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Abstract: The matrix information geometric signal detection (MIGSD) method has achieved
satisfactory performance in many contexts of signal processing. However, this method involves
many matrix exponential, logarithmic, and inverse operations, which result in high computational
cost and limits in analyzing the detection performance in the case of a high-dimensional matrix. To
address these problems, in this paper, a high-performance computing (HPC)-based MIGSD method is
proposed, which is implemented using the hybrid message passing interface (MPI) and open multiple
processing (OpenMP) techniques. Specifically, the clutter data are first modeled as a Hermitian
positive-definite (HPD) matrix and mapped into a high-dimensional space, which constitutes a
complex Riemannian manifold. Then, the task of computing the Riemannian distance on the manifold
between the sample data and the geometric mean of these HPD matrices is assigned to each MPI
process or OpenMP thread. Finally, via comparison with a threshold, the signal is identified and
the detection probability is calculated. Using this approach, we analyzed the effect of the matrix
dimension on the detection performance. The experimental results demonstrate the following:
(1) parallel computing can effectively optimize the MIGSD method, which substantially improves the
practicability of the algorithm; and (2) the method achieves superior detection performance under a
higher dimensional HPD matrix.

Keywords: hybrid MPl/OpenMP; matrix information geometry; parallel optimization; signal detection

1. Introduction

Signal detection under a low signal-to-noise ratio (SNR) and complex clutter is a highly challenging
task, which is extremely important in signal processing [1]. Due to the presence of complex clutter
data, radar target echoes are usually weak and complex, thereby resulting in the failure of the detection
performance to meet the application requirements [2]. A classical fast Fourier transform (FFT)-based
constant false alarm rate (CFAR) detector is available for addressing this issue. However, this method
suffers from severe performance degradation due to the poor resolution and leakage of the spectral
energy, thereby resulting in an urgent need for new theoretical support to realize a breakthrough.

Information geometry, which is a theory that is based on statistical manifolds, is a differential
geometry method for information science problems, which has been applied in numerous areas,
e.g., neural networks [3], image processing [4—6], information geometric detection [7-12], dictionary
learning, and sparse coding [13]. Signal detection based on information geometry was first proposed
in 1989, when an issue of multisource statistical inference was analyzed and the hypothesis testing
problem was explained using a statistical manifold [14], which highlighted the fundamental role that
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manifold theory plays in statistical information. After that, series of statistical inference theories were
investigated via information geometry [15,16]. From the perspective of information geometry, {P(X|6 )}
is regarded as a point on a statistical manifold, with a cylindrical confidence zone R that is centered on
0y, where the parameter 0y represents the null hypothesis sample data and M denotes the statistical
manifold. After the statistical modeling from the observed sample data, we can determine whether 0
is equal to Oy or not. Figure 1 illustrates the basic principle of the statistical hypothesis problem.

Figure 1. Information geometry-based statistical hypothesis problem.

This novel method, which is based on a Riemannian manifold, provides a new approach for
solving complex signal processing problems. In recent years, Barbaresco proposed a CFAR detector
that is based on Cartan’s geometry of the Hermitian positive-definite (HPD) product manifold [17-19].
The CFAR detector obtains the maximum detection probability while keeping the target detection false
alarm rate constant [17], which has become a seminal result in target detection. Furthermore, it is
now well established by several studies that the CFAR detector has a large performance advantage
in signal processing [9,20]. However, a potential drawback is that the algorithm contains many
matrix exponential, logarithmic, and inverse operations, which strongly impact the computational
efficiency, as detailed in Section 2. Thus, it is imperative to find an efficient method for optimizing the
CFAR detector algorithm, which is also known as the matrix information geometric signal detection
(MIGSD) algorithm.

