñ2

i

∣∣∣} 2− ρ2
i −k2

i − ñ2
i

2

]

=
1
n

n

∑
g=1

[{
1−

∣∣∣ñ2
i − ρ2

i

∣∣∣} 2− ñ2
i −k2

i − ρ2
i

2

]
= E (ic) .

4. SF Improved TOPSIS

4.1. Spherical Fuzzy MAGDM Problem

We propose a technique to solve the MAGDM problems in term of spherical fuzzy informations.
The MAGDM problems can be addressed in the form of decision matrix where the columns represent
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the set of attributes and the rows symbolize alternatives. Thus, for decision matrix Dn×m, consider a set
of n alternatives {S1, S2, S3, ..., Sn} and m criteria/attributes { f1, f2, f3, ..., fm}. The unknown weight
vector of m criteria/attributes is denoted by W = {ρ1, ρ2, ρ3, ..., ρm} with subject to ρg ∈ [0, 1] such

that
m
∑

g=1
ρg = 1. Supposed the spherical fuzzy decision matrix is denoted by D(k) =

[
ε
(k)
ij

]
ñ×m

=

〈ρ(k)εij ,k(k)
εij , ñ(k)

εij 〉ñ×m, k ∈ 1, 2, ..., e, where ρij represents the degree of the alternative gratifies the criteria
f j considered by decision makers (DMs), kij represents the degree of the alternative is neutral for the
criteria f j considered by DMs and ñij represents the degree of the alternative doesn’t gratify the criteria
f j considered by DMs.

D(k)
n×m =

S1

S2
...

Sn



f1 f2 fm〈
ρ
(k)
ε11 ,k(k)

ε11 , ñ(k)
ε11

〉 〈
ρ
(k)
ε12 ,k(k)

ε12 , ñ(k)
ε12

〉
...

〈
ρ
(k)
ε1m ,k(k)

ε1m , ñ(k)
ε1m

〉〈
ρ
(k)
ε21 ,k(k)

ε21 , ñ(k)
ε21

〉 〈
ρ
(k)
ε22 ,k(k)

ε22 , ñ(k)
ε22

〉
...

〈
ρ
(k)
ε2m ,k(k)

ε2m , ñ(k)
ε2m

〉
...

...
. . .

...〈
ρ
(k)
εn1 ,k(k)

εn1 , ñ(k)
εn1

〉 〈
ρ
(k)
εn2 ,k(k)

εn2 , ñ(k)
εn2

〉
...

〈
ρ
(k)
εnm ,k(k)

εnm , ñ(k)
εnm

〉


It should be noted here that in the context of decision-making, all the data about the weights of

DMs and criteria are unknown.

4.2. SF-TOPSIS Method

The procedure contains three main parts. In the first part, we compute the weights of the decision
maker. The second part is discussed, how to compute the weights of the criteria using the proposed
entropy measure. The last part is a ranking method based on degree of similarity to ideal solution with
PIS and NIS.

To solve the spherical fuzzy MAGDM problem using TOPSIS-based procedure, the following
steps are introduced:

Step-1 Normalize the decision matrix D(k)
n×m. There are usually two types of attributes/criteria in

a MAGDM problem, one is the benefit type criteria and other one is the cost type criteria.
To unify the criteria, the cost type criteria convert to benefit type criteria by using the
following equation:

N(k)
ij =


(

ρεij ,kεij , ñεij

)
i f CI(

ñεij ,kεij , ρεij

)
i f CI I

(12)

where CI stands for benefit criterion and CI I stands for cost criterion.

Step-2(a) The group decision ideal solution (GDIS) is closer to all the opinion of each single DM’s and
therefore, the best GDIS should be computed by taking the averaging of all the opinion of
each single DM’s. So, in this step, we compute the GDIS by taking spherical fuzzy weighted
average of alternatives value corresponding to the criteria given by the DM’s by considering
the same weightage of DM’s values as follows:

GDIS =


IS11 IS12 ... IS1n
IS21 IS22 ... IS21

...
...

. . .
...

