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Abstract: The recent advancements in the fields of artificial intelligence (AI) and machine learning
(ML) have affected several research fields, leading to improvements that could not have been possible
with conventional optimization techniques. Among the sectors where AI/ML enables a plethora
of opportunities, industrial manufacturing can expect significant gains from the increased process
automation. At the same time, the introduction of the Industrial Internet of Things (IIoT), providing
improved wireless connectivity for real-time manufacturing data collection and processing, has
resulted in the culmination of the fourth industrial revolution, also known as Industry 4.0. In this
survey, we focus on the vital processes of fault detection, prediction and prevention in Industry 4.0
and present recent developments in ML-based solutions. We start by examining various proposed
cloud/fog/edge architectures, highlighting their importance for acquiring manufacturing data in
order to train the ML algorithms. In addition, as faults might also occur from sources beyond machine
degradation, the potential of ML in safeguarding cyber-security is thoroughly discussed. Moreover, a
major concern in the Industry 4.0 ecosystem is the role of human operators and workers. Towards this
end, a detailed overview of ML-based human–machine interaction techniques is provided, allowing
humans to be in-the-loop of the manufacturing processes in a symbiotic manner with minimal errors.
Finally, open issues in these relevant fields are given, stimulating further research.

Keywords: Industry 4.0; machine learning; fault detection; predictive maintenance; security; anomaly
detection; human–machine interaction

1. Introduction

Mankind has made significant advancements during the last 300 years, in the area of industrial
manufacturing. The first industrial revolution focused on mechanical innovations relying on steam and
water, while the second one leveraged electrification and advanced machine tools, further boosting and
improving the production output. Then, starting from the 1950s, the third industrial revolution adopted
increased digitization using semi-conductors and more recently, communication networks, paving the
way for automated manufacturing. During the last decade, artificial intelligence (AI) and machine
learning (ML) have been introduced in the manufacturing sector, enabling more efficient processes,
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sustainability with reduced waste and consumption of materials, safer working environments and
increased quality and productivity. AI/ML-based manufacturing can offer various manufacturing
innovations by providing fault detection and prediction, optimal use of raw materials and resources,
exploiting the heterogeneous big data analysis and the interconnected manufacturing plants [1–5].

1.1. Industry 4.0

The fourth industrial revolution (Industry 4.0) aims at providing an industrial environment
for real-time, intelligent, interoperable, and autonomous manufacturing environments [6]. In order
to realize this vision, Industry 4.0 is based on recent innovative information and communication
technologies, such as cyber-physical systems (CPS), Internet of Things (IoT) and cloud computing
(CC) [7], having attracted the research interest of the academia and the industry in a plethora of
applications [8]. CPS results in the interconnection of physical elements with cyber-elements [9].
More specifically, physical elements comprise components such as sensors, operator panels and
computers, collaborating and communicating to collect and provide data to cyber-elements where
management, processing and decision-making takes place [4,9]. Furthermore, IoT enables the real-time
interconnection of different objects, for example, sensors, actuators, machines and robots among
others, in a safe and reliable manner. At the heart of IoT lie heterogeneous communication networks,
including fifth generation (5G) networks, Wi-Fi, machine-to-machine (M2M) deployments and cloud
technologies (cloud, fog, edge) [10–12]. At the same time, humans should maintain an important
role in the Industry 4.0 environments, empowered with smart devices, virtual and augmented reality
(VR/AR), being in the loop of the manufacturing process and taking advantage of the AI/ML-based
decision-making [13]. Thus, considering these advanced technologies, Industry 4.0 promises to
radically change the current industrial production processes benefiting industrial stakeholders,
personnel and consumers, promoting environmental sustainability.

In the context of Industry 4.0, a plethora of applications is envisioned, providing flexibility,
competency, real-time self-optimization, and automation, as well as accomplishing complex tasks
and satisfying strict quality requirements in intertwined digital and physical procedures [8]. More
importantly, the relevant ubiquitous applications mainly span in the manufacturing and production
development areas [14]. To evolve these applications, fault detection, prediction and prevention play
a major role. With the contribution of ML algorithms, early and accurate fault detection can lead to
minimum downtime, owing to the recognition of damaged and defected products or parts, in real-time.
The wealth of data contributes to accurate prediction of machine condition, remaining useful life
(RUL), and faults, leading to an appropriate and cost-effective maintenance schedule, thus minimizing
the downtime, due to a fault occurrence [10,15]. The human factor has also an important role in the
production procedure of the Industry 4.0 ecosystem, whereas collaboration with robots and machines
is a critical challenge within factory halls. Human activity recognition and decision-making algorithms
increase operators’ performance, leading to efficient and safe production, as well as to the minimization
of ramp-up time.

1.2. Machine Learning

The application of ML algorithms requires the existence of a vast amount of data to trigger
decision-making in several industrial processes. In this regard, the implementation of novel
technological paradigms, such as CPS and IoT, enables the generation of different types of data
structures, as it has been observed in works focusing on Big Data Analytics (BDA) [15–17]. In general,
data has a specific life cycle (source, collection, storage, processing, visualization, transmission,
application) [18]. However, most of the time, the gathered data that will be processed in subsequent
steps, is confused with noisy data generated from the surrounding environment, making it difficult to
separate the original data set from noise. On the other hand, fast changing dynamic environments
and different machine working states impose significant challenges to ML-based fault detection,
prediction and prevention. Overall, the need for reliable and accurate real-time transmission and
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computation arises, while security issues are becoming increasingly serious, due to the increased level
of interconnection among the different subsystems [10].

The ML algorithms can be categorised into supervised learning, unsupervised learning,
reinforcement learning (RL) and deep learning (DL) algorithms [15]. Each category is briefly
described below.

• Supervised learning is a method where an expert inserts known outputs for specific inputs to train
the algorithm and is widely used for classification and regression [15,19,20]. Thus, supervised
ML is usually employed in scenarios with labeled data availability. Popular algorithms include
artificial neural networks (ANNs) and support vector machines (SVMs) [15,19,21].

• Unsupervised learning where there is no feedback provided from anyone and the algorithm finds
patterns in unknown data sets (clustering, association rules, self-organised maps) [15,19,21] and so,
unlabeled data are used for training purposes. The most popular and well-known unsupervised
algorithm is principal component analysis (PCA), mainly used for monitoring purposes [19].

• Reinforcement learning refers to unsupervised ML operation, examining if a chosen action
resulted in a reward, for a specific performance metric [15]. RL demands sequential actions and
tries their outcome, selecting those better fitting the problem at hand. So, RL significantly departs
from other learning categories which are based on leveraging historical data, creating intelligence
from previous decisions and rewards.

• Deep learning where multiple layers have been employed in order to build an ANN, which is able
to make intelligent decisions, handling large amounts of data with high complexity, without any
human intervention [15,22,23]. Some DL algorithms are convolutional neural networks (CNNs),
restricted Boltzmann machine (RBM) and auto-encoders (AE) [23].

In Figure 1, the different ML categories are summarised and their key characteristics are
highlighted. It is evident that as the Industry 4.0 era is upon us, there exists an ever increasing
adoption level of ML algorithms to satisfy the needs of different aspects of industrial settings. These
include process monitoring and quality control, fault detection and diagnosis, as well as machine
health monitoring and predictive maintenance [24]. Moreover, the capabilities of ML, regarding
the timely processing of an abundance of data are critical to safeguarding the cyber-security of the
Industrial Internet of Things (IIoT) enabled interconnected manufacturing environments, accurately
detecting and mitigating threats [22,25].

Supervised Learning Unsupervised Learning

Reinforcement Learning

Labeled data

Direct feedback

Predict outcome

No labels

No feedback

Find hidden structure

Decision process

Reward system

Learn series of actions

Deep Learning

Feature extraction

Classification

Figure 1. Various machine learning (ML) categories and their key characteristics.
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1.3. Previous Survey Works

The research area of Industry 4.0 has received several contributions in recent years. The survey in
Reference [10] presented an overview of CPS in IIoT settings, giving in detail a relevant architecture,
enabling the control of systems and processes, while ML was presented as a promising solution for
CPS. Then, the authors of Reference [16] provided a thorough analysis of the role of BDA in IoT and a
taxonomy of ML algorithms in BDA-enabled applications, such as self-maintenance, self-prediction
and self-configuration. Furthermore, an overview of ML for manufacturing systems was given in
Reference [15], discussing implementation issues, as well as the benefits and drawbacks of different
categories of ML algorithms, including supervised, unsupervised and RL algorithms, concluding
that currently, supervised ML techniques are most appropriate for smart manufacturing. Next, the
work in Reference [19] discussed the use of BDA in the process industry and its dependency on ML.
More specifically, several supervised and unsupervised ML methods were presented, suggesting
that semi-supervised solutions have the potential to provide better trade-offs among implementation
complexity, performance and data requirements. In addition, a detailed survey of big data structure and
analytic techniques for CPS were examined in Reference [21]. In this context, descriptive (clustering,
correlation) and predictive analytic techniques were evaluated.

In the area of machining processes, the impact of ML solutions was presented in Reference [20].
Several machining cases were listed and a brief presentation of ML-based tool wear monitoring and
prediction was included, outlining its potential. Regarding the field of smart manufacturing, the role
of DL was investigated in Reference [23]. In greater detail, the evolution of DL and its advantages
in processing heterogeneous and highly complex data, compared to conventional ML solutions,
as well as various DL-based computational methods for improving manufacturing processes were
highlighted. Next, the article in Reference [26] focused on three areas for AI/ML application, that is,
faster convergence in environments with partial and intermediate AI/ML integration with a single
optimization iteration, deep active learning towards optimal topologies through multiple iterations
without neglecting the benefits of exploration-exploitation trade-offs and finally, knowledge-based
assistants for improved human–machine interaction (HMI) by translating the optimal topology to a
concept design, leveraging relevant metadata of historical expert decision.

The study in Reference [27] examined several works on ML-based optimization in the areas of
product quality and process improvement. The interdependencies among the used data, the amount of
data, the ML algorithms, the adopted optimisers and the specific production problems were discussed,
concluding that often, their correlation is not carefully investigated, thus leading to highly complex
models, being trained with insufficient amounts of data, exhibiting overfitting and low interpretability.
Next, the authors of Reference [28] introduced research strategies for industrial big data collection in
intelligent environments, ontology modeling and deduction methods, as well as predictive diagnostic
solutions for production lines, relying on deep neural network (DNN) and DL in cloud-assisted devices
with self-organised reconfiguration capabilities.

An overview on anomaly detection on industrial wireless sensor networks (IWSN) was given
in Reference [25], comparing ML methods, including K-nearest neighbor (KNN), SVM, ANNs and
hybrid schemes. Finally, the study in Reference [29] offered a deep insight on data mining techniques
for production management, focusing on production scheduling, quality improvement, defect analysis
and fault diagnosis. Still, ML-based solutions were not thoroughly presented, thus leaving a gap in the
literature. Table 1 provides the summaries of the relevant surveys and possible AI/ML-based solutions
that they might discuss within the Industry 4.0 area.
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Table 1. Relevant surveys and tutorials on artificial intelligence (AI)/ML and Industry 4.0.