Recently, additional studies and applications in combination with high-performance computing
(HPC) methods have been conducted. The practicality of HPC has also been proved, especially for
marine and atmospheric numerical calculations. The message passing interface (MPI) began to be
widely used in the parallelization of the semi-Lagrangian shallow-water model [21], the parallel ocean
model (POM) [22], and the finite-volume coastal ocean circulation model (FVCOM) [23]. The open
multiple processing (OpenMP) [24] is extensively applied in the coastal ocean circulation model [25],
the mesoscale numerical weather prediction model 5 (MMD5) [24], and many other weather forecast
models, wave models, and ocean models [26]. In addition, the application of the HPC parallel methods
continues to deepen, no longer limited to marine meteorology, but also shines in many other scientific
areas, e.g., large-scale image data processing and pattern recognition [27], molecular dynamics [28],
computational fluid dynamics applications [29,30], and cosmic celestial motion simulation [31].

In the HPC area, OpenMP realizes superior parallel performance in shared storage
environments [32]. MPI is the standard for parallel programming in distributed storage architecture
computers [33]. However, due to the rapid growth in the communications between nodes, the
bandwidth limits its efficiency; in this case, the use of a single available parallel technology (e.g., MPI
or OpenMP) does not yield the desired performance [34,35]. Therefore, we must provide an ideal
parallel programming scheme that enables applications to use this hybrid hardware structure most
efficiently with minimal overhead and higher performance simultaneously. Fortunately, the hybrid
MPI/OpenMP programming model can not only realize two levels of parallelism between nodes but
also fully utilize the message passing model and shared-memory programming. The basic strategy of
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the hybrid MPI/OpenMP programming model is to apply multiple MPI processes on each node with
OpenMP threads executing in the MPI process [36,37], which can significantly improve the efficiency
of the program.

This hybrid MPI/OpenMP parallel method has been applied extensively for scientific computation.
By combining the hybrid MPI/OpenMP modeling with the weather research and forecasting (WRF)
model, improved performance over pure MPI or OpenMP has been realized [38]. Duan Geng [39]
used the hybrid MPI/OpenMP programming model to improve the KMP algorithm. Phu Luong [40]
applied dual-Level Parallelism in coastal ocean circulation modeling. Furthermore, the hybrid parallel
method is applied in many new developing fields, e.g., machine learning [41-43], data mining [44],
and cloud computing [45]. Doubtlessly, hybrid MPI/OpenMP modeling is a classical and promising
candidate for scientific application.

The remainder of this paper is organized as follows: First, we introduce information geometry and
related information to the MIGSD method. Then, we analyze critical computational components and
the computational complexity of the serial algorithm. In Section 3, we present our high-performance
computing (HPC)-based MIGSD algorithm, which uses hybrid OpenMP/MPI, and detail our efforts to
realize high computational and parallel efficiency on the Tianhe-2 supercomputer. Our experimental
results are presented in Section 4 and our ongoing works to overcome the limitations of the current
implementations are discussed in Section 5, followed by the conclusions of this study.

2. The Matrix Information Geometric Signal Detection Method

In this section, we describe how to map the sample data to a high-dimensional manifold in detail.
Then, we derive the Riemannian mean matrix. Finally, we analyze the computational complexity of
the MIGSD algorithm. We mention that the manifold is the extension of the concept of curve and
surface in high dimensional space, and, if a Riemannian metric can be established in the (local) space
of a manifold, the manifold is a Riemannian manifold.

2.1. Mapping from the Sample Data to an HPD Manifold

The main strategy of the MIGSD method is illustrated in Figure 2. The sample data obey the
zero-mean complex Gaussian distribution. Since the mean is zero, the information between the
sample data is included in the covariance matrix, to which all corresponding distance cells constitute a
nonlinear HPD manifold. As an extension of the statistical hypothesis problem, by comparing the
geometric distance between the unit matrix and the Riemannian mean matrix with a specified threshold
Y, we can judge whether the test cell corresponds to a signal or noise.

Sample data 7

|

Covariance
matrix

R, R, Ry, oo | Ryz | Ry

v v ! !

Riemannian mean matrix R

Threshold y

Rp

Geometric distance d(RD,I?)

A

Figure 2. Geometric distance-based the matrix information geometric signal detection method [12].

