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-e Direction-of-Arrival (DoA) and bandwidth (BW) estimation strategy impinging on a linear array using multiple snapshots
data is addressed within the multitask Bayesian Compressive Sensing (MT-BCS). -e DoA estimation is used as the recon-
struction of sparse signal constrained by the Laplace prior through multitask Bayesian Compressive Sensing. Receiving wideband
signal data through linear array, the space is divided into I parts according to the equal interval.-e data of interest are assumed to
be represented as I-dimensional vector, and the wideband signal can be reconstructed accurately using only a small number M.
-e receiving antenna operates in the frequency range [fmin, fmax]. Starting from the voltages measured at the output of the array
elements at a multiple time instants at fp � fmin + Δf, p � 1, . . . , P, the retrieval of the DoAs is addressed by means of a
customized strategy based on MT-BCS in order to correlate the solutions obtained over different frequency samples. -e
bandwidth of the signals is obtained as a byproduct by identifying at which frequencies the MT-BCS estimations include a signal
along the ith (i� 1,. . ., I) sampling direction. From the outputs of different frequencies, we can know the DoA and BW of signals.
A preliminary numerical result is reported to show the behavior of the proposed approach in multiple snapshots data.

1. Introduction

Direction-of-Arrival (DoA) estimation has important ap-
plications in many traditional fields such as smart antenna
array, radar signal processing, geophysical or seismic
sensing, acoustics, multiple-input multiple-output (MIMO),
and other applications related to finding the direction of the
incoming signals or sources [1–4]. In fact, the DoAs
knowledge of receiving signal can be properly used to locate
the corresponding source, and the adaptive beamforming of
the receiving antenna pattern can improve the sensitivity of
the system to the desired signal direction or suppress un-
necessary interference.

In some scientific literature, several effective method-
ologies have been proposed about DoA estimation, such as
the multiple signal classification (MUSIC) [5] and the signal
estimation parameter via rotational invariance technique
(ESPRIT) [6]. For the limitations that the need of a priori
knowing, the number of incoming signals and the calcu-
lation of the correlation matrix are usually computationally

expensive, and their standard implementations are rarely
available especially nowadays with the huge proliferation of
wireless devices/services and the presence of non-
collaborative users [7]. More recently, DoA estimation
strategies based on the Compressive Sensing (CS) [8, 9] are
proposed and have shown promising features and results. CS
is an enabling paradigm for many applications where there is
the need of overcoming the Shannon’s limit in data ac-
quisition and to recover sparse signals from far fewer
measurements [10]. -anks to these features that the
computational efficiency, the accuracy, and the robustness to
the noise, CS-based strategies have already been applied to a
variety of applications in electromagnetic engineering
[11, 12]. But for guaranteeing reliable estimations, the
sampling matrix must satisfy the restricted isometry prop-
erty (RIP) [13] when applying CS. Unfortunately, such a
condition cannot be easily verified because of it results are
computationally demanding [14]. But innovative ap-
proaches using the Bayesian compressive sensing (BCS)
[15, 16] have been proposed, and they have improved this
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problem. However, most of the works about DoA estimation
are mainly focused on narrowband signals. In [17], the
narrowband algorithm is simply extended to broadband. As
for the DoAs estimation of wideband signals, because of the
guiding vector of broadband signal frequency, the signal
space of different sub-bands is inconsistent, which makes it
difficult to separate the signal space from noise space.
General, subspace-based estimation techniques [18] based
on the root-MUSIC [19] and maximum likelihood [20] are
used to estimate the DoAs of the wideband signal, but they
also have limitations. -is problem has been shown in
[21, 22], where theMT-BCS [23] has been customized to deal
with wideband signals while exploiting the correlation
among different frequency samples taken from single
snapshot data and multiple snapshots, respectively.

In this paper, the DoAs and BW estimation problem of
wideband signals are formulated within the MT-BCS
framework based on Laplace priors. Starting from the key
observation that the wideband signal affecting the antenna
array is essentially sparse in spatial domain. Because the
signal is a wideband signal, we sample the signal with a
certain range of frequencies in order to estimate the
bandwidth of the signal. Set the sampling frequency range to
[fmin, fmax], the DoAs and BW are estimated at the same
time by which the range of frequencies has measured data.