Reference Short Description Scope of ML in Industry 4.0

Xu H. et al., 2018 [10] CPS aspects in IIoT IIoT, cloud/edge computing,
sensing and decision-making

Rehman et al., 2018 [16] The role of BDA in IIoT ML-based BDA for
self-organization and prediction

Wuest et al. , 2016 [15] ML’s role in manufacturing Focus on supervised
learning for fault diagnosis

Ge et al. , 2017 [19] Data mining and BDA
in the process industry

Supervised, unsupervised and
semi-supervised learning for BDA

Kim et al., 2018 [20] Overview of ML
in machining processes

Brief summary on tool-wear
and condition monitoring

Xu L. D. et al., 2018 [21] Interaction of big data and
CPS in Industry 4.0 Nothing in particular

Wang et al., 2018 [23] DL for smart manufacturing Brief overview of
fault detection and prediction

Ramotsoela et al., 2018 [25] Overview of anomaly
detection in IIoT

Presentation of
implementation aspects

Aggour et al., 2019 [26] AI/ML use cases for
manufacturing and inspection

Presentation of specific
applications for component

inspection and life prediction

Weichert et al., 2019 [27] ML for process optimization
Focus on production

quality, brief overview of
fault detection and prediction

Xu X. et al., 2017 [28] Strategies for BDA, ontology
modeling and deduction

Brief overview of DL
for predictive diagnostics

Cheng et al., 2017 [29] Data mining and BDA
for production management Nothing in particular

This survey ML-based fault detection,
prediction and prevention

Classification and analysis of ML
for fault detection, predictive

maintenance, HMI and security

1.4. Contributions

This survey aims to provide a comprehensive overview of ML-based solutions for fault detection,
prediction and prevention in Industry 4.0. Currently, limited automation of fault detection, prediction
and prevention is observed. This trend necessitates staff training towards efficiently using conventional
software diagnostic tools. In this way, manufacturers are dealing with increased costs and suboptimal
use of human resources. In addition, such manual methods are incapable of early fault detection,
adapting to the dynamicity of fault sources and learning new fault types from the abundance of
manufacturing data. At the same time, faults may be caused by external sources, such as human errors
or cyber-attacks, and so, this survey discusses ML solutions in the fields of HMI and cyber-security. The
presentation of a holistic approach on tackling faults in Industry 4.0 contexts, independently of their
sources, either being machine tool wear, cyber-attacks or inefficient human–machine collaboration, as
well as the detailed analysis of relevant cloud/fog/edge architectures, significantly differentiates our
survey from other recent works. More specifically, the following contributions are given:

• An extended discussion on the proposed cloud/fog/edge architectures to enable the
acquisition and processing of heterogeneous data in Industry 4.0 for intelligent monitoring
and decision-making in fault detection and prediction is provided.
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• A thorough presentation of supervised, unsupervised and deep learning solutions in the fields of
fault detection and predictive maintenance is given.

• Cyber-security issues and ML-based solutions are discussed, emphasizing on the gains that they
provide compared to conventional techniques.

• ML-based HMI aiming to keep humans-in-the-loop of the manufacturing process is presented.
• Open issues are discussed, highlighting the necessary advancements that should be made to

enable the Industry 4.0 and beyond vision.

Also, in Figure 2, various cases of AI/ML solutions for fault detection, prediction and prevention
are depicted. In the following sections, all these areas are thoroughly discussed and details on the
impact of ML-based implementations is highlighted.

Fault Detection

Human-Machine

    Interaction   

Security

Thread Detection

  Predictive Maintenance

Observations

 Fault Prediction and

    Action Selection

Cloud | Datacenters

Fog | Nodes

Edge | Devices

IIoT

Training Datasets
!

Real-Time Data Processing and Analytics

ML Algorithms

Figure 2. Applications of AI/ML in Industry 4.0 fault detection, prediction and prevention.

1.5. Structure

Figure 3 depicts the ML-enhanced aspects in the context of Industry 4.0, being presented in this
survey. Stemming from this classification, the rest of the paper is organised as follows. In Section 2,
an overview of cloud/fog/edge architectures for the integration of ML for fault detection, prediction
and prevention is provided. Then, Section 3 presents and classifies ML techniques tackling fault
detection, while Section 4 includes relevant ML solutions for predictive maintenance of machinery and
tools. Next, Section 5 highlights the main security and threat detection issues, towards minimizing the
impact on the manufacturing processes while Section 6 discusses ML in the context of HMI. Finally,
open issues are given in Section 7 and conclusions are drawn in Section 8.
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Figure 3. Structure of this survey.

2. Cloud/Fog/Edge Architectures

As the IIoT constitutes an emerging network paradigm bridging physical and cyber-entities in
CPSs, a combination of interconnected components, cloud and service-oriented computing, as well as
real-time analytics can potentially support challenging industrial scenarios and improve productivity
in a cost-efficient manner. However, a huge amount of data is typically generated by the sensor devices
in particular situations, such as the manufacturing inspection that deals with the detection of product
defects. Although decentralised and autonomous decision-making and reliable real-time control are of
paramount importance, conventional cloud computing naturally falls behind, owing to the centralised
computing processing and the requirements for persistent connectivity. On the contrary, fog computing
goes beyond and supports computation offloading of heavy tasks via autonomously and locally
operated IIoT nodes, being close to the edge of the network, which in turns leads to decreased network
traffic, improved scalability and efficiency, and enhanced security [30]. Recently, cloud/fog/edge
architectures for data-intensive IoT applications, relying on efficient knowledge extraction from data
existing in different areas of the decentralized hybrid clouds and within data lakes, in the form of
unstructured data, were presented [31]. In the meantime, using ML at the edge can offer advanced
prediction capabilities and efficient resource management given the resource-constrained nature of
IoT-based devices. Next, recent research approaches based on ML technologies that promise to remedy
the aforementioned challenges are described.

In Reference [32], an industrial CPS was described that employs fog computing and facilitates
the delivering of real-time embedded ML applications through cyber-physical industrial interactions,
while attaining security and privacy. More importantly, the cloud platform stored production-ready
ML models in industrial operations, encoded as predictive modelling markup language (PMML) for
various applications, which were divaricated and executed by the locally deployed fog nodes. Then,
real-time predictions and decision-making, for example, control changes, could be provided without
requiring persistent connection to the cloud. A three-layer architecture was proposed, where the
sensing layer acquired real-time data measurements and incorporated a software agent to facilitate
the communication between physical and cyber-environments. At the same time, the fog layer
undertook the reception of inbound data streams and execution of PMML-encoded ML models, while
the cloud layer was responsible for maintaining the metadata about each fog gateway in a global
repository. It was noted that the PMML model was based on an existing SVM supervised learning
model formally defined by a separating hyperplane, which is capable of predicting faulty heating
operations by performing linear and non-linear classification and regression analysis in labeled training
data. A comparison and performance assessment through multiple load/stress tests in industrial
control processes between the underlined CPS and conventional cloud-based systems was performed,
in terms of reliability and consistency. The results revealed the superior performance of AI-aided
fog/cloud computing in several real-time decision-making and self-optimising engineering scenarios,
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where circumstantial failures may occur. Although the proposed architecture has significant benefits,
it also has constraints mainly owing to the inadequate processing capabilities of fog nodes.

A reference four-layer cloud-assisted smart factory architecture was presented in Reference [33]
that consisted of a smart device layer, a network layer, a cloud layer, and an application layer.
By integrating these layers and applying AI techniques to each of them, a unified and coordinated
smart factory environment can be realised that ensures flexibility, reliability, and efficiency. The smart
device layer comprised basic smart devices in the production cycle, for example, robotic arms and
automated guided vehicles (AGVs) and suggested the application of AI to machine vision and path
planning applications. Besides, the network layer mainly included IWSNs, where the AI algorithms
aim at improving the device-to-cloud (D2C) and device-to-device (D2D) communication and enhance
the network resource distribution and load balancing. Moreover, exploiting AI in the cloud layer
can effectively improve the processing of large-scale manufacturing data and resource management.
Finally, adopting AI in the application layer resulted in dynamic preventive maintenance, resource
reconstruction, and context-aware services. Nevertheless, technical challenges regarding the large
amount of diverse and unstructured data, the system complexity and heterogeneity, the resources
allocation, and the cloud security also exist and should be handled.

A CPS IoT-based architecture for manufacturing processes that supports multiple products,
internal tasks and intermediate outsourcing flows was proposed in Reference [34]. To continuously
improve the overall quality of the processes and dynamically control the mixed data flow issues
from internal/outsourcing processes, a cloud computing control server was implemented, where the
developed IoT beacons detected the status of the production machines and processes, collected sensor
data, and wirelessly interacted with this server through the IEEE 802.11ac protocol at 5 GHz. Besides,
the Intel IoT Analytics cloud module [35] was responsible for the data gathering task. To further
strengthen the proposed architecture by introducing prediction capabilities, DL-based analytics were
exploited to process the data and execute the fault detection classification. As indicative paradigms of
the application of this architecture, the manufacturing processes for vehicles’ high intensity discharge
headlight and cable modules were considered. More specifically, three learning algorithms were
tested; the supervised learning support vector regression (SVR) that can perform real-value function
estimation, the radial basis function (RBF) that can be used in various kernelised learning algorithms
and in function approximation, and the deep belief learning-based DL (DBL-DL) that includes four
layers, that is, one visible layer handling inputs from IoT sensors, two hidden layers extracting
classification features and one output layer. Among them, the DBL-DL model was the most efficient
for recognizing defect types. However, it is highly important to develop and apply accurate and fast
analytics in the cloud layer along with big data techniques.

