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Abstract

Multimodal neuroimaging, which is the study of brain function by combining (or fusing)
several measurement modalities, holds great promise for clinical as well as cognitive neuros-
cience. Measurements of oscillatory brain activity are of particular interest for this thesis,
because changes in this kind of neural activity (also referred to as band-power modulations)
have been linked to practically every aspect of cognition and play an important role in clinical
settings. However, current state-of-the-art methods for the extraction and multimodal fusion
of such oscillatory neural activity fall short in a number of aspects which so far have been
largely overlooked by the neuroimaging community.

This thesis contributes to multimodal fusion in a number of ways. Firstly, we present
a thorough investigation of the effectiveness of popular analysis approaches by means
of theoretical considerations as well as numerical simulations. These investigations are
conducted with particular focus on the accuracy of the analysis approaches as well as
the interpretability of their results. Only methods excelling in both of these aspects can
be expected to be maximally useful for advancing our understanding of brain function.
Based on these considerations, a novel multivariate analysis approach for the extraction of
amplitude modulated oscillatory sources is derived. This approach is called Source Power
Co-modulation (SPoC) analysis and it is specifically designed to overcome the shortcomings
of existing methods. The utility of SPoC is thoroughly tested using numerical simulations
as well as real-world neuroimaging data.

Based on the ideas that led to the SPoC analysis, we then derive two inherently multimodal
extensions that allow for a principled approach to the fusion of source amplitude dynamics.
The first of the two extensions is referred to as multimodal Source Power Co-modulation
(mSPoC). mSPoC is shown to outperform existing methods in numerical simulations as well
as on real-world data in the task of fusing electroencephalography (EEG) with hemodynamic
measurements obtained from functional near-infrared spectroscopy (fNIRS) as well as
functional magnetic resonance imaging (fMRI). The second extension of the SPoC approach
is called canonical Source Power Co-modulation (cSPoC) and is designed for the fusion of
two (or more) sets of oscillatory data. The utility of cSPoC is demonstrated in numerical
simulations as well as using real-world data examples involving the fusion of (i) datasets from
several subjects, (ii) different oscillatory processes within subjects, and (iii) simultaneously
measured EEG and magnetoencephalography (MEG).

All of the methods developed in this thesis are based on a widely accepted linear generative
model for neuroimaging data. By adhering to this model, the methods are able to uncover
physiologically plausible generators of neural activity in a principled manner, thereby
providing the neuroimaging community with an attractive alternative to many existing
’ad-hoc’ approaches.
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Zusammenfassung

Multimodale bildgebende Verfahren kombinieren (oder auch fusionieren) verschiedene Mess-
methoden zur Analyse von Hirnaktivität und beinhalten dadurch ein immenses Potential für
die kognitiven und klinischen Neurowissenschaften. Für diese Dissertation sind insbesondere
Fusionsszenarien von Interesse die oszillatorische Hirnaktivität mit Amplitudenmodulationen
beinhalten. Gerade diese Aktivität spielt eine wichtige Rolle in klinischen Untersuchungen
und steht darüber hinaus mit fast allen Aspekten der Kognition in Beziehung. Trotz der
zentralen Rolle dieser Hirnprozesse, weisen viele gängige Analysemethoden Schwächen auf,
welche bisher weithin übersehen wurden.

An dieser Stelle setzt die vorliegende Dissertation an und trägt durch folgende Beiträge
zum Fortschritt des Forschungsfeldes bei. Zunächst werden die gängigen Analysemethoden
sowohl durch analytische Überlegungen als auch durch numerische Simulationen gründlich
auf zwei wichtige Aspekte hin untersucht. Diese Aspekte sind die Genauigkeit und die
Interpretierbarkeit der von den Methoden gelieferten Ergebnisse. Nur Methoden die mit
Hinblick auf beide Aspekten überzeugen, können von maximalen Nutzen für die Erforschung
des Gehirns sein. Basierend auf den Ergebnissen dieser Untersuchung wird eine neue Methode
vorgestellt, welche die vorher identifizierten Schwächen überwindet. Ihr Name ist Source
Power Co-modulation (SPoC) Analyse.

Basierend auf den Überlegungen die zur SPoC Analyse geführt haben, werden zwei multi-
modale Erweiterungen vorgestellt: die multimodal Source Power Co-modulation (mSPoC)
Analyse und die canonical Source Power Co-modulation (cSPoC) Analyse. Konkrete An-
wendungsbeispiele die für mSPoC vorgestellt und diskutiert werden sind die Fusion von (i)
Elektroenzophalografie (EEG) und funktioneller Nah-infrarot Spektroskopie (fNIRS) sowie
(ii) EEG und funktioneller Magnetresonanztomografie (fMRT). cSPoC wurde speziell für die
Fusion von mehreren amplitudenmodulierten oszillatorischen Datensätzen entwickelt. Die
Nützlichkeit von cSPoC wird anhand von insgesamt drei Analyse-/Fusionsszenarien gezeigt:
(i) die Fusion der Daten von mehreren Versuchspersonen, (ii) die Fusion verschiedener
oszillatorischer Prozesse innerhalb von Versuchspersonen und (iii) die Fusion von simultan
gemessenen EEG und Magnetenzephalographie (MEG) Daten.

Alle in dieser Dissertation vorgestellten Analysemethoden basieren auf einem weitläufig
akzeptierten linearen generativen Modell für das EEG und MEG. Der starke Bezug auf
dieses Modell bildet die theoretisch fundierte Grundlage der Methoden. Die praktische
Relevanz der Methoden spiegelt sich wider in der erfolgreichen Extraktion von physiologisch
plausiblen Hirnaktivitätsmustern aus einer Vielzahl von Beispieldaten. Dadurch stellen
die entwickelten Analysemethoden eine attraktive Alternative zu vielen oft eher “ad-hoc”
wirkenden multimodalen Fusionansätzen dar.
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Chapter 1

Introduction

1.1 The fusion of multimodal neuroimaging data

Modern neuroscience benefits greatly from a multitude of imaging techniques that, indi-
vidually, have helped to further our understanding of cognitive processing (Eichele et al.,
2005; Debener et al., 2006) and improved clinical diagnostics (Dale and Halgren, 2001;
Vulliemoz et al., 2011). The combination of several imaging modalities originated in the
context of epilepsy imaging (Ives et al., 1993; Lemieux et al., 1997; Daunizeau et al., 2007)
but has since then become an important asset in cognitive neuroscience. It is only through
multimodal setups that otherwise unparalleled spatial and temporal imaging resolution
can be obtained. This, in turn, allows for combination of complementary information and
thereby for a better diagnosis and a deeper understanding of how different aspects of brain
activity are related.

The most popular multimodal imaging setups combine measurements of electrophysiology
with measurements of hemodynamics. Example techniques for measuring electrophysiological
properties of neural activity are electrocorticography (ECoG), electroencephalography (EEG),
and magnetoencephalography (MEG). Examples for techniques that measure changes in
hemodynamic parameters include positron emission tomography (PET), functional near-
infrared spectroscopy (fNIRS), and functional magnetic resonance imaging (fMRI). See
reviews on electrophysiological aspects of brain activity (e.g. Niedermeyer and da Silva,
2005; Buzsáki et al., 2012) or hemodynamic aspects aspects of brain activity (e.g. Attwell
and Iadecola, 2002; Arthurs and Boniface, 2002) as well as chapter 2.1 for more details on
neuroimaging measurement devices and the types of signals they record.

The task of optimal combination of information from several (imaging) modalities is referred
to as multimodal analysis or multimodal fusion. Multimodal fusion includes a number of
exquisite challenges for signal processing and machine learning. Therefore, multimodal
fusion still represents an ongoing research endeavor, as there is no gold standard solution
(Bießmann et al., 2011; Huster et al., 2012; Dähne et al., 2015).

The following list enumerates some of the key challenges that make multimodal fusion a
difficult problem:

• Different spatial and temporal sampling rates: The number of recording chan-
nels typically range from approximately one hundred for electrophysiology to near
one million voxels for hemodynamics. The picture is reversed, however, for temporal
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Chapter 1 Introduction

sampling rates where electrophysiology is typically sampled in the kHz range while
hemodynamics are sampled with rates below 10 Hz.

• Non-instantaneous and non-linear coupling: The vascular reaction to a given
stimulus is in the range of seconds, while the response in electrophysiological measures
(e.g. event-related potentials (ERPs)) occur in the range of milliseconds. Furthermore,
non-linear features such as the instantaneous amplitude of neural oscillations may be
related to linear features of hemodynamics.

• The presence of outliers and low signal-to-noise ratio (SNR): Signals of
interest may not be easily detectable at the level of individual measurement channels
due to a low SNR. The existence of outliers in the data, (either caused by technological
or physiological artifacts) may further shadow the signals of interest and lead estimates
of certain statistics of the data astray and thereby hinder successful fusion.

• Interpretable results: The aim of multimodal imaging settings is to increase our
understanding of the workings of the brain. Therefore, the results of multimodal
fusion techniques must be interpretable with respect to functional or anatomical
neurophysiological references.

In order to overcome these challenges it is helpful to regard multimodal fusion as modeling
as well as an optimization problem. With respect to both of these two views one class of
statistical learning methods has become particularly popular for multimodal data analysis:
factor models.

These models assume that the measurements are the result of the activity of a limited set of
components (see chapter 2.2 for the formal definition) of which a mixture is observed at the
level of the sensors of the measurement device. Un-mixing these components, requires a set
of assumptions about the nature of the components. Different assumptions lead to different
statistical learning methods and therefore it is important to know these assumptions when
choosing an analysis method.

1.2 How this thesis contributes to multimodal fusion

In this thesis, we present a set of novel methods that each extract a set of components from
multivariate uni- as well as multimodal measurements. These methods are distinguished
from earlier approaches by two key properties. Firstly the methods presented here assume a
functional relation (or functional coupling) between the modalities. This functional coupling
is assumed to be reflected in a temporal co-modulation of activity. Secondly, the methods
are specifically designed for the extraction of oscillatory signals whose amplitude modulations
(or bandpower modulations) exhibit the temporal co-modulation with another modality and
thereby mediate the functional coupling.

Chapter 2 covers the fundamentals on which this thesis is based. The chapter begins by
reviewing basic facts about the two main sources of neuroimaging data, namely electrophys-
iological and hemodynamic measurements. Thereafter, in the same chapter we review a
linear generative model for neuroimaging recordings and introduce the concepts of source
components and how to extract their spatial activation patterns as well as temporal profiles
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1.2 How this thesis contributes to multimodal fusion

(or time-courses) from the data using spatial filters. The chapter concludes by reviewing
a set of state-of-the-art decomposition methods for multivariate data. These methods
represent the baseline to which the novel approaches presented in the following chapters
will be compared.

The novel contributions of this thesis begin with chapter 3, which provides a detailed account
of some of the shortcomings that current state-of-art methods suffer from. These shortcom-
ings are then addressed in chapter 4, which introduces the Source Power Co-modulation
analyis (SPoC), the first of three novel approaches derived in this thesis. Thereafter, in
chapter 5, the multimodal Source Power Co-modulation analyis (mSPoC) is presented,
which specifically addresses the fusion of amplitude modulations in electrophysiological
recordings with hemodynamic signals. The fusion of amplitude modulations from different
electrophysiological signal sources (i.e. separate measurement modalities or multiple indi-
viduals) is addressed in chapter 6, in which the canonical Source Power Co-modulation
(cSPoC) analysis is presented. Finally, this thesis concludes with a more general discussion
in chapter 7.

Included publications

The work presented in this thesis has been published in peer-reviewed journals and confer-
ences. In fact, in this thesis we follow those publications very closely. The following lists
enumerates the publications that constitute the main body of this thesis. The publications
are listed in chronological order, starting with the most recent.

1. Dähne, S., Bießmann, F., Samek, W., Haufe, S., Goltz, D., Gundlach, C., Villringer,
A., Fazli, S., and Müller, K.-R. (2015). Multivariate machine learning methods for
fusing functional multimodal neuroimaging data. Proceedings of the IEEE, 103(9):1507
– 1530

2. Dähne, S., Nikulin, V. V., Ramı́rez, D., Schreier, P. J., Müller, K.-R., and Haufe, S.
(2014e). Finding brain oscillations with power dependencies in neuroimaging data.
NeuroImage, 96:334–348

3. Dähne, S., Meinecke, F. C., Haufe, S., Höhne, J., Tangermann, M., Müller, K.-R.,
and Nikulin, V. V. (2014d). SPoC: a novel framework for relating the amplitude of
neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86(0):111–122

4. Dähne, S., Bießman, F., Meinecke, F. C., Mehnert, J., Fazli, S., and Müller, K.-R.
(2013). Integration of multivariate data streams with bandpower signals. IEEE
Transactions on Multimedia, 15(5):1001–1013

All publications

This subsection lists all peer-reviewed publications that I have (co-)authored between 2010
and 2015. The items are ordered chronologically, starting with the most recent. Journal
articles that are not yet published are given in a separate list. The current status of each
item in that list is given as a note at the end of the entry.
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Journal articles (published or accepted for publication)
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accepted
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Chapter 2

Fundamentals

2.1 Measures of brain activity

The brain is one of the most complicated – yet at the same time most fascinating – natural
systems currently under scientific investigation. And although considerable progress has
been made in understanding many of the basic principles that govern brain activity, there is
still a multitude of aspects and phenomena that are far from being fully understood.

The functional nature of the brain can be quantified (and thereby analyzed) using a number
of different measurement approaches. The two approaches to neuroimaging that are most
relevant for this thesis are electrophysiological- and hemodynamic measures, which we now
briefly review.

2.1.1 Electrophysiological measures

Neural activity results in changes of electrical fields (Buzsáki et al., 2012), which can be
measured at various spatial, temporal and functional extents (Scanziani and Häusser, 2009).
Intracellular recordings allow for measuring action potentials of single neurons (Hodgkin
and Huxley, 1939). The activity of single and multiple neurons up to large neuronal
assemblies can be extracted with extracellular recording techniques, either invasively with
microelectrodes inserted in the brain or ECoG (Wyler et al., 1984) or non-invasively with
EEG (Berger, 1929) or MEG (Cohen, 1968).

Extracellularly measured local field potentials (LFP) represent a superposition of all currents
in the brain, with a distance-dependent contribution of different sources such as synaptic
currents, calcium-spikes, action potentials and spike afterpotentials of different neurons
(Buzsáki et al., 2012). While signals measured from microelectrodes and ECoGs can
represent rather focal and localized signatures of neuronal activity, signals measured with
EEG rely on synchronous activity of large assemblies of neurons. Such synchronous activity
is often resembled in neuronal oscillations (Buzsáki and Draguhn, 2004) and the spatial
synchronization strength is reflected in the power of these oscillations (Denker et al., 2011;
Pfurtscheller and Lopes da Silva, 1999). Neural oscillations have been linked to practically
every aspect of cognitive function (see below for examples) and are thus also the subject
of multimodal analysis settings. Besides these neuronal oscillations, there is synchronized
activity of neurons measurable with electrophysiological methods that follows certain events
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or the presentation of stimuli. Such activity is often termed as event related potentials
(ERPs), with different components attributed to various cognitive processes (Regan, 1989;
Luck, 2014). In this thesis however, we will focus on bandpower modulations of neural
oscillations.

Cognitive phenomena, that have been shown to correlate with bandpower modulations,
include attention (Başar et al., 1997; Debener et al., 2003; Bauer et al., 2006), memory
encoding (Klimesch, 1999; Jensen et al., 2007), vigilance in operational environments (Gevins
et al., 1995; Holm et al., 2009), sleep stages (Darchia et al., 2007; Demanuele et al., 2012),
perception (Plourde et al., 1991; Makeig and Jung, 1996; Thut et al., 2006), and decision
making (Haegens et al., 2011a,b), for example. In Transcranial Magnetic Stimulation
research it has also been shown that the excitability of the motor (Sauseng et al., 2009) and
visual cortices (Romei et al., 2008), measured in terms of the amplitude of alpha oscillations,
can also be predictive of muscular motor evoked potentials and visual perception, respectively.
In the field of Brain-Computer Interfaces (BCI), voluntary modulation of EEG band power
is used to control computer applications, such as text entry systems (Blankertz et al., 2007,
2008). It has been shown recently that variability in BCI control-performance can be
partially explained by the variability of spectral power across subjects (Blankertz et al.,
2010; Suk et al., 2014), as well as within subjects (Grosse-Wentrup et al., 2011; Dähne et al.,
2011a; Maeder et al., 2012).

All of the aforementioned studies investigated the relation between (the power of) neural
oscillations and certain external variables or experimental conditions. However, it is
noteworthy that interactions between oscillatory processes have also been of increasing
interest in the recent past (Jensen and Colgin, 2007; Canolty and Knight, 2010; Hipp et al.,
2012; Engel et al., 2013). Different types of so-called cross-frequency coupling between
neural systems have been identified and associated with specific brain functions. Such
couplings can be divided into phase-to-frequency coupling, phase-to-phase coupling, phase-
to-power coupling, and finally power-to-power coupling (see Jensen and Colgin, 2007, for an
overview). Power-to-power (or amplitude-to-amplitude) coupling, which will be of special
interest later in this thesis, describes the interaction between the spectral power (or the
envelope/amplitude) of distinct oscillations at specific frequencies or narrow frequency
bands.

2.1.2 Hemodynamic measures

Hemodynamic activity can be measured invasively by intrinsic optical imaging (Grinvald
et al., 1986). Non-invasive alternatives exist in the form of fMRI (Kwong et al., 1992; Ogawa
et al., 1990) or fNIRS (Jobsis, 1977).

fMRI measures the combination of metabolic and vascular response to neural activation,
the so-called blood oxygen-level dependent (BOLD) signal (Ogawa et al., 1990). The BOLD
signal is inversely related to the local concentration of deoxygenated hemoglobin (HbR),
which in turn is influenced by changes in cerebral blood volume (CBV) and cerebral blood
flow (CBF) (Buxton et al., 2004). Since HbR is paramagnetic, while oxygenated hemoglobin
(HbO) is not, only changes in the concentration of HbR alter the local magnetic susceptibility

8



2.2 A multimodal generative model

and hence give rise to the fMRI signal obtained in a magnetic-resonance (MR) scanner with
so-called T2*-weighted pulse sequences.

Functional near infrared spectroscopy (fNIRS) relies on the fact that near-infrared light can
traverse biological tissue and thus allows the transmission of photons through the intact
brain (Jobsis, 1977; Thorniley et al., 1990). The absorption properties of HbR and HbO
differ substantially in the infrared range (Wray et al., 1988). This enables to measure changes
in concentrations of HbR and HbO in vivo. When compared to fMRI, fNIRS measurements
can be performed with a lightweight and comparatively low-cost setup. Similar to EEG,
light emitting and detection devices (so-called optodes) can be mounted on a fNIRS cap.

The relationship between neural activity and the vascular response is known as neurovascular
coupling (Attwell and Iadecola, 2002; Buxton et al., 2004; Hamel, 2006; Logothetis and
Wandell, 2004) and the exact nature of this coupling is far from understood (Heeger and
Ress, 2002; Logothetis, 2008; Hall et al., 2014). However, recently a number of studies have
shown that neural and hemodynamic signals are highly correlated (Berwick et al., 2008;
Bonvento et al., 2002; Devor et al., 2005; Goense and Logothetis, 2008; Logothetis et al., 2001;
Logothetis and Wandell, 2004; Martindale et al., 2003; Sirotin et al., 2009). Simultaneous
intracranial electrophysiological recordings and high-resolution fMRI in macaque monkeys,
for example, revealed a correlation between the BOLD signal and neuronal activity in
the gamma range as a neurovascular coupling mechanism (Goense and Logothetis, 2008;
Logothetis et al., 2001). Similar results have been obtained in cats (Niessing et al., 2005).
However, neurovascular coupling can also be assessed using noninvasive methods such as
combined EEG-fNIRS (Ritter et al., 2009; Fazli et al., 2012) or EEG-fMRI (Moosmann et al.,
2003; Laufs et al., 2003; Mantini et al., 2007; Laufs et al., 2008). These and other studies
have demonstrated an inverse relationship between the BOLD signal and the amplitude of
neural oscillations in the alpha and beta range as well as a peak in correlation at a time
delay of 6 to 8 seconds.

2.2 A multimodal generative model

We now review an abstract mathematical model for the generation of macroscopic neu-
roimaging data, such as EEG, MEG, NIRS and fMRI. The essence of this model is that
the measured data can be represented as linear mixture of functionally distinct processes,
where each of theses processes itself is characterized by a specific spatial as well as tem-
poral signature. These processes are referred to as components and the generative model
expresses the measurements in terms of the spatial and temporal patterns of the underlying
components.

From here on we represent the neuroimaging datasets to be fused by the symbols x and y.
A single observation is denoted by x(t) ∈ RNx and y(t) ∈ RNy , where Nx and Ny denote
the number of recording channels in each modality. The matrices that contain all data
points are denoted by X = [x(1), ...,x(Tx)] ∈ RNx×Tx and Y = [y(1), ...,y(Ty)] ∈ RNy×Ty .
Further symbols used in this thesis and their meaning is summarized in Table 2.1.

Note that in general Nx 6= Ny, i.e. the two datasets are not required to have the same
number of channels. In fact, in practical settings it is most likely that the measurement
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modalities have been sampled drastically different in space as well as in time. However, we
do assume that the datasets represent the same time line, meaning that the same events
have been observed in the same chronological order. In practice, it is likely for the datasets
to have been recorded simultaneously during the course of an experiment and thus the “same
time line” assumption is fulfilled trivially. However, this assumption can also be fulfilled by
datasets that have been recorded consecutively, rather than simultaneously, using the exact
same stimulus sequence, for example.

Tx/y Number of data points, modality specific

Nx/y Number of measurement channels, modality specific

Kx/y Number of components (i.e. latent factors), modality specific

K Number of coupled components, i.e. components that are linked
across modalities

x(t) Nx-dimensional vector of observed data in modality x

y(t) Ny-dimensional vector of observed data in modality y

X,Y Nx/y×Tx/y matrix containing the observed data, modality specific

sx/y(t), ŝx/y(t) Kx/y-dimensional column-vector of (estimated) components

εx/y(t) Nx/y-dimensional noise vector in forward models

Ax/y Nx/y×Kx/y matrix of sensor-space activation patterns in forward
models

Wx/y Nx/y ×Kx/y matrix of filters in backward models

Cxx/yy Data covariance, modality specific

Cxy/xy Cross-modal data covariance matrix

Table 2.1: Notation.

2.2.1 Forward model

The central assumption we make is that a given dataset is decomposable into what is
called a set of components (or factors). The notion of a component underlies all of the
state-of-the-art as well as the newly developed models presented in this thesis. Thus, we
define what a component is in more detail in the following paragraphs.

An individual component is identified by a unique temporal and spatial signature and may
thus be regarded as a functional unit. The component notation is congruent for x and y, so
we introduce the notation exemplary for x only. Let the scalar variable six(t) denote the
temporal signature of a component with the index i at time point t. We will also refer to
six(t) as the temporal activity of this component. The strength with which six(t) is expressed
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at each recording channel is called the spatial activation pattern and denoted by the vector1

aix ∈ RNx .

Generally a given dataset is assumed to be composed of a set of Kx ≥ 1 components. Let
sx(t) ∈ RKx denote the vector which represents the temporal activity of the Kx components
and let Ax ∈ RNx×Kx denote the matrix in which each column contains the corresponding
spatial activation patterns. We will make use of these variables when we consider the
mapping from components (i.e. hidden variables) to recordings (i.e. observable variables).
This mapping is referred to as the linear forward model or linear generative model. In this
model, the projection of the components to the recording channels is given by

x(t) =

Kx∑
i=1

aix · six(t) + εx(t)

= Axsx(t) + εx(t) , (2.1)

where εx(t) ∈ RNx captures activity that is not explained by the Kx components and thus
considered noise. The task of machine learning is to extract estimates of the underlying
components from the data. We use ŝx and ŝy to denote these estimates. The above equation
describes the observed data as a linear superposition of components, each of which is
characterized by a time course and a fixed spatial activation pattern.

The datasets x and y are assumed to be related by K ≤ min(Kx,Ky) pairs of shared
component processes among the rows of ŝx and ŝy. The exact nature of the relation between
the shared components of course depends on the measurement modalities that are being
used. However, a very generic connection between the modalities can be constructed based
on the assumption that the datasets to represent a common timeline and thereby provide
different views upon the same underlying processes. Therefore, it is to be expected that
the time courses of shared components (or certain features of these time courses) exhibit
“similar” dynamics. We formalize this notion of similarity by the following expression:

Φ(ŝix) ≈r Ψ(ŝiy), (2.2)

for i ∈ {1, ...,K}. The functions Φ(·) and Ψ(·) extract some feature from the time course of
the component pair ŝix and ŝiy that is similar in terms of a similarity metric ≈r. Examples
for the feature extracting functions Φ(·) and Ψ(·) could be simply the identity function, a
function extracting spectral features, (de-)convolution operators, or functions extracting
statistical properties of the distributions of ŝix or ŝiy. Examples for similarity measuring
functions are functions that measure co-modulation in time, such as covariance or correlation.
Another popular choice for the similarity metric is an information theoretic measures that
is called mutual information. Note that in contrast to covariance and correlation, mutual
information captures nonlinear dependencies between variables.

Fusion approaches A decomposition into components can be done separately for each
modality or jointly for all measurement modalities. We refer to the former approach as
late fusion scenarios and to the latter approach as early fusion. In this thesis we focus on

1Please note that i is not the exponent of the variable but denotes the ith component.
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methods for these two approaches to the analysis of multimodal functional neuroimaging
data.