-e rest of the paper is organized as follows. -e
Bayesian modeling is mathematically formulated in Section
2, where the wideband signal model of MT-BCS using
Laplace priors is described. A set of representative numerical
results is then reported and discussed in Section 3, where
reference DoAs and bandwidth estimation methods are
performed. Finally, some conclusions are drawn in Section 4.

2. Bayesian Modeling

CS theory can cover certain signals from far fewer samples or
measurements than traditional methods, and it is a very
important step to restore the signal we want. In some work,
narrowband signals are recovered by MT-BCS [24, 25]. In
this section, a simple MT-BCS model about wideband
signals based on Laplace priors is shown.

2.1. Model for BCS. Let us consider a set of K wideband
signals impinging on a planar distribution of N sensors is
located. -e DoAs of the signals are denoted as
θk, k � 1, . . . , K, and operating in the frequency range
[fmin, fmax]. -e voltages collected from the output of the
array elements at P different frequency samples fp � fmin +

Δf(2p − 1)/2, p � 1, . . . , P, being Δf � (fmax − fmin)

/(P − 1). -e input data of the problem are the voltages
v

(p)
n , n � 1, . . . , N, measured by each sensor expressed as

v
(p)
n � 􏽘

K

k�1
sk 􏽢y · he

j 2π/λ(p)( )xn sin θk + η(p)
n , n � 1, . . . , N,

(1)

where sk, k � 1, . . . , K, is the amplitude of the impinging
signals, h is the antenna effective length, λ(p) being the free-

space length at pth frequency, and η(p)
n , n � 1, . . . , N, the

contribution of the noise at each sensor.
-en, in order to employ the proposed MTBCS-based

methodology, the problem is reformulated by sampling the
angular domain of interest over a very fine grid of I>>K
angular location, being θi � − (π/2) + π(i − 1)/(I − 1),

i � 1, 2, . . . , I. Under this assumption and considering the
multiple-snapshots case, (1) can be rewritten in a matrix
form as

v(p)

l � Φ(p)
(θ)s(p)

l + ηp

l , l � 1, . . . , L, (2)

where L is the number of snapshots, s(p)

l is the vector of
estimated signals, Φ(p)(θ) � ΨA(p)(θ), Ψ ∈ RM×N, is the
measurement matrix, we will use the Gaussian matrix in this
paper, andM (M<< I) is the number of samples [16]. A(p) is
the matrix of array manifold:

A(p)
(θ) �

ej 2π/λ(p)( )x1 sin θ1 ej 2π/λ(p)( )x1 sin θ2

ej 2π/λ(p)( )x2 sin θ1 ej 2π/λ(p)( )x2 sin θ2

· · · ej 2π/λ(p)( )xI sin θ1

· · · ej 2π/λ(p)( )x2 sin θI

⋮ ⋮

ej 2π/λ(p)( )xN sin θ1 ej 2π/λ(p)( )xN sin θ2

⋱ ⋮

· · · ej 2π/λ(p)( )xN sin θI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

where xn � (n − 1)d, n � 1, . . . , N, is the distance between
the ith array element and the reference array element and d is
the array element spacing.

2.2. Model for MT-BCS Based on Laplace Priors. In [15], we
can learn about the general model of MT-BCS based on
Laplace priors. So, this section of the model simply recounts
the expressions of the wideband signals we want to use.
Specify sparse signal s(p)

l as a Laplace priors about parameter
λ, and it is defined as

p s(p)

l

􏼌􏼌􏼌􏼌􏼌 λ􏼒 􏼓 �
λ
2
exp −

λ
2
s(p)

l

�����

�����1
􏼠 􏼡. (4)

And the mean and covariance of signals are given by

μ � βΣΦTv(p)

l , (5)

Σ � βΦTΦ + Λ􏽨 􏽩
− 1

, (6)

where Λ � diag(1/ci), i � 1, . . . , I, ci, is the signal hyper-
parameter and estimated as

ci �

− si si + 2λ( 􏼁 + si

����������������������

si + 2λ( 􏼁
2

− 4λ si − q2i + λ( 􏼁

􏽱

2λs2i
, if q2i − si > λ,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

with

si �
Si

1 − ciSi

, (8)

qi �
Qi

1 − ciSi

, (9)
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Si � βϕT
i ϕi − β2ϕT

i ΦΣΦ
Tϕi, (10)