In an effort to accurately and in real-time detect the types and degrees of product defects in
multiple assembly lines of industrial environments, a robust inspection system, named DeepIns, was
implemented in Reference [36] aided by fog computing to offload the computation process to fog
nodes and a DL-based CNN classification model. This model contained lower-level CNN layers to
facilitate feature extraction during data uploading, as well as higher-level CNN layers to realized defect
classification and degree regression. The proposed system was capable of processing big data with
low response latency and network traffic and combined three modules; the fog-side and server-side
computing modules and the back-end communication module. To investigate the performance of this
system, image processing was realised using image filters, detecting surface defects by pixel chip pads.
The data set included ten categories of defects, each of which contained 200 images for training and
50 images for network testing. The experimental results demonstrated the robustness and efficiency of
the proposed method, regarding the recognition of defects against two well established methods, that
is, the contour detection approach that uses contour classifiers to determine the category of defects and
the pixel-based method that uses a classifier trained with pre-defined pixel-based features of input data.
To further improve the efficiency of this system, multiple fog devices should be simultaneously used.
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In Reference [37], a three-layer distributed ML model for an industrial monitoring system was
presented that processes the data stream in the fog and intends to save spectrum and minimize the
energy consumption by restraining unnecessary uplink data transmission. This model incorporated
an IIoT cloud back-end storage point, implemented using the ThingsBoard platform, a fog middle
layer, implemented using small resource-constrained Raspberry Pi devices, and a lower IWSN layer,
consisting of TelosB motes with sensor devices and a gateway. The proposed model includes both
learning and monitoring tasks in the sensor device, as well as simulation of the data streams in the
fog node. The sensor nodes initially send information data to fog nodes, triggered by changes in the
values of certain model parameters. The fog node simulates the data streams and recognizes local
anomalies and faulty behavior of sensor devices, whereas the cloud gathers the local information from
the fog node. To verify the performance of this model, a real-world test-bed was implemented with
three different indicative noisy data streams as input, while a moving average model was used as
a reference model for comparison purposes. According to the results, the proposed model reduced
up to 98% the packet transmission attempts by sensor devices with minimal accuracy loss, whereas
the end-to-end delay was constrained to 180 ms. By reducing its complexity, the proposed model can
be used in devices with limited resources. Also, effectively prioritizing the packets can increase the
reliability and flexibility of this model.

Since the wireless channels of IIoT are highly dynamic, typical techniques that enhance energy
efficiency and extend the battery lifetime, for example, predictive transmission power control, cannot
be directly applied. To overcome this issue, a forward centralised dynamic approach was proposed in
Reference [38] that effectively manages the execution time and transmission power level of sensing,
processing, and transmission processes of AI-driven IIoT devices at the edge. More importantly,
FCDAA aims at adaptively optimizing the sleeping time of IIoT devices and the transmission power,
while attaining enhanced reliability. A system-level battery model was also reported that inspects the
duty-cycle and energy dissipation in these devices, along with a data reliability model over hybrid
transmission power control and duty-cycle network associated with the wake-up and sleep periods of
devices. To experimentally test the performance and reliability of the proposed method, an appropriate
test-bed with IoT devices was implemented and industrial data sets were generated and processed.
The Monte Carlo simulation results demonstrated the high reliability of this method in both static,
that is, product processing and dynamic, that is, vibration and fault diagnosis, industrial applications,
where the received signal strength indicator and the packet loss ratio were the key performance
indicators. Although the integration of TPC and duty-cycle management mechanism for AI-based IIoT
devices increases the complexity of the proposed FCDAA and the delays, this integration meaningfully
decreases the energy consumption.

In Reference [39], a fog computing-based framework was described for remote sensing, monitoring
of the health conditions of equipment, and fault detection in industrial environments. By enabling
fog computing, this framework aims at attaining low network latency while ensuring reliability,
scalability, and cost-effective storage of huge amounts of data. Also, this framework included an online
process monitoring system, collecting real-time data, IWSNs, communication protocols, and ML-based
predictive analytics. The competence of this framework was evaluated by conducting a real-world
experiment on a factory floor that involved monitoring of the vibrations and energy consumption
of pumps in a power plant and computer numerical control (CNC) machines. To gather real-time
data, multiple wireless sensors, that is, current transducers and accelerometers, were installed on
pumps and CNC machines. Each sensor was equipped with a ZigBee wireless module, in order to
transmit the measured sample data sets to the private cloud, whereas sample data sets were sent to
the Azure public cloud for data analysis. A supervised random forest (RandF) ML algorithm was
used on the Amazon elastic compute cloud (EC2) for the development of a predictive model. This
ensemble learning algorithm constitutes a simple and flexible method for classification and regression
and consists of tree-structured classifiers. Based on this algorithm, multiple decision trees, which
provide a classification for input data, are randomly created and merged into one “forest”. Then, the
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algorithm collects the relevant classifications and generates the prediction. The results underlined the
accuracy of the predictive model, as well as the short training time associated with it.

Table 2 includes the targets of the various architectures and the ML solutions that they support in
the context of Industry 4.0.

Table 2. Target of cloud/fog/edge architectures and respective ML solutions for Industry 4.0.

Reference Target of Relevant Architecture ML Solution

O’Donovan et al., 2018 [32] Minimisation of failures
and latency reduction SVM

Wan et al., 2018 [33]
Improvement of D2C and D2D
communication and resource

management optimization

General approach for
various AI/ML solutions

Lee et al., 2017 [34]
Improvement of process

quality and dynamic
mixed data flow control

SVR, RBF, and DBL-DL

Li et al., 2018 [36] Detection of defect
type and degree CNN

Lavassani et al., 2018 [37] Reduction of spectrum usage
and energy consumption Distributed sensor learning

Sodhro et al., 2019 [38]
Sensing and processing

execution time management
and transmit power reduction

General approach for
various AI/ML solutions

Wu et al., 2017 [39]
Latency reduction,

reliability improvement and
scalability provisioning

RandF

3. Fault Detection

In the context of Industry 4.0, fault detection and diagnosis is a crucial and demanding process
due to the autonomous and self-optimised operation of machines and the wealth of data that is
collected in real-time [40]. Currently, the use of diagnostic software for functional tests involves
actual manufacturing data in real settings, providing poor diagnostic accuracy while technicians
are required to perform several debugging rounds, as well as physical probing to identify the root
cause of faults, thus demanding increased amounts of time for repairs, reaching several days or even
weeks [41]. In ML-based approaches, the big data that is acquired by the monitoring system must
be timely processed in order to correctly detect abnormal operation and faults. Fault detection and
diagnosis mainly involves three steps, that is, data collection, data processing for feature extraction and
finally, fault classification [42]. Relevant solutions for fault detection are mainly based on supervised,
unsupervised and deep learning methods.

3.1. Supervised Learning-Based Solutions

In the area of supervised learning, several studies have employed ML methods to tackle issues of
industrial fault detection and diagnosis. In Reference [41], the authors targeted the development of an
automated diagnosis tool for circuit-boards, in order to reduce human effort and improve the diagnostic
accuracy. The intelligent detection and diagnosis solution relied on three ML classification methods,
that is, ANNs, SVMs and weighted-majority voting (WMV), where the latter combined the benefits
of ANNs and SVMs. These methods were trained using repair history data while, fault instances
stemming from failure logs and subsequent repair actions were exploited to train the classification
models. The comparison in terms of accuracy and resolution among the three ML methods and
conventional diagnostic software showed that WMV provided the best performance, offering optimal
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repair guidance. Moreover, the proposed ML-based methods represent significant improvements
compared to conventional manual fault detection and diagnostic software. From the performance
evaluation, when three attempts are performed, according to the proposed optimal repair suggestion
set, the accuracy of the conventional diagnostic software falls below 50% while the adoption of the
ML-based diagnostic system allows more faulty boards to be successfully repaired, reaching up to
77.5% in low volume manufacturing and 98.7% in high volume. Nonetheless, in Reference [43], it
was shown that the accuracy of these methods may be compromised in cases where repair logs are
fragmented, resulting in missing errors, or syndromes during the diagnosis process. Thus, as missing
syndromes might lead to erroneous repair guidance, the authors presented a board-level fault diagnosis
system to mitigate their effect in different ML models. In greater detail, the log files containing the
syndromes from a faulty-board were analysed and preprocessed prior to root-cause analysis. The ML
methods included SVM, ANN, Naive Bayes, and Decision Tree and were implemented on WEKA [44],
using training data from two synthetic boards and two industrial boards. The extensive performance
evaluation showed that the fault diagnosis performance significantly varies, depending on two factors.
Firstly, different ML algorithms perform better under different missing-syndrome handling methods,
for example, ANN is superior when label imputation is adopted, while its performance deteriorates
under the decision-tree model. Secondly, the fault diagnosis systems may set different goals, including
not only high fault detection and diagnosis accuracy, but also the reduction of irrelevant syndromes.

Another work investigated the impact of imbalanced data sets on the performance of SVM binary
classifiers [45]. In these cases, employing sampling methods like the synthetic minority oversampling
technique (SMOTE) can balance the data set prior to training by a classifier. Still, in nonlinear problems,
SMOTE experiences difficulties as minority instances in the feature space of the classifier, instead
of the input data space are generated. In order to overcome this limitation, weighted kernel-based
SMOTE (WK-SMOTE) was presented, performing oversampling in the SVM classifier’s feature space.
WK-SMOTE was shown to improve the performance of detecting the stage of degradation in the
insulation of high-voltage electrical machines in comparison to other methods, according to multiple
trials of imbalanced data sets. More specifically, when WK-SMOTE is applied on this multi-class
imbalanced classification problem, the highest G-Mean score, equal to 0.371 is achieved, as well as
the best accuracy equal to 88.1%, among the compared algorithms. Similarly, supervised ML for fault
detection with imbalanced data and concept drifts, that is, changes in fault patterns, due to machinery
aging or after repair/replacement was examined in Reference [46]. For this purpose, ensemble learning
was adopted, integrating several offline classifiers and a three-stage method was developed to detect
abnormal machine operation in a smart factory. During the first stage, an ensemble classifier was
trained using an improved dynamic AdaBoost.NC classifier and the SMOTE method was adopted to
reduce the effect of data imbalance. Then, in the second stage concept drifts in imbalanced data were
detected, employing a linear four rates method. Finally, the third stage created a new ensemble, by
relying on AdaBoost.NC and SMOTE. The experiments that were conducted with imbalanced data
sets, revealed that the proposed method can successfully detect abnormal operation with an accuracy
rate in minority-class data of over 94%. Detailed comparisons between ML methods were presented in
Reference [47] for fault detection in semiconductor manufacturing with imbalanced data. In greater
detail, three sampling-based, four ensemble, four instance-based algorithms, and two SVM methods
were evaluated, in two cases, with each one comprising 50 data sets. In the first case, etching process
data was acquired while the second case was based on chemical vapor deposition process data. From
the trials, it was shown that the instance-based algorithms exhibited the best performance, in terms
of G-mean, F-measure, and area under the curve, even when the imbalance ratio increased. Thus,
for settings where wafer defects stem from different process parameters, while the available training
samples lie in a small subregion of the space form from these parameters, defective patterns can be only
learned within this subregion. So, efficient model training necessitates the availability of defective data
from the majority of the defective patterns, even if they occur with low frequency. Still, instance-based
fault detection addresses such issues, surpassing the unavailability of defective samples.
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Next, the development of a monitoring system, leveraging the availability of big data from
an automotive manufacturing plant was the subject of Reference [48]. As real-time monitoring is
necessary to avoid sudden interruptions in the production process, IoT sensors collecting a wide range
of data, such as temperature, humidity and measurements from accelerometers and gyroscopes were
used. Fault prediction was based on a hybrid prediction scheme, consisting of density-based spatial
clustering of applications with noise (DBSCAN) to detect outliers and RandF classification to remove
outliers prior to fault detection. Furthermore, this hybrid scheme was tested at a real automotive
manufacturing plant and results suggested that hybrid DBSCAN-RF can offer improved accuracy,
compared to classification methods, such as Naive Bayes, RandF and multilayer perceptron, among
others. In greater detail, DBSCAN achieved an accuracy of 100%, compared to other classification
models, while DBSCAN-based outlier detection with RandF improved the accuracy of standalone
RandF by 1.462%. At the same time, the integration of DBSCAN with Naive Bayes, logistic regression,
and multilayer perceptron improved the performance of their conventional versions by 3.173%, 0.567%,
and 2.026%, respectively.