ISm1 ISm1 ... ISmn
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where

ISij =
e

∑
k=1

1
e

N(k)
ij

=


√√√√1−Πe

k=1

(
1−

(
ρ
(k)
εij

)2
) 1

e
, Πe

k=1

(
k(k)

εij

) 1
e , Πe

k=1

(
ñ(k)

εij

) 1
e


Step-2(b) Computed the group right ideal decision (GRID) and group left ideal decision (GLID)

as follows:

GRID =


RID11 RID12 ... RID1n
RID21 RID22 ... RID21

...
...

. . .
...

RIDm1 RIDm1 ... RIDmn


where

RIDij =

{(
N(k)

ij

)
:

max
k

[
šč
(

N(k)
ij

)]}
,

and

GLID =


LID11 LID12 ... LID1n
LID21 LID22 ... LID21

...
...

. . .
...

LIDm1 LIDm1 ... LIDmn


where

LIDij =

{(
N(k)

ij

)
:

min
k

[
šč
(

N(k)
ij

)]}
.

Step-2(c) In this step, we use the Definition 10 to compute the distance of decision matrix N(k)
ij to

GDIS, GRID and GLID. The distances are shown symbolically as: DGDIS, DGRID and
DGLID respectively. Where

DGDIS(k)
i =

 1
2n

n

∑
j=1


∣∣∣∣∣
(

ρ
N(k)

ij

)2
−
(

ρISij

)2
∣∣∣∣∣
Φ

+

∣∣∣∣∣
(
k

N(k)
ij

)2
−
(
kISij

)2
∣∣∣∣∣
Φ

+∣∣∣∣∣
(

ñ
N(k)

ij

)2
−
(

ñISij

)2
∣∣∣∣∣
Φ




1
Φ

,

DGRID(k)
i =

 1
2n

n

∑
j=1


∣∣∣∣∣
(

ρ
N(k)

ij

)2
−
(

ρRIDij

)2
∣∣∣∣∣
Φ

+

∣∣∣∣∣
(
k

N(k)
ij

)2
−
(
kRIDij

)2
∣∣∣∣∣
Φ

+∣∣∣∣∣
(

ñ
N(k)

ij

)2
−
(

ñRIDij

)2
∣∣∣∣∣
Φ




1
Φ

,

DGLID(k)
i =

 1
2n

n

∑
j=1


∣∣∣∣∣
(

ρ
N(k)

ij

)2
−
(

ρLIDij

)2
∣∣∣∣∣
Φ

+

∣∣∣∣∣
(
k

N(k)
ij

)2
−
(
kLIDij

)2
∣∣∣∣∣
Φ

+∣∣∣∣∣
(

ñ
N(k)

ij

)2
−
(

ñLIDij

)2
∣∣∣∣∣
Φ




1
Φ

,

for i = 1, 2, ..., m and k = 1, 2, ..., e.
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Step-2(d) In this step, we calculate the closeness indices (CIs) followed the model proposed by Yue [56]
as follows:

CI(k) =
∑m

i=1 DGRID(k)
i + ∑m

i=1 DGLID(k)
i

∑m
i=1 DGDIS(k)

i + ∑m
i=1 DGRID(k)

i + ∑m
i=1 DGLID(k)

i

.

For k = 1, 2, ..., e.

Step-2(e) In this step, DMs weights are calculate as follows:

Υ(k) =
CI(k)

∑e
k=1 CI(k)

Step-3(a) Computed the weights of attribute by using proposed SF entropy measure, for this calculate
the revised group decision (RGDIS) as follows:

RISij =
e

∑
k=1

Υ(k)N(k)
ij

=


√√√√1−Πe

k=1

(
1−

(
ρ
(k)
εij

)2
)Υ(k)

, Πe
k=1

(
k(k)

εij

)Υ(k)

, Πe
k=1

(
ñ(k)

εij

)Υ(k)

 .

Step-3(b) Using Equation (10), SF entropy measure corresponding to each attribute is computed
as follows:

EAj = E
(

RIS1j, RIS2j, ..., RISmj
)

, j = 1, 2, ..., n.

Step-3(c) Attribute weights are calculate as follows:

ΦAj =
1− EAj

n−Πn
j=1EAj

, j = 1, 2, ..., n.