For received sample data z = {z1, 2,23, - , zn}, Wwhere 1 is the length of the pulse data, the matrix
information geometric detector distinguishes the signal from the clutter. Assume that z satisfies a
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zero-mean complex Gaussian distribution, namely, z ~ CN(0, H), with the probability density function
expressed as follows:

p(z0,H) = exp{—zHH_lz}, (1)

1
7" |H|
where |H| represents the determinant of the covariance matrix, and the covariance matrix H is
formulated as:

hohy -+ hny
hihg -+ hno

H= E[zzH] = ohye = Elzizi] )
hy—1 -+ h1 ho

0<k<n-1,1<i<n

in which the parameter i represents the correlation coefficients, where z is the complex conjugate of z.
H is essentially a Toeplitz HPD matrix. According to the ergodicity of the stationary Gaussian process,
we can calculate /i by replacing statistical expectations with its time average:

n—1-Jk|
Z z(n)z(n+k),kl<n-1, ©)]
n=0

A 1

As alluded to above, all the covariance matrices H corresponding to the distance cells constitute

a matrix manifold, which contains the correlation information between the sample data. Thus, the

n-dimensional vector of the sample data is mapped into an n-dimensional matrix space, which can be
formed as:

Y :P(n) - H(n),z - R € H(n), 4)

where H(n) represents a Riemannian manifold with nonpositive curvature and P(n) represents the
n-dimensional vector space, respectively.

2.2. Derivation of the Riemannian Mean Matrix

Now, we are ready to derive the Riemannian mean matrix. A manifold M contains a set of points
endowed with a curve structure and H; represents an HPD matrix on the manifold M. Between two
points Hy and H; on Mgy, there are infinitely many paths of minimal geodesic distance. In this paper,
we measure the distance metric between Hy and H; by the geodesic distance, which is formulated as:

n
_ RN
d%(Hy, Hp) = |llog(Hy ™/ HHy ™)z = Zlogz()ti), ©)
i=1

where log() is the logarithm map on the Riemannian manifold, ||-||r is the Frobenius norm and A;
represents the i-th eigenvalue of H; ~'/2H,H; /2. The objective function that is used to calculate the
mean of data x in the Euclidean space is:

-1y 1y

X=—) x;=argmin— ) |x—uxl. 6)
n ; l 0 N ;‘ l

For the HPD manifold, we employ the geometric distance instead of the Euclidean distance. Let

(Hy,Hy, Hs,--- , Hy} denote a set of HPD matrices, with the mean matrix H defined as follows.

— 1w
H = argmin— ) d(H, H;). (7)
gH n; i
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The subgradient algorithm is used to run the iteration via the fixed-point method [46,47]. Its
convergence can be proved as follows: For a set of HPD matrices, the objective function F(H) can be
expressed as:

2
= —Zd2 H H;) = —lelog H'H)| . )
=1 F
Then, the gradient VF is derived.
1 n
F= EZ 2log(H'H)H . ©)
i=1
Let VF = 0, H is a positive matrix. Thus,
Z log(H 1H =0. (10)
For these n HPD matrices {Hy,H,,Hs, - --- ,H,}, both sides are multiplied by H;7 2, and then

we have {I,HIl/ZHzﬂIl/Z,Hzl/ZH3H;1/2, “e ,H;l/anH;UZ}. In this way, the above sequence can be
rewritten as {Py, Py, P3,- -+ , Py}. According to the congruent transformation in Riemannian geometry,
these matrices are still on the HPD manifold, and the Riemannian mean matrix does not change. Then,

Z log(P;'P) = 0. (11)
Since P; represents the unit diagonal matrix I. Thus,

log(P Z log( Pl/zP_lPl/z) (12)
i=2

For simplicity, let S = log(P), namely, P = exp(S). Then,
pl/2 1
= exp(55)- (13)

According to the fixed-point method, the iterations can be formulated as follows:

n
= %,21 log(P;)
i=

n
Sir1=aSi+ (a—1) Y, log(exp(S:/2)P; ! exp(S:/2)) (14)
t=2
O<a<l1
Applying the logarithm map yields:
n
Piy = P}/?exp(n) | log(P1/2PiP;/%))P}2, (15)

i=1

where 17 = 1 — a denotes the stepsize and ¢ the number of the iterations. The above equation converges
after many iterations to the Riemann mean. As discussed above, our objective is to calculate the
geometric distance between the test cell and the Riemann mean matrix P; in this case, signal detection
is performed via comparison with a threshold.
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2.3. Computational Complexity of the Algorithm

To set the stage for the algorithm complexity analysis, we recall useful information regarding
computational complexity, which is shown in Table 1. Then, we detail the serial MIGSD algorithm
based on MATLAB (R2019a) to analyze the computational complexity. Arithmetic with individual
elements has complexity O(1).