3.2. Unsupervised Learning-Based Solutions

Regarding unsupervised learning methods, there have been various works presenting fault
detection solutions. The authors of Reference [49] aimed to alleviate the burden of manual fault
information extraction, relying on previous knowledge and diagnostic skills, by developing an
intelligent fault detection scheme. So, a two-stage unsupervised learning method using a neural
network (NN) was employed, where in the first step, sparse filtering for feature extraction from the
mechanical vibration signals was performed. After, the second step was based on softmax regression
for automatic classification of the machines’ health conditions. The proposed method was validated
in two scenarios, that is, fault detection for motor bearing and locomotive bearing, showing that, as
the volume of unlabeled data increased, the accuracy performance was improved. The proposed
two-stage unsupervised learning with an NN improved the accuracy of fault diagnosis as number
of the unlabeled data increased. Furthermore, the weight vectors of sparse filtering exhibited similar
properties to Gabor filters, serving as excellent band-pass signal filters, providing an insight on the
way that unsupervised feature learning deals with mechanical signals.

Then, for renewable energy systems, based on wind turbines, the work in Reference [50]
introduced an autoencoder and explored its application on fault classification from collected raw
vibration signals, integrating both supervised and unsupervised learning methods. More specifically,
a fault diagnosis scheme consisting of multiple hierarchical extreme learning machines (ELM) was
presented, concatenating a forwarding list of ELM layers, with each one performing independent
data processing. ELM represents a learning method that is suitable for multi-class classification, due
to its multi-input structure and single-hidden feed-forward networks, achieving better performance
compared to SVM [51]. ELM performs representational learning towards data preprocessing, feature
extraction and dimension reduction. During data preprocessing, the ELM-based autoencoder was
used for data representational learning, providing the feature reconstruction and in the next step, the
ELM network extracted a compressed low-dimensional representation. The ELM-based autoencoder
increased the classification accuracy by 5–10% when compared with other popular classifiers, such
as SVM and relevance vector machine (RVM), searching the optimal solution from the constructed
feature space. So, it was revealed that accuracy and efficiency of multiple fault detection for wind
turbines can be enhanced, while this solution can be scaled to other industrial settings.

Unsupervised learning solutions for CPS have been developed in Reference [52]. Focusing on
monitoring the machine spindle during its operation in a CPS, multidimensional classification using ML
clustering was developed. The main target of the clustering algorithms was to partition the collected
data set into clusters, by evaluating metrics, such as Euclidean distance or probability distributions, that
do not consider the physical interpretation of each variable, thus resulting in uncoupled knowledge
discovery. In addition, a performance comparison was conducted for the three clustering algorithms
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that were employed, that is, K-means, hierarchical agglomerative and Gaussian mixture models,
evaluating their accuracy to spindle performance knowledge during high load operation. It was
concluded that, although the Gaussian mixture model incurred higher implementation complexity, it
was capable of detecting clusters that were more relevant to the operating conditions. Additionally, the
agglomerative algorithm provided a detailed analysis of the cycle’s but it was severely influenced by
inherent variables, such as angular speed, leading to possible interference during knowledge discovery.
Finally, K-means clustering performed similarly to the hierarchical agglomerative algorithm but it was
adequately faster, thus enabling rapid data set analysis.

3.3. Deep Learning-Based Solutions

In order to improve the performance of fault detection and overcome the limitations of
conventional ML methods, DL-based solutions have been developed. DL relies on raw data and
multiple layers, with each one designed to be simple and non-linear, being able to automatically create
new representations of the data and provide accurate detection or classification [53].

In industrial applications, where fault detection uses noisy mechanical data, a DL solution named
LiftingNet was presented in Reference [54]. LiftingNet can be adaptively trained using mechanical
data sets and perform classification without pre-defined features. For validation purposes, two motor
bearing data sets were used, that is, the Case Western Reserve University (CWRU) and a motor bearing
data set with varying rotating speed. It was shown that LiftingNet was able to adapt to different tasks
and provide fault classification, even using only noisy mechanical data, surpassing the performance of
conventional SVM classifiers, in cases where the desired data is usually difficult to trace and process.
Still, LiftingNet was characterised by three limitations. Firstly, fault severity could not be assessed, as
the amplitude of mechanical data was normalized in order to feed the various rotating speed signals
into the network. Secondly, fast training and overfitting prevention techniques were not applied, thus
limiting its performance. Thirdly, better designs for the loss function and the final classifier should be
integrated, towards improving the behavior of LiftingNet. Another paper examined fault pattern and
crack size identification by exploiting mechanical data and more specifically, vibration acceleration
signals from machine bearings [55]. Thus, two-layered bearing fault detection was developed, relying
on a hybrid feature pool extracting information from the raw vibration signals, addressing their
non-stationary behavior, due to different crack sizes. Then, sparse stacked autoencoder (SAE)-based
DNNs were employed for data classification. From the results, it was highlighted that the proposed
two-layered bearing fault detection method improved the detection accuracy, compared to SVMs
and back-propagation NNs (BPNNs) alternatives, for varying fault severity, independently of the
nonlinearities in the vibration signals. Still, for roller fault identification, its performance was slightly
degraded, underpinning the need for improved signal processing algorithms.

The issue of handling changes in the signal features and performing early fault detection was
discussed in Reference [56]. Due to these variations, it is challenging to decide whether or not, they
stem from abnormal mechanical faults or scheduled changes during machine operation. Aiming to
tackle this problem, a three-step early fault detection method, applicable in time-varying workloads
was given in detail. In the first step, DL was adopted for the automatic selection of the impulse
responses from long-term mechanical vibrations. Next in the second step, an algorithm was developed,
extracting the properties of machine tools from the selected impulse responses. Then, the third
step involved an indicator based on these properties, being used for health status prediction of the
machinery. The DL-based solution was evaluated, using a large volume of data during a period of
228 working days in an automobile factory. It was shown that the reliance on the extracted dynamic
properties offers significant improvement in health prediction, compared to conventional signal-based
features, such as time-domain features, frequency-domain features and wavelet transform.

The detection of failures in the gearbox of mechanical equipment, and more specifically wear,
pitting and broken teeth that may cause interruptions and workers’ injuries, was the topic in
Reference [57]. Since current data-driven solutions have limitations due to using specific data classes,
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it is necessary to study various data characteristics to improve the detection accuracy. As a result,
the developed DL-based solution performs data acquisition of mechanical vibration signals, deriving
representative features. Then, an NN for fault detection was constructed, based on the multi-layer
gated recurrent unit (MGRU) model. MGRU provides feature representation with stronger similarity to
the original data. So, each neuron layer, sequentially learned more abstract representations and offered
better classification results. Regarding the accuracy performance, MGRU improved the accuracy of
gear fault detection without incurring excessive computational complexity, when compared to the
long short-term memory (LSTM), the multi-layer LSTM (MLSTM) and the gated recurrent unit (GRU)
model. Then, the separability analysis showed that MGRU was able to extract the information from
the plethora of mechanical signals and efficiently identify the different fault types. Moreover, MGRU
exhibited strong robustness against the variations of parameters in the experiments, maintaining
a stable classification accuracy. Further advancements to DL for fault detection, due to machine
bearing, were reported in Reference [58] where a snapshot ensemble CNN (SECNN) was proposed.
Snapshot ensemble learning based on the cyclic learning rate (CLR) scheduler and the combination of
local minima has the potential to improve fault detection performance but requires experience-based
pre-defined CLR information. In order to automatically determine the appropriate learning rate for
SECNN under different data sets, a three-step approach was given. Initially, max-min cosine cyclic
learning rate scheduler (MMCCLR) was designed to mitigate the effect of other parameters on the
learning rate. In the next step, a new learning rate testing, namely logLR Test, was employed for
proper learning rate range estimation of the MMCCLR. The proposed SECNN with MMCCLR was
experimentally tested using the bearing data set of CWRU, the self-priming centrifugal pump data
set, and the bearing data set of the machinery failure prevention technology. From the results, it
was concluded that SECNN with MMCCLR surpassed other baseline methods, based on stochastic
gradient descent (SGD), including SGD with decay ratio (SGD-Decay) and stepwise decay (Step-Decay).
However, some limitations were highlighted, regarding SECNN. More specifically, it was observed
that SECNN did not consider imbalances among normal and fault data. At the same time, pre-defined
fault types should be often used for training, thus resulting in incorrect classification of faults that did
not exist in the training data set.

In a different setting, fault detection for computer-based assembly lines of the automotive industry
was studied in Reference [59]. This process is usually performed through boundary checking while
the analysis of complex non-linear signals is manually performed by experienced personnel. Thus,
a DL-based automated fault detection and isolation (FDI) method was presented, using the individual
signals from various software and hardware sources of the assembly line. After, data encoding took
place and signal values corresponding to categorical entities were encoded through one-hot-encoding.
At the same time, for continuous signals, a specific range was considered and divided into a fixed
number of bins, based on the statistical properties of the signal. In order to detect correlations among
different inputs, the spatial transformation of the input space into a vector-space embedding was
performed through a set of deep auto-encoders (DAEs). As the continuous space of vector embedding
requires further processing in order to correspond to specific system states, hierarchical clustering
processed the extracted features from the DAE. From the performance evaluation, it was demonstrated
that the proposed DL-based FDI was capable of processing and modelling the large volume of
multi-type spatial-temporal manufacturing data, at a high accuracy, in real-time working conditions,
surpassing alternative methods, including template-based, rule-based and Bayesian-based FDI.

Table 3 summarizes the industrial settings and the ML solutions that were adopted for fault
detection and diagnosis in Industry 4.0.
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Table 3. Fault detection setting and respective ML solutions for Industry 4.0.