Step-4(a) Utilizing the attributes weight vector, the weighted normalized decision matrices are
computed as follows:

DM(N)
(k)
ij =

e

∑
k=1

ΦAjN
(k)
ij

=


√

1−
(

1−
(

ρ
(k)
εij

)2
)ΦAj

,
(
k(k)

εij

)ΦAj
,
(

ñ(k)
εij

)ΦAj

 ,

for each k = 1, 2, ..., e.

Step-4(b) Utilizing the weighted normalized decision matrices DM(N)
(k)
ij , computed the PIS(k) and

NIS(k) for each DMs as follows:

PIS(k) =

{(
DM(N)

(k)
ij

)
:

max
i

[
šč
(

DM(N)
(k)
ij

)]}
, j = 1, 2, ..., n

and

NIS(k) =

{(
DM(N)

(k)
ij

)
:

min
i

[
šč
(

DM(N)
(k)
ij

)]}
, j = 1, 2, ..., n
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Step-4(c) Computed the WGDM by using the Definition 11 from DM(N)(k) to PIS(k) and NIS(k) are
denoted and defined as follows:

DIS+(k)
i =

 1
2n ∑n

j=1 ΦAj


∣∣∣∣(ρDM(N)(k)

)2
−
(
ρPIS(k)

)2
∣∣∣∣Φ +

∣∣∣∣(kDM(N)(k)

)2
−
(
kPIS(k)

)2
∣∣∣∣Φ +∣∣∣∣(ñDM(N)(k)

)2
−
(
ñPIS(k)

)2
∣∣∣∣Φ




1
Φ

,

and

DIS−(k)i =

 1
2n ∑n

j=1 ΦAj


∣∣∣∣(ρDM(N)(k)

)2
−
(
ρNIS(k)

)2
∣∣∣∣Φ +

∣∣∣∣(kDM(N)(k)

)2
−
(
kNIS(k)

)2
∣∣∣∣Φ +∣∣∣∣(ñDM(N)(k)

)2
−
(
ñNIS(k)

)2
∣∣∣∣Φ




1
Φ

for each i = 1, 2, ..., m.

Step-4(d) Revised closeness indices (RCIs) for each DM’s are computed as follows:

RCI(k)i =
DIS−(k)i

DIS+(k)
i + DIS−(k)i

Step-5 To calculate the final revised closeness indices (FRCIs) by using the DMs weights as follows:

FRCIi =
e

∑
k=1

Υ(k) · RCI(k)i

Rank the computed FRCIs values by descending order, the alternative has larger value is
our most finest alternative.

5. Numerical Application of the Proposed Improved TOPSIS Method

In this section, an numerical application about selection of robot is firstly used to illustrate the
designed MAGDM method. Then a comparison between the presented decision making technique
and the existing decision making techniques using spherical fuzzy information are carried out to show
the characteristic and advantage of the proposed technique.

Example

A manufacturing unit needs a robot to play out a specific material-dealing task. The said model has
been connected towards decision-making for choice of industrial robot carried out by the production
unit of a famous manufacturing industry in Pakistan. After initial selection, five alternative robots,
denoted as S1, S2, S3, S4, and S5 have been selected for further scrutiny. A committee of three decision
makers has been formed from academicians, manager of production unit and his team to locate the
most suitable robot. The given set of criteria { f1, f2, f3, f4} have been considered. Where f1 represents
speediness, f2 shows payload capacity, f3 represents the programming flexibility and f4 shows the
Man-Machine interface. Where according to experts, attributes f1 and f3 are benefit type, f2 and f4 are
cost type attributes. In this evaluation, the three experts were asked to use spherical fuzzy information
and both, weights of DMs and attributes weights are unknown. The evaluation result of the experts is
listed in Tables 1–3
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Table 1. DM1 information.