While in principle all of the presented models can be extended to more than two modalities,
we here focus – for the sake of readability – on the special case of two different measurement
modalities. Furthermore, since the scope of this thesis is limited to functional neuroimaging
data, we assume all measurements to be temporally aligned.

Figure 2.1 summarizes the notions presented in this subsection: it outlines the generative
model of multimodal neuroimaging data that is adopted here and it contrasts early and late
approaches to multimodal fusion.

Figure 2.1: A multimodal generative model (top) and two generic fusion approaches to
multimodal data (bottom). A cognitive phenomenon (H, e.g. attention, stimulus process-
ing) influences certain aspects of modality specific neurophysiological processes, such as
electrophysiological or metabolic properties. In the context of this generative model, these
processes are modeled by latent variables (also called sources) and denoted by sx/y. These
latent variables are mapped by a modality specific transformation (Ax/y) to their respective
sensor space variables (X/Y). Starting from the recorded datasets X and Y, it is the
task of factor model based methods to extract estimates of the latent sources (ŝx/y) such
that features of the estimated source activity (Φ(ŝx)) and Ψ(ŝy)) are informative about H
itself, or tell us something about how exactly H exerts influence on sx/y. In early fusion
approaches, information from both modalities is already taken into account when extracting
source activity from the data. In late fusion approaches, modality-specific sources are
extracted without using information from the respective other modality first, and features
of the estimated sources are combined thereafter.
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2.2.2 Backward model

After having expressed the recorded data as a sum of underlying components, where each
component is the product of a specific spatial and temporal signature, the question arises
how to recover the components from the data. In the most general setting, the factors
Ax and sx in Eq. (2.1) are estimated jointly, a setting that is referred to as blind source
separation (BSS). However, the factorization into Ax and sx is not unique and therefore
further assumptions have to be made about the nature of the spatial and temporal dynamics.
As we show later, different assumptions lead to different factorization methods.

Estimating both the spatial activation patterns and the time-courses jointly leads to
potentially difficult optimization problems. The computational complexity, however, can be
reduced by resorting to a so-called linear discriminative (or backward) modeling approach.
In such an approach, the time-courses of K neural sources are estimated by projecting the
data linearly onto a set of spatial extraction filters Wx ∈ RNx×K :

ŝx(t) = W>
x x(t). (2.3)

The coefficients of Wx determine how to integrate the information from all recording channels
in order to optimally extract the time-courses of the components. Several approaches to
find, or rather to optimize, these coefficients will be presented in the following chapter.
However, at this point it is important to discuss some common misconceptions about the
interpretability of the coefficients of filters, once they have been obtained.

2.2.3 Recovering the forward model from a backward model: patterns

Earlier we have identified “neurophysiological interpretation” as a key property desired
in (multimodal) neuroimaging. A prerequisite for determining the anatomical origin and
neurophysiological relevance of extracted time-courses, is to identify the strength with
which the time-courses are expressed at each recording channel. Importantly however, the
coefficients of extraction filters do not encode this information and should therefore not be
interpreted with respect to the origin of the extracted signal. Interpretation is only possible
for the activation patterns of forward models (Haufe et al., 2014b; Blankertz et al., 2011).
Moreover, it is only the activation patterns that can be subjected to source localization
techniques in order to link cognitive functions to specific brain areas. The reason for this is
that extraction filters are generally functions of the signal and the noise and thus heavily
influenced by factors not of interest for the neurophysiological interpretation.

See Fig. 2.2 for an illustration of the duality between filters and patterns. In the figure, the
top panel on the right side shows the time-courses of two hidden source components, s1

and s2, of which s1 shall be the signal of interest in this example and s2 corresponds to a
noise component. These time-courses are mapped to two recording channels (x1 and x2)
by means of Eq. (2.1), using the matrix Ax =

(
a1,a2

)
. The time-courses of the data in

channel space is shown in the middle panel on the right side, as well as in a scatter plot on
the left side (x1 on the abscissa and x2 on the ordinate). The scatter plot also shows the
activation patterns (columns of the matrix Ax) as solid line vectors. Note that a1 is only
half as long as a2, which means that the noise component s2 is expressed much stronger in
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Figure 2.2: Illustration of the difference between extraction filters (i.e. the coefficients of
backward models) and spatial activation patterns (i.e. the coefficients of forward models).
See the main text for a detailed description.

the channel data. In this example, the weight vector that extracts s1 best is given by the
vector that is orthogonal to the activation pattern of the noise component. The optimal
weight vector w is shown in the scatter plot as a dashed line vector. Applying w to the
data, i.e. computing w>x(t), yields a reconstruction of s1, see the lower panel on the right
side. Importantly, while w extracts the time-course of component s1, its coefficients are
not to be interpreted as to how strong and with what sign s1 was expressed in the data.
Instead, only the coefficients of a1 contain that information. However, an estimate of a1

can be derived from w by means of Eq. (2.4).

Note that in this example, w yields a near perfect reconstruction of s1 because w is
orthogonal to a2. Thus the coefficients of w are in fact determined by the spatial pattern of
the noise component a2, rather than by the pattern of the component of interest a1. This
underlines the danger of interpreting filters instead of patterns.

As a remedy, a corresponding forward model of the form of Eq. (2.3) may be derived from
every linear backward model (Haufe et al., 2014b). The activation patterns of the derived
forward model can then be interpreted in the aforementioned way. The transformation of
backward model extraction filters into forward model activation patterns is given by

Ax = CxxWxC−1
ŝxŝx

= CxxWx

(
W>

x CxxWx

)−1

, (2.4)

where Cxx denotes the data covariance matrix and Cŝxŝx denotes the covariance matrix of
component time-courses.
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By virtue of the transformation (2.4), we can pursue a backward modeling approach, allowing
us to conveniently parameterize cost functions solely in terms of the extraction filters, while
being able to achieve neurophysiological interpretability and source localization through
analysis of the activation patterns of the corresponding forward model.

2.3 State-of-the-art analysis techniques

Next we review multivariate backward models for the extraction of components from
unimodal as well as multimodal datasets. Unimodal methods are widely used in the
previously introduced late fusion scenarios. In these fusion approaches, modality specific
components (or features thereof) are extracted before fusion with respective features from
the other modality.

Some of the state-of-the-art methods we discuss here will represent the basis of comparison
against the methods that we derive in the second part of this thesis. At first we discuss
unimodal methods, which we further subdivide into supervised and unsupervised methods.
Supervised methods make use of an external target signal during the optimizing of the
parameters, while unsupervised methods rely on the statistics of the data alone. Thereafter,
we discuss inherently multimodal analysis methods.

A reoccurring theme in all the methods presented in the following is to guide the search
for weight vectors w by means of optimizing what is called an objective function. For the
majority of methods we will discuss below, the objective function takes the form

max/min
w

w>B1w subject to w>B2w = c, (2.5)

where c is a constant and B1 as well as B1 are quadratic matrices with their number of
rows and columns equal to the number of entries in w. The aim of this generic optimization
problem is to minimize (maximize) the term w>B1w, subject to the constraint that w>B2w
must be equal to c.

The methods we discuss below differ with respect to the specific choice of the matrices B1

and B2. However, if an objective function can be expressed in the above form, the solution
is obtained as the solution to the corresponding generalized eigenvalue problem

B1w = λB2w, (2.6)

where λ denotes what is called the generalized eigenvalue that is associated with the
eigenvector w. Generalized eigenvalue problems have been studied for decades in the field
of numerical linear algebra, which has lead to efficient algorithms for solving them (Francis,
1961; Kublanovskaya, 1962). Being able to cast an objective function into the form of a
generalized eigenvalue problem is desirable because it can then be solved using standard
numerical linear algebra tools such as MATLAB or R, for example.
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2.3.1 Unsupervised unimodal approaches

Principal Component Analysis (PCA)

Perhaps the most popular and most widely used unsupervised factorization method is the
principal component analysis (PCA, Pearson, 1901; Jolliffe, 1982). The underlying idea in
PCA is to find components in the data that account for as much variance as possible under
the constraint that the components are mutually de-correlated.

Let us formalize an objective for PCA for a single component. The coefficients of the
weight vector w are to be optimized such that the extracted signal w>x(t) has maximum
variance:

max
w

Var
(
w>x(t)

)
, subject to ‖w‖2 = 1 . (2.7)

Expressing the variance of w>x(t) as

Var(w>x(t)) = w>Cw, (2.8)

where the matrix C is the covariance matrix of the data, we arrive at

max
w

w>Cw, subject to w>w = 1. (2.9)

which corresponds to Eq. (2.5) with B1 = C and B2 = I. Thus the corresponding eigenvalue
equation is given by

Cw = λw, (2.10)

and the solution is obtained as the eigen-decomposition of the covariance matrix C.

In the case of PCA, the corresponding forward model takes on a particular simple form.
The weight vectors W optimized by PCA are the eigenvectors of the covariance matrix C,
i.e. it holds that C = WΛW>, where Λ is a diagonal matrix and WW> = I. Using the
last two equations and the filter/pattern transformation presented in Eq. (2.4) we can show
that in the case of PCA we have

A
Eq. (2.4)

= CW(W>CW)−1

= WΛW>W(W>WΛW>W)−1

= WΛ(Λ)−1

= W . (2.11)

This derivation reveals that for PCA it holds that A = W, i.e. the spatial patterns of
the corresponding forward model are equivalent to the spatial filters. Note however, that
this is only the case for PCA, because the weight vectors that optimize the PCA objective
diagonalize the covariance matrix C, i.e. C = WΛW>.

The orthogonality of the patterns represents a very strong constraint and it is questionable
that such a constrain is satisfied by physiological activation patterns. In contrast to PCA
the methods discussed next do not impose the orthogonality constraint on the patterns.
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Independent Component Analysis (ICA)

ICA is based on the idea that the hidden components are statistically independent. Let Ŝ
denote the random variable that contains the temporal signature of the extracted compo-
nents. Then Ŝ is parametrized by the weight matrix W, by virtue of the backward modeling
approach in Eq. (2.3). The notion of maximal independence between the individual compo-
nents, denoted by the random variables Ŝi for i ∈ {1, ...,K} is equivalent to the notion of
minimizing the mutual information (MI) between them.

Mathematically, the MI between two variables X and Y is defined as the Kullback-Leibler
divergence DKL between the joint probability distribution of X and Y (denoted as p) and
the product of the marginal probability distributions

I(X,Y ) = DKL(p(X,Y ) || p(X)p(Y ))

=

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy . (2.12)

Furthermore, the mutual information of Ŝi can be expressed as

I(Ŝ) =

K∑
i

H(Ŝi)−H(Ŝ), (2.13)

where H(Ŝi) denotes the entropy of Ŝi. It can be shown that minimizing I(Ŝ) can be
achieved by minimizing the entropy for all individual components. Since the Gaussian
distribution has the maximal entropy among distributions with fixed mean and variance,
the mutual information between components can be minimized by extracting components
with maximally non-Gaussian distributions. A number of algorithms exist that are based
on the this idea (e.g. Bell and Sejnowski, 1995; Cardoso and Souloumiac, 1993a; Hyvarinen,
1999).

A different approach to ICA is taken by methods that exploit temporal information. These
methods are based on the joint (approximate) diagonalisation of time-lagged covariance
matrices. Examples are described in Belouchrani et al. (1997) and Ziehe and Müller (1998).

Note that the independence assumption used in ICA can be applied to either the estimated
time courses of the components (as was outlined above) or to their estimated activation
patterns. The former approach is referred to as temporal ICA, while the latter is called
spatial ICA (McKeown et al., 1997). In the context of fMRI, spatial ICA is the more popular
version, while in the context of EEG and MEG, temporal ICA is used. See Calhoun et al.
(2009) for more discussion on the choice between spatial and temporal ICA.

Spatio-Spectral Decomposition (SSD)

Given the interest in generators of neural oscillations, we review an unsupervised backward
model for the extraction of oscillatory sources next.

Modulations in the strength of a narrow-band oscillatory signal can be extracted by means
of the Hilbert transform, which allows to separate the instantaneous amplitude (also called
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envelope) and the instantaneous phase (Barlow, 1993). A useful approximation of the
(squared) envelope is given by computing the variance of the narrow-band signal in short
consecutive time windows. We refer to these time windows as epochs and index them with
the index e.

Let X(e) ∈ RN×Te denote the matrix that contains all samples within an epoch, where the
epoch is indexed by e. We assume x(t) to be bandpass filtered for the band of interest and
thus use the variance approximation of spectral power in the given frequency band. We
further denote the bandpower of w>x(t) within epoch e by φw(e), with

φw(e) = Var
(
w>X(e)

)
= w>C(e)w, (2.14)

where C(e) denotes the covariance matrix of x computed for the epoch e, similar to
Eq. (2.8).

It now follows that the average spectral power of a component in the band of interest is
given by

〈φw(e)〉 =
〈
w>C(e)w

〉
= w> 〈C(e)〉w = w>Cw, (2.15)

where 〈·〉 denotes the temporal average (here averaging over epochs), C(e) denotes the
covariance matrix of x(t) computed for the epoch e, and C denotes the covariance matrix
computed using all data. Note that for 〈C(e)〉 = C to hold, the mean of x within each
epoch must be zero, which we assume to be the case.

The purpose of spatio-spectral decomposition (SSD, Nikulin et al., 2011) is to extract
oscillatory signals with a high signal-to-noise ratio (SNR). The SNR is defined here as the
ratio between the spectral power in the frequency band of interest and the power in the left
and right neighboring (flanking) frequency bands. Using the variance approximation for
power, the spectral signal-to-noise ration of the projected signal can be expressed as

Var(w>x)

Var(w>xnoise)
=

w>Cw

w>Cnoisew
, (2.16)

where here x are the measured data bandpassed filtered in the band of interest, while xnoise

are the data filtered in the sidebands. C and Cnoise denote the respective the covariance
matrix. Practically, filtering in the left and right side bands can be implemented by applying
a bandpass filter covering both side bands followed by a bandstop filter cutting out the
band of interest.

Thus, the objective optimized by SSD filters is given by

max
w

w>Cw

w>Cnoisew
. (2.17)

Taking the derivative with respect to w and setting it to zero leads to

λCnoisew = Cw , (2.18)

which corresponds to the generalized eigenvalue equation we have seen in Eq. (2.5) with
B1 = C and B2 = Cnoise.
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2.3.2 Supervised unimodal approaches

In this section we assume that in addition to the data from the imaging modality, we
are also given an external target signal, denoted by the scalar variable z. This variable
may encode additional information about the stimulus (e.g. type, intensity, latency, etc.),
behavioral measurements (reaction times, ratings, etc.), external physiological parameters
(skin conductance, heart rate, etc.), or artifactual information (e.g. eye movements, motion
parameters, etc.). In general, supervised methods have an advantage over unsupervised
approaches because they have more information at their disposal.

Regression and classification

Two well known examples of supervised factor models are linear regression and classification
by means of linear discriminant analysis (LDA). We will first examine linear regression and
then treat LDA as a special case of the former.

The goal of regression is to extract a component with a time-course that co-modulates with
the target variable z. Without loss of generality, we assume z to have zero mean and unit
variance. One way of quantifying co-modularity between two time series is by way of the
mean squared error (MSE), given by

MSE
(
w>x(t), z(t)

)
=

1

T

T∑
t

1

2

(
w>x(t)− z(t)

)2
. (2.19)

Let the matrix X = (x(1), ...,x(T )) ∈ RN×T contain the data and the row-vector z =
(z(1), ..., z(T )) ∈ R1×T contain the time-course of the target variable. Then the spatial filter
that minimizes the MSE is given by

w =
(
XX>

)−1

Xz>, (2.20)

which is known as the ordinary least squares (OLS) solution.

Interestingly, the same solution is obtained for the following objective function, which
expresses co-modularity in terms of covariance between w>x(t) and z(t):

max
w

Cov
(
w>X, z

)
, subject to Var

(
w>X

)
= 1. (2.21)

Or equivalently in matrix notation expressed as

max
w

w>Xz>, subject to w>Cw = 1. (2.22)

Linear regression is a special case of the general linear model (GLM) framework that has
been successfully applied in the context of unimodal and asymmetric multimodal analysis of
fMRI data for almost two decades (Friston et al., 1994). In the context of fMRI, the target
variable is usually the time-course of an fMRI voxel, while x is called the design matrix.
Each column of the design matrix contains a regressor, which are explanatory variables such
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as stimulus level or task-condition for example. As this approach is usually applied to all
voxels separately, it is referred to as mass-univariate analysis.

Classification of two conditions (or classes) can be treated within the regression framework
outlined above. In such a scenario, the target variable z takes on only two values that
indicate class membership. Eq. (2.20) yields the filter that achieves optimal class separation
by choosing z(t) = p(c1) for all time points t that belong to class 1 and z(t) = −p(c2) for
all time points t that belong to class 2, where p(c1) denotes the prior probability of class
1 and p(c2) the prior probability of class 2 (see, for example, chapter 4 in Bishop (2006)).
The resulting algorithm is called linear discriminant analysis (LDA).

Common Spatial Patterns

In Brain-Computer Interfaces (BCI) based on motor imagery (MI), spatial filters are
commonly applied to the recorded data in order reduce the effects of volume conduction and
thereby increase the signal-to-noise ratio. This greatly aids in the detection of changes in
sensorimotor activity and thus enables single-trial classification of motor-related oscillatory
activity (Müller et al., 2008). A very popular and powerful spatial filtering technique in the
context of MI BCIs is the so-called common spatial patterns (CSP) algorithm (Koles, 1991;
Ramoser et al., 2000; Blankertz et al., 2008; Tomioka and Müller, 2010).

Given band-passed data from a two-class BCI paradigm, CSP optimizes spatial filters that
maximize the variance of the spatially filtered signal for one class, while minimizing the
variance for the respective other class. Note that, similar to what we have seen in the
section on SSD, variance of the band-passed signal serves as an approximation of bandpower.
Thereby it represents as a measure of event-related (de-)synchronization (ERD/ERS).

Using the variance formalism we have seen before, one can express the desired difference in
variance for two conditions in the following objective function:

max
w

w> (C1 −C2) w

w> (C1 + C2) w
, (2.23)

where C1 denotes the covariance matrix of all trials of class one, while C2 denotes the
covariance matrix of class 2. The entire matrix of spatial filters can be obtained by means
of the generalized eigenvalue decomposition of the matrices (C1 −C2) and (C1 + C2),

(C1 −C2) W = (C1 + C2) WD . (2.24)

Interestingly, the columns of W not only contain the spatial filter that maximizes Eq. (2.23)
but also the one that minimizes it. Let the columns of w be ordered according to the
corresponding eigenvalues in the diagonal of D, in decreasing order. Then the first and last
column of w are the projection vectors that maximize the difference in variances between
the two classes, because the first eigenvector maximizes Eq. (2.23) and the last eigenvector
minimizes it. In practice, however, not only the first and the last eigenvector are chosen but
two or three from each side of the corresponding eigenvalue spectrum.
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2.3.3 Multimodal methods

In this section we discuss factor models that are designed to decompose two (or more)
datasets at the same time. These approaches make it possible to integrate information from
both measurement modalities for the extraction of components. Since the modalities inform
each other, multimodal methods have an advantage over unimodal methods. For simplicity
we here assume just two modalities, denoted by x and y, but the concepts presented below
can be extended to more than two modalities. In the context of simultaneous measurements
of electrophysiology and hemodynamics, x represents the former and y the later.

Multimodal versions of ICA

Joint ICA (jICA), presented in Calhoun et al. (2006), is a method that enables fusion of
multimodal features from several of subjects. Let Ns denote the number of subjects and
Dx ∈ RNs×Nfx and Dy ∈ RNs×Nfy denote the matrices that contain features from the x
and y modality, respectively.

In the next step the features from the modalities are simply concatenated along the horizontal
to yield a multimodal feature matrix D = [Dx,Dy] ∈ RNs×(Nfx+Nfy). Each row in the
matrix D corresponds to the multimodal feature concatenation of a single subject. Joint
ICA now assumes the following generative model:

D = G ·V> =
K∑
i

gi · vi>, (2.25)

which states that the multimodal feature matrix D can be decomposed into the sum of
K = min(Ns, (Nfx + Nfy)) components. Each of the components is characterized by a
multimodal feature profile vi ∈ RNfx+Nfy and vector gi ∈ RNs , for i ∈ {1, ..., Ns}, that
encodes how strong and with which sign the feature profile is present in each of the subjects.
Assuming statistical independence between the feature profiles vi, a backward modeling
approach can be applied to extract an estimate of these profiles by ICA algorithms discussed
earlier.

The natural scaling of data from different modalities, i.e. Voltage in EEG vs percent signal
change or concentration changes in fMRI or fNIRS, yield quite different histograms and
may thus lead methods astray that rely on information-theoretic measures. This is the case
for jICA. Additionally, an unequal number of samples between the two modalities leads to
jICA giving more priority to the modality for which more samples are provided. In order to
ensure a balanced representation, up-/downsampling has to be applied.

While jICA assumes a common modulation profile within modalities for all subjects, this
assumption is relaxed in an approach called parallel ICA (paraICA) (see Liu and Calhoun,
2007; Liu et al., 2009, for example). In this approach, a user specified similarity relation
between components from the different modalities is optimized simultaneously with modality-
specific un-mixing matrices. Thereby paraICA gives more emphasis to subject-specific
multimodal components, compared to jICA.
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Recently, a fully Bayesian approach to multimodal ICA was proposed in Groves et al. (2011),
in which the authors presented the so-called linked ICA. In contrast to jICA and paraICA,
a difference in scaling or noise levels between modalities is not a problem for linked ICA.

CCA

For finding related components, a useful assumption is temporal co-modulation, which
can be captured by finding those transformations for each modality that maximize the
correlation between the time-courses of the extracted components. This is the idea of
Canonical Correlation Analysis (CCA) (Hotelling, 1936). In the simplest case CCA finds a
one-dimensional subspace wx ∈ RNx and wy ∈ RNy for data from two modalities such that
the canonical correlation of the modalities in that subspace is maximized:

max
wx,wy

Corr
(
w>x x(t),w>y y(t)

)
. (2.26)

The advantage of maximizing the correlation after the linear transformation wx,wy is that
the resulting correlation coefficient is invariant with respect to linear transformations of the
data, hence canonical. The generalization of the univariate canonical correlation coefficient
finds K dimensional subspaces Wx ∈ RNx×K and Wy ∈ RNy×K such that the sum of the
correlations is maximized (Kettenring, 1971). In matrix notation this objective can be
written as

max
Wx,Wy

Trace
(
W>

x XY>Wy

)
(2.27)

subject to W>
x XX>Wx = W>

y YY>Wy = I .

The objective of CCA in Eq. (2.27) can be transformed into the following generalized
eigenvalue problem:[

0 Cxy

Cyx 0

] [
Wx

Wy

]
= Λ

[
Cx 0
0 Cy

] [
Wx

Wy

]
, (2.28)

where Cxy, Cyx, Cxx, Cyy are defined in Table 2.1.

If Cx and Cy are assumed to be the identity matrix, that is assuming that the features of x
and y are uncorrelated, respectively, Eq. 2.28 solves an optimization problem that is known
as partial least squares (PLS, Sun et al., 2009; Krishnan et al., 2011), which has also found
applications in multimodal data fusion (Mart́ınez-Montes et al., 2004). The main difference
between PLS and CCA is that CCA aims at finding maximally correlated components,
while PLS aims at finding maximally covarying components. While this can be the same in
some cases, in practice this is not necessarily so. The correct choice of method depends on
what aspects of the data the analyst or experimenter wants to investigate.

CCA has been extended to handle more than two modalities at the same time. These,
so-called, multiset extensions of CCA have found application in multimodal neuroimaging
as well (Correa et al., 2008, 2009; Varoquaux et al., 2010; Gaebler et al., 2014). See also the
review on CCA by Correa et al. (2010) which discusses the differences between multiset
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CCA and jICA: jICA seeks to find independent components, which can be too strong an
assumption in some cases. More importantly, unlike jICA, multiset CCA does not constrain
the activation patterns of components to be the same for both modalities.

Temporal kernel CCA (tkCCA)

Note that CCA assumes that the samples of each modality are correlated instantaneously.
For neuroimaging data this assumption does often not hold true. One solution is to embed
one modality in its temporal context and optimize a time-lag-dependent projection wx(τ)
for one modality, such that the canonical correlation is maximized:

max
wx(τ),wy

Corr

(
Nτ∑
i

(wx(τi)
>x(t− τi),w>y y(t)

)
, (2.29)

for a given set of Nτ time lags {τ1, ..., τNτ }. The solution to Eq. (2.29) can be conveniently
obtained as the solution to the standard CCA problem in Eq. (2.26) by applying the trick
of temporal embedding. Temporal embedding is achieved by first creating Nτ copies of the
dataset which is to be embedded (here X), then shifting each copy by one of the specified
time lags, and finally stacking the time-shifted copies along the spatial axis of the data
matrix. Let the result of this embedding be denoted X̃, then we have

X̃ =

 Xτ1
...

XτNτ

 ∈ RNx·Nτ×Tx , (2.30)

where Xτi denotes the copy of X that is shifted by time lag τi. The optimal Nτ can be found
using standard model selection procedures such the Akaike Information Criterion which was
introduced for this purpose in the context of CCA (Akaike, 1976). In practice however, it is
sufficient to use the well established knowledge about the neurovascular coupling dynamics
to restrict the length of the temporal window to less than 20 seconds. Using the definition
above we can substitute X̃ into the original CCA objective in Eq. (2.26) from which we
obtain a temporally embedded spatial filter wx(τ).