Reference Fault Detection Setting ML Solution

Maier et al., 2013 [41] Automated detection
for circuit boards ANNs, SVMs and WMV

Jin et al., 2016 [43] Missing syndromes due
to fragmented repair logs

SVM, ANN, Naive Bayes,
and Decision Tree

Mathew et al., 2018 [45] Imbalanced data sets WK-SMOTE SVM

Lin et al., 2019 [46] Imbalanced data sets
and concept drifts

Ensemble learning with
various offline classifiers

Lee et al., 2016 [47] Imbalanced data sets
of semiconductor production

Comparison of three sampling-
based, four ensemble, four instance-

based, and two SVM methods

Syafrudin et al., 2018 [48] Wide range of data types DBSCAN-based RandF

Lei et al., 2016 [49]
Use of unlabeled data,

lack of previous knowledge
and diagnostic experience

Two-stage NN with sparse
filtering and softmax regression

Yang et al., 2016 [50] Use of raw vibration signals
from wind turbines Multiple hierarchical ELMs

Diaz-Rozo et al., 2017 [52] Machine spindle monitoring K-means, hierarchical, agglo-
merative and Gaussian mixture

Pan et al., 2018 [54] Use of noisy mechanical data DL-based LiftingNet

Sohaib et al., 2017 [55]
Use of vibration acceleration

signals for bearing and
crack size identification

SAE-based DNNs.

Luo et al., 2019 [56] Time-varying signal features
and early fault detection

DL-based dynamic
properties extraction

Tao et al., 2019 [57] Failures in the gearbox
of mechanical equipment MGRU-based NN

Wen et al., 2019 [58] Automatic range adjustment
of the CLR scheduler SECNN with MMCCLR

Iqbal et al., 2019 [59]
Use of multi-type spatial-

temporal signals of an
automotive assembly line

DL-based FDI with DAEs

4. Predictive Maintenance

Another important process that can greatly benefit from the application of ML, is predictive
maintenance. More specifically, the availability of a wealth of data, stemming from the various
processes and machine state information enables the timely and accurate prediction of when machinery
requires maintenance, as well as how maintenance operation can be improved. Even when clear
indications of machinery wear is not available, predictive maintenance leverages on data acquired
during production to identify the characteristics of this degradation. In this way, costs and downtime
duration can be reduced while increasing the production output. The application of BDA and data
fusion for predictive maintenance purposes has been recently investigated within the contexts of
semiconductor manufacturing and smart factories, in References [60,61], respectively.

4.1. Supervised Learning-Based Solutions

The first category of ML-based solutions for predictive maintenance relies on supervised learning
and comprises the majority of relevant works. In Reference [62], multiple classifiers (MC) were
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adopted for predictive maintenance, regarding integral type faults in semiconductor manufacturing,
that is, failures occurring due to the accumulative high usage and load on the machinery parts. Thus,
the developed method aimed at addressing the issue of imbalanced data sets, usually existing in
maintenance classification problems [63] and enabled maintenance under statistical cost minimization.
Towards this end, MC components operating with varying prediction horizons, improved performance
targets, such as predicting frequency of unexpected breaks and unexploited lifetime, imposing
maintenance decision rules in a dynamic manner and tackling high-dimensional data problems. The
MC supervised ML method was implemented in a semiconductor manufacturing maintenance process,
revealing that better performance can be achieved, compared to conventional preventive maintenance
solutions and predictive maintenance alternatives, relying on single SVM and k-NN classifiers. Thus,
the MC method was capable of providing the lowest operating costs while being robust against varying
values of parameters, determining the frequency of unexpected breaks and the amount of unexploited
lifetime. Another work investigated the remaining lifetime detection of key machinery components
for predictive maintenance purposes by analyzing heterogeneous data that were collected through
multiple sources [64]. More specifically, an ML-based solution was developed for structuring such data
sets, considering the spatiotemporal property, and invisible factor modeling for reduced downtime
and energy-efficient machine operation. The adopted systematic procedure comprised structuring
of industrial big data, and semantic web technology for semi-structured data, as well as target
recognition, detection and tracking for unstructured data. Then, multi-scale analysis was performed
for structured data characterisation, identifying hidden patterns, while spatial envelope analysis
extracted independent subsystems and time-frequency analysis performed signal decomposition. The
performance assessment of the multi-scale analysis method showed that it improved the accuracy
of remaining lifetime prediction, compared to an alternative ANN method using a single source of
information. More importantly, it was concluded that exploiting heterogeneous data from multiple
sources enables novel methods of predictive maintenance, task scheduling and machining process
optimization towards reducing the energy consumption.

Next, predictive maintenance based on heterogeneous data, such as cutting forces, vibration
signals and acoustic emissions, from milling machinery was the main focus in Reference [65]. The
authors adopted ensemble learning RandF where each individual decision tree corresponds to a
regression tree, as tool wear represents the gradual failures in the operation of cutting machinery. Also,
the bagging, slipping and stopping criteria for the ML-based solutions were given and comparisons
with ANNs with a single hidden layer and SVMs alternatives were presented, using a data set collected
from 315 milling trials. It was observed that although RandF required longer training than ANNs and
SVMs, it provided the highest accuracy in predicting tool wear. An SVM solution was proposed to
address issues in shop-floors where the main production is performed, through automated machines,
workers or both, in Industry 4.0 environments, millions of devices and sensors can produce a wide
range of data for predictive maintenance. So, in Reference [66], ML based on SVM was presented,
modelling the conveyor belt system through the M/D/1 queue. In this setting, SVM predicted
instances of abnormal operation where machine overloading or slow downs occurred, by detecting
changes in the queue parameters. For any abnormality, the situation was solved by reconfiguring
the manufacturing system. This enabled a flexible system, even if an abnormal situation occurred, as
illustrated through simulations where automated detection of abnormalities and self-healing were
observed.

As small and medium-sized enterprises (SMEs) constitute a major group within the Industry
4.0, providing specific benefits in terms of innovation and willingness to adopt novel solutions, as
well as limitations regarding their workforce and economic resources, the work in Reference [67]
proposed a low-complexity solution for predictive maintenance, aimed at SMEs. Currently, existing
ML-based methods rely on complex, algorithms, such as linear-discriminate analysis (LDA), decision
trees and neuro-fuzzy networks. Moreover, such methods are based on significant amounts of data
being collected for classification and feature extraction. For these reasons, the authors proposed a
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low-complexity algorithm for online feature dimensionality reduction and automated machine status
detection and prediction through an NN. The proposed solution included two steps where in the
first, add-on sensors collected machine status data. Then, data parsing and feature extraction were
performed, prior to dimensionality reduction and feeding of the results, as input into NNs for training
and prediction model creation. For verification and validation purposes, the NN-based method was
implemented using real machine data from a spring manufacturing factory, employing add-on triaxial
accelerometers for data collection. Comparisons with other methods, such as LDA, showed that highly
attractive trade-offs between accuracy and prediction can be attained, thus facilitating the adoption
of ML-based predictive maintenance by SMEs. More specifically, the proposed method achieved an
overall accuracy of 93.1%, equal to LDA, but with the capability of being implemented with more
simple hardware, thus avoiding the need for expensive and specialised hardware.

In cases where machine conditions dynamically vary in time due to concept drifting with aging,
failures and repairs, predictive maintenance is a challenging process. More specifically, patterns
stemming from the operational data could significantly change, thus resulting in reduced prediction
accuracy. In order to tackle this issue, especially when only a single classifier type is used, ensemble
learning based on MC types and diversity was employed in Reference [68]. The basis for the proposed
solution is diversity for dealing with drift (DDD) [69], enabling data diversity manipulation for
constructing ensemble models, with each one comprising several base classifiers to address concept
drifts. However, the multiple classifier type DDD that was developed, consisted of multiple classifier
types, dynamic weight adjusting, and data-driven adaptation to concept drifts for offline learning.
In this way, timely adaptation to concept drifts and high prediction accuracy can be harvested.
Moreover, to relax the computational requirements, the distributed cloud computing framework,
called MapReduce was adopted [70]. From the simulations that were conducted with a concept drift
data set, the efficiency of the multiple classifier type DDD was outlined, adapting to concept drifts by
appropriately updating the classifier weights, leading to an accuracy of 87.99%.

4.2. Unsupervised Learning-Based Solutions

Currently, there exist few works presenting unsupervised learning solutions for predictive
maintenance. In Reference [71], a complex system is given, performing IoT data collection, storage,
processing and visualization, prior to predictive modelling. This system provides structured and
unstructured data ingestion from multiple sources, as well as data management via data lakes,
based on file and data base management systems, such as Hadoop and Apache Hive, among others.
The joint consideration of big data and cloud computing, during the predictive stage encompasses
data quality processing and MapReduce-based distributed principal component analysis (DPCA).
DPCA exploits unsupervised learning for training, using unlabeled data which is necessary in
large-scale manufacturing plants, characterised by heterogeneous data. The system was subject
to long-term evaluation in a real industrial environment and compared learning algorithms based
on K-means, square predicted error (SPE) and DPCA-based T-squared. It was observed that SPE
exhibited a more stable behavior, in terms of fault detection, while K-means and T-squared were
more sensitive in instances of multi-variable value changes. Independently of the adopted ML
algorithm, the system enabled real-time notification of abnormal operation, even several days prior
to an actual failure. Next, the work in Reference [72] aimed at integrating real-time and historical
analysis, towards self-optimization for predictive maintenance. Thus, an intelligent data analysis
and real-time supervision (IDARTS) framework was presented for data collection and creation of
context-aware data analysis and evaluation. IDARTS was designed according to the plug-and-produce
functionality, supporting predictive maintenance with dynamic system virtualization, addressing
changes at the shop-floor level. The data output from the virtual resources was used to train a K-means
clustering classifier. Moreover, context-awareness and HMI allowed the system to either adopt
the operation parameters towards self-reconfiguration, or guidance to an operator for safeguarding
normal production conditions and product quality. From the experiments, it was revealed that IDARTS
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provided scalability and adaptability to production changes, in terms of shop-floor layout while
performing data analysis in runtime environment, without needing additional programming, down
time or redeployment.