Qi � βϕT
i v

(p)

l − β2ϕT
i ΦΣΦ

Tv(p)

l , (11)

where ϕi, i � 1, . . . , I, expresses the ith column ofΦ, β is the
noise hyperparameter and Gamma prior obeying parame-
ters a and b. Parameter λ realizes the following Gamma
hyperprior:

p(λ | ]) � Gamma(λ | ]/2, ]/2)(10). (12)

-e parameters estimation of λ, β, and υ is expressed as
following:

λ �
N − 1 + ]/2

􏽐
N
i�1 ci/2( 􏼁 + ]/2

, (13)

β �
LN/2 + a

􏽐
L
l�1 〈 v

(p)

l − Φs(p)

l

�����

�����
2
〉/2􏼒 􏼓 + b

,
(14)

1: Input:Φ, (v(p)
1 , v(p)

2 , . . . , v(p)

L )

2: Output:c � [c1, c2, . . . , cI]
T, λ, ], β

3: Initialize all c � 0, λ � 0
4: While convergence criterion not met do
5: Choose a ci, i ∈ [1, I]

6: If q2i > λ and ci � 0
then add ci to the model

7: Else if q2i > λ and ci > 0
then re-estimate ci using (7)

8: Else if q2i < λ
then prune ith column of Φ from the model and set ci � 0

End if
9: Update μ, L,Σ using (5) and (6)
10: Update si, qiusing (8)∼(11)
11: Update λ, ], β using (12)∼(15)
12: end while

ALGORITHM 1: Algorithm of MT-BCS.
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Figure 1: Actual and estimated DoAs for multiple snapshots.

Table 1: Estimated DoAs and signal energy for different
frequencies.

􏽥θ 􏽥s

f1 (− 9, − 5, 60) (0.8029, 0.5749, 0.3021)
f2 (− 9, − 5, 60) (1.0005, 0.9356, 0.8111)
f3 (− 9, − 5, 60) (0.8117, 0.9323, 0.9916)
f4 (− 5, 44, 60) (0.5714, − 0.0070, 0.7933)
f5 (13, 39, 60) (0.0212, − 0.0048, 0.2998)
f6 (− 9, − 5, 60) (0.0044, − 0.0021, 0.0015)
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Figure 2: Actual and estimated signals bandwidth.
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ln(υ/2) + 1 − ψ(υ/2) + ln λ − λ � 0. (15)

From the above formula, we can see that it is known that
c, λ, β, and ] can find μ and Σ using (5) and (6). It is known
that μ and Σ can also find c, λ, β, and ] using (7)∼(15). -e
procedure is summarized in Algorithm 1.

3. Numerical Results

In this section, we present experimental results that
demonstrate the performance of MT-BCS based on

Laplace priors to recovery wideband signals. Different
from narrow narrowband signals, the wideband signal
exists only when sampling frequency fp is within the
range of bandwidth.

We use the following default setup in the experimental
results reported in this section. Signal matrix of length I is
generated, where K coefficients are located at signal ran-
domly, and the rest (I-K) of the coefficients are set equal to
zero. As the measurement matrix Ψ, we chose a Gaussian
matrix, where the columns ψi are Gaussian distributed on
the sphere RI. Moreover, we present results with noisy
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Figure 3: Root mean square error (RMSE) versus L/SNR. (a) Behavior of RMSE versus L for different frequencies of fp, p � 1, . . . , 5. (b)
Behavior of average RMSE versus SNR; set SNR� 10. (c) Behavior of RMSE versus SNR for different frequencies of fp, p � 1, . . . , 5. (d)
Behavior of average RMSE versus SNR; set L� 20.
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acquisitions, where for the noisy observations we add white
Gaussian noise.