The spatio-temporal filter wx(τ) is recovered from w̃x as

w̃x =

 wx(τ1)
...

wx(τNτ )

 ∈ RNx·Nτ×1 . (2.31)

Unfortunately if there are only a limited number of samples available and at the same
time the dimensionality of the data is large, then this temporal embedding will lead to
very high dimensional and ill-conditioned covariance matrices. However one can apply the
kernel trick (Müller et al., 1997) and solve the dual formulation of the problem instead (see
next paragraph). This approach is proposed as temporal kernel CCA in Bießmann et al.
(2009).
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The essence of the kernel trick is to implicitly map the variables into a higher (possibly
infinite) dimensional feature space F and to apply the linear machinery there. Practically,
this can be achieved by substituting the linear inner product in the original formulation of
the algorithm by kernel functions k(·, ·) which represent inner products in feature space

k(x,y) = 〈ξ(x), ξ(y)〉F . (2.32)

Thus the resulting algorithm can be interpreted as running the original algorithm on the
(nonlinearly) mapped objects ξ(x) and ξ(y). The choice of the kernel largely influences the
algorithm’s ability to model particular types of nonlinearity. A popular kernel which works

very well in practice is the Gaussian kernel k(x,y) = e−
||x−y||2

2σ2 . A very simple kernel is the
linear kernel k(x,y) = x>y, which is useful if the number of input dimensions is larger than
the number of samples.

Many algorithms have been “kernelized” including but not limited to PCA (Schölkopf
et al., 1998), CCA (Bießmann et al., 2009), and ICA (Harmeling et al., 2003). For kernel
CCA one can show that the objective is of the same type as the one in Eq. (2.28), but the
covariance matrices are substituted by kernel matrices which implicitly model the correlation
between variables in feature space. The ij-th element of such a kernel matrix Kx is given
by k(xi,xj).

Finally we address the issue of robustifying against the tendency to overfit and the adverse
impact of outliers. Overfitting occurs when the complexity of the solution is too high relative
to the sample size. In other words, there is not enough data to reliably fit the complex
model. One way to avoid the overfitting problem in this case is to restrict the complexity of
the solution (Vapnik, 2000), e.g., by adding a regularization term to the objective function
of the algorithm (Müller et al., 2003). One popular choice, the Tikhonov regularization
term (Tikhonov and Arsenin, 1977), penalizes the complexity of the solution. Tikhonov
regularization is often called L2-norm regularization, which refers to the mechanism used to
stabilize the algorithm. The key idea is to impose a penalty on the euclidean norm (i.e. the
L2-norm) of the subspace to be found. This penalty can be easily incorporated into the
standard formulations of most algorithms discussed above by adding a ridge to the diagonal
of the covariance matrices, hence the regression case of Tikhonov regularization is often
called ridge regression.

In the case of CCA, the L2 regularized version of CCA results in a generalized eigenvalue
equation just like in Eq. 2.28, with the slight modification that a ridge of height λx, λy is
added to the covariance matrices on the right hand side of the equation, such that

[
0 Cxy

Cyx 0

] [
Wx

Wy

]
= Λ

[
Cx + Iκx 0

0 Cy + Iκy

] [
Wx

Wy

]
, (2.33)

where κx, κy are the regularizers for each modality, respectively. For an introduction to
the relationship between standard CCA and regularized CCA see Bie and Moor (2003).

Next to these simple cases of euclidean norm constraint regularizations, there is a spectrum
of other approaches to regularize the solutions of factor models. Many approaches impose a
mixture of L2 and L1 norms, this is often referred to as elastic net regularization. Other
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methods penalize the L1 norm of the factor subspace or on the sources themselves. This
approach is popular in the dictionary learning community, see e.g. (Mairal et al., 2010;
Varoquaux et al., 2011). More sophisticated regularization schemes impose structured
sparsity constraints on the solution (Jenatton et al., 2012).
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Chapter 3

Shortcomings of conventional approaches

Before we are going to discuss novel algorithms to fuse multivariate oscillatory signals with
other multivariate (and possibly oscillatory) signals in the subsequent chapters, we will treat
a simpler case first. The simpler case consists of finding components in the multivariate
oscillatory signal that exhibit a co-modulation in power with a given univariate signal.
In this chapter we analyze conventional analysis approaches for assessing co-modulation
between a target signal and the power dynamics of neural sources.

For this purpose, we introduce the concept of a target variable (in the following denoted
by z), which in principle can be any scalar function of time. In the present neuroimaging
context, this target variable will typically either represent a behavioral measure as the final
output of the central nervous activity (e.g. reaction time, sensory detection, task rating,
motor evoked potentials, etc.) or a parameter of external stimuli (e.g. when studying how
amplitude modulation of neuronal oscillations correlate with stimulus properties).

3.1 Theoretical considerations

In general, we want to investigate the relation between EEG/MEG spectral power and the
z variable in order to find a possible functional relationship between neuronal amplitude
modulations and a behavior or stimulus. Here we discuss three standard approaches for
establishing this relationship. In approach one and two, spectral power is firstly computed
for each channel/sensor. A correlation to the target variable is then either assessed per
channel (approach one), or using multivariate regression (approach two). In the third
approach, a linear projection from sensor space into a source component space is performed
first. Then bandpower is computed in this component space and correlation to the target
variable is assessed per source component.

We now discuss these approaches in more detail and highlight potential drawbacks.

3.1.1 Correlation with bandpower at sensor level

In this section we derive an analytic expression for the channelwise correlations between a
univariate target variable z and bandpower dynamics (approximated by changes in variance)
at a single recording channel. In order to do so, we assume a simplified scenario in which
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there is one source component of interest while everything else (i.e. background activity,
channel noise, and so on) is subsumed by a second component. However, this does not
represent a restriction because our findings generalize to more complicated cases.

Let xk(t) denote the recorded EEG signal at the k-th recording channel and s(t) denote the
signal of a brain source of interest. All other activity is subsumed by a variable denoted
with n(t). According to the linear generative model for EEG/MEG/EMG recordings we
have

xk(t) = a · s(t) + b · n(t) , (3.1)

for two scalar constants a and b that determine the strength and sign with which the signals
s(t) and n(t) are expressed at the k-th recording channel. From here on we will drop the
subscript k from x as well as the time index t. Let furthermore φx(e) denote the power of a
frequency band of interest in the e-th epoch at the k-th recording channel. The power of
a given frequency band is well approximated by computing the variance of the bandpass
filtered signal. Let us assume, without loss of generality, that x is bandpass filtered already.
Then φx is given by the epoch-wise variance of x. Thus we have

φx(e) = Var[x](e)

= a2 Var[s](e) + b2 Var[n](e) + 2abCov[s, n](e)

= a2φs(e) + b2φn(e) + 2ab ε(e) , (3.2)

where φs and φn denote the bandpower of s and n, respectively, and the variance and
covariance is computed epoch-wise, i.e. over all time samples within the e-th epoch. Further-
more we have introduced ε(e) as short-hand for Cov[s, n](e). In order to make the following
derivations tractable, we will further assume that the epoch-wise covariance between s and
n is negligibly small, i.e. ε(e) ≈ 0. Note however, that this assumption does not hold in
general.

With these definitions we can now inspect the correlation between φx and z, which is given
by

Corr(φx, z) =
Cov(φx, z)√

Var(φx)
=

Cov(a2φs, z)√
Var(φx)

+
Cov(b2φn, z)√

Var(φx)
, (3.3)

where, without loss of generality, we have assumed that z has zero mean and unit variance
and we have used the decomposition of φx into a2φs + b2φn. The variance and covariance
in the above expression are computed over epochs now.

In order to resolve the denominator in the above equations, we derive an expression for
Var(φx) as function of φs and φn next:

Var(φx) = Var(a2φs) + Var(b2φn) + 2 Cov(a2φs, b
2φn)

= a4 Var(φs)

(
1 +

b4 Var(φn) + 2a2b2 Cov(φs, φn)

a4 Var(φs)

)
(3.4)

= b4 Var(φn)

(
1 +

a4 Var(φs) + 2a2b2 Cov(φs, φn)

b4 Var(φn)

)
, (3.5)
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which gives us expressions for Var(φx) that either factor out Var(φs) or Var(φn).

Substituting the last two lines back into Eq. (3.3) yields an expression for the correlation
between φx and z in terms of the correlations between φs and z as well as φn and z,
respectively:

Corr(φx, z) =
1

qn/s
Corr(φs, z) +

1

qs/n
Corr(φn, z) , (3.6)

where we have defined

qn/s :=

√(
1 +

b4 Var(φn) + 2a2b2 Cov(φs, φn)

a4 Var(φs)

)
and (3.7)

qs/n :=

√(
1 +

a4 Var(φs) + 2a2b2 Cov(φs, φn)

b4 Var(φn)

)
. (3.8)

Now what does this tell us? Ultimately we are interested in two things: Firstly, we want to
find out about the magnitude and sign of Corr(φs, z) in order determine if there is indeed a
co-modulation between z and the power of s. If this turns out to be the case, it is beneficial
to know the coefficient a in the equation xk(t) = as(t) + bn(t), in order to make inference
about the origin of the signal s, i.e. to localize the respective brain area. However, the
above result tells us that computing channelwise bandpower correlations, i.e. Corr(φx, z),
can only give us a skewed impression of what we are really interested in, namely Corr(φs, z).
Let us make two more simplifying assumptions, namely that neither z nor φn are correlated
to φn. This causes the last term in Eq. (3.6) as well as the covariance term in qn/s and qs/n
to vanish. Even in this case we find that the correlation at the k-th channel is still skewed
by a channel-depended multiplicative factor:

Corr(φx, z) =
1√(

1 + b4 Var(φn)
a4 Var(φs)

) Corr(φs, z) , (3.9)

which in turn depends on two aspects: (i) the ratio of power modulations Var(φn)
Var(φs)

, which

doesn’t depend on the channel index k and is thus somewhat global ; and (ii) the ratio of

the mixing coefficients
(
b
a

)4
, which is different for each channel and thus a local aspect.

From these considerations we can deduce that only in extremely favorable signal-to-noise
ratio (SNR) conditions, such as for example Var(φs) ≈ Var(φn) and a� b, we have that
Corr(φx, z) approaches Corr(φs, z). Even in this case, however, the mixing coefficients
cannot be recovered, rendering source localization of the signal s(t) very difficult, if not
impossible. In cases with very low SNR, such as for example Var(φs) ≈ Var(φn) and a� b,
we have that Corr(φx, z) ≈ 1

b2 Corr(φs, z). In this case, even if there is a large correlation
between φs and z, it will be strongly diminished due to the large discounting influence of
background activity.

This illustrates the major drawbacks of the univariate approach:

• Low signal-to-noise ratio. The true correlation between the power of s and z may
be heavily underestimated in the presence of strong noise sources with high power.
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• Lack of interpretability. The noise contribution may differ across electrodes,
introducing a channel-specific bias in the correlation coefficients. Hence, topographic
maps of sensor-space correlation may not give a good indication of where the signal-
of-interest is strongest and are thereby hard to interpret in neurophysiological terms.

• Disregard of the generative model. It is practically impossible to disentangle
signal and noise contributions by looking only at single electrodes. More generally,
this approach does not provide a factorization of the measurement x(t) into A and
s(t) according to the generative linear model of EEG/MEG data (see Eq. (2.1)).

Note that such a (successful) factorization would deliver signal and noise components in
different rows of s(t) and their spatial field patterns (which are interpretable in terms of the
spatial locations of the components) in the corresponding columns of A, thereby effectively
circumventing the aforementioned problems.

3.1.2 Correlation with a linear combination of sensor-level bandpower

Instead of correlating the bandpower of individual channels with z, multivariate approaches
can be applied in order to combine the bandpower signals from all channels before correlating
the resulting bandpower time-course with the target variable z. The weights for a linear
combination of channelwise bandpower time-courses can be optimized by regression, thereby
effectively maximizing the correlation.

Let us extend our simple model from the previous section to the multivariate case, i.e. let

x(t) = a · s(t) + b · n(t) , (3.10)

where the vector x(t) ∈ RNx represents the recorded signals of Nx channels at time point t
and the vectors a,b ∈ RNx represent the mixing coefficients for the signal of interest s(t)
and the background signal n(t), respectively.

Using the same formalism we have seen above, we define the now multivariate sensor-space
bandpower signal φx is given by

φx(e) = Var[x](e)

= a ◦ a ·Var[s](e) + b ◦ b ·Var[n](e) + 2 · a ◦ b · Cov[s, n](e)

= a ◦ a · φs(e) + b ◦ b · φn(e) + 2 · a ◦ b · ε(e) , (3.11)

where Var[x](e) denotes the vector of channel-wise variance computed within the e-th epoch.
Furthermore, (a ◦ b) ∈ RNx denotes the element-wise multiplication of the vectors a and
b. Accordingly a ◦ a denotes the element-wise squaring of the vector a and similarly for b.
The rest is the same as in the previous section.

The question is now if it is possible to find a weight vector w such that w>φx(e) closely
resembles φs(e). From the last equation it can be seen that φs can only be fully recovered
from the multivariate power signal φx if the weight vector w is orthogonal to the vector
b ◦ b and to the vector a ◦ b, i.e. such that w> (b ◦ b) ≈ w> (a ◦ b) ≈ 0. Only in this case
we have w>φx(e) ≈ c · φs(e), where the constant c is the scalar product between the vectors
w and a ◦ a.
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The question is of course how to find such w if a and b are unknown. If it indeed holds
that z ≈ φs, then regression using z as the target signal will lead to a w that maximizes the
correlation between w>φx and φs. Thus, this multivariate approach may achieve superior
performance compared to the univariate correlation approach outlined above.

However, in principle the other two drawbacks remain:

• Disregard of the generative model. Linearly regressing power values violates the
underlying generative model for EEG and MEG data, because the generative model is
linear in the ‘raw’ data, not in the power transformed, i.e. squared, data.

• Lack of interpretability. The regression weight vector does not necessarily contain
neurophysiologically interpretable information about the location of the underlying
correlating source, because it is again a function of both the signal-of-interest and the
noise. Even if the corresponding spatial pattern is derived from the weight vector, it
will be defined in the power transformed data space and can thus not be subjected to
source-localization algorithms.

3.1.3 Correlation with bandpower at source level - spatial filtering
approaches

We have seen that even if the power time-course of a source of interest can be recovered using
a multivariate approach, interpretability of the resulting model (i.e. the weight vector or the
corresponding spatial pattern) with respect to the origin of the source is low. The reason
for this shortcoming of the previous two approaches is that the bandpower is computed at
the level of sensors, which corresponds to a non-linear transformation of the linearly mixed
signals. Thus, a linear unmixing of the multivariate bandpower signal can, in general, not
recover the original mixing model. This, however, is required in the context of neuroimaging
data in order to allow for neurophysiological interpretation.

The solution to the problems of the previously discussed approaches is thus to change the
order of operations, i.e. to first apply a linear unmixing and then apply the non-linearity, that
is compute bandpower. Linear unmixing amounts to projecting the data into a hypothetical
source (or component) space. Such a transformation into source space can be obtained
by way of so-called spatial filtering methods. These methods estimate a linear projection
of the data x(t) onto a set of weight vectors, which are represented here by the matrix
W ∈ RNx×K , where W =

(
w1, . . . ,wi, . . . ,wK

)
, wi ∈ RNx , and K corresponds to the

number of estimated sources ŝi(t). In accordance with the literature, we refer to these weight
vectors wi as spatial filters. Each of the spatial filters is meant to extract the signal from
one source while suppressing the activity of the others, such that the resulting projected

signal is a close approximation of the original source signal, i.e. ŝi(t) = wi>x(t). Bandpower
correlations are then computed using ŝi(t) instead of xk(t).

Popular spatial filtering approaches, such as ICA, are in line with the generative model of
EEG/MEG and can thus in principle deliver results that are interpretable within this model.
Please note, however, that approaches such as ICA are “blind” by definition, i.e. they
base the decomposition into source signals solely on assumptions about the statistics of the
estimated sources. This is the reason why this approach is often referred to as blind source
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Chapter 3 Shortcomings of conventional approaches

separation (BSS). In our setting, where additional information is available in the form of
the target variable z, it would be entirely ignored by the BSS method. Furthermore, in ICA
there is no natural ordering of the estimated components and the number of components
that are estimated by the method may be higher than one is actually interested in.

Taken together, we find that BSS approaches can yield results that are interpretable within
the generative model of EEG/MEG but the ignorance of the available target function may
lead to suboptimal performance compared to supervised approaches.

The order of operations is important. The main difference between the last two multivari-
ate approaches to uncovering φs is the order in which the following mathematical operations
are applied: (i) computation of bandpower and (ii) linear combination, i.e. application of a
weight vector w. Let us use the symbol φ(·) to denote the computation of bandpower. Then
we can express the application of the aforementioned operations to the data x in different
order by w>φ(x) and φ(w>x), respectively. Note that the result of w>φ(x) is in general
different from φ(w>x) because computing bandpower and applying a linear combination
are nonlinear and linear operations, respectively. Therefore, they are not interchangeable.
Mathematically speaking, these two operations do not commute.

We illustrate the difference between w>φ(x) and φ(w>x) in Figure 3.1. The figure shows a
two dimensional example, similar to what was proposed in the theoretical considerations
above. There is one source of interest (red) and one distractor source (blue) in the
unobservable source space. These signals are mapped to the sensor space by way of Eq. (2.1).
The target variable z corresponds to the bandpower dynamics of the source of interest.
Computing bandpower of the sensor space signals and then applying a linear combination
(i.e. w>φ(x)) leads to only a crude approximation of the target variable. However, applying
a linear combination of the sensor space signals and then computing bandpower of the
resulting signal (i.e. φ(w>x)) recovers the original source time course and therefore also its
bandpower modulation.

A further illustration is given in Figure 3.2. In this figure, the sensor space data are plotted
as a scatter plot. This way, we can show the columns of the mixing matrix (in this case the
vectors a and b) as well as the weight vector w that maximizes the correlation between the
target variable and the estimated bandpower time-course. Since it is only a two-dimensional
example, the weight vector w can be parameterized by a single number, namely its angle
with respect to one of the axis of the coordinate system. Thus it is possible exhaustively
search in this one-dimensional space and visualize the bandpower correlation as a function
of the weight vector. In Figure 3.2 this is done for three different configurations of the
mixing matrix. In fact, we change only one column of the mixing matrix, namely the spatial
pattern that corresponds to the target source, i.e. the vector a. Furthermore, the figure
shows the data after channelwise computation of bandpower (and subsequent centering),
along with the vectors a ◦ a, b ◦ b, and a ◦ b as well as the weight vector w that maximizes
the correlation between w>φ(x) and z. Recall that the vector a ◦ b was introduced due to
cross-terms that arise due to the squaring of the mixing process. It can be seen that for
some scenarios (top and middle row in the figure), the approach w>φ(x) yields satisfactory
correlations with z. However, the quality of the solution greatly depends on the configuration
of the vectors a an b and on the resulting mix-term vector a ◦ b. Note however, that the
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Figure 3.1: The difference between w>φ(x) and φ(w>x), i.e. applying nonlinear and linear
operations in different order. See main text for detailed explanation.

spatial filtering approach φ(w>x) is entirely unaffected by this and is therefore able to
recover the true bandpower dynamics perfectly.

3.2 Simulations

After the theoretical considerations of the previous section, we now describe a number of
simulations that quantify some of the concerns that were raised above. Specifically we
evaluate the discussed approaches with respect to two important aspects: (i) how well they
extract a power modulation signal of interest, especially on data that was not used to fit
the model, and (ii) to what degree the model parameters can be evaluated with respect
to the origin of the extracted signal. Let us denote these two aspects by accuracy and by
interpretability, respectively.

3.2.1 Simulation setup

Data generation

Simulated 58 channel EEG data was created according to the generative model outlined in
section 2.2.1. The mixing matrix A and the source time courses s were created separately.

Firstly, we generated time courses of Nbg + 1 hypothetical band-limited EEG sources (1
target source and Nbg = 100 background sources). For illustrative purposes we chose the
α-band as the frequency band of interest, i.e. 8 to 12 Hz. The oscillatory signals were
created individually by separately constructing the amplitude and phase spectrum and
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Chapter 3 Shortcomings of conventional approaches

Figure 3.2: A further illustration of the difference between w>φ(x) and φ(w>x), i.e.
applying nonlinear and linear operations in different order. See main text for detailed
explanation.
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then using inverse Fourier transform to obtain the time-domain signal. In the amplitude
spectrum, the coefficients of the alpha band were set to 1, whereas the amplitude of all
other frequencies were set to zero. The phase spectrum was chosen randomly for each source
time course. Once the time-domain source signals were constructed, their envelopes were
normalized to 1. Thereafter the signals were multiplied with an amplitude modulation
function that consisted of low-pass filtered white noise (filter cut-off below 0.5 Hz). An offset
was added such that the slow amplitude modulation was always larger than zero. Squaring
the amplitude modulation function of a source yields the power modulation of that source.
This constitutes the EEG data in ’source space’.

Physiologically plausible spatial patterns were generated via a realistic EEG forward model
(Nolte and Dassios, 2005; Fonov et al., 2011). Specifically, we placed model neural sources
(i.e. electrical dipoles, here with randomly chosen orientation) at randomly chosen locations
in 3D voxel space and computed the resulting EEG sensor space projections, which we
denote with the vector ai ∈ RNx for the i-th source, where Nx = 58 denotes the number of
simulated EEG channels. See Haufe et al. (2012) for a related simulation setup.

The following equations describe the generation of the pseudo-EEG measurement x(t) as
the sum of contributions xs(t) due to target sources, contributions xba(t) due to background
sources, and sensor noise xnoise(t):

xs(t) = a1
x s1(t) (3.12)

xba(t) =

Nbg∑
i=1

ai+1
x si+1(t) (3.13)

xnoise(t) =
1

cba
xba(t) + γε εx(t) (3.14)

x(t) = γ
xs(t)

cs
+

xnoise(t)

cnoise
. (3.15)

The constants cba, cs, and cnoise are the norm constants of the corresponding data matrices
xba, xs, and xnoise, and serve to balance the data matrices prior to building the weighted
sums. For the matrix x(·), the corresponding Frobenius norm is given by

c(·) =

√√√√Nx∑
i

T∑
t

(
x(·)(t)

)2
i
, (3.16)

i. e., it measures the signal energy, averaged across channels and time. The scaling parameter
γε determines the strength of (Frobenius-) normalized Gaussian noise εx, and was set to 0.1
in all simulations. The scaling parameter γ > 0 determines the ratio between the energy of
the scalp-projected target source time courses and the energy of all other (background and
sensor noise) contributions in the data. Thus the signal-to-noise ratio in dB scale is given
by

SNR = 20 log10(γ) . (3.17)
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Data analysis

Target function In this simulation the target function z was the true envelope of the
target source, i.e. the source to be extracted. This means that the correlation between the
target function z and the bandpower dynamics of the estimated target source could reach
up to it’s maximum, namely one, if the estimated target source corresponded to the true
target source.

Compared models We compared three multivariate approaches to extract a bandpower
signal that co-modulates with the given target function, namely regression, PCA, and ICA,
which all have been introduced in chapter 2.3. Additionally we used an “oracle method” in
order to map out an empirical upper bound of performance. This oracle method consisted
of an ordinary-least-squares (OLS), which optimizes a spatial filter using the true source
component signal. Since this is not possible outside of simulations in which the time-course
of the true source component is known, we consider it an oracle method that helps to
give some indication of how much the compared approaches deviate from an empirical
optimum.

Note that regression is supervized and makes use of the target variable z. Furthermore,
regression is applied to channel-wise computed bandpower as outlined above, while PCA and
ICA are applied to the time-domain data and bandpower is computed on the time-courses of
the PCA/ICA components. Epoch length is set to 500 ms. While regression only estimates
a single source, PCA and ICA return as many components as there are channels. Thus, for
PCA and ICA, the putative target source was determined based on bandpower correlations
of all components to the target function, obtained on training data.

Metrics

The methods were compared with respect to (i) how well they recover the bandpower
dynamics of the target source (accuracy) and (ii) how well the resulting model parameters
can be interpreted as to the neural origin of the estimated source (interpretability). Note
that all metrics are computed on test data, i.e. data that was not used to train the models.

Accuracy The estimated bandpower time-course was correlated to the known bandpower
time-course of the target source.

Interpretability All methods are backward models and as such they optimize weight vectors
to extract the signal of interest from the data. Spatial activation patterns were computed from
the weight vectors of the models according to the filter/pattern transformation introduced
in chapter 2.2, section 2.2.3. Note that for regression, the spatial pattern is “power pattern”
only, because regression is applied to the non-linearly transformed data. The resulting
patterns of the methods were correlated with the true sensor space spatial activation pattern
of the target source. A second interpretability metric is derived from attempting to source-
localize the resulting sensor space patterns and then computing the distance to the true
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Figure 3.3: Results of simulation that compares regression, PCA, and ICA in the task to
extract the power dynamics of source signal of interest. OLS is an oracle method that shows
how well the target signal can be extracted from the data if it is already known and thus,
represents an empirical optimum to benchmark the other approaches against. The plots
indicate the performance of the compared methods in terms of accuracy and interpretability.

source location. The source localization error was assessed by first fitting a dipole to the
estimated sensor-space pattern using the MUSIC algorithm (Schmidt, 1986). Thereafter the
Euclidean distance to the true dipole of the target source was computed.

3.2.2 Results

The simulations were repeated 100 times for a range of SNR settings. Figure 3.3 displays
the performance in terms of the accuracy and interpretability measures as a function of
SNR.

Being a supervised model, regression on bandpower representations yields good accuracy.
Over a large range of SNR settings it yields the best approximation of the true source power
dynamics among the compared methods. It can also be seen that ICA yields much better
accuracy in comparison to PCA, i.e. it is able to invert the generative model to a much
better degree.

However, regression does not perform very well in terms of interpretability, which is due
to it not being in line with the generative model of EEG/MEG as outline above. Source
separation methods such as PCA and ICA on the other hand, respect the linear generative
model and thus deliver better interpretability.