4.3. Deep Learning-Based Solutions

DL has emerged as a significant advancement in data-driven analysis and optimization for
industrial applications, especially for those focusing on the accurate prediction of RUL. The authors of
Reference [73] presented a device electrocardiogram (DECG) framework, employing a deep denoising
autoencoder (DDA) and regression operation to enhance the accuracy of RUL prediction of industrial
machines. DECG avoids sensor installation and acquires temporal data for each operation at the
device or operator level, from the programmable logic controller (PLC). Also, DECG overcomes the
necessity of experts in complicated production issues, greatly reducing maintenance costs. More
specifically, DECG collected data relative to the machines’ cycle time and through DL and a wide
range of run-to-failure data, achieved automated feature extraction and accurate prediction. The
proposed solution was put against a conventional factory information system and results illustrated
that DECG was able to identify the behaviour of operation working time and offered more fine-grained
training data, facilitating DL in accurately predicting RUL. Thus, the proposed solution can lead to
reduced DL overfitting and improved RUL prediction accuracy. Next, RUL through deep transfer
learning (DTL) was investigated in Reference [74]. DTL addressed feature transfer in DL networks
and relied on three strategies, that is, weight transfer, feature transfer and weight update. Thus, DTL
with feature transfer learned the joint features among multiple objects, improving the prediction
accuracy of RUL, thus showing the advantages of DTL. In greater detail, initially, a SAE network
is trained off-line with historical run-to-failure data containing RUL information of a cutting tool.
Next, the trained network is transferred to an operating tool towards performing on-line RUL
prediction. In this way, RUL prediction was performed without interrupting the machine tool’s
operation. Also, efficient RUL prediction was achieved without requiring excessive historical failure
data sets. As current RUL prediction methods experience difficulties in extracting heterogeneous
features from high-dimensional massive signals, the predictive maintenance performance is threatened.
In Reference [75], data-driven machine health monitoring was developed, employing adaptive kernel
spectral clustering (AKSC), combined with deep long short-term memory recurrent NNs (LSTM-RNN).
In greater detail, a three-step approach was adopted, first including, frequency and time-frequency
domain extraction from massive signals and an Euclidean distance-based algorithm for identifying the
machine degradation features. Then, AKSC was presented, for detecting anomalies in the machine
operation, based on multiple degradation features. In the last step, LSTM-RNN was created for
updating and predicting the machine failure time. The performance of AKSC with LSTM-RNN
was evaluated, using a set of test-to-failure experimental data, outlining its superiority compared
to other methods, in terms of average error, root mean square error and accuracy. The improved
performance of LSTM-RNN was attibuted to its ability of extracting the long-term spatiotemporal
dependency of different degradation parameters, towards provding short-term failure prognostics.
Furthermore, predictive maintenance in ultra-precision manufacturing applications has been studied
in Reference [76]. So, a DL data-driven framework was proposed, fusing multiple stacked SAEs to
perform tool condition monitoring. The DL-based solutions consisted of a training model that was able
to process multiple parallel feature spaces from time-, frequency- and wavelet-domains data, extracting
low-level features and a feature fusion structure for learning higher-level features relevant to tool
wear. In addition, feature extraction and classification performance was improved by a modified loss
function. A data set representing a real manufacturing process was used to evaluate the performance
of the DL-based solution. It was shown that by exploiting the feature learning ability of deep layer
models and the heterogeneous feature spaces, the proposed solution successfully classified the tool
wear condition with over 96% accuracy, outperforming BPNN and SVM alternatives.
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Table 4 includes the specific industrial environments and the respective ML solutions that were
employed for predictive maintenance of equipment in Industry 4.0.

Table 4. Predictive maintenance setting and respective ML solutions for Industry 4.0.

Reference Predictive Maintenance Setting ML Solution

Susto et al., 2015 [62] Imbalanced data sets
of integral type faults MC supervised method

Yan et al., 2017 [64] Unstructured multi-
source heterogeneous data

Multi-scale analysis
(envelope, time-frequency)

Wu et al., 2017 [65] Heterogeneous data RandF

Shin et al., 2018 [66] Self-healing in shop-floor SVM

Kuo et al., 2017 [67] Low-complexity
operation for SMEs

NN-based for online
feature dimensionality reduction

and automated prediction

Lin et al., 2017 [68] Bias mitigation when
using a single classifier type

Ensemble learning with
MC types and diversity

Yu et al., 2019 [71] Large-scale monitoring
with unlabeled data

K-means, DPCA-based
T-squared and SPE

Peres et al., 2018 [72] Dynamic changes at
the shop-floor level K-means

Yan et al., 2018 [73] Automated RUL prediction
without experts’ knowledge DL-based DECG

Sun et al., 2019 [74] RUL relevant feature
transfer in DL network DTL with SAE

Cheng et al., 2019 [75] Heterogeneous feature extraction
from massive signals AKSC with LSTM-RNN

Shi et al., 2019 [76]
Tool wear identification

in ultra-precision manufacturing
without experts’ knowledge

Feature spaces-based DL

5. Security and Threat Detection

Industry 4.0 invokes a wide variety of sensors and actuators, IT systems with fog/cloud
data-driven processing and BDA, as well as wireless and wired network components, along with
different standards and specifications. These key elements, coupled with the end-to-end digitization
have the potential to offer many advantages and significantly transform the supply chain and the
product lifecycle of the manufacturing system and make them more efficient, decentralized, and
sufficiently-connected. However, Industry 4.0 also bring various security challenges and caveats, due
to the integration of new technologies and architectures, thus making the industrial infrastructures
more susceptible to new forms of attacks, such as product tampering, service interruption, infiltration,
intellectual property loss, and spear phishing attacks. More importantly, these attacks not only trigger
malfunction, but also leak important information. For instance, cyber-attacks, such as Stuxnet computer
worm attacks [77] tend to increase, along with the increasing levels of connectivity. The heterogeneous,
diverse, and large-scale nature of the aforementioned enabling technologies and the complex physical
industrial environment itself hinder the application of traditional information technology security
countermeasures, for example, firewalls, and the detection of potential security vulnerabilities.

Various challenges arise for maintaining the security requirements for integrity, confidentiality,
and availability by protecting each subsystem from unauthorized access, use, disclosure, disruption,
improper modification or destruction of data [78]. More specifically, integrity is related with consistency,
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accuracy, and reliability of both the information data and the physical components of the entire supply
chain and the product lifecycle. Besides, confidentiality involves privacy issues in the horizontal and
the vertical value chain of the industrial systems and preventive maintenance data security, whereas
availability includes resiliency and recovery of a typical distributed Industry 4.0 architecture.

Heretofore, the aforementioned issues have been highlighted in the literature [78], while several
solutions, including cyber and physical detection methods, as well as standards (e.g., Reference
Architecture Model Industry 4.0 (RAMI 4.0) [79], Industrial Internet Reference Architecture (IIRA) [80])
to safeguard manufacturing have been provided to realize an Industry 4.0 environment secure from
known risks, vigilant against new threats, and resilient against zero-day attacks. Nevertheless, security
issues in specific domains can drastically influence the operation of the entire system in a non-trivial
and non-evident manner. As the cyber-risk to the next-generation industrial systems is estimated
to increase, protecting the corresponding implementations against conventional and sophisticated
cyber-attacks at all levels of the industrial processes represents a challenging task. To improve
threat detection, ML is the key technology that enables fundamentally effective decision-making
capabilities. By integrating cyber-security and physical data, ML not only facilitates the detection
of cyber-physical attacks, but also, effectively enhances the accuracy and shortens the response time
of security mechanisms. Although ML has been intensively applied both in physical security data
and manufacturing systems, it has not been extensively exploited in manufacturing security. Physical
security training data for ML can be acquired through voice recognition, fingerprint authentication,
gait authentication, keystroke and other biometrics. Also, ML implementations in manufacturing
involve real-time vision system for surface defect detection, weld defect defection, surface defect
detection, preventative maintenance, and supply chain optimization.

To obtain accurate knowledge about cyber-threats and effectively recognize future malicious
events in CPS, where multivariate time series data is dynamically generated, exploiting threat
intelligence is of paramount importance. More specifically, threat intelligence enables efficient event
and network traffic monitoring and analysis, using a signature-based method exploiting a predefined
blacklist of existing attack signatures, an anomaly-based method taking advantage of profiles of normal
events to recognize attacks or a hybrid technique, where an anomaly generally defines something that
visibly deviates from the norm/standard and can be identified by analysing the sensed data or traffic
patterns. In Reference [81], a novel threat intelligence scheme based on beta mixture-hidden Markov
models (MHMMs) was proposed that intends to model the dynamic interactions of Industry 4.0
subsystems and discover known and unknown attacks, while surpassing existing signature- and
anomaly-based methods. In this scheme, Industry 4.0 key elements, that is, CPS and IoT, interact and
two principal components are included; a smart management module, handling the heterogeneous
data sources of sensors, actuators and network nodes and a threat intelligence module monitoring and
indicating abnormal activities and cyber-attacks in the physical and network domains. The latter is
based on a Beta Mixture and hidden Markov mechanism (HMM), aiming at accurately and effectively
detecting and discriminating normal and attack data. In HMM, the first component, namely the beta
mixture model (BMM) [82] fits multivariate time series of physical and network data and stands for
the input of the second component, that is, the HMM [83], which aims at estimating the posterior
probabilities and identifying the latent structures for detecting indistinguishable normal and abnormal
states. The performance of the HMM was enhanced by excluding irrelevant features and reducing
sensor and network dimensionality, through an independent component analysis (ICA) technique [84].
Since publicly accessible real-world Industry 4.0 data sets are not available, the evaluation of the
threat intelligence scheme was realised by combining two well-known data sets; the CPS data set of
sensors and physical devices [85] and the UNSW-NB15 data set of network traffic [86]. According to
the results, the proposed method surpassed other previously proposed anomaly detection methods,
that is, methods that only create profiles from normal activities to differentiate attacks without defining
the attack types, in terms of detection rates, false positive rates, and processing times. Although, the
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MHMM stands for a strong potential candidate for the monitoring and detection of both known and
zero-day attacks, it requires a significantly large number of data samples for parameter estimation.

An ML approach to physical data was proposed in Reference [87] for cyber-physical attack
detection. Two examples of attacks were considered and simulations, along with experimental
demonstrations were carried out to verify the effectiveness of the proposed method on cyber-
manufacturing system (CMS) security. In particular, ML was initially used to recognize malicious
defects in three-dimensional (3-D) printing (additive manufacturing process) and so, 3887 simulation
images with 512 × 512 pixels size were captured. Also, ML was used to detect two attack modes,
that is, attack on design and attack on operation, in CNC milling process (subtractive manufacturing
process) with acoustic signal data. In particular, the signal used in the simulation process was a
time-serial amplitude numbers, created by a summation of sine-functions with fundamental frequency,
harmonic frequencies and a Gaussian noise. Three ML algorithms were implemented with image
classification; the supervised KNN and random forest learning methods that perform discriminant
analysis and multi-way classification, respectively, and the unsupervised anomaly detection method
that is capable of recognizing abnormal behavior and new types of attacks contrary to the supervised
methods. Notwithstanding, the anomaly detection method necessitates the definition of particular
rules for normal network behavior, which is not a straightforward process. The results indicated
that the anomaly detection algorithm was capable of obtaining up to 96.1% accuracy in detecting
malicious cyber-physical attacks in the 3-D printing, whereas RandF reached a mean 91.1% accuracy
in detecting cyber-physical attacks in CNC milling process. Besides, the KNN method fell behind in
terms of accuracy.

In Reference [88], a cost-effective context-aware DNN-based intrusion detection method was
presented. This solution consisted of several hidden layers between the input and output layers
and it was applied in smart factories, threatened by a plethora of advanced cyber-security threats.
This unsupervised DNN-based learning method included hidden layers between input layer and
output layer and involved three phases; data capture and parsing, ,odel build and inference, and
threat visualization. More specifically, a multi-variety production system with heterogeneous facilities
was considered, with interconnected devices and objects. Based on the results, this method can
effectively detect anomaly signs and significantly reduce the risks of cyber-attacks. Specifically, the
results underlined that by adopting the propose solution, the cyber-security performance metrics were
improved up to 33%, compared to other conventional methods. However, the major drawback of this
study is the limited data, which in turns hinders the generalization of the obtained results in other
application domains.