In the first set of experiments, let us consider K� 3
signals arriving on a linear array of N� 30 elements, half
wavelength spaced at f0 � (fmin + fmax)/2, and designed to
work in the frequency range [fmin, fmax] � [0.6: 1.1]GHz.
-e actual signals are characterized by a sinusoidal wave
with amplitude sk � + 1, k � 1, . . . , K, DoAs equal to
θ1 � − 9 deg, θ2 � − 5 deg, and θ3 � 60 deg, and bandwidths
b1 � [0.6: 0.8]GHz, b2 � [0.6: 0.9]GHz, and
b3 � [0.6: 1.0]GHz. In order to estimate the DoAs and the
signal bandwidth by means of the MT-BCS, the measured
data are considered characterized by a signal-to-noise ratio
equal to SNR� 10 dB and are sampled at P � 6 frequencies
(f1, f2, f3, f4, f5, f6) � (0.6, 0.7, 0.8, 0.9, 1.0, 1.1)GHz,
being Δf � 0.1GHz. Set snapshots L� 10 and the resulted
data of pth frequency in multiple snapshots is calculated by

􏽦s
p
avg � 􏽘

L

l�1

􏽥s
p

l /L, (16)

where 􏽥
s

p

l are the estimated signal energy in lth snapshot at
pth frequency sampling. Moreover, the angular grid has

been discretized with I� 181 samples in order to obtain a
resolution of Δθ � 1 deg.

-e actual DoAs and those estimated values by the
proposed spectral correlation MT-BCS based strategy are
shown in Figure 1 and Table 1. As it can be observed in
Table 1, there are some values that are small enough to be
ignored. -is is mainly caused by noise. We ignore these
values below 0.1. It can be observed that DoA θ1 � − 9 deg
and bandwidth b1 � [f1: f3] for s1, θ2 � − 5 deg and b2 �

[f1: f4] for s2, and θ3 � 60 deg and b3 � [f1: f5] for s3,
which is shown Figure 1 and Table 1.

-e actual and estimated bandwidths of the K� 3 im-
pinging signals are shown in Figure 2. It is possible to
observe that both the directions of the incoming signals are
correctly retrieved (Figure 1) as well as their band widths.

-en, we will see reconstruction error by RMSE. -e
equation of RMSE is expressed as follows:

RMSE � 􏽘
P

p�1
􏽘

K

k�1

��������������������

􏽘

T

t�1

1
L

􏽘

L

l�1

􏽢θfp,k,t,l − θk
⎛⎝ ⎞⎠

2
􏽶
􏽴

/PK, (17)

where T is number of experiments and 􏽢θfp,k,t,l is the esti-
mated value of kth signal at pth frequency.

In the second set of experiments, let us consider K� 2
signals, designed to work in the frequency range
[fmin, fmax] � [0.6: 1.0]GHz. DoAs equal to θ1 � − 55 deg
and θ2 � − 32 deg, and in order to facilitate the use of RMSE
calculation error, we set the two signals which have the same
bandwidths [0.6 :1.0] GHz. -e measured data are sampled
at P � 5 frequencies (f1, f2, f3, f4, f5) � (0.6, 0.7, 0.8, 0.9,

1.0)GHz, being Δf � 0.1GHz. Average reconstruction er-
rors of T� 500 runs are shown for the case in Figure 3 for all
types of signals.

It is noted that RMSE results in lower values than setting
snapshots minor from Figure 3(b) and the frequency close to
f0 show better performance than others from Figure 3(a).
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Table 2: -e estimated DoAs for frequencies verse snapshots.
􏽥θ

L� 1 L� 5 L� 10 L� 20

f1 (− 55, − 32, 10) (− 55, − 32, 12) (− 55, − 32, 12) (− 55, − 49,
− 32)

f2
(− 55, − 32,

− 23)
(− 56, − 55,

− 32) (− 55, − 32) (− 55, − 32)

f3 (− 55, − 32, 26) (− 55, − 32) (− 55, − 32) (− 55, − 32)
f4 (− 55, − 32) (− 55, − 32) (− 55, − 32) (− 55, − 32)

f5
(− 55, − 32,

− 18)
(− 55, − 32,

− 28)
(− 79, − 55,

− 32) (− 55, − 32, 48)

Table 3: -e estimated signal energy.