3.3 Conclusion

We find that the simulations demonstrate the concerns that we made based on theoretical
considerations earlier in this chapter.
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Chapter 3 Shortcomings of conventional approaches

Accuracy and interpretability are two highly desirable properties of neuroimaging models
and thus models should be evaluated with respect to both. Computing band-power at the
level of recording channels and then applying linear methods to the resulting time-frequency
representation is not in line with a widely accepted generative model of EEG/MEG, thus
hindering the neurophysiological interpretation of the resulting model parameters.

In fact, none of the compared approaches exceeded in both accuracy and interpretability,
thus indicating a potential gain in combining the advantages of the approaches. These
advantages are adherence to the generative model in the case of ICA and use of additional
information provided by the target variable in the case of regression. In the multimodal
setting, the latter aspect translates into taking information from the other modality into
account.
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Chapter 4

Optimizing Source Power Co-modulation

In the previous chapter we have seen that blind source separation (BSS) approaches are in
principle in line with the generative model. However, they do not make us of the target
variable and are thus potentially suboptimal. In order to alleviate these shortcomings, we
present a novel spatial filtering approach, specifically designed for relating source power
modulations to a known target signal. We call this supervised approach Source Power
Co-modulation (SPoC).

The core idea of the SPoC approach is to (i) decompose the multivariate EEG/MEG data
into a set of source components and (ii) to use the information contained in the target
variable to guide the decomposition. The result of this approach is a set of spatial filters, W,
which directly optimize the co-modulation between the target variable z and the power time
course of the spatially filtered signal. Fig. 4.1 illustrates the contrast between regression of
channel-wise band power features, BSS methods, and the SPoC approach.

In the following subsection, we describe two algorithms that implement the SPoC approach.
We refer to these two methods as SPoCr2 and SPoCλ, respectively. The difference between
SPoCr2 and SPoCλ lies in the exact definition of co-modulation between band power and z:
SPoCr2 optimizes correlation, while SPoCλ optimizes covariance. However, both algorithms
invert the generative model given in Eq. (2.1) prior to the computation of band power and
thereby avoid pitfalls that were outlined in the previous chapter.

4.1 SPoC algorithms: SPoCλ and SPoCr2

4.1.1 Assumptions and definitions

We assume that the EEG/MEG data x(t) has been band-pass filtered in the frequency band
of interest. Thus, the power of the projected signal w>x(t) within a given time interval is
well approximated by the variance of w>x(t) within that interval. We refer to such time
intervals as epochs and assume that the EEG/MEG data can be divided up into consecutive
or overlapping epochs of suitable length1. Epochs will be indexed by the index e.

1Working with epoched data instead of continuous data does not represent a loss of generality, because all
of the following derivations can be reformulated for continuous data as well, provided that the target
variable changes slowly enough. We choose to work with epoched data because it resembles the format
of data obtained in trial-based experiments.
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Chapter 4 Optimizing Source Power Co-modulation

Figure 4.1: Illustration of different approaches to relating spectral power to a target variable.
The input to all three approaches is the multivariate and bandpass filtered EEG/MEG data
x(t) as well as the target variable z. Processing steps are organized from top to bottom.
Left: An approach that is based on blind source separation (BSS) methods. A BSS method
such as ICA tries to estimate the sources prior to computation of spectral power. This
approach is in line with the generative EEG model and in principle could have the potential
to find the true source. However, BSS techniques do not make use of the information
contained in z and is bound to fail for low SNR or if the number of sources is larger than
the number of channels. Middle: An approach that is based on regression. First, spectral
power is computed on each sensor. Then the power time courses are linearly combined to
resemble z as close as possible. Right: Our novel SPoC approach method makes use of z
to guide the source estimation and to give preference to sources whose power time course
resembles z. Spectral power is computed on the estimated source components.
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Figure 4.2: Approximation of amplitude modulations by epoch-wise bandpower and epoch-
wise variance. Top: A ten seconds excerpt of a band-limited (8 Hz to 12 Hz) oscillatory signal
that exhibits ongoing amplitude modulations. The amplitude modulations are also called the
envelope (thick gray line) of the signal. Bottom: The envelope of the above signal (normalized
to zero mean and unit standard deviation) together with two approximations given by the
epoch-wise power (squared envelope, averaged within epochs) and the epoch-wise variance.

We assume the target variable z to only have a single value per epoch, which can be achieved
by appropriate resampling. Furthermore we assume without loss of generality that z has
zero mean and unit variance, which can be achieved by normalization.

It is our goal to approximate the target variable z with the bandpower/variance of a
source component. We denote this estimate by φ, which depends on a spatial filter w.
Let Var

[
w>x(t)

]
(e) denote the variance of w>x(t) in a given epoch e. This epoch-wise

variance of the projected signal will serve as the approximation of z. Thus we have

z(e) ≈ φ(e) = Var
[
w>x(t)

]
(e) = w>C(e)w , (4.1)

where C(e) denotes the covariance matrix of the e-th epoch. Figure 4.2 shows an example
of approximating ongoing bandpower modulations by epoch-wise variance.

Accordingly, the first two moments of φ can be expressed in terms of the weight vector and
epoch-wise covariance matrices. The mean of φ over epochs is given by

〈φ(e)〉 =
〈
w>C(e)w

〉
= w> 〈C(e)〉w
= w>Cw , (4.2)

where 〈·〉 denotes the average across epochs and 〈C(e)〉 = C is the average covariance matrix.
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For the variance of φ we have

Var [φ(e)] =
〈
φ(e)2

〉
− 〈φ(e)〉2〈(

w>C(e)w
)2〉− (w>Cw

)2
. (4.3)

Finally, we define the matrix

Cz := 〈C(e)z(e)〉 , (4.4)

which helps to conveniently express the covariance between φ and z as

Cov [φ(e), z(e)] = 〈φ(e)z(e)〉 − 〈φ(e)〉 〈z(e)〉
=

〈(
w>C(e)w

)
z(e)

〉
= w> 〈C(e)z(e)〉w
= w>Czw, (4.5)

where in the transition from line 1 to line 2 of this equation we have used the fact that
〈z(e)〉 = 0.

Equipped with these definitions we now formulate the objectives optimized by the two
algorithms that implement the SPoC approach. For ease of notation, the derivations
are given for a single weight vector w ∈ RNx , but generalize naturally to multiple filters
providing a full-rank decompositions of the data matrix.

4.1.2 SPoCλ

Firstly, we show how to optimize the covariance between φ and z. As we will see shortly,
this leads to an objective function that has a number of computationally desirably properties.
We refer to this algorithm as SPoCλ. Unlike the correlation, the covariance is affected by
the scaling of its arguments. Thus far we have assumed z to have zero mean and unit
variance, i.e. that the scaling of z is limited. However, it is furthermore necessary to limit
the scaling of φ in order to prevent the covariance objective from diverging. Thus, we impose
a constraint on the norm of w and thereby limit the scaling of φ. Specifically we choose the
constraint such that the output of the spatial filter has unit variance.

With these definitions we arrive at the following objective function:

fλ = Cov [φ(e), z(e)] = w>Czw, (4.6)

with respect to the following norm constraint:

Var
[
w>x(t)

]
= w>Cw

!
= 1. (4.7)

This constraint optimization problem can be solved using the method of Lagrange multipliers.
Setting the first derivative of the corresponding Lagrangian to zero leads to the following
generalized eigenvalue equation:

Czw = λCw, (4.8)
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where the eigenvalue λ corresponds to the value of fλ evaluated at the respective eigenvector
w. Thus λ can directly be interpreted as the covariance between φ and z.

Finding the solution to optimizing fλ is not as time consuming as iterative optimization
procedures and the obtained solution is unique, i.e. no restarts are necessary. Furthermore,
the result of solving the generalized eigenvalue problem is a full set of weight vectors, i.e.
a matrix W with the eigenvectors in its columns. This matrix contains a column vector
w that maximizes fλ as well as a different column w that minimizes the same objective
function. After sorting the columns of W according to their respective eigenvalues (i.e.
covariances), one finds these weight vectors in the first and last column of W. The matrix
W has full rank but its columns are not mutually orthogonal, as is the case in PCA for
example.

4.1.3 SPoCr2

In this subsection we show how to optimize the correlation between φ and z. We are
interested in positive as well as negative correlations and hence choose to maximize the
squared correlation between z and φ. We refer to this SPoC algorithm as SPoCr2 and
maximize the following objective function:

fr2 = Corr [φ(e), z(e)]
2

=
Cov [φ(e), z(e)]

2

Var[φ(e)] Var[z(e)]

=

(
w>Czw

)2〈
(w>C(e)w)

2
〉
− (w>Cw)

2
. (4.9)

In the last equality of Eq. (4.9) we have used Eq. (4.5), Eq. (4.3), and the fact that
Var[z(e)] = 1.

The weight vector w that maximizes fr2 cannot be found analytically. It should there-
fore be found using iterative optimization methods such as gradient descent for example.
We propose to optimize it by means of standard nonlinear optimization techniques such
as the limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) algorithm (Nocedal,
1980) implemented in MATLAB’s (The Mathworks) fminunc routine. After the first w
is found, subsequent components can be extracted using the deflation scheme outlined in
chapter A.3.

4.2 Validation

SPoC is designed to find a (set of) spatial filter(s) that extract oscillatory signals with power
modulations that follow a given target variable. We test this ability in high dimensional
and noisy environments by applying SPoC as well as linear regression and a BSS method
(here we used ICA) to simulated as well as real EEG data.
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In the simulations, the time course of the source signal (and therefore also its power
modulation) are known. Thus the results of the methods can be compared to the ground
truth. For the validation using real EEG data, we conducted an auditory steady state
experiment in which the near linear relationship between stimulus intensity and neuronal
amplitude modulations have been reported before (Picton et al., 2003).

4.2.1 Simulations

The data generation processes and the evaluation metrics are identical to what was described
in chapter 3.2. The methods are compared in terms of accuracy and interpretability, where
accuracy describes how well the bandpower time-course of the target source component is
extracted and interpretability reflects the similarity of the estimated activation pattern to
that of the true target source.

In addition to varying the signal-to-noise ratio between the target source and the background
sources, we also explored the performance with respect to varying amounts of training data
available and with respect to how well the target variable z (which is used by the supervised
algorithms) reflects the bandpower time-course of the true target source. The latter aspect
pertains to how the supervised algorithms perform once their training signal no longer
reflects the signal that is to be extracted.

In the simulation runs in which the SNR was varied, there we two minutes of training data
and two minutes of test data. In runs in which the amount of training was varied, the SNR
was set to -10 dB.

Data analysis

The application of regression and ICA was conducted as described in chapter 3.2. For
SPoCλ, the resulting components were ordered with respect to the respective eigenvalues.
After ordering the SPoC component set obtained from the training data, the first component
was used for evaluation on the test data. For SPoCr2 only one weight vector was obtained
by optimizing the respective objective functions on the training data.

Results

Fig. 4.3 shows the results of the simulations in which the signal-to-noise ratio (SNR) was
varied. Please note that all reported correlations are obtained on test data that was not used
to train the algorithms. It can be seen, that for higher SNRs all methods have satisfactory
performance, i.e. they are able to extract the target power time-course from the data with a
high degree of correlation. In terms of pattern similarity and source reconstruction error,
PCA, ICA and the SPoC algorithms reach near perfect performance at high SNR regimes.
As we have seen in the previous chapter, this is not the case for the spatial patterns obtained
from regression.

However, in lower SNR regimes the SPoC algorithms clearly outperform ICA and regression.
Comparing the performance of the SPoC methods, we find that the performance of SPoCr2
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Figure 4.3: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of signal-to-noise ratio. In the top row of the plots, the target variable
z (which is used for training the SPoC algorithms and regression) and the bandpower of the
target source were set to correlate with each other perfectly. In the simulations depicted in
the bottom row, that correlation was set to 0.7.

is consistently higher than the performance of SPoCλ. This does not come as a surprise
because only SPoCr2 is actually optimizing the correlation. The difference in performance
between SPoCr2 and SPoCλ is strongest in the correlations between z and φ in high SNR
regimes. In terms of pattern correlation and source reconstruction error the differences
between SPoCr2 and SPoCλ are negligible compared to the differences between the SPoC
variants and the other methods.

Figure 4.4 compares activation patterns obtained from individual simulation runs under
three different SNR conditions. The SNR levels shown here -6 dB, -12 dB, and -18 dB.
Depicted are the activation pattern of the target source, and estimates thereof obtained
from the different algorithms. This display gives a qualitative impression of the quantitative
results shown in figure 4.3.

In real data analysis settings one cannot be sure if the target variable (z in this case) really
corresponds to the activation of a component hidden in the data. This aspect is explored in
simulations in which we varied the correlation between z and the true bandpower time-course
of the target source. In this way we explored the robustness of the analysis approaches with
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true pattern
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Figure 4.4: Simulation results. Spatial activation patterns from three separate simulation
runs, each with a different signal-to-noise ratio (SNR). Each row correspond to one SNR,
with the SNR level depicted furthest to the left. The left most column shows the activation
pattern of the target source in the respective run. From left to right are the estimates thereof,
as obtained from the different methods. Note that the OLS method requires knowledge of
the actual time-course of the target source and is thus not applicable in practice.

respect to label noise. The results are depicted in figure 4.5. As expected, the performance
degrades as the training signal shows less and less similarity with the activity of the target
component. Note that the performance of the unsupervised methods (PCA and ICA) is also
affected by this quantity, because the target component is selected from the set of PCA/ICA
components based on bandpower correlation with the z variable on the training data.

The last aspect we investigate using simulations is the effect of the amount of training data
that is available. In our simulations we use continuous data that is segmented into 500 ms
long non-overlapping epochs. For all simulations discussed before, the amount of training
epochs 240, which corresponds to 2 minutes of continuous data. Since trial-based analysis
settings are common, we measure the amount of data used for training in epochs, rather
than in time. The amount of training data required is explored by varying the number of
training epochs, while keeping the number of test epochs constant (240). Figure 4.6 shows
the results of these simulations. It can be observed that the SPoC algorithms surpass ICA
once more than 100 to 150 training epochs (i.e. about one minute of data) are available.
After that, it takes the SPoC algorithms about 250 epochs (about two minutes of data)
more to reach their peak performance for this particular setting of simulation parameters.

4.2.2 Real data examples

The utility of the SPoC methods is further demonstrated using real EEG data. To this end,
an experiment on steady-state auditory evoked potentials (SSAEPs) (Picton et al., 2003)
was conducted with 11 participants, of which N=7 showed a SSAEP. The data from the
remaining 4 participants was not used in this analysis.
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Figure 4.5: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of correlation between the target variable z and the bandpower
time-course of the target source. The results document the performance of the methods in
the presence of so-called label noise. The SNR was -10 dB in these simulations.

Figure 4.6: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of amount of training data available. Training data is measured in
number of epochs, each of which was 500 ms long in these simulations. Epochs did not
overlap. The SNR was set to -10 dB and the correlation between z and the bandpower of
the target source were set to 0.7.
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Figure 4.7: Auditory stimulus and experimental setup. (A) Three minute excerpt of the
intensity modulated steady state stimulus. A 500 Hz sinusoid was multiplied with a 40
Hz raised cosine (see the 0.5 second and 0.05 second excerpts in A1 and A2, respectively).
The slowly varying intensity modulation (green line in A, A1, and A2) was applied to the
full length steady state stimulus. (B) Participants received the sound stimulus via in-ear
headphones and EEG was measured concurrently. (C) The raw EEG was analyzed offline
to extract an estimate of the intensity modulation (D).

Experimental Paradigm

The auditory stimulus consisted of a sinusoid with a carrier frequency of 500 Hz which
was amplitude modulated with a 40 Hz raised cosine, thus resulting in the steady-state
modulation. The resulting sound stimulus is referred to as the steady-state stimulus.
It has been shown that such a stimulus induces a reliable steady state response in the
auditory system, i.e. a significant increase in EEG/MEG power at the stimulation frequency
(Galambos et al., 1981; Hari et al., 1989; Plourde et al., 1991; John et al., 2003; Picton
et al., 2003). The SSAEP literature suggests a positive correlation between the amplitude
of the evoked EEG response and the intensity of the steady-state stimulus when measured
in decibel (dB) (Rodriguez et al., 1986; Plourde et al., 1991).

In our paradigm, we realized a continuous amplitude modulation of the sound stimulus by
multiplying it with a slowly varying function, which we refer to as the intensity modulation.
This function modulated the loudness of the stimulus between 10 and 35 dB relative to
the subject- and ear specific hearing level (HL). The intensity modulation was created by
low-pass filtering white noise with a cut-off frequency of 0.05 Hz, which yields a random,
yet smoothly varying fluctuation. Before applying the intensity modulation to the sound
stimulus, we equalized the histogram of the intensity modulation such that all sound intensity
levels appear with equal probability. The beginning and the end of the sound stimulus was
faded in/out to minimal intensity using a half cosine window of 10 seconds duration. Figure
4.7 illustrates the experimental setup, including the construction of the sound stimulus.

The experiment consisted of 3 blocks of 5 minutes continuous stimulation. Between each
block, there was a short pause (less than 1 minute) for the participants to rest briefly.
The sound stimulus was delivered using in-ear headphones and during the EEG recording
participants were instructed to relax but keep their eyes open and to focus on the sound.
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Data Acquisition

EEG signals were recorded using a Fast’n Easy Cap (EasyCap GmbH) with 63 wet Ag/AgCl
electrodes placed at symmetrical positions based on the International 10–20 system. Channels
were referenced to the nose. Electrooculogram (EOG) signals were recorded in addition
but not used in the present context. Signals were amplified using two 32-channel amplifiers
(Brain Products) and sampled at 1 kHz.

Data Analysis

For the offline analysis in MATLAB, the signals were low-pass filtered with a cutoff frequency
of 90 Hz and subsequently down-sampled to 250 Hz. Additionally a notch filter around 50
Hz was applied to attenuate line noise. The down-sampled and notch filtered EEG data
were then band pass filtered with a 3 Hz pass band centered on the steady-state frequency
of 40 Hz, yielding a pass band from 39 to 41 Hz. The band pass filtered data was then
segmented into consecutive epochs of 2 seconds length and 1 second overlap.

The SSAEP literature suggests a linear relationship between the stimulus intensity (measured
in dB) and EEG amplitude at the stimulus frequency. Since the SPoC algorithms and linear
regression work on power features (i.e. squared amplitude), we used the squared stimulus
intensity as the target variable z.

PCA preprocessing (dimensionality reduction, retaining 99% of the variance) was employed
for ICA as this improved the results compared to using ICA without PCA preprocessing.

In order the get an unbiased estimate of each of the methods’ ability to model the stimulus
intensity modulations, we employed a 10-fold chronological cross-validation procedure (Lemm
et al., 2011). This means that the whole data was split up into 10 equally sized folds, of
which 9 folds served as training data while the remaining fold was used for testing. This
training/testing split was repeated such that each fold became the test fold once, yielding
a correlation value for each split. Cross-validation was performed for all methods. The
obtained correlations were transformed using Fisher’s z-transform, averaged, and the mean
z-value was then transformed back into a correlation value using the inverse of Fisher’s
z-transform.

Results

Fig. 4.8 depicts the results obtained from the auditory steady state experiment with a
slowly changing intensity (i.e. loudness) modulation. Each colored line in the left part of
the figure corresponds to a single participant, while the right part of the figure shows the
average across participants. The SPoC algorithms and ICA return several components
and therefore the plotted values refer to the cross-validated correlations obtained from the
extracted component that had the highest correlation between its power time course and the
sound intensity modulation. It can be seen that SPoCr2 and SPoCλ outperform ICA and
regression in the majority of subjects. The SPoC algorithms yields statistically significant
larger correlations between power time courses and the sound intensity modulation than
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Figure 4.8: Real EEG data results: correlation between stimulus intensity and EEG power
at the steady state frequency. (A) Each colored line corresponds to a participant and shows
the obtained correlations for all methods (mean over cross-validation folds). (B) Same
information as in A, averaged over subjects. Error bars depict the standard error of the
mean and a black star indicates statistically significant difference at p<0.05.

ICA or regression (p < 0.05, Wilcoxon rank sum test). Furthermore, on this data set the
performance of SPoCλ is statistically indistinguishable from the performance of SPoCr2.

For the two SPoC algorithms, the best correlating component was always the first component
with respect to the ordering imposed by the respective objective function. A permutation
analysis2 revealed that for the data of all but one participant the power time course of the
respective first SPoC component captured the variation due to the target function.

Fig. 4.9 shows the spatial patterns corresponding to the best spatial filters for each subject.
Best spatial filter here means the spatial filter w that yielded the largest correlation between
the power time course of w>x (i.e. the power time course of the filtered signal) and z.
Please note that the polarity of the spatial patterns (as well as of the corresponding filters)
is arbitrary. For each pattern, the polarity was set such that the pattern value at EEG
electrode Cz is positive.

Fig. 4.10 shows more detailed results for a representative participant (VPnaj). These
plots show channel-wise correlations plotted as a scalp map; the spatial patterns of highest
correlating SPoCr2, SPoCλ, and ICA components; as well as the power spectra of a single
EEG channel (Fz) and the spectra obtained after spatial filtering with the corresponding
SPoCr2, SPoCλ, or ICA filter. Please note that for all subjects the SPoCλ filter that
maximized the covariance (i.e. the objective function of SPoCλ) also exhibited the maximal
correlation between the power time course and stimulus intensity. It can be seen that the
channel-wise correlations are low in magnitude and that the pattern of correlation values
shows little resemblance with the components obtained from the spatial filtering methods.
Between SPoCr2, SPoCλ, and ICA, the obtained patterns are quite similar, indicating that

2The analysis was re-run 500 times, each time using a newly shuffled version of the target function. This
resulted in a distribution of correlation/covariance values under the null-hypothesis that the target
function and the EEG power do not share the same time course.
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Figure 4.9: Real EEG data results: spatial patterns obtained by SPoCr2 for each participant.
The spatial patterns correspond to the filters that maximize the correlation between power
time course and stimulus intensity.

the same source (or set of sources) has been extracted by the algorithms. The second
row of plots in Fig. 4.10 shows the offset-aligned power spectra of EEG channel Cz and
the respective best SPoCr2, SPoCλ, and ICA components (corresponding to the spatial
patterns above). The spatial filtering methods show a much clearer peak at the steady-state
frequency compared to the individual recording channel. The peak is most pronounced in
the component extracted by SPoCr2, thus yielding the highest signal-to-noise ratio for this
particular participant.

4.3 Discussion

In this chapter we presented a novel multivariate approach for the extraction of oscillatory
sources showing a co-modulation of their power with the target function, the latter being
for instance reaction time, hit rate or some physical properties of the sensory stimuli
(e.g. intensity). The SPoC approach is the first to explicitly address the problem of
component extraction for band power correlation/covariance. Using two implementations of
our approach (the SPoCλ and the SPoCr2 algorithm) we were able to show that it performed
better than other methods commonly used for the investigation of a relationship between
behavioral measures and a power of oscillations (sensor space regressions, ICA).

SPoC showed promising results in the extraction of auditory sources generating steady-state
responses. The extracted patterns were consistent with ERP-type analysis of auditory steady
state responses in the 40 Hz range. Herdman et al. (2002) investigated the source activity
underlying the responses to 39 Hz modulated tones. They found a vertically oriented dipolar
pattern with maxima (minima) at mid-frontal electrode positions and corresponding minima
(maxima) at posterior neck positions, where the sign of minima and maxima depends on
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Figure 4.10: Real EEG data results: spatial patterns and power spectra for a representative
participant (VPnaj). (A) Channel-wise correlation between band power and sound intensity.
(B) Spatial patterns of the best SPoCr2, SPoCλ, and ICA component. (C) Offset-aligned
Power spectra of a single EEG channel (Fz), as well as of the components depicted in the
top row. Grey lines in the power spectra plot indicate the difference between power in the
39 Hz and 40 Hz bin, i.e. the signal-to-noise ratio in the spectral domain.

the phase of the stimulus. The obtained spatial SPoC patterns corresponded well with the
findings of Herdman et al. (2002).

Comparing the results obtained on the real EEG data to those obtained on the simulated
data, we find that the performance differences between SPoC and ICA on the real data are
comparable to those found in simulations with moderately high SNR. This indicates that
the sources activated in the auditory steady state paradigm are relatively strong compared
to background activity in the frequency band of interest. However, the significantly larger
correlations obtained with SPoC underline its ability to extract the signal of interest while
effectively suppressing unrelated noise sources at the same time. This makes SPoC a valuable
tool in scenarios in which the time course of the target variable is to be predicted from
ongoing EEG in an online manner.

Below we elaborate on some technical aspects of the SPoC algorithms. If an analysis setting
requires the exploration of one or more parameters and thereby multiple runs of the analysis
method, then processing speed of the method might be an issue. Some BSS methods require
a number of iterations which may take minutes to converge on a standard computer. For a
single run only, the range of minutes should not, however, be a problem. However, if the
number of runs increases greatly (e.g. for bootstrapping (Meinecke et al., 2002)) minutes can
easily become many hours on single processors. Thus it is important to point out that the
generalized eigenvalue computation in the SPoCλ algorithm takes only fractions of a second,
and that is why SPoCλ unproblematically allows for (a) extensive parameter studies, or (b)
bootstrapping efforts or (c) online evaluations within a time window with only moderate
processing time demands.
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As a technical side remark we would like to also mention that the SPoCλ algorithm is
intimately related to the Common Spatial Pattern (CSP) algorithm family (Blankertz et al.,
2008). CSP is the current most popular method in Brain-Computer Interface systems, which
are based on oscillatory brain signals (Lemm et al., 2011; Blankertz et al., 2007). When the
target variable z is binary, classical CSP is obtained as a special case of SPoCλ. One may
thus view SPoCλ as a regression extension of CSP to continuous target variables. In such a
regression scenario, CSP could still be used but it would require a form of binning of the
target variable (e.g. mean- or median split, or using percentiles), which might be arbitrary.
Both SPoC algorithms, however, are specifically designed for continuous target variables
and therefore do not require such preprocessing.