In Reference [89], the security risks in industrial control systems (ICSs) were mitigated through
a process-aware supervised learning data-driven defense method that detected various categories
of attacks and distinguish between disturbances and malicious behavior. In particular, a robust
non-linear supervised SVM model was developed that was capable of detecting abnormalities and
malicious activities in real-time, distinguishing the attacks from process disturbances, while providing
redundancy-based mitigation of detected attacks via automated control switching. A primary SVM
along with separate SVMs were adequately trained using large data sets of normal operation and attack
condition generated by multiple sensors of a complex, non-linear Tennessee Eastman (TE) process,
in order to identify on-going attacks and discrimate their types, respectively. It is noted that the TE
process stands for a well-defined simulation of a real chemical process that has been extensively used
for comparative assessment of several data-driven fault detection and diagnosis methodologies in
process control research [90]. To demonstrate a complete payload delivery mechanism and investigate
the influence of process-aware attacks on the entire process, a hardware-in-the-loop (HITL) test-bed
was exploited, which used realistic disturbances in a simulation model. The threat model was identical
to that of the Stuxnet worm [77] and three attacks were assumed, that is, sensor, controller, and actuator
attacks. These attacks aimed at modifying or spoofing data values and parameters of the process.
Based on the experimental results, the proposed ML approach satisfactorily and accurately detected all
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previously unseen tested payloads with small delays, whereas false alarms were not observed contrary
to conventional attack detectors that rely on maximum and minimum thresholds.

Table 5 lists the cyber-security targets of different relevant studies and the adopted ML solutions,
guaranteeing the cyber-security in various Industry 4.0 settings.

Table 5. Target of security mechanisms and respective ML solutions for Industry 4.0.

Reference Target of Security Mechanisms ML Solution

Moustafa et al., 2018 [81] Monitoring and detection of
cyber-attacks in Industry 4.0 MHMM

Wu et al., 2019 [87] Detection of cyber-physical
attacks in 3-D printing processes

KNN, RandF, and
anomaly detection

Park et al., 2018 [88]
Detection of anomalies

in multi-variety
production systems

DNN

Keliris et al., 2016 [89] Detection of abnormalities
and malicious activities SVM

6. Human–Machine Interaction

Although new requirements for digital technological advancements are emerging within
next-generation complex industrial environments, the human factor remains critical, as traditional
human-physical systems (HPSs) suggested, and stands for an essential component in attaining
flexibility and adaptability in industrial processes. However, in technology-rich working environments,
work division between human workers and machines is usually observed and the assigned
tasks are categorised into human-specific and machine-specific. Contrary to the principle of the
computer-integrated manufacturing (CIM), Industry 4.0 does not envision workerless production
facilities, but rather pursues the synergetic integration of humans and machines in a shared working
space, in the sense of a human-cyber-physical system (HCPS) [91], where the individual skills and
talents of humans can be successfully exploited. Industry 4.0 imposes transitions on work division
between human and machines, since humans are assisted by intelligent devices and machines, that is,
human–machine cooperation, while interacting and exchanging information with the machines, that
is, human–machine crossover collaboration. Therefore, there exists a need for a symbiotic environment
that focuses on the effective collaboration and cooperation between humans and machines for handling
combined task elements, while communicating over the IIoT [92]. Through this paradigm, higher
product variability and customization, as well as increased production efficiency and quality can
be ensured. Furthermore, humans excel at making decisions and exploring new solutions, under
situations of uncertainty and incomplete information data. Also, humans demonstrate adaptive
capabilities and can more efficiently propose useful policies, in a timely manner. Besides, machines can
be used for rapidly and repeatedly storing, retrieving, and processing data, as well as for systematic
pattern recognition. Next, we initially survey recent theoretical studies on HMI in Industry 4.0 and
then, we underline works that simulated and implemented ML-based HMI solutions.

6.1. Theoretical Frameworks

To further improve the accuracy and the quality of industrial processes, the Intelligent Factory
Space (IFS), an AI-inspired architecture that facilitates the interaction between humans and robots,
was presented in Reference [93], emphasising on the safety and trust aspects, during the two-way
communication between humans and robots. Also, the notion of patented intelligence (Pi)–Mind was
described in detail in Reference [94], as an Intelligence-as-a-Service (IaaS) provider that transparently
and proactively introduces human expertise on decision-making based on self-awareness. As the
dynamic industrial CPS usually encompasses unexpected or emergency situations, conventional
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ML and predictive methods might not lead to the desired outcome. In this direction, Pi-Mind
suggests that the experienced humans and AI-driven machines are an indivisible compound and share
the responsibility for the impact of the decisions made in critical cases. This technology surpasses
the rational decision-making by comprising models, techniques, and tools that capture and clone,
that is, digital twinning, the creative cognitive human capabilities and the created Pi-Mind agents.
Additionally, the concept of Industry 5.0 was introduced in Reference [95], which goes beyond
automation and envisions the synergy between humans and autonomous machines to enhance
creativity and efficiency. In Industry 5.0, two types of learners are observed; human operator as
a learner and machine, robot, or computer as a learner.

As the human behavior is dynamic, an accurate characterisation or modeling of the human
performance through conventional methods is not usually feasible. In general, humans are often
considered, as a physical resource that can be characterised by statistical terms. As shown in
Reference [96], statistically estimating the human role is not sufficient in various human-involved
systems. Although ML techniques can reproduce human skills by building artificial models and
algorithms and handle decision-making processes, the collaboration of humans and machines raise
the mutual ML [97]. This type of ML focuses on the human self-learning and machine self-supervised
learning capabilities and tries to capture, not only the information on machine status, but also
human observations, in order to extract decision-making policies in human–machine integrated
environments. Nevertheless, mutual ML leads to more complex and time-consuming operations for
effectively managing the dynamic industrial processes in real-time. In this perspective, the challenges
and potential of mutual human–machine learning in upcoming industrial areas were described in
Reference [97] and illustrative collaboration scenarios were presented.

6.2. Implemented ML-Based Solutions

In Reference [98], a human-in-the-loop (HIL) approach was proposed and evaluated to determine
the human operator’s choice complexity (OCC) in a manufacturing system, where a real human was
encapsulated in smart manufacturing settings and OCC represented the selection of the proper
component, for example, a tool, on a mixed model assembly line (MMAL) among a variety of
components. In this approach, the required time interval for the component selection was related
with the dynamics operator’s performance and was controlled by the number of options and the task
complexity. The particular characteristics that defined and affected the OCC were initially identified
and then, they were used to construct a regression model, where the human reaction time, as a function
of the degree of choice complexity stood for the response variable (feedback) that trained several
ML algorithms, that is, linear regression, regression trees, regression rules, instance-based learning
algorithms, and SVMs. Among them, the supervised learning based on linear regression handled
regression tasks by modeling a target prediction value based on independent variables and was fitted
using the least squares. Also, the RandF method was exploited that use binary decision trees as a
non-parametric supervised learning method for classification and regression and predicted target
numerical values of variables represented in the leaf nodes. Besides, the regression rules were used
and applied a step-wise selection, in order to obtain adequate attribute combinations with respect to
a decision table. Additionally, instance-based learning algorithms were adopted, that is, the KNN
regression method, and made a comparison between recent problem instances with those observed
during training and stored in memory. Finally, SVMs with Gaussian kernels were developed via
sequential minimal optimization algorithms. The aforementioned algorithms aimed at accurately
predicting the cycle time according to the complexity of the tasks and the influence of CCO on the
operator’s resultfulness. Overall, the performance of the linear regression method in terms of the
correlation coefficient, the mean absolute error (MAE) and the root mean squared error (RMSE) was
not satisfactory, whereas the RandF surpassed all the other algorithms.

In industrial applications, a long time is typically required, during the manufacturing phase, where
a production system comes close to its desired operational performance. This phase is called ramp-up
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and is inherently dynamic and unpredictable, dramatically affecting the economic factors of an
industrial system. Ramp-up strongly depends on the knowledge and expertise of the human operators.
In Reference [99], the advantages of human–machine symbiosis during ramp-up were demonstrated
by combining human intelligence in taking the best decisions and structured ramp-up experience
with the machine’s capability for processing data quickly, accurately, and reliably, extracting optimal
policies. Specifically, a Q-learning, that is, RL strategy guided by expert production engineers was
proposed that minimized the unnecessary iterations in human decision-making processes, as well as
the required data sets by conveniently acting for different ramp-up states. This learning approach
exploited a specific update rule, that is, the update policy of a state value depending on new data entry,
which involved the estimation of a new state value through a comparison procedure between current
and previous state values. The validation of this strategy was obtained, using a ramp-up emulator and
three existing and well-established machine-based exploration strategies as a reference, i.e, random
exploration, greedy exploration, and greedy exploration with increased probability. In random
exploration, the ramp-up actions are randomly selected to generate the data set. On the contrary,
greedy exploration opts for actions that correspond to the highest possible reward by using a fixed
probability, whereas greedy exploration with increased probability exploits a variable probability
that depends on the number of iterations. The results indicated that, instead of exclusively using
logarithmic machine-based random exploration, exploiting also the human knowledge was a more
efficient strategy that closely approached the optimal behavior, while requiring significantly less data.
On the other hand, the greedy exploration strategy enabled the generation of satisfactory results, but
did not take advantage of the human element and hence, unnecessarily led to more states and implied
a longer ramp-up time.

The integration of humans in a CPS through the assistance of human activity recognition (HAR),
based on wearable sensors was studied in Reference [100]. In particular, a DL algorithm was used,
accelerating the HAR process and facilitating the classification and analysis of daily human activities.
More specifically, the DL-based CNN algorithm was adopted. The preprocessing of the data from
wearable devices in different body positions in HAR tasks was a substantive component of this DL
algorithm and included data segmentation and data transformation. Thus, the impact of different data
segmentation methods on the DL performance was analysed and four data transformation approaches
were compared, i.e, raw acceleration data, the multi-channel method, the spectrogram method, and
the spectrogram integrated with shallow features method. The experimental results validated the
classification accuracy performance of the CNN-aided HAR in different scenarios, when multiple
wearable devices and single or multiple sensors were used. It was shown that the accuracy reached a
value of 97.20% for eight daily activities, according to the data from seven wearable sensors, and it
was demonstrated that CNN surpass by far other common ML methods, that is, ANNs, Decision Tree,
KNN, Naive Bayes, and SVM. However, the accuracy of RandF was only 7.22% lower than CNN. These
results also revealed that the multi-channel method performed better in both classification accuracy
and training time, while the length of data segment drastically influenced the classification accuracy of
the CNN-aided model. By increasing the segment length, the accuracy drastically improves.

Table 6 presents the main objectives of tackling HMI issues, as well as the employed ML solutions.
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Table 6. Target of Human–Machine Interaction (HMI) implementations and respective ML solutions
for Industry 4.0.