Table 1. Computational complexity of various vector and matrix operations.

Operation Complexity
Vector addition O(n)
Vector multiplication On?)
Matrix addition On?)
Matrix multiplication o)
Matrix eigenvalue o)
Matrix logarithm Oo(n®)
Matrix inversion o@®)

Pd_D is the signal detection rate. PFA denotes the desired probability of false alarm, through
which the threshold is determined. The signal-to-noise ratio (SNR) is defined as follows:

P

SNR =10 log10 —
o

(16)
where P; is the signal power received by radar and o represents the noise variance. The higher is the
SNR, the smaller is the amount of noise that is mixed with the signal (the higher the signal quality).

Now, we are ready to describe the serial method by presenting the main pseudocode in Algorithm 1,
from which it is clear that the MIGSD algorithm involves a double-loop: Pd_D is initialized in the
outer loop, while the inner loop executes many matrix operations. The calculation task in the inner
loop can be divided into three main parts: the estimation of the Toeplitz matrix, the calculation of the
Riemannian mean matrix, and the calculation of the geodesic distance.

Algorithm 1 MIGSD (M, K, PEA, Pd_D)

Input: M,K,PFA

Output: Pd_D
1. ComputeT hreshold
2: for SNR(—10: 20) do Set Pd_D =0
3: for t = 1. Montecarlo_iteration do

4: noise_sig(K, M)

5: H _noise = ComputeToeplitz(noise_sig)

6: sig(l: M)

7: H _cell = CornputeT oeplitz(siy)

8: H_D = ComputeMeanMatrix_H D(H _noise)
9: dist = Geodesic_Matriz(H _cell, H_D)

10: if dist > threshold then Pd_D = Pd_D + 1
11: end if

12: end for

13: Pd_D = Pd_D/Montecarlo_iteration

14: end for

15: return Pd_D

Each test cell is mapped into an HPD matrix on the Riemannian manifold. The threshold is
determined by numbers of matrix iterations according to PFA. To obtain the signal detection rate Pd_D,
the Monte Carlo method is employed inside the double loop. This method uses a weighted random
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sample to simulate the posterior probability distribution of the solution, which is also known as a
random sampling method, to transform the integral into a summation form. Each Monte Carlo process
compares the Geodesic_Matrix (H_Cell, H_D) and the threshold to solve the Pd_D problem.

The computational complexity of the mean matrix can be upper bounded by counting the number
of multiplication operations. In this case, the Riemannian mean can be evaluated via an iterative
procedure with (3an® + an?)tk multiplications, where a denotes the number of HPD matrices for
averaging, tk is the number of iterations, and # is the length of the pulse data in the range cell, which is
substantially more expensive. The high computational cost limits its practical application, thereby
making it much more difficult to evaluate the detection performance as the dimension increases, which
is discussed in Section 4.1.

3. High-Performance Computing-Based MIGSD Method

As discussed above, the high computational cost of the MIGSD algorithm poses challenges in
analyzing the relationship of the detection performance and the dimension of the HPD matrices,
which motivates us to use a high-performance computing (HPC) method to accelerate the algorithm.
Moreover, as there are no data correlation in the iterative procedure, the hybrid MPI/OpenMP model
can be employed effectively to improve the MIGSD algorithm. However, these methods are not
supported in MATLAB. Thus, we transform the MATLAB program into a Fortran90 version to apply
the HPC methods. From the perspective of HPC, our primary objective is to identify the hotspots of the
program, from which we can obtain the largest performance improvement. The hotspots of the MIGSD
serial program are concentrated in the double loops for the solution, for instance, the Monte Carlo
iterations for the solution; the iterative method for calculating the mean matrix; and the matrix inverse,
logarithm, and eigenvalue operations for calculating both the mean matrix and the geodesic distance.