The SPoC approach is intended to be used on multichannel EEG and MEG data. However,
it is not limited to the application of non-invasive imaging methods and should perform
equally well for invasive recordings. A specific application scenario for SPoC would be studies
with intra-cortical electrodes in epilepsy patients and recordings obtained from deep brain
structures such as Globus Pallidus and Subthalamic Nucleus in patients with Parkinson’s
Disease. In fact, given a special clinical interest in understanding brain mechanisms of the
neurological disorders, a precise localization of pathological neuronal networks would be
a great advantage, such as for instance in clarifying the neuronal generators of tremor in
patients with Parkinson’s Disease (Wichmann and Delong, 2011). In this case a tremor
can be used as a target variable in order to extract corresponding sources of beta or
high-frequency oscillations in the thalamo-cortical-basal network.

Note that SPoC properly implements the commonly accepted generative model of EEG/MEG
and therefore it is possible to meaningfully interpret its results within this generative model.
This also allows subsequent source localization (Baillet et al., 2001; Haufe et al., 2008, 2011)
or further multimodal processing (Fazli et al., 2012; Bießmann et al., 2011).

In summary, SPoC is an approach that enables a reliable and fast extraction of neuronal
oscillations, whose power time course co-modulates with an external target function. Because
of SPoC’s superiority to other standard techniques, we advocate its use for recovering
associations between cognitive/motor variables and neuronal activity.
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Chapter 5

Multimodal Source Power Co-modulation

In this chapter we extend the Source Power Co-modulation idea to the multivariate and,
more importantly, to the multimodal case. To this end, we assume to be confronted with
a multivariate oscillatory dataset x as well as another multivariate dataset, denoted by y.
The task is now to extract source components from both datasets that are functionally
connected to each other. Specifically, we seek to uncover component pairs (sx and sy) such
that the bandpower dynamics of sx, denoted by φx, co-modulate with the time-course of a
corresponding sy.

Part of this task is solved using ideas that we developed in the previous chapter, especially
concerning the extraction of components from x. However, instead of having a univariate
target function z available, we must now extract this signal from the multivariate dataset y.
In all of the following considerations we assume that both x and y can be modeled using the
linear generative model described in chapter 2.2.1, with modality specific mixing coefficients
Ax and Ay, as well as source time-courses sx and sy. Thus, the approach we propose in
this chapter respects the linear generative model that was outlined in chapter 2.2. Thereby,
our approach allows for meaningful interpretation of the resulting components, not only
with respect to functional aspects but also with respect to anatomical locations.

The method we develop in this chapter assumes a set of underlying sources whose activity
is visible in both imaging modalities. The estimation of source components is based on
maximization of a co-modulation term and therefore we refer to our method as multimodal
source power co-modulation (mSPoC). The objective function we define represents our novel
approach to the problem. The way we actually optimize the objective, however, is rather
generic and can in principle replaced by a different optimization procedure.

A conceptual comparison of (i) blind source separation methods applied in the multimodal
context, (ii) the previously introduced method canonical correlation analysis (CCA), and
(iii) our novel method mSPoC is provided in Fig. 5.1.

5.1 The mSPoC algorithm

5.1.1 Defining the objective function

Similar to our approach in the previous chapter, we employ a backward modeling, i.e. spatial
filtering, approach to extract the component time-courses of interest from the multivariate
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Figure 5.1: Illustration of different approaches to symmetrical fusion of EEG spectral
power and multivariate hemodynamics. The input to all three approaches is the multivariate
and bandpass filtered EEG/MEG data x as well as a multivariate time series of, for example,
NIRS of fMRI measurements. Processing steps are organized from top to bottom. Left:
An approach that is based on blind source separation (BSS) methods that are applied
to each modality independently. This approach is in line with the generative model we
assume for both modalities. However, the modality-specific BSS methods do not inform
each other during the decomposition and thus potentially miss out on available information.
Furthermore, after the decomposition step, a matching of components across modalities is
required as well as an additional estimation step for the hemodynamic response function.
Middle: An approach based on canonical correlation analysis (CCA) or partial least squares
(PLS). In this approach, the decomposition into components is informed by the respective
other modality and an additional matching of components across modalities is not required.
The crucial drawback of this approach is that on the EEG/MEG side, bandpower has to
be computed on channel-level, which leads to a number of shortcomings that have been
outlined in chapter 3. Right: Our proposed approach called multimodal source power
co-modulation (mSPoC) that combines advantages of the two other approaches (conformity
with the generative model as well as maximal use of cross-modal information) while avoiding
their shortcomings.
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datasets. We denote the extracted signals by

ŝx = w>x x and (5.1)

ŝy = w>y y , (5.2)

where the variables ŝx and ŝy, respectively, denote the component time-series extracted
from the data by means of spatial filters wx and wy.

We assume x and y to be mean-free and temporally aligned. We further assume x to
be bandpass filtered for a frequency band of interest and that it can be segmented into
small time windows, called epochs, with index e for e ∈ {1, ..., Ne}. The individual epochs
should be long enough to allow for a reasonable estimate of spectral power of x, yet short
enough so that y changes only very little within each individual epoch1. Finally, y should
be sub-sampled to epoch time resolution such that it can be indexed with the epoch index
e, i.e. we have y = {y(1), ...,y(e), ...,y(Ne)}.

The epoch-wise power of ŝx is approximated by the variance within each epoch, which leads
to:

φx(e) = Var [ŝx(t)] (e)

= w>x Cxx(e)wx, (5.3)

where Cxx(e) denotes the covariance matrix of x in the epoch e.

We model the possibly time-delayed coupling between φx and ŝy using a finite impulse
response (FIR) filter approach. The FIR filter coefficients are stored in temporal weight
vector wτ that is applied to φx. Thus we define the temporally filtered power time-series

ĥ(φx)(e) =

Nτ∑
i=1

wτi φx(e− τi) , (5.4)

where the scalar variable wτi denotes the i-th element of the vector wτ = (wτ1, ..., wτNτ )>,
τi for i ∈ {1, ..., Nτ} is a set of suitable pre-chosen time-lags, and Nτ is the total number of
time-lags to be taken into account.

The last equation depends both on wτ and wx. In order to simplify the optimization (see

next section), we give two alternative but equivalent expressions for ĥ(φx). The first one is
based on the observation that the spatial filter wx does not depend on the index i in the
last line of the Eq. (5.4) and, thus, can be moved out of the sum. Doing so leads to

ĥ(φx)(e) =

Nτ∑
i=1

wτi w>x Cxx(e− τi)wx

= w>x

(
Nτ∑
i=1

wτi Cxx(e− τi)

)
wx

= w>x ĥ(Cxx)(e) wx , (5.5)

1In most practical scenarios this setting is very natural, especially if x and y are acquired with different
sampling rates. A typical example would be concurrent EEG and fNIRS, where half a second represents
an appropriate epoch length.
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where ĥ(Cxx)(e) represents the element-wise convolution of the covariance time-series Cxx(e)
with the FIR filter wτ . Please note the resemblance between Eq. (5.5) and Eq. (5.3). The
second alternative version of Eq. (5.4) puts more emphasis on wτ and reads

ĥ(φx)(e) = w>τ Φx , (5.6)

where Φx ∈ RNτ×(Ne−Nτ ) is the temporally embedded version of φx:

Φx =

 sh(φx, τ1)
...

sh(φx, τNτ )

 , (5.7)

where we define sh(φx, τi) to be a copy of φx with all elements shifted by the time-lag τi,
i.e. sh(φx, τi)(e) = φx(e− τi).

Equipped with these definitions, we now formulate an mSPoC objective function using
covariance as the co-modulation function:

max
wx,wy,wτ

Cov
(
w>τ Φx,w

>
y y
)
, (5.8)

subject to the following norm constraints

w>x
〈
xx>

〉
wx = w>x Cxxwx = 1, (5.9)

w>y
〈
yy>

〉
wy = w>y Cyywy = 1, (5.10)

w>τ wτ = 1, (5.11)

In Dähne et al. (2013) we have shown that the objective function can be further expanded
and then expressed in terms of a deflation of a four dimensional covariance tensor Cxxyτ ∈
RNx×Nx×Ny×Nτ . While this leads to a conveniently concise expression of the objective
function, the actual computation of the covariance tensor is less convenient. In fact, the size
of this object, i.e. the total number of elements in Cxxyτ , scales with O(Nx ·Nx ·Ny ·Nτ ),
which is not particularly desirable. However, as we show in the next section, the covariance
tensor does not have to computed explicitly and therefor we do not make any use of it in
further derivations. In fact, it turns out that we can break the objective function down into
connected sub-problems that can each be solved much more efficiently, leading to space
requirements in the range of O(N2

x +N2
y +N2

τ ) only.

5.1.2 Optimization of the objective function

In order to optimize the mSPoC objective function, we follow a typical analytical optimization
approach. That is, we first define the Lagrangian of the original objective by including the
constraints:

L(wx,wy,wτ , λx, λy, λτ ) = Cov
(
w>τ Φx,w

>
y y
)

+ λx
(
1−w>x Cxxwx

)
+ λy

(
1−w>y Cyywy

)
+ λτ

(
1−w>τ wτ

)
, (5.12)
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where λx, λy, and λτ are unknown scalar variables.

Then we compute the partial derivatives with respect to wx, wy, and wy, respectively, set
those equal to zero and then solve for wx, wy, and wy. This approach leads to the following
set of coupled equations:

〈
ĥ(Cxx)(e) ŝy(e)

〉
wx = λxCxxwx (5.13)

1

2
C−1

yy

〈
ĥ(φx)(e) y(e)

〉
= λywy (5.14)

1

2
〈Φx(e) ŝy(e)〉 = λτwτ , (5.15)

in which 〈·〉 denotes the average taken over epochs. These equations hold simultaneously in
local optima of the objective function.

Note that
〈
ĥ(Cxx)(e) ŝy(e)

〉
in Eq. (5.13) evaluates to a matrix of size Nx × Nx that

depends on wy and wτ . This in turn means that for a given wy and wτ , the optimal
wx is found as the solution to a generalized eigenvalue problem. In fact, Eq. (5.13) is the
solution to the SPoCλ objective function that we have seen in the previous chapter, with ŝy
now in the role of z and the filtered covariance time-series ĥ(Cxx)(e) in the role of Cxx(e).
Furthermore, for a given wx and wτ , we see that the objective function becomes a linear
regression with the univariate ĥ(φx) as the dependent variable and y as the multivariate
regressor, or predictor variables. Eq. (5.14) gives us an expression for wy as the ordinary
least squares solution to the regression problem. Finally, a similarly simple solution is
obtained for the optimal wτ , given fixed wx and wy.

The dependency structure between wx, wy, and wτ can be used to form a simple optimization
scheme, in which one would start with a random initialization of all weight vectors and
then iterate Eq. (5.13), Eq. (5.14), and Eq. (5.15) until convergence. In our optimization
procedure, we simplify the structure even further by noting that for given wx, estimates of
both wy and wτ can be obtained simultaneously using CCA, which in turn can be used
to update wx using SPoCλ. Thus, in our implementation of mSPoC we make use of the
previously discussed methods CCA and SPoCλ, applying them iteratively to update wx,
wy, and wτ until a suitable convergence criteria is met. Criteria for convergence can be the
difference between consecutive objective function values or a fixed number of iterations for
example. In our implementation we use a mixture of both, i.e. we compute the correlation
between the current estimates of ĥ(φx) and ŝy after each iteration and stop if either the
difference is smaller than some predefined threshold or a maximum number of iterations is
reached.

Pseudo-code for the core part of our implementation, i.e. the extraction of K = 1 component
from x and y is shown in Algorithm 1. In order to extract more than one component
pair from the data, the case K > 1, we employ a deflation scheme that is outlined in
chapter A.3.
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Algorithm 1 Pseudocode of the mSPoC algorithm for K = 1 component pair. More
component pairs are obtained using a deflation approach, i.e. by projecting out previously
obtained components and repeating the method with deflated data.

Require: x band-pass filtered and y centered (optional: dimensionality reduction using
SSD for x and (kernel-) PCA for y)

1: function mSPoC(x, y)
2: Cxxe ← compute covariance matrix time-series from x
3: for n restarts do
4: wx ← random initialization
5: φx ← power time-course from wx and Cxxe
6: while not converged do
7: Φx ← temporal embedding of φx
8: wτ ,wy ← CCA(Φx,y)

9: ĥ(Cxxe)← filter Cxxe with wτ

10: ŝy ← w>y y

11: wx ← SPoCλ(ĥ(Cxxe), sy)
12: φx ← power time-course from wx and Cxxe
13: check convergence criteria
14: end while
15: store wx, wy, and wτ in a list along with correlation between ĥ(φx) and ŝy
16: end for
17: return wx, wy, and wτ that yielded highest correlation
18: end function

5.2 Validation

5.2.1 Simulations

The data generation processes and the evaluation metrics are identical to what was described
in chapter 3.2. The methods are compared in terms of accuracy and interpretability, where
accuracy describes how well the functional activation of the target source components is
extracted and interpretability reflects the similarity of the estimated activation patterns to
those of the true target components.

For each simulation run, we created the datasets x and y according to the generative model
given in Eq. (2.1), where the details of the data generation have been described in chapter 3.2.
The number of simulated channels was Nx = Ny = 25, and a total of Kx = Ky = 31 sources
was simulated for each data set. One source from x was functionally coupled with one
source from y, such that the envelope of this target source in x reflected the time-source of
the respective other target source in y. The time courses (and envelopes) of all other sources
were completely independent to each other and to the target sources. These independent
sources are referred to as background sources.

While the x data consisted of band-limited oscillations (8 Hz to 12 Hz), the y signal was
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simulated to vary on slower time-scale in order to allow for correlations between amplitude
modulations of the target x component and the corresponding target y component. To
this end, all y source component signals are in fact amplitude modulations that have been
obtained from band-limited oscillations, generated by the same function that generated
the source components of the x signals. No time delay was introduced between the source
components from the two simulated modalities.

Consistent with the simulations of the preceding chapters, we assessed the performance of
the compared methods with respect to (i) varying signal-to-noise ratios (SNR) between
the target source and the background sources, (ii) varying amounts of training data, and
(iii) to the true degree of coupling between the target source components from x and y, i.e.
to the true correlation between x bandpower and y time-course. This last aspect assesses
how the algorithms perform when the underlying assumption (functional coupling between
modalities) are no longer valid.

The amount of training and test data was five and two minutes, respectively, for each of the
simulation runs in which either the SNR or the true underlying coupling was varied. The x
data was segmented into non-overlapping epochs of 500 ms length, while the y data was
sub-sampled such that for each epoch in x there was a corresponding time sample in y. For
the simulation runs in which the amount of training was varied, the SNR was set to -10 dB.
For each parameter setting the simulations were repeated 150 times with newly generated
data.

Data analysis

We benchmarked mSPoC against CCA, ICA, and ordinary-least-squares (OLS).

OLS was applied to each modality separately and, being a supervized method, it received
the time-courses of the true target sources as additional training data. Thus, OLS again
serves as an empirical upper bound in the performance comparison.

For CCA, the x data was non-linearly preprocessed by computing the channel-wise variance
within epochs. This resulted in channel-wise variance time-courses of x that matched the
sampling frequency of the y data, which in turn allowed for application of standard CCA.
The first CCA component pair, which is the pair that shows highest correlation on training
data, was then used to asses its performance on the test data.

ICA was applied to the training data of each modality separately. Thereafter, the bandpower
modulations of the ICA components obtained on the x training data were computed and
correlated with the time-courses of the y data ICA components. The pair that yielded
highest correlation on the training data was then assessed on the test data.

Results

Simulation results are depicted in figure 5.2, figure 5.3, and figure 5.4.

Figure 5.2 shows the performance of the compared methods as a function of SNR for two
different settings of true underlying coupling (correlation 1 and correlation 0.7). mSPoC is
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Figure 5.2: Simulation results. Here performance in terms of accuracy (first and second
column) and interpretability (third and fourth column) is shown as a function of signal-
to-noise ratio. In the top row of the plots, the true correlation between the bandpower
modulations of the target x component and the time-course of the true y component was 1,
while in the simulations depicted in the bottom row, the true correlation was 0.7.
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Figure 5.3: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of true underlying coupling, i.e. the correlation between the bandpower
modulations of the target x component and the time-course of the target y component. The
SNR was -10 dB in these simulations.
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Figure 5.4: Simulation results. Here performance in terms of accuracy (first and second
column) and interpretability (third and fourth column) is shown as a function of amount of
training data available. Training data is measured in number of epochs of the x modality,
each of which was 500 ms long and corresponded to the number of samples in the y modality.
Epochs did not overlap and the SNR was set to -10 dB.

able to outperform CCA and ICA over wide ranges of SNR, particularly when the SNR is
low. The performance differences between mSPoC and CCA are most clearly visible for the
results obtained on the x data, because this part of the multimodal dataset is not accurately
modeled by CCA. This inadequacy of CCA becomes most obvious in the interpretability
metric (similarity between true and estimated activation patterns), where it is outperformed
by both mSPoC and ICA.

The effect of varying degrees of underlying coupling between the target sources is depicted
in figure 5.3. CCA and mSPoC both assume an existing coupling between modalities and
therefor their performance degrades as the coupling becomes weaker.

Finally, figure 5.4 shows the performance of the compared methods as a function of the
amount of training data. The performance of mSPoC rises quickly as the amount of training
data is increased. For this particular set of simulation parameters, a near-peak performance
is reached after about 400 training epochs (≈ 3 minutes of data), after which the performance
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still rises but with a much slower rate. CCA and ICA show a similar behavior, but reach
their (lower) near-peak performance much quicker.

5.2.2 Real data examples

Fusion of EEG and fNIRS

In this real data example we employ both mSPoC and CCA to simultaneously recorded
EEG and fNIRS data, during a study on multimodal BCI, which is described in detail in
Fazli et al. (2012). Here we show a re-analysis of Fazli et. al’s data.

Experimental Paradigm 14 healthy, right-handed volunteers participated in an experiment
which consisted of 2 blocks of motor execution by means of hand gripping. Subjects were
asked to close and open their hands with a frequency of 1 Hz for 4 seconds per trial followed
by a break of 10.5± 1.5 s. An arrow on a display indicated whether to use their left or right
hand. They performed 24 trials per condition and block in randomized order resulting in 48
trials per condition.

Data Acquisition During the task EEG and NIRS was simultaneous recorded. With the
NIRS-System (NIRScout 8-16, NIRx Medizintechnik GmbH, Germany) 24 channels located
mostly around the motor areas as well as frontal and parietal areas were measured at
fNIRS = 6.25 Hz sampling frequency. EEG measurement (BrainAmp by Brain Products,
Munich, Germany) was performed using 37 Ag/AgCl electrodes with a sampling rate of
fEEG = 5 kHz and downsampled to 100 Hz. Sensors of both systems were integrated into a
standard EEG cap, resulting in distances between light source and light detectors between
2-3 centimeters.

Data Analysis Raw NIRS data was transformed to concentration changes of HbO and
HbR with the modified Beer-Lambert law Delpy et al. (1988); Kocsis et al. (2006) and
band-pass filtered leaving frequencies between 0.025 and 0.25 Hz where the hemodynamic
response is expected. EEG data was restricted to a subject-specific frequency band that was
used by (Fazli et al., 2012). For the vast majority of subjects it was a narrow sub-band of
the alpha or beta band range, which is known to reveal responses for motor execution (Ritter
et al., 2009). Artifactual NIRS channels were excluded manually via visual inspection of the
raw signals and the power spectrum. The band-pass filtered NIRS signals were sub-sampled
such that their new sampling rate was 1 Hz.

The EEG data was divided up into non-overlapping epochs of 1 second length, which
matched the temporal resolution of the re-sampled fNIRS signals. Here we employed a
version of CCA that is also able to account for a temporal filtering of the projection of
the EEG power, namely temporal CCA (Bießmann et al., 2009). For the mSPoC analysis
we computed EEG covariance matrices within each epoch, while for the CCA analysis a
channel- and epoch-wise Fourier transformation was conducted in order to extract the band
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Figure 5.5: Cross-validated correlations between EEG and NIRS (left HbR, right HbO) in
the motor execution task for each subject. Results of mSPoC and CCA are compared. Each
point corresponds to the correlations obtained for the first set of wx, wy, and wτ from a
single subject by CCA (x-axis) and mSPoC (y-axis).

power of interest. This yielded a time series of EEG covariance matrices for mSPoC and a
multivariate power time series for CCA.

In order to avoid over-fitting and to test the generalization ability of the obtained mSPoC
and CCA components, we employed a chronological 5-fold cross-validation.

Results Figure 5.5 shows the results of applying mSPoC and CCA to the simultaneously
measured EEG and NIRS data of 14 subjects. We plot the cross-validated correlation values
of the first set of components for each subject in a scatter plot. This way one can easily
compare the performance of mSPoC (y-axis) and CCA (x-axis) for each subject (single point
in the scatter plot). Each point above the diagonal indicates that higher correlations were
found with mSPoC as compared to CCA. The scatter plots indicate that mSPoC achieves
higher correlations in both analysis settings, i.e. when the convolved band power of EEG
components is correlated with NIRS components (HbR and HbO).

We find that mSPoC is able to extract motor-related sources from the two imaging modalities.
This is illustrated in figure 5.6, which shows the EEG source patterns of one component
set projected on the scalp and the temporal filter for one exemplary subject (VPean) for
each motor class separately. Plots in the top row are obtained from left hand movement
trials and plots shown in the bottom row are obtained from right hand movement trials.
The spatial pattern of the extracted EEG source in the top row of the figure is consistent
with a dipole in motor-related areas of the right hemisphere. The NIRS pattern also has its
largest weights located over motor areas on the right side of the scalp, which nicely reflects
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Figure 5.6: Exemplary results for one subject (VPean) as derived by mSPoC. The scalp-
plots on the left side show the EEG pattern that corresponds to the obtained filter wx. In
the middle plot we show the temporal filter for the EEG power of the component shown
left. The rightmost scalp-plots depict the spatial pattern that corresponds to the filter wy,
i.e. the NIRS patterns. The top row shows the results for applying mSPoC to left hand
movement trials, while in the bottom row results for right hand movement trials are shown.
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the neuro-physiology for left hand movements. The same is true for patterns obtained on
the right hand movement trials. The EEG pattern is located over motor areas of the left
hemisphere, which is consistent with the center of mass of the NIRS pattern. The shape of
the derived temporal filter of both motor classes is in accordance with the HRF reported in
the literature (Boynton et al., 1996). The filter functions realize a temporal low-pass filter
with a time shift of 5 to 8 seconds.

Fusion of EEG and fMRI

In this second real world example we illustrate the application of mSPoC for the fusion of a
multimodal dataset of simultaneously recorded EEG and fMRI.

Experimental Paradigms One subject was placed in an MR scanner and instructed to
squeeze a soft ball five consecutive times with a frequency of 1 to 2 Hz each time an auditory
brief tone (frequency = 600 Hz; duration = 200 ms) was presented. The interval between
each trial of hand movements was varied from 20 s to 25 s (mean = 22.5 s) and the subjects
were instructed to keep their eyes open. This part of the experiment comprised three runs,
each consisting of 16 cued movements and each lasting around six minutes. In the following
we refer to the data of this part of the experiment as the motor data.

Additionally, one block of “eyes open”/”eyes closed” measurements was conducted. In this
block, the subject was asked to relax and switch between eyes open and eyes closed every
time an auditory cue was played. The total run time of this block was 7 minutes with
switching cues occurring every 30 seconds. The data from this part of the experiment is
referred to as the eyes open/closed data.

Data Aqcuisition Functional MRI data were recorded with a 3 T MRI System while the
subject performed the motor task. Whole-brain EPI images were recorded every 2 s (30 axial
slices; TE = 30 ms; flip angle = 90◦; field of view = 192 x 192 mm; voxel size = 3 x 3 x 4
mm, interslice gap = 1 mm). To minimize artifacts in the EEG, the internal MRI ventilation
system was disabled and the helium pump was switched off (Ritter and Villringer, 2006;
Nierhaus et al., 2013). EEG was simultaneously recorded inside the MR-scanner (31 scalp
channels, arranged according to the International 10—20 System, plus one electrocardiogram
channel (ECG) at participants’ back).

Data analysis MRI data were preprocessed using SPM 8 (Wellcome Trust Centre for
Neuroimaging, UCL, London, UK). Functional volumes were slice time-corrected using the
middle slice as reference, realigned to the first image of the time series, and corrected for
movement-induced image distortions (6-parameter rigid body affine realignment). Then,
images were normalized to the Montreal Neurological Institute (MNI) EPI-template. Note
that no spatial smoothing was applied. From the 53 · 63 · 46 ≈ 150000 voxels that constitute
a single scan volume, a subset of approximately 75000 voxels was selected based on a
gray matter template provided by the SPM software. Voxels for which the gray matter
probability was larger than 0.1 were kept while the remaining voxels were discarded. In
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order to remove drifts the resulting fMRI time-series were high-pass filtered with a cutoff
frequency of 0.0083 Hz (corresponding to a period of 120 s). Thereafter, the fMRI was
upsampled to 1 Hz sampling rate. Finally, linear kernel PCA was applied to reduce the
dimensionality of the fMRI to a subset of components that together explained 95% of the
total variance.