Reference Target of HMI Implementation ML Solution

Busogi et al., 2017 [98] Prediction of cycle time with
respect to task complexity

Linear regression, regression
trees, instance-based and SVM

Doltsinis et al., 2018 [99] Reduction of the required
iterations and data sets Q-learning

Zheng et al., 2018 [100] Classification and analysis of
daily human activities CNN

7. Open Issues

The latest advancements in the ML-inspired methods and the rise of DL have opened up new
opportunities towards revolutionizing Industry 4.0 and beyond and have led to the possibility of
realizing highly autonomous and effective industrial operations, while enhancing the fault diagnosis,
mitigating human faults, safeguarding the security, and preventing unexpected losses, under complex
and dynamic scenarios. Nevertheless, current work lays practical and methodological grounds for
future research, since open research issues there exist and require attention. The range of challenges
and future research directions can be summarized as follows.

7.1. Practical Challenges

The ML techniques depend, in principle, on massive and high-quality labeled data sets collected
by sensors and network equipment, including manufacturing data collection and control systems
that monitor the status of machines and radio frequency identification (RFID) that automatically
identify and track tags attached to objects within factory halls, to obtain the prospective performance
gain in the fault diagnosis field and attain robustness and reliability. As the IIoT emerges and cloud
computing becomes widely adopted, data availability increases. However, processing large amounts
of data in depth to find a near optimal solution, requires a huge computational effort. Nowadays,
powerful multi-core central processing unit (CPU) architectures, graphics processing units (GPUs)
and broad availability of libraries for DL (e.g., Reference [101]) allow for fast, parallel data processing
for large-scale and real-time fault prognosis. With a view to real-time operation, field-programmable
gate array (FPGAs) have shown stronger potential over GPUs in scenarios, where power consumption
restrictions, flexibility to process with different data types, for example, binary, ternary and even
custom ones, and performance in DNN comes into play massively [102]. Hence, upgrading CPS
embedded electronics is necessary to enable the learning algorithm implementation on FPGAs.

Owing to the rapid development of hardware technology and computational power, ML and
DL methods can be widely employed in industrial settings. Nevertheless, data-based modeling and
fusion issues are usually observed, since the data is vulnerable to losses, redundancy, mislabeling, class
imbalance, non-stationarity, and heterogeneity of information, which in turns hinders the effectiveness
of the training procedure. Also, modification and enhancement of the ML framework to handle specific
scenarios, including efficient error propagation and heuristic training regime, are not trivial tasks. To
address the aforementioned challenging issues, future research should be devoted to the improvement
of the computing efficiency and processing time of the learning algorithm and the design of learning
methods, which effectively adapt to various degrees of uncertainty. Moreover, known fault types
should be predefined and the ML methods should be modified to detect and recognize unknown
fault conditions. In this direction, it is critical to realize more sophisticated data cleaning, in order
to enhance the quality of the source data and subsequently meliorate the fault detection models.
Targeted exploration, predefined experimentation, and incorporation of prior expert knowledge
during the initialization of the learning models could reduce the number of required iterations and
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increase the quality of the learning policy. Future research could also include the application of
parameter-optimisation techniques, such as genetic algorithms and particle-swarm optimisation. To
further reduce the number of the required tasks, adding a confidence score to predictions and a scale
factor to the generated actions is suggested. Furthermore, different ML techniques could be combined,
in order to cooperatively accomplish the fault prediction procedure. Hence, the employment of hybrid
and ensemble ML schemes is foreseen, considering the accuracy requirements, the acquisition of
the communication parameters from the network elements, the centralized or distributed diagnostic
performance, and the architecture design.

Existing results may not be able to be generalised in nature, since location-based restrictions may
emerge and the empirical findings may be application-specific. Therefore, the ML-based methods
should be applied to any other measured signals in industrial fields to verify whether the findings
remain valid. Currently, there is a gap in acquiring data from diverse application scenarios. Thus,
implementing test-beds and conducting real experiments in different industrial areas is indispensable,
in order to validate the accuracy of the learning algorithms in terms of fault prediction, especially in
scenarios with dynamically changing environments and increased latency and resiliency requirements.
In order to maintain validity over time, it is recommended to periodically refresh and re-run the ML
algorithms, using recent data.

Since ML-based Industry 4.0 stands for a comparatively young technology and research field,
there is no unified perspective on what the ML technological advances imply. To eliminate barriers
among various disciplines, new educational and specialized training strategies should be developed
within industries, while increasing the level of cooperation between universities and industrial sectors
and bringing together researchers and practitioners from different fields. In this respect, governments
should also provide tax incentives to manufacturing companies, in order to promote the adoption of
Industry 4.0 principles.

7.2. Networking, HMI, and Security Issues

Although the proposed frameworks and implementations can be potentially used in several
industrial fields and processes, cloud and fog computing has significant limitations and further
research work is required. For instance, the proposed approaches directly depend on the availability
or deployment of physical devices in the factory, whereas there exist limited relevant libraries and
platforms that support fog computing. Besides, fog nodes are characterised by modest computing
capabilities, which prevents their use in certain ML applications with huge computation loads. Thus,
multiple fog devices are required to enhance the running efficiency and obtain accurate and fast
analytics. Additionally, it will be worthwhile to perform the classification regression experiments on
other types of productions. Also, future work may focus on cloud-based parallel ML algorithms for
big data management and analysis.

While current work has demonstrated the potential of incorporating humans in Industry 4.0
contexts using representative industrial scenarios, it partially captures the actual complexity in the
decision-making processes. Therefore, it is indispensable to further validate the generic feasibility,
applicability, and scalability of the proposed ML-based methods in full-scale industrial applications
and human-involved systems, actual production systems, and real assembly lines with the proper
resources. It is also envisaged to conduct inferential analysis to further assess the major differences
amongst the presented approaches.

To combat ever evolving attack types against the safety of critical industrial infrastructures and the
reliability of data transmission, including hijacking attacks targeting the data delivery node, damaging
or stealing its load, advanced ML methods are needed. Current work can be extended by applying the
intelligent mechanisms on more manufacturing processes of real Industry 4.0 systems and validating
their performance in real-world cyber-physical environments and peculiar cases, such as complex
malicious attack protection, data recovery, online learning, given the critical nature of those cases.
Besides, extracting more than one type of training data is also required, in order to further enhance the
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accuracy of threat detection. Finally, as more IIoT devices are installed and connected, under a variety
of abnormal conditions during the manufacturing process, both software and hardware security of
IIoT devices and platforms should be considered in future works [103].

As it has been observed from the previous discussion, the exist various remaining open issues for
the efficient implementation and operation of ML in Industry 4.0 environments. Figure 4 depicts the
current major open issues towards tackling faults in Industry 4.0 environments and potential solutions
that ML-based methods should adopt.
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Figure 4. Open issues and potential solutions towards tackling faults in Industry 4.0 through ML.

8. Conclusions

The integration of artificial intelligence and machine learning in different sectors of the human
society has played a key role in enabling exciting new possibilities in improving the quality of life
and safeguarding the sustainability of our ecosystem. In the context of Industry 4.0, AI/ML enables
a plethora of improvements throughout the manufacturing loop, optimizing processes, in terms of
waste reduction, automation and product quality. A highly important area in realizing the Industry
4.0 vision is the timely detection and prevention of faults, leveraging the Industrial Internet of Things
deployments and the subsequent acquisition and processing of heterogeneous big data. Towards
this end, this survey presented relevant ML solutions, classifying them according to their learning
process. Moreover, closely related aspects, necessary to provide a holistic overview of fault detection
and prediction, that is, cyber-security issues and the role of humans within the manufacturing loop,
were thoroughly discussed. Finally, aiming to foster further developments in this field, open issues
were given, outlining the shortcomings of the current solutions and drawing possible future research
directions.
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Abbreviations

The following abbreviations are used in this manuscript:

3-D Three Dimensional
5G Fifth Generation
AE Auto-Encoder
AGV Automated Guided Vehicle
AI Artificial Intelligence
AKSC Adaptive Kernel Spectral Clustering
ANN Artificial Neural Network
AR Augmented Reality
BDA Big Data Analytics
BMM Beta Mixture Model
BPNN Back Propagation Neural Network
CC Cloud Computing
CIM Computer-Integrated Manufacturing
CLR Cyclic Learning Rate
CMS Cyber-Manufacturing System
CNC Computer Numerical Control
CNN Convolutional Neural Network
CPS Cyber-Physical System
CWRU Case Western Reserve University
D2C Device-to-Cloud
D2D Device-to-Device
DAE Deep Auto-Encoder
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DDA Deep Denoising Auto-Encoder
DDD Diversity for Dealing with Drift
DECG Device Electrocariogram
DL Deep Learning
DNN Deep Neural Network
DPCA Distributed Principal Component Analysis
DTL Deep Transfer Learning
EC2 Elastic Compute Cloud
ELM Extreme Learning Machine
FDI Fault Detection and Isolation
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HAR Human Activity Recognition
HCPS Human Cyber-Physical System
HIL Human-in-the-Loop
HITL Hardware-in-the-Loop
HMM Hidden Markov Mechanism
HPS Human Physical System
IaaS intelligence-as-a-Service
ICA Independent Component Analysis
ICS Industrial Control System
IDARTS Intelligent Data Analysis and Real-Time Supervision
IFS Intelligent Factory Space
IIoT Industrial Internet of Things
IIRA Industrial Internet Reference Architecture
IoT Internet of Things
IWSN Industrial Wireless Sensor Network
KNN K-Nearest Neighbor
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LDA Linear-Discriminate Analysis
LSTM Long Short-Term Memory
M2M Machine-to-Machine
MC Multiple Classifiers
MGRU Multilayer Gated Recurrent Unit
MHMM Mixture-Hidden Markov Model
ML Machine Learning
MLSTM Multilayer Long Short-Term Memory
MMAL Mixed Model Assembly Line
MMCCLR Max-Min Cosine Cyclic Learning Rate Scheduler
MS Manufacturing System
NN Neural Network
OCC Operator’s Choice Complexity
PCA Principal Component Analysis
Pi Patented Intelligence
PLC Programmable Logic Controller
PMLL Predictive Modelling Markup Language
RAMI 4.0 Reference Architecture Model Industry 4.0
RandF Random Forest
RBF Radial Basis Function
RBM Restricted Boltzmann Machine
RFID Radio Frequency Identification
RL Reinforcement Learning
RNN Recurrent Neural Network
RUL Remaining Useful Lifetime
RVM Relevance Vector Machine
SAE Stacked Auto-Encoder
SECNN Snapshot Ensemble Convolutional Neural Network
SGD Stochastic Gradient Descent
SME Small and Medium-sized Enterprise
SMOTE Synthetic Minority Oversampling Technique
SPE Square Predicted Error
SVM Support Vector Machine
SVR Support Vector Regression
VR Virtual Reality
WK Weighted Kernel
WMV Weighted-Majority Voting
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