Now, we present our parallel algorithm, which is detailed as follows:

The HPC-based MIGSD algorithm is divided into training and working steps: the training
step provides the threshold, while the signal detection rate Pd_D is calculated in the working step.
As discussed above, since the distance between every pair of points in the HPD manifold is independent,
the current calculated distance does not affect the next calculated distance in the main loop. In this
case, MPI can be applied in the outer layer to create processes, while OpenMP is used in the inner layer
to create threads. This framework of the hybrid MPI/OpenMP programming model fully utilizes the
bandwidyth, as illustrated in Figure 3. MPI_INIT is used to initialize the MPI environment to establish
links between multiple MPI processes, while OMP PARALLEL opens the multithread environment.
MPI_Finalize is used at the end of the MPI runtime environment, while OMP END PARALLEL closes
the multithread parallel domain. These functions are the basic parallel framework for defining MPI or
OpenMP programs.

MPI_INIT

OMP PARALLEL

OMP END PARALLEL

MPI_FINALIZE Vv v v

Figure 3. The framework of the hybrid MPI/OpenMP programming model.
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3.1. Our Efforts in the Training Step

In the training step, our objective is to identify a threshold from the sequence of geodesic distances
according to the PFA. To this end, MPI is used for task partitioning, while OpenMP is fused on
the MPI-divided loop for further computation, namely, the task is divided by MPI processes, while
OpenMP threads compute the local geodesic distance via involved functions in the MPI processes.
After every process has completed the assigned calculation tasks, namely, the OpenMP threads have
computed all the local distances, we gather all the local distances into the main process using function
MPI_GATHER. In this case, the main process contains the full sequence of geodesic distances, which
enables us to sort the geodesic distances into descending order. In addition, the threshold is determined
in this descending sequence according to the PFA. To facilitate comparison with the threshold during
the working step, the threshold will be broadcasted to the other MPI processes using the function
MPI_BCAST. In this way, each MPI process has a copy of the threshold. This concludes the training step.
Since each computation in the training step is independent with nearly no process communication
overhead, the HPC-based MIGSD algorithm realizes high parallel performance.

The pseudocode of the training step in the HPC-based MIGSD program is presented as Algorithm 2.
The parameter myrank indicates the process number, npros means the number of MPI processes,
distlist_descent represents the descending sequence for distlist, and t represents the maximum number
of training.

Algorithm 2 Training (M, K, PFA, threshold)

Input: M,K,PFA
Output: threshold
: initialize: M PI_INIT (myrank, nprocs)
Sct dist_list =0
L = ceiling(1.0 x t/nprocs)
OMP_PARALLEL
for W = myrankx L+ 1, min(myrank*L+1,t) do
ComputeMeanM atrix
Compute AutoCorr Matrix
dist = Geodesic_M atriz
dist_list(W — myrank = L) = dist
10: end for
11: OMP_END_PARALLEL
12: MPI_GATHFR(dist_list)
13: threshold = distlist_descend(PF A)
14: MPI_BCAST (threshold)

AN e

3.2. Our Efforts in the Working Step

The working step is similar to the training step. The main difference is that we use the Monte
Carlo method for all SNRSs through a double loop. Since the threshold that is obtained from the training
step has already been passed to each process by function MPI_BCAST, we can immediately employ the
Monte Carlo method in each process to compare dist and threshold. The input data to the working step
are a clutter-containing signal matrix that is generated by a random function, and the MPI environment
exists until the instruction MPI_FINALIZE is encountered.