􏽥s
L� 1 L� 5 L� 10 L� 20

f1
(0.2934, 0.3126,

− 0.016)

(0.2935,
0.3044,

− 0.0134)

(0.2935,
0.3144,

− 0.0133)

(0.2920,
− 0.0087,
0.3136)

f2
(0.8098, 0.8065,

− 0.205)

(− 0.0087,
0.8014,
0.8189)

(0.8090,
0.8349)

(0.8029,
0.7948)

f3
(0.9969, 0.9979,

0.0296)
(0.9938,
0.9857)

(0.9978,
1.0013)

(0.9879,
0.9796)

f4 (0.8068, 0.8045) (0.8014,
0.8012)

(0.7969,
0.7886)

(0.8081,
0.8057)

f5
(0.3197, 0.3047,

− 0.0317)

(0.2965,
0.2897,
0.0098)

(0.0093,
0.3059,
0.3050)

(0.3018,
0.3106,

− 0.0033)

􏽦savg

(0.6453, 0.64524,
− 0.041, 0.0063,

− 0.0032, 0.0059)

(0.0017,
0.5379,
0.6399,
0.0020,
0.0027)

(0.0019,
0.6406,
0.6488,
0.0027)

(0.6385,
0.0017,
0.6409,
0.0007)
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-e results of the same experimental setup with different
SNR are shown in Figures 3(c) and 3(d). Similar per-
formance decrease by the increase of SNR can be ob-
served. -ese suggest that the estimating DoA results can
get lower reconstruction error in multiple snapshots and
higher SNR. For wideband signals, different sampling
frequencies can obtain different reconstruction results.
-is will have an impact on the accuracy of DoA esti-
mation results.

In order to obtain better reconstruction performances,
we will add signal energy 􏽦s

p
avg in (16) at different frequencies

of the same signal and average it, and then get 􏽦savg. (16) can
be rewritten as follows:

􏽦savg � 􏽘
P

p�1
􏽘

L

l�1

􏽦
s

(p)

l

LP
. (18)

In Figure 4, the reconstruction DoA results using (18) at
different snapshots are shown. We have also given esti-
mated DoAs and values at pth frequency, as shown in
Table 2. 􏽦savg is the average signal energy of all estimated
angles from low to high. -e signal energy that shows the
unrelated angle is much lower than what we get in the first
set experiments.-is shows that using (18) to estimate DoA
can get better reconstruction results than using (16). We
also can note that as the number of snapshots increases,
unrelated angles no longer exist. Frequency away from f0
still has poor reconstruction results, but this is an im-
provement after the signal energy of all frequencies is
averaged, that is, the signal energy of the unrelated angle
becomes smaller.

We ignore values less than 0.1 as in the first set of ex-
periments. It can be concluded that the DoAs and band-
widths of signals form the result shown in Figure 4 and
Tables 2 and 3, θ1 � − 55 deg and b1 � [f1: f5] for s1 and
θ2 � − 32deg and b2 � [f1: f5] for s2.-e estimated result of
signal bandwidths is shown in Figure 5.

4. Conclusion

In this paper, we formulated the DoAs and BW-estimated
problem of the wideband signal using MT-BCS based on
Laplace priors and presented a framework for multiple
snapshots data. Using this framework, we first get the actual
and estimated DoAs for multiple snapshots at different
frequencies. At the same time, the signal BW is obtained by
observing at which frequency sampling point there is a signal
energy after ignoring values that are small enough. -en, we
use the RMSE to evaluate the reconstruction results in
different snapshots and SNRs, finding with the increasing of
snapshots or SNR, the reconstruction results are better.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was supported by the National Natural Science
Foundation of China under Grant no. 61771008.

References

[1] P. Stoica, P. Babu, and J. Li, “SPICE: a sparse covariance-based
estimation method for array processing,” IEEE Transactions
on Signal Processing, vol. 59, no. 2, pp. 629–638, 2011.

[2] F. Liu, J. Wang, C. Sun, and R. Du, “Spatial differencing
method for DOA estimation under the coexistence of both
uncorrelated and coherent signals,” IEEE Transactions on
Antennas and Propagation, vol. 60, no. 4, pp. 2052–2062, 2012.

[3] C. H Niow and H. T. Hui, “Improved noise modeling with
mutual coupling in receiving antenna arrays for direction-of-
arrival estimation,” IEEE Transactions on Wireless Commu-
nications, vol. 11, no. 4, pp. 1616–1621, Apr. 2012.

[4] F. Wen, J. Shi, and Z. Zhang, “Joint 2D-DOD, 2D-DOA and
polarization angles estimation for bistatic EMVS-MIMO
radar via PARAFAC analysis,” IEEE Transactions on Vehic-
ular Technology, 2019.

[5] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Transactions on Antennas and Propagation,
vol. 34, no. 3, pp. 276–280, 1986.

[6] R. Roy and T. Kailath, “ESPRIT-Estimation of signal pa-
rameters via rotational invariance techniques,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 37,
no. 7, pp. 984–995, 1989.