f1 f2 f3 f4

S1 (0.84, 0.34, 0.40) (0.43, 0.39, 0.78) (0.67, 0.50, 0.30) (0.31, 0.21, 0.71)
S2 (0.60, 0.11, 0.53) (0.23, 0.35, 0.59) (0.72, 0.31, 0.41) (0.11, 0.25, 0.82)
S3 (0.79, 0.19, 0.39) (0.11, 0.21, 0.91) (0.71, 0.41, 0.13) (0.34, 0.25, 0.51)
S4 (0.63, 0.51, 0.13) (0.49, 0.33, 0.42) (0.61, 0.43, 0.45) (0.49, 0.37, 0.59)
S5 (0.57, 0.36, 0.29) (0.50, 0.15, 0.60) (0.70, 0.32, 0.40) (0.33, 0.44, 0.65)

Table 2. DM2 information.

f1 f2 f3 f4

S1 (0.61, 0.15, 0.53) (0.16, 0.35, 0.62) (0.61, 0.35, 0.47) (0.55, 0.17, 0.74)
S2 (0.66, 0.11, 0.51) (0.43, 0.23, 0.77) (0.93, 0.08, 0.09) (0.02, 0.06, 0.99)
S3 (0.88, 0.09, 0.07) (0.05, 0.06, 0.89) (0.56, 0.17, 0.44) (0.43, 0.13, 0.61)
S4 (0.59, 0.32, 0.34) (0.24, 0.48, 0.51) (0.68, 0.53, 0.39) (0.34, 0.21, 0.61)
S5 (0.71, 0.31, 0.24) (0.35, 0.41, 0.69) (0.73, 0.44, 0.21) (0.22, 0.49, 0.74)

Table 3. DM2 information.

f1 f2 f3 f4

S1 (0.85, 0.25.0.15) (0.14, 0.23, 0.88) (0.78, 0.38, 0.18) (0.29, 0.39, 0.83)
S2 (0.94, 0.04, 0.07) (0.39, 0.19, 0.61) (0.63, 0.18, 0.35) (0.48, 0.49, 0.56)
S3 (0.73, 0.13, 0.46) (0.19, 0.39, 0.88) (0.87, 0.35, 0.18) (0.41, 0.13, 0.81)
S4 (0.82, 0.12, 0.43) (0.55, 0.21, 0.63) (0.53, 0.33, 0.47) (0.46, 0.23, 0.51)
S5 (0.61, 0.33, 0.29) (0.28, 0.41, 0.63) (0.74, 0.34, 0.14) (0.37, 0.32, 0.65)

Step-1 According to the experts, attribute f1 and f3 are benefits type, f2 and f4 are cost attributes.
So, normalized matrix computed as given Formula (12), and results are shown in Tables 4–6

Table 4. Normalized DM2 information.

f1 f2 f3 f4

S1 (0.84, 0.34, 0.40) (0.78, 0.39, 0.43) (0.67, 0.50, 0.30) (0.71, 0.21, 0.31)
S2 (0.60, 0.11, 0.53) (0.59, 0.35, 0.23) (0.72, 0.31, 0.41) (0.82, 0.25, 0.11)
S3 (0.79, 0.19, 0.39) (0.91, 0.21, 0.11) (0.71, 0.41, 0.13) (0.51, 0.25, 0.34)
S4 (0.63, 0.51, 0.13) (0.42, 0.33, 0.49) (0.61, 0.43, 0.45) (0.59, 0.37, 0.49)
S5 (0.57, 0.36, 0.29) (0.60, 0.15, 0.50) (0.70, 0.32, 0.40) (0.65, 0.44, 0.33)

Table 5. Normalized DM2 information.

f1 f2 f3 f4

S1 (0.61, 0.15, 0.53) (0.62, 0.35, 0.16) (0.61, 0.35, 0.47) (0.74, 0.17, 0.55)
S2 (0.66, 0.11, 0.51) (0.77, 0.23, 0.43) (0.93, 0.08, 0.09) (0.99, 0.06, 0.02)
S3 (0.88, 0.09, 0.07) (0.89, 0.06, 0.05) (0.56, 0.17, 0.44) (0.61, 0.13, 0.43)
S4 (0.59, 0.32, 0.34) (0.51, 0.48, 0.24) (0.68, 0.53, 0.39) (0.61, 0.21, 0.34)
S5 (0.71, 0.31, 0.24) (0.69, 0.41, 0.35) (0.73, 0.44, 0.21) (0.74, 0.49, 0.22)