In the Monte Carlo iteration, the correlation matrix, the mean matrix, and the geodesic distances
of these two matrices are calculated without interference, which is known as task-level parallelism.
Moreover, since the operations of each iteration are independent, MPI can be used outside the Monte
Carlo loop, namely each MPI process executes a part of the Monte Carlo iterations, while multicore
OpenMP is used in the MPI process to calculate the involved functions. In each OpenMP thread, dist
is compared with threshold; in this case, the signal is finally determined, which is denoted as a cnt.
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The parallel domain of OpenMP is closed until all cnts have been obtained. At this point, the Monte
Carlo simulation is also complete. We turn to outside of the Monte Carlo loop, where MPI_REDUCE is
used to sum the signals in the subprocesses. In this case, the signal detection rate, namely Pd_D, is
obtained from the working step. The basic parallel implementation of the working step is presented in
Algorithm 3. The parameter Num_Montecarlo means the number of Monte Carlo iterations, myrank
indicates the process number, npros means the number of MPI processes, and cnt_total represents the
total number of signals obtained after comparison with the threshold.

Algorithm 3 Working (M, K, threshold, Montecarlo)

Input: M, K, PFA, Montecarlo
Output: Pd_D(i)
1: nl = ceiling(1.0 x Num_MonteCarlo/nprocs)
2: initialize: Set ent =0
3: OMP_PARALLEL
4: loopMonteCarlo : myrank = nl + 1, min(myrank *
nl + nl, Num_MonteCarlo)
Compute M eanM atrix
Compute AutoCorrMatrix
dist = Geodesic_Matriz
if dist > threshold then cnt = cnt + 1
end if
10: end loopMontecarlo
11: OMP_END_PARALLEL
122 MPI_REDUCE(cnt, cnt_total)
13: M PI_BCAST (ent_total)
14: Pd_D(i) = ent_total /Num_Montecarlo
15: MPI_FINALIZE

In this application, since the program rarely incurs communication overhead, our HPC-based
MIGSD program can realize high parallel optimization performance both within nodes and between
nodes. The performance of our hybrid scheme is strong and it remains so for any combination of MPI
processes and OpenMP threads, which is detailed in Section 4 (it provides nearly linear speed-up).

4. Numerical Experiments

Several experiments were conducted to evaluate both the serial and HPC-based MIGSD programs.
We employed three parallel schemes in our experiments: (1) an MPI-only scheme; (2) an OpenMP-only
scheme; and (3) a hybrid MPI/OpenMP scheme. We considered the time cost of the serial MIGSD
program based on Fortran as the dimension of the HPD matrix increases. Then, we evaluated the
parallel performance of our HPC-based MIGSD program. Moreover, we evaluated the detection
performance of the higher-dimensional HPD matrix via our hybrid MPI/OpenMP algorithm. Finally,
the relationship between the dimension and the detection performance was identified. Table 2 presents
the test platform and environment in our experiments.

Table 2. Test platform and environment.

Item Values
2 x CPU Intel(R) Xeon(R) CPU E5-2692 v2 @ 2.20 GHz
Operating System Kylin Linux
Kernel 2.6.32-279-TH2
MPI Version MPICH Version 3.1.3
GCC Version GCC44.7

Compiler Intel-compilers/15.0.1
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4.1. Time Cost in the Serial MIGSD Program

As discussed above, the computational complexity of the serial MIGSD algorithm is huge due to
the matrix operations, the iterations for calculating the mean matrix, and the Monte Carlo method in
the inner loop.

We now consider the run time of the Fortran-based serial MIGSD program as the HPD matrix
dimension increases, which is plotted in Figure 4. The time cost grows rapidly as the dimension
of the matrix increases. More specifically, in the case of low matrix dimension, the program can be
optimized by the internal hardware to a certain extent, and the calculation data can be easily stored by
the computer. In this case, the time growth is not very fast. However, as the dimension increases, it
is impossible to process such a large amount of data internally by the computer, which results in an
exponential growth of the time consumption. In particular, when the dimension is set to more than 64,
it may run more than 240 h, which is surprisingly enormous. In fact, it is expected to grow faster in
higher dimensions. This is further confirmed that the algorithm has high computational complexity,
and difficulties are encountered in testing the detection performance for a higher dimensional matrix.

x10°

L [-;] (-]

Elapsed time(s)

N

0 + + + - L
2 4 8 16 32 64
Matrix dimension

Figure 4. The elapsed time of the serial MIGSD program experiment groups.