[7] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa,
“Directions-of-arrival estimation through bayesian com-
pressive sensing strategies,” IEEE Transactions on Antennas
and Propagation, vol. 61, no. 7, pp. 3828–3838, 2013.

[8] E. J. Candes and M. B. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 21–30, 2008.

[9] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
IEEE Transactions on Signal Processing, vol. 56, no. 6,
pp. 2346–2356, 2008.

21
Signal index (k)

0

1

2

3

4

5

6

Fr
eq

ue
nc

y 
in

de
x 

(p
)

Actual BW
Estimated BW

Figure 5: Actual and estimated signal bandwidth.

6 International Journal of Antennas and Propagation



[10] R. G. Baraniuk, “More is less: signal processing and the data
deluge,” Science, vol. 331, no. 6018, pp. 717–719, 2011.

[11] W. L. Chan, M. L. Moravec, R. G. Baraniuk, and
D. M. Mittleman, “Terahertz imaging with compressed
sensing and phase retrieval,” Optics Letters, vol. 33, no. 9,
pp. 974–976, 2008.

[12] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and
compressed sensing in radar imaging,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 1006–1020, 2010.

[13] R. Baraniuk, “Compressive sensing [lecture notes],” IEEE
Signal Processing Magazine, vol. 24, no. 4, pp. 118–121, 2007.

[14] A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in
electromagnetics—a review,” IEEE Antennas and Propagation
Magazine, vol. 57, no. 1, pp. 224–238, 2015.

[15] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly,
“Compressed sensingMRI,” IEEE Signal ProcessingMagazine,
vol. 25, no. 2, pp. 72–82, 2008.

[16] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Bayesian
compressive sensing using Laplace Priors,” IEEE Transactions
on Image Processing, vol. 19, no. 1, pp. 53–63, 2010.

[17] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information �eory, vol. 52, no. 4, pp. 1289–1306, 2006.

[18] Z. D. Lei, X. K. Huang, and S. J. Zhang, “A fast algorithm for
direction of arrival estimation of multiple wide-band sour-
ces,” Journal of the China Railway Society, vol. 19, no. 4,
pp. 46–50, 1997.

[19] B. Ottersten and T. Kailath, “Direction-of-arrival estimation
for wide-band signals using the ESPRIT algorithm,” IEEE
Transactions on Acoustics, Speech, and Signal Processing,
vol. 38, no. 2, pp. 317–327, 1990.

[20] A. B. Gershman and M. G. Amin, “Coherent wideband DOA
estimation of multiple FM signals using spatial time-fre-
quency distributions,” in Proceedings of the 2000 IEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing, pp. 3065–3068, Istanbul, Turkey, June 2000.

[21] M. A. Hannan, P. Rocca, and A. Massa, “Robust BCS-based
Direction-of-Arrival and bandwidth estimation of unknown
signals for cognitive radar,” in Proceedings of the 2018 IEEE
International Symposium on Antennas and Propagation &
USNC/URSI National Radio Science Meeting, Boston, MA,
USA, July 2018.

[22] S. Ji, D. Dunson, and L. Carin, “Multitask compressive
sensing,” IEEE Transactions on Signal Processing, vol. 57, no. 1,
pp. 92–106, 2009.

[23] M. A. Hannan, N. Anselmi, G. Oliveri, and P. Rocca, “Joint
DoA and bandwidth estimation of unknown signals through
single snapshot data and MT-BCS approach,” in Proceedings
of the 2017 IEEE International Symposium on Antennas and
Propagation & USNC/URSI National Radio Science Meeting,
San Diego, CA, USA, July 2017.

[24] M. Carlin, P. Rocca, G. Oliveri, and A. Massa, “Bayesian
compressive sensing as applied to directions-of-arrival esti-
mation in planar arrays,” Journal of Electrical and Computer
Engineering, vol. 2013, Article ID 245867, 12 pages, 2013.

[25] A. Massa, M. Bertolli, G. Gottardi et al., “Compressive sensing
as applied to antenna arrays: synthesis, diagnosis, and pro-
cessing,” in Proceedings of the IEEE International Symposium
on Circuits & Systems Meeting, Florence, Italy, May 2018.

International Journal of Antennas and Propagation 7



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