Table 6. Normalized DM2 information.

f1 f2 f3 f4

S1 (0.85, 0.25.0.15) (0.88, 0.23, 0.14) (0.78, 0.38, 0.18) (0.83, 0.39, 0.29)
S2 (0.94, 0.04, 0.07) (0.61, 0.19, 0.39) (0.63, 0.18, 0.35) (0.56, 0.49, 0.48)
S3 (0.73, 0.13, 0.46) (0.88, 0.39, 0.19) (0.87, 0.35, 0.18) (0.81, 0.13, 0.41)
S4 (0.82, 0.12, 0.43) (0.63, 0.21, 0.55) (0.53, 0.33, 0.47) (0.51, 0.23, 0.46)
S5 (0.61, 0.33, 0.29) (0.63, 0.41, 0.28) (0.74, 0.34, 0.14) (0.65, 0.32, 0.37)
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Step-2 GDIS matrix is computed as follows in Table 7:

Table 7. GDIS Matrix

f1 f2 f3 f4

S1 (0.792, 0.233, 0.316) (0.788, 0.315, 0.212) (0.697, 0.405, 0.293) (0.766, 0.240, 0.367)
S2 (0.807, 0.078, 0.278) (0.670, 0.248, 0.342) (0.812, 0.164, 0.234) (0.913, 0.194, 0.101)
S3 (0.811, 0.130, 0.232) (0.894, 0.170, 0.101) (0.751, 0.290, 0.217) (0.676, 0.161, 0.391)
S4 (0.703, 0.269, 0.266) (0.532, 0.321, 0.401) (0.613, 0.422, 0.435) (0.573, 0.261, 0.424)
S5 (0.636, 0.332, 0.272) (0.642, 0.293, 0.365) (0.723, 0.363, 0.227) (0.683, 0.410, 0.299)

Step-2(b) GRID and GLID matrixes are computed as follows in Tables 8 and 9:

Table 8. GRID matrix.

f1 f2 f3 f4

S1 (0.85, 0.25, 0.15) (0.88, 0.23, 0.14) (0.78, 0.38, 0.18) (0.71, 0.21, 0.31)
S2 (0.94, 0.04, 0.08) (0.77, 0.23, 0.43) (0.93, 0.08, 0.09) (0.99, 0.06, 0.02)
S3 (0.88, 0.09, 0.07) (0.89, 0.06, 0.05) (0.87, 0.35, 0.18) (0.81, 0.13, 0.41)
S4 (0.82, 0.12, 0.43) (0.63, 0.21, 0.55) (0.68, 0.53, 0.39) (0.61, 0.21, 0.34)
S5 (0.71, 0.31, 0.24) (0.60, 0.15, 0.50) (0.74, 0.34, 0.14) (0.74, 0.49, 0.22)

Table 9. GLID Matrix.

f1 f2 f3 f4

S1 (0.61, 0.15, 0.53) (0.78, 0.39, 0.43) (0.61, 0.35, 0.47) (0.74, 0.17, 0.55)
S2 (0.60, 0.11, 0.53) (0.59, 0.35, 0.23) (0.72, 0.31, 0.41) (0.56, 0.49, 0.48)
S3 (0.73, 0.13, 0.46) (0.88, 0.39, 0.19) (0.56, 0.17, 0.44) (0.51, 0.25, 0.34)
S4 (0.59, 0.32, 0.34) (0.42, 0.33, 0.49) (0.53, 0.33, 0.47) (0.59, 0.37, 0.49)
S5 (0.57, 0.36, 0.29) (0.69, 0.41, 0.35) (0.70, 0.32, 0.40) (0.65, 0.44, 0.33)

Step-2(c) DGDIS, DGRID and DGLID are computed as follows in Tables 10–12.

Table 10. DGDIS Matrix.

DM S1 S2 S3 S4 S5

DM1 0.163292 0.322805 0.180650 0.192748 0.148069
DM2 0.331040 0.294078 0.237022 0.197133 0.139253
DM3 0.202054 0.500077 0.260579 0.229511 0.103838

Table 11. DGDIS Matrix.