The EEG data was preprocessed using a Matlab toolbox presented in Liu et al. (2012).
Processing steps performed with this toolbox included removal of MR gradient artifacts
as well as removal of the ballistocardiographic artifact. Further EEG preprocessing was
performed using custom Matlab code and included band-pass filtering and dimensionality
reduction. Hand movements are expected to modulate the previously mentioned sensorimotor
rhythm (SMR). EEG-only analysis revealed the strongest modulation in the beta band
for this subject during the motor execution blocks. Thus for mSPoC analysis, the EEG
motor data were bandpass filtered between 16 Hz and 22 Hz (low beta) as well as between
21 Hz and 30 Hz (high beta). The eyes open/closed data were bandpass filtered between
8 Hz and 12 Hz, which corresponds to the well known alpha rhythm. Furthermore, a
dimensionality reduction based on spatio-spectral decomposition (SSD) (Nikulin et al., 2011;
Haufe et al., 2014a) was performed to increase the SNR on the selected band by retaining
20 SSD components. Consecutive and non-overlapping EEG epochs were defined based on
the scan-triggers send by the fMRI scanner. This resulted in epochs of 1 s length temporally
aligned with the up-sampled fMRI time-series.

After mSPoC analysis, spatial activation patterns were computed for EEG and fMRI
according to Eq. (2.4). The fMRI activation map was z-transformed and values |z| ≤ 3.5
were set to zero. All reported coordinates correspond to the anatomical MNI space and the
probability maps of the Anatomy Toolbox (version 1.7; (Eickhoff et al., 2007)) were used for
assignment of clusters in the fMRI activation pattern to their underlying Brodmann areas
(BAs). For illustration, the fMRI pattern was superimposed on an anatomical template as
provided in MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/).

Finally, in order to assess the physiological meaningfulness of the obtained components,
the brain region generating the first EEG mSPoC component from the motor data was
source-localized using the multiple signal classification approach (MUSIC Schmidt, 1986).
The MUSIC algorithm subsequently scanned through 74,661 dipole locations located on the
tesselated cortical surface, and measured, using the corresponding part of the lead field, to
what extent a single dipole at each location can explain the activation pattern ax.

Results Figures 5.7 and 5.8 show the first mSPoC component pairs obtained from the
motor data where the EEG has been bandpass filtered for the beta range (low and high
beta, respectively). Depicted are the spatial activation patterns of the EEG component and
the activation patterns of their corresponding fMRI components, ax and ay, respectively.
Furthermore, the figure shows the cross-correlation between the log-bandpower of the EEG
component and the time-course of its corresponding fMRI component. In addition the
estimated FIR filter coefficients of the vector wx are plotted. Finally, the event-related
(de-)synchronization of the EEG component is shown using a spectrogram plot and the
result of the MUSIC scan (i.e. distributed dipole fit) as shown in the figures as well.
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Figure 5.7: Results of mSPoC analysis of motor data: low-beta. A: Spatial activation
pattern ax of mSPoC EEG component. B: Spatial activation pattern of the fMRI component
plotted on a template brain. Shown are 27 equidistant transverse slices through the 3D
activation pattern. C: Cross-correlation between time-course of low-beta power of this EEG
component and the extracted BOLD time-course of the corresponding fMRI component.
D: Coefficients of the estimated FIR filter wτ . E: Spectrogram (averaged across 45 trials)
showing event-related (de-)synchronization (ERD/ERS) of the extracted EEG signal. F:
Source localization of the EEG spatial pattern using the MUSIC algorithm (Schmidt, 1986).
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Figure 5.8: Results of mSPoC analysis of motor data: high-beta. A: Spatial activation
pattern ax of mSPoC EEG component. B: Spatial activation pattern of the fMRI component
plotted on a template brain. Shown are 27 equidistant transverse slices through the 3D
activation pattern. C: Cross-correlation between time-course of high-beta power of this EEG
component and the extracted BOLD time-course of the corresponding fMRI component.
D: Coefficients of the estimated FIR filter wτ . E: Spectrogram (averaged across 45 trials)
showing event-related (de-)synchronization (ERD/ERS) of the extracted EEG signal. F:
Source localization of the EEG spatial pattern using the MUSIC algorithm (Schmidt, 1986).
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We shall discuss the extracted low beta component in more detail now. The largest activation
cluster in the fMRI activation pattern (k = 243 voxels) covered the left sensorimotor cortex,
with maximal activations in the premotor cortex (BA 6; x = -24, y= -13, z= 73), primary
motor cortex (BA 4p; x= -33, y = -22, z = 55), and primary somatosensory cortex (BA1; x
= -45, y = -34, z = 64). This is in line with previous studies showing that Rolandic rhythm
strength is (inversely) correlated with activity in motor and somatosensory cortex (Ritter
et al., 2009). Note however that in this particular case the highest correlation between EEG
beta power and BOLD signal is actually positive. This is explained by the spectrogram plot
in the lower left panel of the figure. The plot shows that in addition to a slight decrease in
beta power relative to baseline, there is a large increase (more than 100% relative to baseline)
after about four to five seconds. This effect is called beta rebound and it is found to occur
after executed as well as imagined movements (Pfurtscheller et al., 1996, 2005; Jurkiewicz
et al., 2006). In this subject, the peak of the beta rebound coincides with maximal BOLD
signal activation, which is evident from the maximum in the cross-correlation at lag zero.
Hence also the maximum-magnitude weight in the FIR filter at lag zero.

The EEG pattern of the mSPoC component was best approximated by a dipole in the left
primary motor cortex (BA 4p; MNI coordinates x = -27, y= -4, z= 51) pointing tangentially
towards the front right (normalized orientation x = 0.78, y = 0.62, z = 0.11). The EEG
source was thus estimated to be less than 2 cm away from the corresponding fMRI activation
in primary motor cortex. The best-fitting dipole almost perfectly explained the mSPoC
activation pattern (v = 98 % explained variance). The panel in the lower right of the figure
depicts the variance v (scaled as v/(1− v)) explained by a dipole in each location on the
cortical surface, where the location and orientation of the best-fitting dipole is indicated by
a black arrow.

Interestingly, the EEG pattern of the first mSPoC component obtained for the high beta
band-pass filter settings (see Figure 5.8) is consistent with a dipolar source in the right
hemisphere of the brain, and thus ipsilateral to the hand that was used for movement.
Cross-correlating the beta band time-course of the EEG component with the temporal
activation of the corresponding fMRI component reveals near zero correlation at zero lag
and maximal (inverse) correlation at a time lag of 4 seconds. This behavior is reflected in
the estimated FIR filter coefficients, which have their maximum at a time lag of 4 seconds
as well.

The spectrogram of the EEG component’s time course shows a strong decrease in high
beta power immediately after movement onset and only very little rebound in high beta. A
post-movement beta rebound can be observed in the lower beta range of this component as
well, yet the magnitude of this effect is only half of what was observed for the contral-lateral
EEG component.

Figure 5.9 shows the results obtained from the eyes open/closed dataset. Similar to the
figures from the motordata, this figure depicts EEG and fMRI activation patterns, the
cross-correlation between EEG component bandpower (here from the alpha band) and the
coefficients of the estimated FIR filter. In addition, this figure also shows the time-courses
of the EEG component bandpower (with and without application of FIR filter) as well as
the time-course of the extracted fMRI component.
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The spatial activation patterns of the EEG and fMRI component indicate occipital regions as
the generators of the extracted signals. As for the temporal relation between the modalities,
the strongest correlation between band power of the EEG component and the extracted
fMRI signal is observed at a time lag of four seconds. Similar to what we have seen before,
the FIR filter coefficients reflect the delay in maximal coupling. The bottom panel of Figure
5.9 shows the temporal co-modulation of extracted EEG and fMRI. Both signals are clearly
modulated by the alternation between blocks of eyes open and eyes closed, alternating every
30 seconds.

In summary, we find that mSPoC applied to simultaneously recorded EEG and fMRI
extracted meaningful components the spatial, spectral and temporal dynamics of which were
in line with previous findings and/or were expected given what is known in the literature.
Thereby, these real data experiments further validated the use of mSPoC for the fusion of
multimodal neuroimaging data.

5.3 Discussion

In this chapter we presented a novel technique for multimodal integration with emphasis
on bandpower dynamics. The objective function we proposed is designed to reflect the
generative models of EEG and hemodynamic signals. The new analysis method is called
mSPoC and we compared it to a state-of-the-art competitor CCA. The results show that
the performance of mSPoC exceeds that of CCA on simulated as well as real world data.

The proposed optimization scheme is efficient and fast enough to allow an application to
real experimental data. However, we expect that there might still be room for improvement.
There are a number of parameters that may be subjected to further optimization in order
to reach better performance, for example the length of the epoch-window or the frequency
band used to band-pass filter the EEG. Also the actual optimization algorithm may still be
improved.

Related methods In Dähne et al. (2013) we have shown that the mSPoC objective can be
expressed in terms of tensor factorization. There are other tensor factorization approaches
(also called multi-way analysis) to either EEG power alone (Lee et al., 2007; Mørup et al.,
2008) or to EEG power in conjunction to hemodynamics (Mart́ınez-Montes et al., 2004). In
these approaches, however, EEG band power is computed in sensor space as part of the
preprocessing and then added as a single dimension into a tensor or multi-way array. In our
approach, the nonlinearity (i.e. estimation EEG band power, here approximated by squaring)
is directly incorporated into the objective function and into the required data structure as
the EEG data enters the objective function as a time-series of covariance matrices. This is
a necessary step in order to represent the EEG source power rather than the EEG channel
power.

Physiological plausibility Our novel framework corresponds to a widely accepted generative
model for the electro-physics of the EEG and the hemodynamics of neural sources (Nunez
and Srinivasan, 2005). Therefore, our results are interpretable within this model. This is a
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5.3 Discussion

Figure 5.9: Results of mSPoC analysis of eyes open/closed data: alpha. A: Spatial
activation pattern ax of mSPoC EEG component. B: Spatial activation pattern of the
fMRI component plotted on a template brain. Shown are 27 equidistant transverse slices
through the 3D activation pattern. C: Cross-correlation between time-course of alpha power
of this EEG component and the extracted BOLD time-course of the corresponding fMRI
component. D: Coefficients of the estimated FIR filter wτ . E: Time-courses of the mSPoC
EEG component alpha power (with and without subsequent FIR filtering) and the mSPoC
fMRI component activation. Switching between eyes open and eyes closed was cued every
30 seconds, starting with eyes open.
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Chapter 5 Multimodal Source Power Co-modulation

particular difference to CCA- or PLS-based approaches for example. The spatial filters for
the EEG band power obtained by our method are invertible to yield spatial patterns which
correspond to the underlying sources. These EEG patterns can in principle be subjected to
source localization algorithms (e.g. Baillet et al., 2001; Pascual-Marqui et al., 1994; Schmidt,
1986; Gramfort et al., 2013; Haufe et al., 2011), which is not true for patterns obtained from
CCA or PLS, because these methods act on band power representations of the data.

We find physiologically plausible temporal coupling dynamics, which are in good accordance
with previous studies (Boynton et al., 1996; Murayama et al., 2010; Bießmann et al., 2009).
Also the spatial patterns extracted by mSPoC are in line with established knowledge about
the spatial location of the dipoles relevant for the experimental paradigm investigated here.
A more thorough empirical validation with respect to the hemodynamic coupling between
EEG and NIRS has been made possible with our method and is highly desirable. Note
that our presented modeling approach does not assume the dynamics of the hemodynamic
activation to be identical for all positions in the brain, which would imply the existence
of location-independent canonical hemodynamic response function (HRF). Instead, by
optimizing wτ anew together with each component pair wx and wy, our mSPoC approach
explicitly models a potentially space-varying and non-instantaneous coupling between EEG
bandpower dynamics and fMRI activations. This is in line with the known variability of the
HRF across space and subjects (Handwerker et al., 2004; Pedregosa et al., 2015; Bießmann
et al., 2012).

Conclusion In this chapter we have addressed the following question: how can we corre-
late two raw multimodal multivariate signals that are spatially and temporally sampled
differently and that are coupled through a nonlinear transformation? Our answer to this
abstract question allows to find unsupervised projections, that discover unknown correlations
between spectral power and a hemodynamic response. Furthermore, mSPoC represents an
important contribution towards data-driven multimodal data integration with a minimal
set of assumptions. Thus, it has the potential to enable insights about complex cognitive
processes in future studies.
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Chapter 6

Canonical Source Power Co-modulation

In the previous two chapters we have addressed the optimal extraction of neuronal oscillations
which exhibit band-power that are correlated with i) univariate target signals such as stimulus-
or cognitive variables in the case of SPoC, and ii) multivariate target signals such as signals
from a different measurement modality in the case of mSPoC. In this chapter, we continue
this line of research, and investigate the extraction of pairs of neuronal sources with band-
power dynamics that are correlated with each other. This type of functional connectivity
is called amplitude-amplitude coupling (AAC) or power-to-power coupling. Intra-subject
power-to-power coupling may be observed as a (positive or negative) correlation of the
power dynamics of two neural processes within the same frequency band or across frequency
bands, and is hypothesized to mediate long as well as short range information transfer
between brain areas (FitzGerald et al., 2013; Furl et al., 2014). In studies such as social
neuroscience experiments investigating inter -subject interaction, power-to-power coupling
between subjects can reveal leader/follower relations (Sänger et al., 2013). Additionally, the
analysis of inter-subject power-to-power coupling could identify brain responses to potentially
complex external stimuli purely based on the assumption that the stimulus-induced power
dynamics are consistent across subjects. This is the idea of hyperscanning (Hasson et al.,
2004; Montague et al., 2002).

In this chapter we present a method for the extraction of components from EEG/MEG
recordings that exhibit power-to-power coupling. We refer to this method as canonical Source
Power Correlation analysis (cSPoC). We demonstrate the utility of cSPoC in simulations
as well as in a number of relevant application scenarios, each involving real EEG data of
multiple subjects. These real-world scenarios are

• the isolation of oscillatory brain responses modulated by a complex auditory stimulus,
based on the idea that the bandpower dynamics of these responses are similar across
multiple repetitions of the stimulus and for multiple subjects.

• the blind recovery of pairs of alpha-band oscillations and their corresponding first
higher harmonics in the beta-band, based on the idea that the various harmonics of
the alpha rhythm are different aspects of the same neural process and should thus
exhibit strong envelope correlations.

• the extraction of oscillatory source components from simultaneously recorded EEG
and MEG that reflect ongoing dynamics of the brain during resting state.
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Chapter 6 Canonical Source Power Co-modulation

Note that for all application scenarios considered the ground truth is either known or at
least a strong hypothesis about the expected outcome exists. Therefore, all our analyses
serve as real-world verifications for the effectiveness of cSPoC.

Our algorithm is called canonical source power correlation analysis, because it bears some
conceptual similarity with canonical correlation analysis (CCA, Hotelling, 1936). CCA
and its variants are powerful tools for the extraction of correlated components from two
multivariate data sets. Both CCA and cSPoC seek linear projections of two data sets
in order to maximize a correlation coefficient defined on the projected data (here the
component time-courses). However, in case of CCA, the correlation is defined between
the component time courses directly, whereas in cSPoC the correlation is defined between
nonlinear features of the components, namely their envelopes. While it is conceivable to
use a two-step approach, i. e., first compute the power dynamics (e.g. envelopes) of the
raw channel data of the two data sets and then apply CCA, such an approach does not
lead to an accurate inversion of the generative model Eq. (2.1) (see also Dähne et al., 2013,
and previous chapters of this thesis). The reason for this is that the two operations (i)
source extraction through linear projection and (ii) nonlinear processing (computation of the
envelope) do not commute. By design, cSPoC computes power dynamics on the component
level, i.e. after projecting the data onto the extraction filters, and thus performs both
operation in the order implied by the generative model. Figure 6.1 graphically illustrates
the fundamental difference between CCA and cSPoC.

6.1 The cSPoC algorithm

Before we begin the derivation of cSPoC let us briefly review the necessary notation. Here
we want to find pairs of oscillatory neural sources from electrophysiological measurements
based on the assumption that the power dynamics of these sources are correlated. Thus, we
require the presence of a second set of measured oscillatory data. In order not to confuse the
notation with previous sections, we denote the second oscillatory data set by the multivariate
variable x́(t) ∈ RNx́ with sources sx́(t) ∈ RKx́ , mixing coefficients Ax́ ∈ RNx́×Kx́ and noise
εx́(t) ∈ RKx́ . The datasets x and x́ are assumed to be related by K < min(Kx,Kx́) pairs of
source processes among the rows of sx and sx́, whose power dynamics are linearly correlated.
As a prerequisite for this, both datasets must be synchronized; that is, share a common
time or sample index t ∈ {1, · · · , T}. This synchronization could be achieved by performing
concurrent (e. g., EEG) recordings of two different subjects, by performing concurrent
recordings of a single subject in two different measurement modalities (e. g., EEG and
ECoG), by performing two recordings of a single subject (or single recordings of two different
subjects) under identical stimulation, by creating two independent spectral representations
of a single measurement through spectral filtering in two different frequency bands, or simply
by using the same dataset for both x and x́, and so on.

6.1.1 Extracting a single source component pair

First we describe the extraction of a single envelope-coupled source component pair. Sub-
sequent pairs can then be obtained using the deflation scheme described in section A.3.
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6.1 The cSPoC algorithm

Figure 6.1: Illustration of different approaches extract components for power-to-power
coupling. The input to all three approaches two datasets of multivariate and bandpass
filtered EEG/MEG data x and x́. Processing steps are organized from top to bottom. Left:
An approach that is based on blind source separation (BSS) methods that are applied
to each modality independently. This approach is in line with the generative model we
assume for both modalities. However, the modality-specific BSS methods do not inform
each other during the decomposition and thus potentially miss out on available information.
Furthermore, after the decomposition step, a pair-wise matching of components with similar
bandpower dynamics is required. Middle: An approach based on canonical correlation
analysis (CCA). In this approach, the decomposition into components is informed by the
respective other dataset and an additional pair-wise matching of components is not required.
The crucial drawback of this approach is that bandpower has to be computed on channel-
level, which leads to a number of shortcomings that have been outlined in chapter 3. Right:
Our proposed approach called canonical source power co-modulation (cSPoC) that combines
advantages of the two other approaches (conformity with the generative model as well as
maximal use of cross-dataset information) while avoiding their shortcomings.
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Let wx ∈ RNx and wx́ ∈ RNx́ be extraction filters for a single source pair sx = w>x x and
sx́ = w>x́ x́. The instantaneous amplitudes (envelopes) of these sources are given by

φ [sx] =
√

(w>x x)2 + (w>x H[x])2 (6.1)

φ [sx́] =
√

(w>x́ x́)2 + (w>x́ H[x́])2, (6.2)

where H[·] denotes the Hilbert transform (Barlow, 1993). We use φx and φx́ as shorthand
notations for φ

[
w>x x

]
and φ

[
w>x́ x́

]
from here on.

With these definitions, we can express the correlation between the source envelopes as a
function of the spatial filters wx and wx́. The cSPoC objective function thus reads

max
wx,wx́

csg · Corr[φx, φx́] , (6.3)

where the constant csg ∈ {+1,−1} decodes whether positive or negative correlations are
desired, and where

Corr[φx, φx́] =
Cov[φx, φx́]√

Var[φx] Var[φx́]
(6.4)

=

〈
φ̄xφ̄x́

〉√〈
(φ̄x)2

〉 〈
(φ̄x́)2

〉 (6.5)

is Pearson’s product-moment correlation coefficient with 〈·〉 denoting average over time and
with φ̄x = φx − 〈φx〉 and φ̄x́ = φx́ − 〈φx́〉.

The objective stated in Eq. (6.3) is a non-convex higher-order nonlinear function of the
coefficients wx and wx́. We propose to optimize it by means of standard nonlinear optimiza-
tion techniques such as the limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS)
algorithm (Nocedal, 1980) implemented in MATLAB’s (The Mathworks) fminunc routine.
After the first pair wx and wx́ is found, subsequent pairs can be extracted using the deflation
scheme outline in chapter A.3.

The gradient of Eq. (6.3) with respect to wx is given next. For symmetry reasons, the
gradient with respect to wx́ is obtained analogously and thus not shown here.

∂ Corr[φx, φx́]

∂wx
=

∂
〈φ̄xφ̄x́〉√

〈(φ̄x)2〉〈(φ̄x́)2〉
∂wx

=

〈
∆x́x

∂φ̄x

∂wx

〉
√〈

(φ̄x)2
〉 〈

(φ̄x́)2
〉 , (6.6)
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with

φ̄i = φi − 〈φi〉 , for i ∈ {x, x́}, (6.7)

∆x́x := φ̄x́ − φ̄x
〈
φ̄xφ̄x́

〉〈
(φ̄x)2

〉 , (6.8)

∂φ̄x
∂wx

=
∂φx
∂wx

−
〈
∂φx
∂wx

〉
. (6.9)

For φx =
√

(w>x x)2 + (w>x H[x])2, we have

∂φx
∂wx

=
1

φx

(
(w>x x) x + (w>x H[x]) H[x]

)
, (6.10)

with H[x] denoting the Hilbert transform of x.

6.1.2 Extensions

Here, we provide a general formalism for integrating some useful extensions into the cSPoC
objective. An extension corresponds to a slight modification of the objective function. Thus,
for each extension we also provide the necessary adjustments to the gradient. To this end,
let us consider to optimize correlations between general functions f of φx and φx́, where f
must be differentiable. The modified optimization problem then becomes

max
wx,wx́

csg · Corr[f(φx), f(φx́)] . (6.11)

The partial derivative of this problem with respect to wx is given by

∂ Corr[f(φx), f(φx́)]

∂wx
=

∂
〈f̄(φx)f̄(φx́)〉√
〈f̄(φx)2〉〈f̄(φx́)2〉

∂wx

=

〈
∆x́x

∂f̄(φx)
∂wx

〉
√〈

f̄(φx)2
〉 〈
f̄(φx́)2

〉 (6.12)

with

f̄(φi) := f(φi)− 〈f(φi)〉 , for i ∈ {x, x́} , (6.13)

∆x́x := f̄(φx́)− f̄(φx)

〈
f̄(φx)f̄(φx́)

〉〈
(f̄(φx))2

〉 , (6.14)

∂f̄(φx)

∂wx
=
∂f(φ)x
∂wx

−
〈
∂f(φ)x
∂wx

〉
. (6.15)

Finally, we have

∂f(φ)x
∂wx

=
∂f(φx)

∂φx
· ∂φx
∂wx

, (6.16)

where ∂φx

∂wx
is given in Eq. (6.10) and ∂f(φx)

∂φx
depends on the specific choice of the function

f and will be given below for some examples.
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Log-transformation

The co-modulation of Gaussian distributed variables is completely described by Pearson’s
correlation coefficient (Lee Rodgers and Nicewander, 1988). However, envelope and band-
power signals are not Gaussian distributed, as noted for example in Freyer et al. (2009). Thus,
in practice, a logarithmic transformation is often applied to make band-power and envelope
signals more Gaussian (e. g., Hipp et al., 2012) and thereby make obtained correlation values
more meaningful.

In order to explicitly optimize the correlation between log-envelopes, the cSPoC objective
function can be modified by choosing the function f to be the natural logarithm. Then we
have

flog(φx) := log(φx) , (6.17)

and
∂flog(φx)

∂φx
=

1

φx
. (6.18)

Averaging within Epochs

In some scenarios it might be beneficial to average the envelope of the sources across short
time intervals. We refer to these intervals as epochs and denote them by the index e.
Possible reasons for averaging envelopes within epochs may include (i) suppression of noise,
(ii) reduction of the sampling rate of the envelope, or (iii) the data may have an epoch (or
trial) structure already and the envelope dynamics within trials are not the subject of study
but common dynamics across trials are. In this case, the cost function has to be modified,
such that φx and φx́ are to be correlated across the epoch index e rather than across the
original time index t.

Let Te be the set of all time indices t that are in the epoch e. We define

fe(φx) :=
1

|Te|
∑
t∈Te

φ(t) , (6.19)

where |Te| denotes the cardinality of the set Te. Note that fe(φx) now has a sampling rate
of epochs, rather than the original time index t. The corresponding partial derivative is
given by

∂fe(φx)

∂wx
=

1

|Te|
∑
t∈Te

∂φ(t)

wx
. (6.20)

Time-delayed Coupling

The assumed coupling between envelopes may not necessarily be instantaneous. Therefore,
several authors have modeled non-instantaneous coupling dynamics explicitly using temporal
delay operators (Bießmann et al., 2009; Dähne et al., 2013; Campi et al., 2013). We adopt
this idea by applying a temporal filter wτ ∈ RNτ to one or both of the envelopes, where Nτ
is the number of time-lags considered. The temporal filter wτ is estimated jointly with the
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6.1 The cSPoC algorithm

filters wx and wx́, and models temporal delays as well as convolutive interactions between
envelopes.

Let {τi}, with i ∈ {1, · · · , Nτ}, denote a list of suitable time (or epoch) lags. Then we
define

fτ (φx)(t) :=

Nτ∑
i

(wτ )i φx(t− τi), (6.21)

where (wτ )i denotes the i-th element of the vector wτ . In this formulation, wτ becomes a
parameter vector over which one can optimize in the same way as over wx and wy. The
partial derivatives for this extension are

∂fτ (φx)

∂wx
=

Nτ∑
i

(wτ )i
∂φx(t− τi)

∂wx
(6.22)

∂fτ (φx)

∂(wτ )i
= φx(t− τi) . (6.23)

Note that envelopes vary on a slower time scale than the carrier signals. Thus it is useful
to combine the last two proposed extensions such that during the optimization φx is
downsampled by averaging within short time intervals before applying the temporal filter
wτ . This greatly reduces the number of coefficients in wτ .