4.2. Parallel Performance in HPC-BASED MIGSD Program

To evaluate the parallel performances of the HPC-based MIGSD program, we tested this hybrid
MPI/OpenMP program with various numbers of threads and processes. A speed-up metric was used

to quantify the parallel performance:
Sy =Ts/Tp, (17)

where p represents the number of the processes, T is the execution time of the sequential algorithm,
and T is the execution time of the parallel algorithm with p processors, respectively. Each node in the
Tianhe-2 supercomputer has 24 cores. Schemes (1) and (2) were both tested in a single node. Thus, we
set 1,2, 4,8, and 16 processes or threads to analyze the variation trend of the speed-up. Note that the
dimension of the HPD matrix in this section was set to 4, 8, and 12, and the PFA was set to 1072 to
facilitate our tests.

According to Figure 5, the speed-ups of Schemes (1) and (2) both show a strong upward trend
with the MPI and OpenMP techniques. In the beginning, the application of MPI and OpenMP provides
nearly linear speed-up, although the parallel efficiency decreases as the number of processes or threads
increases, which we attribute to the bottleneck of the problem magnitude. In addition, the two curves
are similar with few processes and threads; hence, Schemes (1) and (2) provide a similar parallel
performance initially, i.e. the speed-ups of the MIGSD program that are based on MPI or OpenMP
are similar under the same numbers of processes and threads. With the increase in the numbers of
processes and threads, Scheme (1) outperforms Scheme (2), i.e., MPI processes provide more parallel
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efficiency than OpenMP threads, together with more advantages within nodes. A possible reason
is that the MPI model is employed outside the loop, basically throughout the whole program, that
is, the MPI environment is opened before the OpenMP environment. In this case, the MPI process
divides tasks before the OpenMP thread, resulting in more parallelism achieved by the MPI model in
our algorithm. In general, this phenomenon is more obvious in the case of a low dimension. As the
dimension increases, the parallel performance achieved by MPI is basically the same, while OpenMP
achieves higher performance in higher dimensions, although it is still worse than MPI. Moreover, the
MPI programming model inherently imposes better data locality than OpenMP.

14

121 e-M=4,MPI
-M=4,0penMP
101 ->-M=8,MPI
~-M=8,0penMP

o
3 8f Lo M=12,MPI
Q -
w 6
4t
-’-’ﬂ‘-&'ﬁz;
2 - "‘N—‘_..-"‘
r—_,‘ﬂ"‘
0 | I I
1 2 | | |

Number of processes or threads

Figure 5. Speed-up comparison between the MPI-only scheme and the OpenMP-only scheme.
The parallel performance is quantified by the speed-up metric (as defined above). Different lines
represent the results of different matrix dimensions. The blue line represents the results of Scheme (1),
while the red line represents the results of Scheme (2).

An additional experiment was conducted in Scheme (3) to evaluate the within-node parallel
performance of the hybrid MPI/OpenMP program. More specifically, the dimension was set to 8 in this
experiment. The number of MPI processes times the number of OpenMP threads was fixed to 24 to
fully utilize the 24 cores in one Tianhe-2 node: (a) 1 thread, 24 processes; (b) 2 threads, 12 processes;
(c) 3 threads, 8 processes; (d) 4 threads, 6 processes; (e) 6 threads, 4 processes; (f) 8 threads, 3 processes;
(g) 12 threads, 2 processes; and (h) 24 threads, 1 process. We compared the parallel performance of
these eight experimental groups. According to Table 3, Combinations (g) and (h) result in significantly
slower elapsed times and lower speed-up, while the other combinations have approximately the same
parallel performance. Hence, the combinations of MPI processes and OpenMP threads may influence
the parallel performance.

Table 3. Parallel performance of various combinations of MPI processes and OpenMP threads in one
single node.