DM S1 S2 S3 S4 S5

DM1 0.251636 0.584725 0.371449 0.364557 0.198260
DM2 0.492293 0.364128 0.395095 0.339937 0.170052
DM3 0.151590 0.646511 0.249619 0.211065 0.237425

Table 12. DGLID Matrix.

DM S1 S2 S3 S4 S5

DM1 0.330545 0.322439 0.238998 0.160350 0.159585
DM2 0.195485 0.630518 0.268370 0.271129 0.198746
DM3 0.463985 0.440680 0.443234 0.308255 0.146934
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Step-2(d) The closeness indices (CIs) are computed as follows:

CI(1) CI(2) CI(3)

0.747485 0.735090 0.717963

Step-2(e) The Decision makers weights are computed as follows:

Υ(1) Υ(2) Υ(3)

0.340 0.334 0.326

Step-3(a) The revised group decision (RGDIS) matrix is computed as follows in Table 13.

Table 13. DGLID Matrix.

f1 f2 f3 f4

S1 (0.792, 0.234, 0.319) (0.787, 0.316, 0.214) (0.696, 0.405, 0.295) (0.766, 0.239, 0.367)
S2 (0.804, 0.079, 0.282) (0.670, 0.249, 0.342) (0.813, 0.165, 0.234) (0.914, 0.193, 0.100)
S3 (0.812, 0.130, 0.231) (0.894, 0.169, 0.101) (0.749, 0.290, 0.217) (0.674, 0.162, 0.390)
S4 (0.701, 0.272, 0.264) (0.531, 0.322, 0.400) (0.613, 0.422, 0.435) (0.573, 0.262, 0.424)
S5 (0.636, 0.332, 0.272) (0.642, 0.291, 0.367) (0.723, 0.363, 0.229) (0.683, 0.411, 0.299)

Step-3(b) SF entropy measure corresponding to each attribute is computed as follows:

EA1 EA2 EA3 EA4

0.33527 0.394956 0.359249 0.381971

Step-3(c) The attribute weights are calculated as follows:

ΦA1 ΦA2 ΦA3 ΦA4

0.263 0.239 0.253 0.245

Step-4(a) The weighted normalized decision matrices are computed in Tables 14–16, as follows:

Table 14. Weighted Normalized DM1 information
(

DM(N)
(1)
ij

)
.

f1 f2 f3 f4

S1 (0.275, 0.752, 0.785) (0.200, 0.798, 0.817) (0.139, 0.839, 0.737) (0.157, 0.682, 0.750)
S2 (0.110, 0.559, 0.846) (0.097, 0.778, 0.703) (0.168, 0.743, 0.798) (0.239, 0.712, 0.582)
S3 (0.226, 0.646, 0.780) (0.343, 0.688, 0.590) (0.162, 0.798, 0.596) (0.071, 0.712, 0.767)
S4 (0.124, 0.837, 0.584) (0.045, 0.767, 0.843) (0.111, 0.807, 0.817) (0.099, 0.783, 0.839)
S5 (0.098, 0.764, 0.722) (0.101, 0.635, 0.847) (0.156, 0.749, 0.793) (0.125, 0.817, 0.762)

Table 15. Weighted Normalized DM2 information
(

DM(N)
(2)
ij

)
.

f1 f2 f3 f4

S1 (0.115, 0.607, 0.846) (0.109, 0.778, 0.645) (0.111, 0.766, 0.826) (0.176, 0.647, 0.863)
S2 (0.139, 0.559, 0.837) (0.193, 0.703, 0.817) (0.397, 0.527, 0.543) (0.616, 0.501, 0.383)
S3 (0.324, 0.530, 0.496) (0.312, 0.510, 0.488) (0.090, 0.638, 0.812) (0.107, 0.606, 0.813)
S4 (0.106, 0.741, 0.752) (0.069, 0.839, 0.711) (0.145, 0.851, 0.788) (0.107, 0.682, 0.767)
S5 (0.168, 0.734, 0.687) (0.143, 0.808, 0.778) (0.175, 0.812, 0.673) (0.176, 0.839, 0.690)
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Table 16. Weighted Normalized DM3 information
(