Multiple Datasets

Finally, cSPoC is easily extended to settings in which envelope coupling between N > 2 data
sets is suspected. Let xn denote the n−th data set for n ∈ {1, · · · , N}. In this case we seek
a set of N weight vectors wn. One straightforward way of generalizing correlation coefficient
to N > 2 data sets is to optimize the sum of pair-wise correlations. This approach, which
has been proposed by Kettenring (1971) in the context of CCA, can be easily adopted also
in cSPoC. See Appendix B for more details.

6.1.3 Practical details

In order to ensure meaningful results, care has to be taken in cases where the two data sets
x and x́ stem from same measurement and cSPoC is set to maximize envelope correlations
between the projections w>x x and w>x́ x́. If x and x́ are identical, the trivial solution to
maximizing the objective stated in Eq. (6.3) is given by wx = wx́ = w, which means that
any pair of spatial filters will be optimal as long as they are identical. The trivial solution
can be avoided by imposing additional constraints on wx and wx́ or, alternatively, by
ensuring that x and x́ are sufficiently different. The latter can be achieved by band-pass
filtering in different frequency bands, for example. Note that the problem of trivial solutions
does not arise if x and x́ are identical and the objective is to be minimized, i.e. if negative
envelope correlations are investigated.

The objective function optimized by cSPoC is non-convex, which means that there is the
potential for the optimization algorithm to end up in local optima. In practice, we overcome
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this issue by restarting the optimization with different, randomly selected initiations. We
then use the solution that yielded the highest envelope correlation on the part of the data
that was used to fit the model and apply it to the validation data. For current computers
and depending on the amount of data and its dimensionality, the runtime for a single
optimization is in the order of seconds and thus allows for multiple restarts. We have found
10 to 15 restarts sufficient for the algorithm to arrive at the same optimum several times.

6.2 Validation

In this section, we describe the simulations designed to assess the performance of cSPoC as
well as conventional approaches in a broad range of realistic scenarios. Moreover, we present
three real-data studies well-suited to demonstrate cSPoC’s effectiveness in recovering brain
oscillations in a variety of practical applications.

6.2.1 Simulations

The data generation processes and the evaluation metrics are identical to what was described
in chapter 3.2. The methods are compared in terms of accuracy and interpretability, where
accuracy describes how well the functional activation of the target source components is
extracted and interpretability reflects the similarity of the estimated activation patterns to
those of the true target components.

For each simulation run, we created the datasets x and x́ according to the generative model
Eq. (2.1), where the details of the data generation have been described in chapter 3.2. The
number of simulated channels was Nx = Nx́ = 25, and a total of Kx = Kx́ = 31 sources was
simulated for each data set. One source from x was functionally coupled with one source
from x́, such that the envelope of this target source in x was correlated with the envelope of
the respective other target source in x́. The time courses (and envelopes) of all other sources
were completely independent to each other and to the target sources. These independent
sources are referred to as background sources.

Consistent with the simulations of the preceding chapters, we assessed the performance of
the compared methods with respect to (i) varying signal-to-noise ratios (SNR) between the
target source and the background sources, (ii) varying amounts of training data available,
and (iii) to the true degree of coupling between the target source components from x and x́,
i.e. to the true correlation between x source envelopes and x́ source envelopes. This last
aspect pertains to how the algorithms perform as the underlying assumption (functional
coupling between modalities) are no longer valid.

The amount of training and test data was three and two minutes, respectively, for each of
the simulation runs in which either the SNR or the true underlying coupling was varied.
In runs in which the amount of training was varied, the SNR was set to -10 dB. For each
parameter setting the simulations were repeated 150 times with newly generated data.
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Data analysis

We benchmarked cSPoC against other unsupervised methods, namely CCA, PowerCCA
(Ramı́rez et al., 2013), and ICA, as well as one supervised method, namely ordinary-least-
squares (OLS).

OLS was applied to each modality separately and, being a supervized method, it received
the time-courses of the true target sources as additional training data. Thus, OLS again
serves as an empirical upper bound in the performance comparison.

ICA was applied to the training data of each modality separately. Thereafter, the envelopes
of the x ICA components obtained on the training data were computed and correlated with
the envelopes of the y ICA components. The pair that yielded highest correlation on the
training data was then assessed on the test data.

CCA was applied as outlined in figure 6.1, i. e., envelopes were computed for each simulated
channel, and the envelope time courses were used as input for CCA. All other methods act
on the band-limited time-domain data, and envelopes were computed after performing the
backward projection, i. e., on the extracted sources.

PowerCCA is a recent method that also optimizes spatial filters for two data sets such that
the envelopes of the projected signals exhibit maximal correlation. We discuss the relation
between CCA, PowerCCA and cSPoC in the Discussion section of this chapter.

Results

The results of the simulations are shown in figure 6.2, figure 6.3, and figure 6.4. Since the
optimization problem was symmetrical with respect to the datasets x and x́, the figures
show only to what extend the methods were able to recover the x target source. In addition,
the figures show the estimated coupling between modalities, i.e. the envelope correlation
obtained on the estimated x and x́ source components.

Figure 6.2 shows the performance of the compared methods as a function of SNR for two
different settings of true underlying coupling (correlation 1 and correlation 0.7). Both
cSPoC and PowerCCA outperform CCA and ICA over wide ranges of SNR in all three
performance metrics. Comparing cSPoC and PowerCCA, it is cSPoC who is consistently
better in the recovery of the target source. Similar to what we have seen before, CCA is
unable to accurately extract the amplitude modulations because its application here is not
in line with the generative model.

A very similar picture can be seen in figures 6.3 and 6.4, which depict the performance as
a function of true underlying coupling or amount of training data available, respectively.
cSPoC and PowerCCA outperform the other methods because their assumptions best
correspond to the (realistic) generative model of the data and they use a maximal amount
of information available, which is in this case information provided by the respective other
modality. In the direct comparison between cSPoC and PowerCCA, it is cSPoC that
consistently outperforms PowerCCA. Possible reasons for this will be discussed at the end
of the chapter.
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Figure 6.2: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of signal-to-noise ratio. The right-most plot shows the bandpower
correlation between the estimated target sources. In the top row of the plots, the bandpower
correlation between the true target sources was 1, while in the simulations depicted in the
bottom row, that correlation was 0.7.
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Figure 6.3: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of true underlying coupling. The SNR was -10 dB in these simulations
and 600 epochs (corresponding to 5 minutes of data) were used to train the methods.
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Figure 6.4: Simulation results. Here performance in terms of accuracy and interpretability
is shown as a function of amount of training data available. Training data is measured in
number of epochs, each of which was 500 ms long in these simulations. Epochs did not
overlap and the SNR was set to -10 dB.

6.2.2 Real data examples

Application example I: Inter-subject envelope correlations during auditory stimulation

As an initial real-world example, we here consider the so-called Hyperscanning setting, where
envelope coupling of brain oscillations arises, because multiple subjects are stimulated in
the same way. In the absence of any other information, this coupling can be utilized by
cSPoC to extract the underlying oscillatory processes. Importantly, this can be done even if
neither the stimulus sequence nor the actual relationship between stimulus and response is
known.

In order to show this using real data, we here re-analyze the same data that was used to
validate the SPoC algorithms in chapter 4.2.2.

The SPoC method described in chapter 4 is a supervised method relying (i) on knowledge
of the stimulation intensity (in this case loudness) and (ii) on the assumption of a linear
relationship between stimulus intensity and the envelope of the oscillatory brain response.
While both of these prerequisites are fulfilled for the considered SSAEP data, this might not
be the case in general. Here we show that competitive performance can be obtained using
cSPoC in a Hyperscanning setting, i. e., when multiple datasets with identical stimulation
are available. Notably, cSPoC is an unsupervised method neither requiring any information
about the stimulation, nor assuming a particular relationship between stimulus and brain
response.

Preprocessing We applied spatio-spectral decomposition (SSD, Nikulin et al., 2011) to
perform dimensionality reduction by projecting the data onto the space spanned by the 10
components showing largest spectral peaks in the frequency band of interest, i. e., around
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40 Hz. The SSD-projected data were then band-pass filtered using a pass-band of 39 to 41
Hz.

The actual loudness modulations were not identical for all subjects in the original experiment.
However, all modulation functions had the same uniform histogram over the presented
loudness interval, which means that all subjects were exposed to the same intensity levels
for the same number of times, only in a different order. Thus it is possible to create a
virtual same-stimulus scenario from this data. In order to do so, the EEG data as well as
the corresponding loudness modulation were segmented into consecutive non-overlapping
epochs of 1 second length. For each pair of subjects Si and Sj , the epochs of subject Sj
were re-ordered such that the re-ordered loudness function of subject Sj became aligned
with true loudness modulation function of subject Si.

Application of cSPoC and SPoC Since we did not expect between-subjects EEG envelope
correlations within epochs but only across epochs, we applied the cSPoC version that
optimizes correlations across epochs as introduced in section 6.1.2.

We applied cSPoC to all pairwise combinations of the data of the seven subjects. For each
subject pair, only the first, i.e. highest envelope-correlating, source pair was extracted.
SPoC, on the other hand, was applied to the data of each subject separately, using the
corresponding loudness modulation as the target function, as done in Dähne et al. (2014d).
Due to this knowledge, SPoC has a crucial advantage over cSPoC.

The performance of both algorithms is measured in terms of the correlation of the envelopes
of the extracted sources with the corresponding target variables, as well as by computing all
possible pairwise correlations between the source envelopes obtained from different subjects.
In order to exclude overfitting effects, we report average correlations obtained in a 10-fold
cross-validation scheme.

Results Figure 6.5 shows cross-validated correlation coefficients obtained by SPoC and
cSPoC in the re-analysis of the auditory steady-state data. The subjects are ordered by the
correlations between stimulus intensity and envelope as obtained with SPoC, from highest
to lowest. Plot A in the figure shows the correlations between the SPoC/cSPoC component
envelope and the loudness modulation for each subject (mean over cross-validation folds),
as well as the average correlation across subjects, which was 0.64 ± 0.13 (mean ± SEM) for
SPoC and 0.58 ± 0.17 for cSPoC. Plot B shows the average over subject pairs, which was
0.4 ± 0.11 for SPoC and 0.35 ± 0.16 for cSPoC. Plots C and D show the pairwise envelope
correlations for SPoC and cSPoC, respectively (mean over cross-validation folds).

Although having no access to the loudness modulation of the stimulus, cSPoC delivers
correlations that are on par with the correlations obtained by SPoC. The gap between the
correlations obtained by the two methods widens as the correlation between the envelope of
the extracted signal and the target function becomes weaker. This may be caused by lower
SNR or lower correlation between the SSAEP component and the loudness modulation. In
either case the effect is stronger on the performance of cSPoC than on SPoC. The effect is
consistent with observations from the results of the simulations.
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Figure 6.5: Results of inter-subject envelope correlation in an auditory steady-
state paradigm: correlations. The unsupervised cSPoC method was applied to pairs
of subjects, without using the actual loudness modulation. The supervised SPoC method
was applied to each subject individually, using it’s corresponding loudness modulation as
a target signal. (A) Cross-validated correlations between envelopes of sources extracted
by SPoC/cSPoC and loudness modulation (stimulus intensity) for each subject, as well as
average across subjects. Errorbars indicate SEM. (B) Pairwise envelope correlations for all
subjects as obtained by SPoC and cSPoC, averaged across subject pairs. Errorbars indicate
SEM. (C,D) Pairwise envelope correlations for all subjects as obtained by SPoC and cSPoC,
respectively.

The spatial activation patterns of the SSAEP components extracted by each method from
each subject are displayed in Figure 6.6. The polarity of the SPoC/cSPoC patterns is
arbitrary and thus was set such that highest magnitude value is positive. We observe almost
no differences in the spatial patterns obtained for individual subjects by cSPoC and SPoC.
The spatial patterns show the characteristic maxima (minima) at mid-frontal electrode
positions and minima (maxima) at posterior electrode positions, with the sign depending
on the phase of the stimulus. Such patterns have previously been reported in event-related
potential (ERP) analysis and source modeling of SSAEP responses by Herdman et al.
(2002).

Summarizing, the results obtained in this analyses show that cSPoC is able to reliably
extract source activity whose envelope dynamics are stimulus induced and consistent across
subjects, without knowledge about the stimulus.

Application example II: Cross-frequency coupling of alpha and beta oscillations during
rest

Cross- and within frequency interactions are hypothesized to be an important mechanism
for integration of neuronal processes distributed across different brain areas and frequency
bands. In this experiment, we focused on envelope interactions between and within alpha
and beta oscillations during rest.

Experimental paradigm, data acquisition and preprocessing Seven subjects participated
in the study (2 females). EEG recordings were performed at rest condition (15 min) with
subjects seated comfortably with their eyes being open. For dimensionality reduction the
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Figure 6.6: Results of inter subject envelope correlation in an auditory steady-
state paradigm: spatial patterns. For each subject, the top row shows spatial patterns
obtained by SPoC, while the second row shows patterns obtained by cSPoC. The third
row shows the difference between the patterns of the first and second row. Note that the
scaling of the patterns (i.e. magnitude and polarity) is arbitrary in both algorithms. Here
the scaling was adjusted such that the largest magnitude was 1. Color scale is the same in
rows one and two, but note the different color scale in row three.

data were projected to two separate 10 dimensional subspaces: the first SSD subspace
captured oscillatory activity in the alpha range (9 to 12 Hz) and the second SSD subspace
captured oscillatory activity in the beta range (19 to 23 Hz).

The SSD-projected data were bandpass filtered separately in the alpha range (9 to 12 Hz)
and in the beta range (19 to 23 Hz), yielding two 15 minutes long narrow-band data sets per
subject. For each subject, cSPoC received the alpha and beta band-passed data as input
and five spatial filter sets were optimized per subject. Envelopes of the spatially filtered
signals were averaged within consecutive, non-overlapping windows of one second length
and the resulting envelope time-courses were correlated. The entire analysis was carried out
in a cross-validation loop to avoid overfitting.

Results Figure 6.7 shows the cross-validated envelope correlations between the first five
cSPoC component pairs, i. e., the correlation between the envelopes of the alpha and beta
band source found by cSPoC. In five out of seven subjects, it can be observed that the first
two component pairs deliver notably higher correlations between alpha and beta compared
to the following pairs. For the remaining two subjects (subject 3 and 4), this is true for the
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Figure 6.7: Results of resting state alpha/beta analysis: cross-frequency enve-
lope correlations. Cross-validated correlations between the envelopes of alpha and beta
oscillations of the first five cSPoC component pairs for each subject. See Figure 6.8 for corre-
sponding spatial patterns of selected subjects. Errorbars indicate SEM over cross-validation
folds.

first component pair. Across subjects, the envelope correlations of the first component pair
are in the range between 0.4 and 0.8.

The spatial activation patterns of three representative subjects are plotted in Figure 6.8.
The figure reveals that there is a remarkable similarity of spatial patterns of the alpha and
beta band sources within each source pair found by cSPoC, where the similarity is strongest
for the component pairs that exhibit highest correlation. This similarity between the spatial
patterns indicates that the corresponding neural generators of oscillatory alpha and beta
activity are in very close proximity to each other in the brain, or perhaps even occupy the
same cortical space.

In six out of seven subjects, the spatial patterns indicate sensorymotor-related areas as the
origins of brain sources with the most strongly coupled envelope dynamics (see subjects 1
and 7 in the figure for example). However, in subject 5 the spatial patterns suggest sources
in parietal or occipital areas to exhibit the largest envelope correlations.

Summarizing, the analysis of resting-state data using cSPoC revealed pairs of alpha- and
beta band oscillations with large envelope correlations and highly similar physiologically
plausible spatial activation patterns. The extracted signals serve as an excellent basis for
further investigating the relationship between alpha and beta oscillations, for example by
assessing phase synchrony or other measures.
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Figure 6.8: Results of resting state alpha/beta analysis: spatial patterns. Spatial activation
patterns of the five cSPoC components pairs with best correlating alpha/beta envelopes. For
each of the three subjects presented, the top row shows the spatial patterns of components
in the alpha band while the bottom row shows the respective best correlating component in
the beta band. The envelope correlations between the alpha/beta pairs can be found in
figure 6.7.
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Application example III: Multimodal integration of simultaneously measured EEG and
MEG

In the final application example of cSPoC we demonstrate the extraction of meaningful
components from simultaneously measured EEG and MEG recordings during rest.

Experimental paradigm, data acquisition and preprocessing Here we analyze the data
of a single subject who was seated comfortably in an MEG scanner while wearing an EEG
setup at the same time. Both EEG and MEG was recorded simultaneously for a duration
of 10 minutes, during which the subject was asked to relax with open eyes. EEG data
consisted of recordings obtained from 55 channels arranged on the scalp according to the
international 10-20 system. MEG signals were recorded with 306-channel Vectorview MEG
system (Elekta Oy, Helsinki, Finland). Motion compensation and artifact removal of MEG
was done by the tSSS method (Taulu and Simola, 2006). The MEG system has three
types of sensors that each measure a different aspect of the local magnetic field. These
sensor-triplets are placed at 102 locations across the scalp, which together yields 306 MEG
channels. Here we only used the data from one sensor per triplet and location, yielding
102 channel MEG data. The sensor used is the so-called magnetometer, which measures
magnetic field strength perpendicular to the surface of the scalp.

The aim of this analysis is to extract source components that are observable with both
measurement modalities and should therefor have highly correlated envelopes when extracted
from the respective modality. Using the steps described below, the following frequency
bands were analyzed separately: 5 Hz to 8 Hz, 8 Hz to 13 Hz, 12 Hz to 19 Hz, 16 Hz to
25 Hz, 20 Hz to 32 Hz, and 24 Hz to 38 Hz. Respectively, these bands roughly correspond
to what is referred to in the EEG/MEG literature as the theta-, alpha-, lower beta-, middle
beta-, high beta-, and low gamma band.

MEG and EEG data were separately subjected to SSD preprocessing, retaining 20 SSD
components per modality. Thereafter, the continuous sensor space data was segmented into
one second long and non-overlapping epochs, yielding a total of 600 epochs. Epochs that
exhibited excessive amounts of variance (averaged across channels) were removed. cSPoC
was then employed to extract EEG/MEG component pairs that exhibit maximal envelope
correlations. Note that – in order to suppress noise – cSPoC component envelopes were first
averaged within epochs and then correlations were computed using the epoch-wise averaged
envelopes.

In order to asses the significance of the obtained envelope correlations, a permutation test
approach was used. To this end, surrogate data was created by simply shuffling the order
of EEG epochs, while keeping the order of MEG epochs intact. Importantly, the shuffling
procedure that was used preserved the auto-correlation of global envelope dynamics (Theiler
et al., 1992). Thereby, all aspects of the data were retained, except for temporal alignment
between modalities. The cSPoC analysis was repeated 200 times using surrogate data in
order to generate a distribution of envelope correlation values to which the correlations
obtained on the un-permuted data were compared.
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Figure 6.9: Results of EEG/MEG analysis. Each plot shows the envelope correlations
between cSPoC EEG and MEG components obtained for separate frequency bands, where
the band limits are given in the title of each plot. The red line indicates the 99.9% percentile
of an envelope correlation distribution that was obtained via band-specific permutation
analysis.

Results Figure 6.9 shows the obtained envelope correlations separately for each frequency
band. In each plot, we also show the 99.9% percentile of the correlation distribution obtained
from permutation analysis. The largest envelope correlations are obtained for the alpha
band (up to 0.96) while the theta band shows much lower correlations between EEG and
MEG power (here the maximum is 0.57). Also, the number of significantly correlated
component pairs is lowest for theta and highest for alpha. The next-strongest coupling
between modalities can be observed in the beta range.

Figure 6.9 shows the first three cSPoC component pairs from each of the six frequency
bands. The strongest envelope correlations among the theta components is exhibited by
components with frontal topographies. The cSPoC alpha components, on the other hand,
are consistent with neural sources in parietal and occipital regions of the brain. The spatial
patterns of the beta components suggest neural sources near or in sensorimotor areas of the
brain.

All of these brain areas are part of what has become known as the default-mode network
(see Raichle et al., 2001; Raichle and Snyder, 2007, for example). Thus our analysis has
delivered a set of components from a number of frequency bands that allow to study the
electrophysiological correlates of concerted brain activity during rest.

6.3 Discussion

In this chapter, we have presented cSPoC, a novel unsupervised source separation approach
for finding oscillatory sources with envelope correlations. The method was benchmarked
using simulations as well as real EEG data. Its performance, which is competitive to
supervised approaches, makes cSPoC the method of choice in scenarios in which supervised
methods are not applicable, such as Hyperscanning settings. It thus provides a versatile
addition to other multivariate analysis tools for cross-frequency coupling such as cross-
frequency decomposition (CFD, Nikulin et al., 2012) for phase coupling, as well as tools
for extracting brain activity from electrophysiological recordings based on other types of
dependencies (Nolte et al., 2006, 2008; Dyrholm et al., 2007; Gómez-Herrero et al., 2008;
Haufe et al., 2010).
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Figure 6.10: Results of EEG/MEG analysis. Each of the sub-figures (a to f) shows
the spatial activation patterns of the first three cSPoC component pairs obtained for a
specific frequency band. The band limits are given in the captions of the sub-figures. The
corresponding envelope correlations are shown in figure 6.9.
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Being a multivariate technique, cSPoC integrates information from all recording channels
and thereby achieves much higher SNRs compared to single channel analysis, which leads
to stronger effects. By projecting the data into the cSPoC source space, the dimensionality
is reduced and thus the problem of channel-wise comparison/correlations (and multiple
testing) is avoided. In our analysis examples, we demonstrated the robustness of obtained
envelope correlations by means of cross-validation and permutation tests. While statistical
approaches have been developed to assess functional connectivity after projection into a
source space (e.g. Carbonell et al., 2009), these approaches typically test the connectivity
of source time-courses, rather than connectivity of their envelopes. Thus, it is desirable to
extend such statistical models in order to avoid potentially time-consuming permutation
analysis.

Related methods Canonical Source Power Analysis is conceptually and structurally related
to a number of existing methods. Among those are two recent approaches also aiming to
extract brain oscillations with power dependencies, PowerCCA by Ramı́rez et al. (2013) and
non-linear CCA by Campi et al. (2013). We included PowerCCA in the simulations, where it
was outperformed by cSPoC. We believe the reason for that to be the different approaches for
optimizing envelope correlations employed by cSPoC and PowerCCA. PowerCCA optimizes
over huge N2

x/y-dimensional parameters matrices, where Nx and Ny are the number of
recording channels for data sets x and y. The actual extraction filters are obtained post-hoc
as the first eigenvectors of these matrices. In contrast, cSPoC optimizes over filter vectors
directly and has thus only Nx +Ny parameters to tune. For this reason, cSPoC may be
less prone to overfitting than PowerCCA. Non-linear CCA by Campi et al. (2013), which
is related to an earlier approach by Gutmann and Hyvärinen (2011), essentially computes
linear CCA in the space of all binomials of the original input space, with a dimensionality
constraint on the weight vectors. While their method achieves good results on combined
data of 2 x 5 subjects, it failed to do so on single subject-pair level.

There is also an interesting relation between cSPoC and algorithms that optimize higher
order (cross-) moments of the projections. Among these algorithms are a specific class of
independent component analysis (ICA) algorithms (Comon, 1994; Cardoso and Souloumiac,
1993b; Hyvärinen and Oja, 1997), as well as minimum overlap component analysis (MOCA)
(Nolte et al., 2009). These algorithms may arrive at similar solutions using an entirely
different set of assumptions and constraints. Yet, they are not explicitly designed to optimize
envelope correlations of projections of multivariate oscillatory signals.

Clinical perspective cSPoC can also be used in clinical studies. For instance recent studies
in patients with Parkinson disease revealed an existence of phase-synchronization in beta
frequency range between subthalamic nucleus (STN) and cortex (Klostermann et al., 2007;
Litvak et al., 2011). Here an interesting question would be how the envelope of alpha
oscillations (reflecting cortical excitability) might affect local neuronal dynamics in STN,
the latter being expressed in the amplitude of beta oscillations. These alpha versus beta
envelope interactions can be studied with cSPoC.
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Conclusion We presented a novel method, cSPoC, which is able to identify brain oscillations
with correlated envelopes from high-dimensional and noisy electrophysiological recordings.
The method performs excellent in simulations and showed very good results in three
distinctively different, yet highly relevant, analysis scenarios involving real EEG data. We
believe that cSPoC will be a valuable tool in the quest for understanding the mechanisms
and functions of power-to-power coupling in electrophysiological recordings.
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Chapter 7

Discussion and conclusions

In this final chapter we shall now give a more broad discussion of the presented methods
and ideas. The novel analysis methods derived in this thesis — SPoC, mSPoC, and cSPoC

— will be collectively referred to as the SPoC framework. Next to discussing some general
strength and weaknesses, a particular focus of this chapter is to place the SPoC framework
within a number of taxonomies, each constructed from a different perspective. Thereby we
provide an intuition of where and how the methods of the SPoC framework fit into the ’big
picture’ of neuroimaging analysis methods.

When to use which method?

Given the multitude of analysis approaches available, the most relevant question for the
practitioner is of course which method to choose for a specific research question. Unfortu-
nately there is no unique answer to this, because it depends on (i) the preferred analysis
scenario (e.g. late fusion vs early fusion), (ii) the assumptions being made about the data
(e.g. what type of coupling between modalities), (iii) the features of interest in the analysis
(e.g. spectral features or time-domain features), (iv) what additional information is available
(e.g. condition/class labels), and other aspects. However, in order to narrow down the
possible choices we provide a categorization of the methods discussed in this thesis in
table 7.1. The categorization scheme of table 7.1 — though by no means exhaustive — is
designed to best reflect the perspective of a neuroscience researcher who is searching for an
appropriate analysis approach.

When will a method work and, more importantly, when will it not work?