Experimental Groups Elapsed Time (s) Speed-Up
(a) 1 thread, 24 processes 39.49 20.44
(b) 2 thread, 12 processes 41.61 19.40
(c) 3 threads, 8 processes 41.3 19.54
(d) 4 threads, 6 processes 41.50 19.54
(e) 6 threads, 4 processes 42.46 19.01
(f) 8 threads, 3 processes 42.53 19.00
(g) 12 threads, 2 processes 80.7 10.01

(h) 24 threads, 1 process 51.53 15.67
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In the scalability experiment, we attempted to identify additional parallelism in multinodes to
increase the parallel efficiency. The size of the problem and the number of OpenMP threads (export
OMP_NUM_THREADS = 24) were fixed, while the numbers of nodes and MPI processes were changed
from 1 to 5 to obtain five experimental groups. N represents the number of nodes, n is the number of
MPI processes, and the 24 cores of a single node in the Tianhe-2 supercomputer were fully loaded.
The acceleration rate denotes the ratio of the running time under one single node to the time under
multiple nodes. As illustrated in Figure 6, the result demonstrates that the multinode parallelism in
our hybrid MPI/OpenMP program has high scalability: the acceleration rate compared to a single
node maintains approximately linear growth as the number of nodes increases; hence, our HPC-based
MIGSD program can also realize high parallel performance in the case of multinodes. It is possible that
the additional overhead of between-node communication of our HPC-based MIGSD program is small.
In this case, it becomes much easier to evaluate the detection performance of the high-dimensional
HPD matrix.

ed b
h & n o
A Y
Y

Acceleration rate
(]

o W
N

_.
—
Q

=
n

N=1 N=2 N=3 N=4 N=5§

Number of nodes
Figure 6. Parallel performances of multi-nodes. The x-axis represents five experimental groups
under different number of nodes, where N represents the number of nodes. The y-axis represents the
acceleration rate.

4.3. Detection Performances for Various Dimensions of the Matrix

Facilitated by hybrid MPI/OpenMP parallel modeling, our approach leads to a significant
improvement gain over the MATLAB version. In this case, the detection performance can be tested
with high efficiency. In our experiment, the dimension of the HPD matrix M ranged from 8 to 72 with
an interval of 8. The number of sample data was K = 2M, the SNR varied from —10 to 20 dB with an
interval of 1 dB, and the multinode parallelism of our HPC-based MIGSD algorithm was employed for
this test.

According to Figure 7, the detection performance increases with the matrix dimension, that is the
effect of clutter on detection performance is becoming less and less, although the increase slows at high
dimensions. For a high-dimensional HPD matrix, the signal detection performance can be improved at
low SNR. When SNR is 5, the detection performance of the case that M = 48 has almost reached 1,
while the detection probability is very low in the case M = 8, the detection performance difference
between the two is more than 5 dB. It is possible that sufficient information on the clutter or the target
signal can be provided by the high-dimensional covariance matrix, which makes the algorithm achieve
better detection performance.
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Figure 7. Detection probability curves for various matrix dimensions. The number of dimensions
ranged from 8 to 72 with an interval of 8. The SNR denotes the signal-to-noise ratio, which varied from
—10 to 20 dB with an interval of 1 dB.

5. Discussion

The influence of the noise that is mixed into the signal on signal processing is a subject that merits
further study. However, due to the variety of clutter and the large amount of data, accelerating the
detection and processing of radar signals is a difficult problem. In this paper, we use the hybrid
MPI/OpenMP parallel model to overcome the high complexity and the large computational cost of
the MIGSD method. In addition, the detection performance of the MIGSD method with a variety of
dimensions is explored, which is especially important for practical applications.

The experimental results clearly demonstrate the following: (1) Parallel tools can accelerate the
MIGSD algorithm, and, interestingly, computer technology and signal detection are fused. (2) The
detection performance of the MIGSD algorithm varies with the dimension of the HPD matrix. The higher
the HPD matrix dimension is, the better the detection performance of the matrix information geometric
detector is.

For future research, we may focus on selecting a suitable PFA in the MIGSD method and on
using other HPC methods (e.g., acceleration methods that are based on GPU hardware) to complete
our HPC-based MIGSD program. Additionally, since the high memory usage becomes a substantial
problem as the dimension of the HPD matrix increases, we consider optimizing the serial MIGSD
algorithm; perhaps other Riemannian distance metrics are suitable.
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