DM(N)
(3)
ij

)
.

f1 f2 f3 f4

S1 (0.286, 0.694, 0.607) (0.299, 0.703, 0.625) (0.211, 0.782, 0.648) (0.248, 0.793, 0.738)
S2 (0.432, 0.428, 0.514) (0.105, 0.672, 0.798) (0.120, 0.648, 0.766) (0.088, 0.839, 0.835)
S3 (0.181, 0.584, 0.815) (0.299, 0.798, 0.672) (0.300, 0.766, 0.648) (0.230, 0.606, 0.803)
S4 (0.254, 0.572, 0.800) (0.113, 0.688, 0.866) (0.080, 0.755, 0.826) (0.071, 0.697, 0.826)
S5 (0.115, 0.747, 0.722) (0.113, 0.808, 0.737) (0.181, 0.761, 0.608) (0.125, 0.756, 0.783)

Step-4(b) The PIS(k) and NIS(k) for each DMs are computed in Tables 17 and 18, as follows:

Table 17. Positive ideal solution for each DMs.

f1 f2 f3 f4

PIS(1) (0.226, 0.646, 0.780) (0.343, 0.688, 0.590) (0.162, 0.798, 0.596) (0.239, 0.712, 0.582)
PIS(2) (0.324, 0.530, 0.496) (0.312, 0.510, 0.488) (0.397, 0.527, 0.543) (0.616, 0.501, 0.383)
PIS(3) (0.432, 0.428, 0.514) (0.299, 0.703, 0.625) (0.300, 0.766, 0.648) (0.230, 0.606, 0.803)

Table 18. Negative ideal solution for each DMs.

f1 f2 f3 f4

NIS(1) (0.098, 0.764, 0.722) (0.045, 0.767, 0.843) (0.111, 0.807, 0.817) (0.099, 0.783, 0.839)
NIS(2) (0.106, 0.741, 0.752) (0.069, 0.839, 0.711) (0.145, 0.851, 0.788) (0.176, 0.839, 0.690)
NIS(3) (0.115, 0.747, 0.722) (0.113, 0.688, 0.866) (0.080, 0.755, 0.826) (0.088, 0.839, 0.835)

Step-4(c) Distance measure from positive ideal solution and negative ideal solution of each alternative
are given in Tables 19 and 20.

Table 19. Distance from positive ideal solution.

S1 S2 S3 S4 S5

DIS+(1)

i 0.17493 0.14188 0.08923 0.26340 0.20944
DIS+(2)

i 0.38196 0.23932 0.26906 0.37982 0.35833
DIS+(3)

i 0.15668 0.17445 0.17409 0.22637 0.20918

Table 20. Distance from negative ideal solution.

S1 S2 S3 S4 S5

DIS−
(1)

i 0.09975 0.19918 0.19788 0.07792 0.08702
DIS−

(2)

i 0.17628 0.33558 0.29697 0.09260 0.08275
DIS−

(3)

i 0.18343 0.19163 0.21808 0.12273 0.15634

Step-5 The final revised closeness indices (FRCIs) by using the DMs weights are computed in Table
21, as follows:

Table 21. Final revised closeness indices.

Alternatives S1 S2 S3 S4 S5

FRCIs 0.40476 0.56417 0.59085 0.25769 0.30189

Hence, S3 is the best alternative according to given attributes.
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6. Comparison Analysis

In this section, a comparison of the characteristics of these proposed improved TOPSIS method
and the designed MAGDM method is made to show the advantages of the designed technique.
This comparison is carried out by comparing the characteristics of the different decision making
technique presents in literature. In the method of [59], TOPSIS method for Pythagorean fuzzy
information is presented. The Normalized DMs information are shown in Tables 22–24.