This question relates to the underlying assumptions and to the limits of an analysis method.
As for the SPoC framework, the two most important assumptions are these: (i) the data
can in fact be decomposed into components, i.e. the data is sufficiently described by a
factor model as outlined in chapter 2.2, Eq. (2.1) and (ii) there indeed is a functional
relation between the amplitude modulations of a component and a given other signal, i.e.
the assumed co-modulation does in-fact exist. Let us denote these assumptions by linear
decomposability assumption and co-modulation assumption, respectively. It has to be clearly
stated that if these two assumptions are not met, the SPoC framework cannot be expected
to deliver accurate and meaningful results, because in such a situation it would simply
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late fusion scenarios

features of interest amplitude modulations ERPs or hemodynamics

suggested methods SPoC, CSP, SSD, ICA,
PCA

Regression, GLM, LDA,
ICA, PCA

early fusion scenarios

features of interest amplitude modulations and
hemodynamics

ERPs and hemodynamics

suggested methods mSPoC CCA/PLS, jICA

Table 7.1: Suggestions for when to choose which of the methods discussed in this thesis.

not be an adequate model for the data. In case of the decomposability assumption not
being true, this negative result is essentially the same for all of the other decomposition
methods.

However, the decomposability assumption has been the basis for meaningful results obtained
from macroscopic measurements of brain activity many times over and is at the heart of a
large number of analysis techniques for neuroimaging data. See the reviews by Hämäläinen
et al. (1993); Baillet et al. (2001); Nunez and Srinivasan (2005) and the work cited therein
for considerations in favor of the decomposability assumption. However, we would also like
to point out recent work by Hindriks et al. (2014) which challenges an important prerequisite
of the decomposability assumption, namely the existence of stationary (i.e. fixed) spatial
activation patterns.

The co-modulation assumption, i.e. that of an existing functional relation between either
different measurement modalities or datasets of different subjects, is a matter of ongoing
research. In our simulations we have demonstrated the behavior and performance of our
methods as a function of true underlying co-modulation strength. We have seen that the
methods no longer recover the desired target components once the assumed co-modulation is
too weak. The minimum level of co-modulation necessary for extraction of target components,
however, depends on other factors, such as the amount of data and the signal-to-noise ratio.
On real data, it is of course unclear if and to what extend a co-modulation exists. Here,
however, the SPoC framework can contribute by providing a testbed for the co-modulation
assumption. By first performing a (m/c)SPoC analysis on the data in its correct temporal
order and then repeating the analysis on temporally shuffled version of the same data, a
distribution of correlation values can be obtained that represents the null-hypothesis of
no co-modulation being present. This allows for direct assessment of the co-modulation
assumption and thereby provides researchers with tool to study this questions from many
possible angles. In addition, the bonus of linear decomposition methods is that — in case of
confirmed co-modulation — the involved source components can be inspected and analysed
with respect to anatomical origin of the coupled signals from the involved modalities.

98



What about fusing more than two imaging modalities?

Recall that the SPoC algorithm required the presence of a univariate target signal, which
could, among others, encode label information. Furthermore, the mSPoC and cSPoC
algorithms were defined for the fusion of two datasets. It turns out that due to the
conceptual similarity between the three members of the SPoC framework, it is in principle
possible to merge them into a single algorithm. While the measures of co-modulation that
were employed here (covariance and correlation) are defined between two variables only,
we can make use of a trick often used to generalize algorithms to sets of more than two
variables. This simple trick consists of maximizing the sum of pair-wise co-modulation
measures and was proposed in the context of CCA, for example, in Kettenring (1971). Based
on this simple idea, a single objective function can be derived that contains the entire SPoC
framework, as well as regression, LDA, CSP, and CCA as special cases. The derivation of
this objective function contains only elements and ideas that have already been presented
earlier in this thesis as well as in the literature outside this thesis. Thus, the details of
the objective function can be found in Appendix B. Importantly however, this approach
represents a step towards early fusion of more than two functional imaging modalities.
Corresponding datasets exist, such as for example a dataset published in Wakeman and
Henson (2015), which contains concurrent (i) EEG and (ii) MEG measurements of multiple
subjects undergoing a visual detection paradigm as well as (iii) fMRI measurements of
the same subjects executing the same experimental paradigm in an MRI scanner. The
concurrent EEG and MEG data can be functionally aligned to the corresponding fMRI data
for each subject and thereby represent a tri-modal functional imaging dataset.

Using more than just functional information: Incorporating prior
anatomical knowledge.

The detection of functional coupling lies at the heart of the SPoC framework (recall the
co-modulation assumption from before). In this chapter we have outlined how the SPoC
framework can be used to probe for the existence of the proposed functional coupling and
throughout this thesis we have used anatomical links between modalities only to validate
the meaningfulness of the extracted components. That is to say, we have judged the success
of component extraction (that was based on assumed functional relations) by whether the
spatial patterns of extracted components also made sense in anatomical relation to each
other. While reserving available anatomical information for validation of results may be
a cautious way to proceed, it is also a potentially sub-optimal one, because information
that is potentially useful in the extraction of components is withheld from the algorithm.
Such anatomical information is often available in the case of concurrent EEG and fMRI
measurements and the link between brain anatomy, as measured during a structural MRI
scan, and expected topologies of components in EEG/MEG sensor space is given by the
so-called leadfield matrix.

In recent efforts, we have begun to include prior anatomical knowledge into the mSPoC
algorithm in order to overcome a potential weakness due to the focus on functional links
between modalities only. Specifically, we propose to extend mSPoC (when working with
EEG and fMRI) by biasing the spatial filter of the EEG component towards brain locations
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that exhibit large magnitudes in the spatial activation pattern of the corresponding fMRI
component. Details of these considerations as well as simulations that support our ideas have
been published in Hansen et al. (2015). The proposed extension to the mSPoC algorithm
shows greatest performance improvements when the signal-to-noise ratio is low and only
small amounts of training data are available.

Going beyond correlative coupling: Incorporating measures of causality

An approach to studying the causal effects of neural oscillations is the following: identification
of causal relationships based on temporal precedence as revealed by a concept called ’Granger
causality’ (Granger, 1969). Granger causality is a standard statistical method from the field
of econometrics and has been applied in neuroscience to infer functional brain connectivity
(e.g. Roebroeck et al., 2005; Astolfi et al., 2007; Nolte et al., 2008; Bressler and Seth,
2011). Using the previously introduced notation in which φ represents neural amplitude
modulations z denotes a variable of interest, φ is said to Granger cause z if φ helps to
predict the future z above what is predicted by the past of z alone. In the context of EEG
recordings, for example, an actively researched question in the field of Brain-Computer
Interfaces (BCI) is whether (and how) oscillatory sources influence the control performance
of a user during a BCI experiment (Grosse-Wentrup et al., 2011; Dähne et al., 2011a; Maeder
et al., 2012).

In Winkler et al. (2015), we investigated which methods are bests suited to reveal a Granger
causal effect from neural oscillations to a given external target variable. To this end, we
compared channel-wise Granger causality testing with three source separation methods: ICA,
SPoC, and a novel analysis method which extracts a source whose bandpower maximally
Granger causes the target variable. This last method is called Granger Causal Power
Analysis (GrangerCPA) and it was derived based on concepts developed in this thesis. In
Winkler et al. (2015) GrangerCPA is found to outperform ICA and SPoC in the extraction
of source components whose amplitude modulations are causally related to a given target
signal. The comparison was carried out in simulations and on two real EEG data sets.

How does the SPoC framework fit into the ’big picture’ of
decomposition methods?

Finally, we make two attempts to place the SPoC framework into categorization schemes
that show how the methods of the SPoC framework relate to other decomposition methods
that are available. Note that there is one thing all of the methods compared here have
in common: they optimize weight vectors that are applied to the data in sensor space (or
a linearly preprocessed version thereof), i.e. we have w>x, where x is not non-linearly
preprocessed.

100



type of additional information

binary labels univariate target
signal

other multivari-
ate signal

signal aspect
of interest

w>x LDA Regression CCA, PLS

Phase
(
w>x

)
CSIP ? MaxImC

Ampl
(
w>x

)
CSP SPoC, Granger-

CPA
mSPoC, cSPoC,
PowerCCA

Table 7.2: A categorization of decomposition methods according to what type of additional
information is used for the decomposition of a dataset and which aspect of the projected
signal is of interest for the decomposition.

The first categorization scheme we chose is depicted in table 7.2 and collects a set of
supervised and semi-supervised decomposition methods and categorizes them based on
two properties: (i) the signal aspect of interest and (ii) the type of additional information
that is provided to the algorithm. Signal aspect of interest here refers to what property of
the projected signal w>x is relevant for the objective function of the method. The three
categories of this property are the time-course of w>x itself, the instantaneous amplitude (or
bandpower) of w>x, and thirdly the instantaneous phase of w>x. As for types of additional
information provided to the algorithm, we have binary labels, a univariate target signal,
and thirdly an additional multivariate signal.

The first row of this table 7.2 shows the familiar methods LDA, regression and CCA/PLS,
which are all defined with respect to the projected signal directly and not to any particular
function of the projected signal. These classical methods optimize spatial filters using
increasingly complex information when going from left to right in the table. The next row in
the table lists the counterparts of the classical methods that are defined with respect to the
phase of the projected signal. Here we have Common Spatial Interaction Patterns (CSIP,
Meinecke, 2011) that maximizes phase differences between two conditions (or classes) and
a method that maximizes the imaginary part of coherence (maxImC, Ewald et al., 2012)
between the projections of two datasets. Note that there is currently no phase-counterpart
to regression. However, such method can be constructed as a special case of maxImC, just
like regression can be constructed as a special case of CCA. Finally, in the third row we come
to the decomposition methods that are designed with respect to amplitude dynamics of
oscillatory signals. Here we find the familiar CSP algorithm that was reviewed in chapter 2.3
and the members of the SPoC framework.
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signal aspect of interest (dataset y)

w>y y Phase
(
w>y y

)
Ampl

(
w>y y

)
signal aspect
of interest
(dataset x)

w>x x CCA, PLS — —

Phase
(
w>x x

)
? MaxImC —

Ampl
(
w>x x

)
mSPoC ? cSPoC, Power-

CCA

Table 7.3: A categorization of decomposition methods that simultaneously extract compo-
nents from two datasets (x and y) according to which aspect of the projected signals (w>x x
and w>y y) is of interest for the decomposition.

Note that although mSPoC and cSPoC are designed for different purposes, they ended up in
the same cell of table 7.2. In order to give a more fine-grained picture of table 7.2’s right-most
column we have organized the methods of this column into a separate categorization shown
in table 7.3. Here we categorize methods that fuse two datasets according to the signal aspect
of interest from either of the datasets. Table 7.3 clearly differentiates mSPoC from cSPoC
and from the classical methods CCA and PLS. Additionally, this table reveals an interesting
point, namely the non-existence of a method that optimizes phase-amplitude-coupling,
although this particular phenomenon is the subject of an ongoing research endeavor in the
neurosciences (Canolty et al., 2006; Nikulin et al., 2007; Canolty and Knight, 2010; Florin
and Baillet, 2015).

Conclusion

With this thesis we have contributed a set of decomposition (or factor-) methods, specifically
designed for the extraction of amplitude modulated oscillatory components from high-
dimensional uni- and multimodal neuroimaging recordings. We have studied the strength
and weaknesses of the proposed methods using theoretical considerations as well as numerical
simulations. Additionally, we have demonstrated the practical utility of our methods in
a multitude of different real-world neuroimaging datasets recorded with a total of four
measurement modalities (EEG, MEG, fNIRS, and fMRI).

The results obtained on the real-world datasets have been in line with what was expected
beforehand or with findings confirmed by the literature. One could argue, that therefore
our findings have little to none implications for neuroscience as such. While at first glance
this may be the case, we firmly believe our results have strong implications with respect
to the validity of our methodological developments. In fact, we believe we have presented
compelling evidence for the correctness of our approach. This in turn makes our methods
attractive choices for future studies of amplitude modulated neural sources, their relation
to other aspects of brain activity in within-subject analysis or to corresponding activity
from other brains in across-subject analysis, studied in academical, commercial, or clinical
settings.
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Tricks of the Trade

A.1 Associativity of linear operations

A basic, yet important, property of linear operations is associativity. The associative
property, applied to matrix multiplication, states that

A (BC) = (AB) C

for appropriately sized matrices A, B, and C. In the present context, this property is
used to simplify an optimization procedure and at the same time retain applicability of the
resulting spatial filters to the original input data.

The optimization of spatial filters can be simplified by first mapping the input data into a
space that is more beneficial for optimization compared to the original input space. Such a
space could, for example, be of lower dimensionality than the original input space. After
optimization in the simplified data space, the results have to be transformed back into the
original input space.

The following linear transformation maps the input data into a space spanned by the
columns of the matrix M:

X̃ = M>X . (A.1)

The transformed dataset X̃ is then used to optimize a given objective function which in

turn results in a set of spatial filters W̃. In order to apply the obtained spatial filters to the
original input dataset, they first have to be projected into the basis that spans the original

input dataset. The corresponding projection is achieved by multiplying M with W̃. In
order to demonstrate this, let S denote the signal of interest, which is extracted by means

of W̃ from X̃. Then we have

S = W̃
>

X̃ = W̃
> (

M>X
)

=
(
W̃
>

M>
)

X = W>X (A.2)

where we have simply substituted M>X for X̃, applied the associativity rule, and defined

W := MW̃.

This result may seem rather trivial at first sight. However, the relation above forms
the conceptual basis of powerful optimization tricks such as deflation and dimensionality
reduction which are introduced below, and thus it is worth including it in this list of tricks.

103



Appendix A Tricks of the Trade

A.2 Whitening

A data space often beneficial for optimization is one in which all covariances between input
variables have been removed. The transformation that maps the original input data into
such a space is called whitening and the previously introduced PCA can be used to construct
a whitening transformation.

Let V denote the matrix that contains the eigenvectors of the data covariance matrix in its
columns, i.e. it holds that

C = VΛV> ,

where the matrix Λ contains the corresponding eigenvectors on the diagonal and only zeros
on the off-diagonals. V is orthonormal, which means that V>V = I. We can now define
the whitening matrix

M := VΛ−
1
2

which contains the whitening filters in its columns. The whitened data is obtained by
applying the whitening transform to the original data matrix

X̃ = M>X .

In order to demonstrate the result of this operation, let us inspect the covariance matrix of
X̃, which is given by

Cx̃x̃ = X̃X̃
>

= M>XX>M

= M>CM

= Λ−
1
2 V>VΛV>VΛ−

1
2

= I . (A.3)

The derivation shows that the rows of X̃ are uncorrelated.

A.3 Deflation

In some optimization scenarios a set of K > 1 components can only be obtained iteratively,
i.e. one after the other. In particular, this is the case if the objective function, here denoted
by L, can be defined in terms of a single spatial filter only, i.e. if it is of the form

w∗ = argmin
w

L(w,X) . (A.4)

Let us assume the first component has been found by optimizing the objective function which
yielded the spatial filter w1. Re-running the optimization with the same data will simply
yield the same weight vector again. Thus, in order to obtain a component that is different
from the first, a constraint has to be introduced that avoids previously obtained solutions.
One constraint that is often applied in this context is mutual (temporal) decorrelation,
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which means that time courses of the components extracted from a single dataset are all
decorrelated from each other. In fact, all of the methods discussed in thesis make this
assumption.

Let the row vectors si ∈ RT and sj ∈ RT denote two different components extracted from
X, with si = wi>X and sj = wj>X. Assuming zero mean, the covariance between them is
given by

Cov(si, sj) ∝ sisj> = wi>XX>wj = wi>Cwj . (A.5)

Since zero covariance implies zero correlation, the decorrelation constraint can be expressed
in terms of zero covariance. Thus, when optimizing the i-th spatial filter, with 1 < i ≤ K,
the mutual decorrelation constraint is given by demanding wi>Cwj = 0, for all j < i.

A particularly convenient way of enforcing this constraint is described next, using the
framework of matrix deflation (e.g. Mackey, 2009).

First of all, the data has to be whitened. As outlined above, the data is projected using
a whitening M to yield X̃ = M>X and weight vectors are now optimized using X̃. This
transforms the decorrelation constraint into an orthogonality constraint. Thus we now
demand w̃i>w̃j = 0, for all j < i, because after whitening the covariance matrix is simply
the identity matrix.

Then, after having obtained w̃1 from

w̃1 = argmin
w̃

L(w̃, X̃) , (A.6)

a set of vectors has to be found that together with w̃1 constitute an orthonormal basis
of RNx . Note that such a set is easily obtained using the well-known Gram-Schmidt
orthonormalization. Now let the matrix B⊥1 ∈ RNx×Nx−1 denote the matrix that contains
this set of vectors in its columns. By design we have B⊥1

>B⊥1 = I and B⊥1
>w̃1 = 0. We

now project the whitened data into the Nx − 1 dimensional space spanned by the columns
of B⊥1 and obtain ˜̃

X = B⊥1
>X̃ , (A.7)

which we use to optimize the next spatial filter by means of

˜̃w2
= argmin˜̃w L( ˜̃w, ˜̃X) . (A.8)

Note that ˜̃w2
was optimized in a Nx − 1 dimensional space. It is projected to the whitened

RNx via w̃2 := B⊥1
˜̃w2

It is now easily verified that w̃1 and w̃2 are indeed orthogonal, because it holds that

w̃1>w̃2 = w̃1>B⊥1
˜̃w2

= 0> ˜̃w2
= 0. (A.9)

Firstly, the decorrelation constrained is transformed into an orthogonality constrained by
means of whitening. Thereafter, the orthogonality of subsequent spatial filters is guarantied
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by first projecting the data into a subspace that is orthogonal to the so far obtained filters
and then optimizing for the next filter within this subspace.

Finally, we show that orthogonality of filters in whitened space implies decorrelation of the
projected signals in the un-whitened input space. To see this, we start from Cov(si, sj) ∝
wi>Cwj , which was established in Eq. (A.5), and we use the relations w = Mw̃, M = VΛ−

1
2 ,

and C = VΛV>, which were introduced above. Then we have

Cov(si, sj) ∝ wi>Cwj

= w̃i>M>CMw̃j

= w̃i>Λ−
1
2
>

V>VΛV>VΛ−
1
2 w̃j

= w̃i>Λ−
1
2
>

ΛΛ−
1
2 w̃j

= w̃i>w̃j . (A.10)

This derivation shows that if the filters in whitened space are orthogonal, i.e. if w̃i>w̃j = 0,
then the corresponding component time-courses will be decorrelated. The deflation scheme
ensures w̃i>w̃j = 0 by design, and thereby also uncorrelatedness of extracted components.
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hyperSPoC

In the previous chapters we have outlined a number of ways to implement the idea of source
power co-modulation, for example via optimization of covariance or correlation. Starting
from the basic SPoC idea, we have shown how to extend the basic SPoC algorithms in
several multivariate and multimodal ways, leading up to the mSPoC and cSPoC algorithms.
In this section, we present a unifying framework that contains all the previously shown
SPoC versions as special cases, as well as other well known algorithms. We refer to this
approach as hyperSPoC.

The hyperSPoC objective function models the co-modulation between three categories of
datasets: (i) oscillatory datasets for which the amplitude dynamics are the aspect of interest,
(ii) non-oscillatory datasets for which the time-courses of components are the aspect of
interest, and (iii) a uni-variate target signal. Also, here we impose no restrictions on the
number of datasets within the first two categories of datasets.

Let us now define variables that represent the groups of datasets. Let X =
{
x1, ...,xNX

}
denote the set that contains NX ≥ 0 datasets from the first category, Y =

{
y1, ...,yNY

}
denote the set that contains NY ≥ 0 datasets from the second category, and finally let Z
denote the set that is either empty or contains the target variable z, i.e. we have either
NZ = 0 or NZ = 1. Because we are going to look at all pairwise combinations of the
datasets contained in the three categories, it is convenient to introduce a single ordered set
that contains all of the datasets. Let D =

{
x1, ...,xNX ,y1, ...,yNY , zNZ

}
denote this set of

datasets, where the cardinality of D is given by |D| = ND = NX +NY +NZ ≥ 0. Finally let
di ∈ D, for i ∈ {1, ..., ND} denote a single dataset from the ordered set D where its category
depends on the index i.

In analogy to the other methods presented before, we are going to extract components from
the datasets by using spatial filters. Thus, the objective function will be parametrized by a

set of weight vectors wi for i ∈ {1, ..., ND} and the projected signals are denoted by wi>di.
An exception has to be made for the uni-variate target function z which, if present, is also
an element of D. In this case the respective ’weight vector’ has only one entry which we fix
to the constant 1.

The next step consists of defining fixed functions that extract the relevant aspect of interest

from the projected signals. Let us denote this feature extraction function by Φi

(
wi>di

)
,

where the index i determines the semantics of Φi depending on what category the dataset
di belongs to. For datasets of the first category, the relevant signal aspect is amplitude
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dynamics and thus Φi is defined to be the envelope of the projected signal, computed using
the Hilbert transform. See section 6.1.1 for more details on the definition of the envelope.
For signals of category two and three, Φi is simply the identity function.

The last elements that we need for the objective function are the co-modulation function
and weighting parameters that can be set to give more or less preference to certain dataset
combinations. Here we choose correlation as a measure of co-modulation and we define the
scalar constants ci,j ∈ R for 1 ≤ i ≤ ND and 1 ≤ j ≤ ND. The coefficients ci,j will not be
optimized here and in the simplest case can be set to 1 for all i and j.

Equipped with these definitions we can now define an objective function that combines an
arbitrary number of datasets from three different categories of datasets by maximizing the
pairwise coupling between components. The hyperSPoC objective function is given by

f =
∑
i,j

ci,j · Corr(Φi,Φj)

=
∑
i,j

ci,j ·
Cov(Φi,Φj)√

Var(Φi) Var(Φj)

=
∑
i,j

ci,j ·
〈Φi,Φj〉√
〈Φ2

i 〉
〈
Φ2
j

〉 , (B.1)

where we have used some abbreviations for the sake of readability:
∑
i,j is short-hand for

the double sum
∑ND
i=1

∑ND
j=1,j 6=i and Φi is short for Φi

(
wi>di

)
. Thus, keep in mind that

Φi is a function of wi.

Let us take a moment to go through possible combinations of ’dataset scenarios’ in order to
see what cases this objective function covers. Remember that the variables NX, NY, and NZ
respectively denote the number of datasets from each of the three categories defined earlier.
Table B.1 lists a number of dataset combinations that, when applied to the hyperSPoC
objective, lead to algorithms previously discussed in this thesis.

dataset type combinations resulting algorithm notes

NX = 0, NY = 1, NZ = 1 LDA or regression the type of target variable
(binary or not) decides

NX = 0, NY ≥ 2, NZ = 0 (multiset-)CCA/PLS pre-whitening leads to PLS

NX = 1, NY = 0, NZ = 1 CSP or SPoC the type of target variable
(binary or not) decides

NX = 1, NY = 1, NZ = 0 mSPoC temporal shift is not explic-
itly modeled

NX ≥ 2, NY = 0, NZ = 0 (multiset-)cSPoC

Table B.1: A listing of algorithms that result from the hyperSPoC objective for specific
combinations of input datasets.
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The hyperSPoC objective has no analytic solution. However, the gradient with respect
to all weight vectors wk can be computed and then it can be optimized using numerical
optimization packages. For the gradient with respect to wk we have

∂f

∂wk
=

∑
i,j

ci,j ·
∂ Corr(Φi,Φj)

∂wk
. (B.2)

In order to simplify subsequent derivations, let us define

Corr(Φi,Φj) =
〈Φi,Φj〉√
〈Φ2

i 〉
〈
Φ2
j

〉
:=

g

h
. (B.3)

The partial derivatives of g and h with respect to wk are as follows:

∂g

∂wk
=

〈
∂Φi
∂wk

Φj

〉
+

〈
∂Φj
∂wk

Φi

〉
(B.4)

∂h

∂wk
=

1

h

(〈
∂Φi
∂wk

Φi

〉〈
Φ2
j

〉
+

〈
∂Φj
∂wk

Φj

〉〈
Φ2
i

〉)
. (B.5)

We can now derive the partial derivative of each summand in Eq. (B.2)

∂ Corr(Φi,Φj)

∂wk
=

∂ gh
∂wk

=
∂g
∂wk

h− g ∂h
∂wk

h2

=
1

h

∂g

∂wk
− g

h2

∂h

∂wk

=
1

h

(〈
∂Φi
∂wk

Φj

〉
+

〈
∂Φj
∂wk

Φi

〉)
− g

h3

(〈
∂Φi
∂wk

Φi

〉〈
Φ2
j

〉
+

〈
∂Φj
∂wk

Φj

〉〈
Φ2
i

〉)
=

1

h

〈
Φi

(
∂Φj
∂wk

− ∂Φi
∂wk

〈ΦiΦj〉
〈Φ2

i 〉

)
︸ ︷︷ ︸

:=∆kji

〉

+
1

h

〈
Φj

(
∂Φi
∂wk

− ∂Φj
∂wk

〈ΦiΦj〉〈
Φ2
j

〉 )︸ ︷︷ ︸
:=∆kij

〉

=
〈Φi∆kji〉√
〈Φ2

i 〉
〈
Φ2
j

〉 +
〈Φj∆kij〉√
〈Φ2

i 〉
〈
Φ2
j

〉 (B.6)

What is left at this point, is to compute ∂Φi
∂wk

for all i. For datasets of type two and three,
this is trivial. See section 6.1.1 for the partial derivative for datasets of type three, where
Φi corresponds to the extraction of the envelope.
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Gómez-Herrero, G., Atienza, M., Egiazarian, K., and Cantero, J. L. (2008). Measuring
directional coupling between EEG sources. NeuroImage, 43:497–508.

116



Bibliography

Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M., and Kowalski, M. (2013).
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