Table 22. Normalized DM1 information.

f1 f1 f1 f1

S1 (0.4, 0.8) (0.8, 0.6) (0.6, 0.7) (0.3, 0.8)
S2 (0.7, 0.5) (0.9, 0.2) (0.8, 0.5) (0.3, 0.6)
S3 (0.3, 0.4) (0.3, 0.7) (0.7, 0.4) (0.6, 0.4)
S4 (0.6, 0.6) (0.7, 0.5) (0.7, 0.2) (0.4, 0.6)
S5 (0.5, 0.7) (0.6, 0.4) (0.9, 0.3) (0.6, 0.7)

Table 23. Normalized DM2 information.

f1 f1 f1 f1

S1 (0.3, 0.9) (0.7, 0.6) (0.5, 0.8) (0.3, 0.6)
S2 (0.7, 0.4) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
S3 (0.3, 0.6) (0.7, 0.7) (0.7, 0.6) (0.4, 0.4)
S4 (0.4, 0.8) (0.7, 0.5) (0.6, 0.2) (0.4, 0.7)
S5 (0.2, 0.7) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)

Table 24. Normalized DM3 information.

f1 f1 f1 f1

S1 (0.6, 0.8) (0.7, 0.6) (0.5, 0.8) (0.5, 0.5)
S2 (0.6, 0.5) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
S3 (0.4, 0.7) (0.7, 0.5) (0.6, 0.1) (0.2, 0.9)
S4 (0.2, 0.9) (0.5, 0.6) (0.6, 0.2) (0.1, 0.6)
S5 (0.1, 0.6) (0.8, 0.2) (0.9, 0.2) (0.6, 0.5)

Decision Maker weights are computed as follows

Υ(1) Υ(2) Υ(3)

0.330 0.354 0.316

Attributes weights are computed as follows

ΦA1 ΦA2 ΦA3 ΦA4

0.26 0.24 0.25 0.25

The final revised closeness indices (FRCIs) by using the DMs weights are computed in Table 25,
as follows:

Table 25. Final revised closeness indices.

Alternatives S1 S2 S3 S4

FRCIs 0.205 0.842 0.457 0.538

Hence, S2 is the best alternative according to given attributes.
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Result and Discussion

The decision maker give the information in the form of Pythagorean fuzzy sets. In comparison
section, we consider the neutral term equal to zero and used the proposed spherical improved TOPSIS
technique to solve the information. As in the obtaining results, S2 are the best alternative which is
same as the given in the [59].

Here we gave some comparison of previously presented TOPSIS techniques and proposed
improved TOPSIS technique is shown in Table 26.

Table 26. Comparison Analysis.

Scholars Uncertainty Approach Modeling Approach Unknown Weights
Information

FSs PyFs SFSs
Group

Decision
Making

TOPSIS
Method

Decision
Maker Attributes

Beg and Rashid [39] yes no no no yes no no
Zhang and Xu [49] yes yes no no yes no no

Yue [56] yes no no yes no yes no
Proposed Technique yes yes yes yes yes yes yes

Hence, as a consequence, the proposed methodology is more accurate, feasible, effective and
generalized to solve MAGDM problems with completely unknown information among DMs as well
as criteria.

7. Conclusions

SFS is an emerging and successful generalized notion that has been chosen as strategic tools to
overcome the uncertainties as well as the vagueness data associated with MAGDM problems and
therefore DMs feel more comfortable in their decision to use SF data rather than IFS, PyFS and PFS.
In this paper, a novel improved TOPSIS-based decision-making method is established to deal the
MAGDM problems under SF environment with completely unknown information about the DMs
and criteria weights. GDM based novel SF entropy measure is proposed to establish the SF entropy
weight model for computing the criteria weights under SF information. In order to eliminate the
failure of collective information during the method, aggregation is performed in the last steps by using
the computed weights of DMs to acquire the final alternative rank. Finally, numerical examples are
illustrated to present the applicability and advantage of the introduced technique.

Because the spherical fuzzy numbers are very suitable for describing uncertain and fuzzy
information, it is widely applied to real decision making, such as human resource management, online
commodity recommendation, and so on. Meanwhile, the proposed technique can take relationships
between attributes into account, it is more scientific to do decision making. In the future research,
we will continue to focus on the extension and applications of more advanced decision making
techniques to other realms.
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