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ABSTRACT 

 

Prediction of reservoir yield is an important for fisheries managers to use appropriate scientific management 

practices to increase the fishery production. Many mathematical or applied mathematics and Artificial Neural 

Networks models were developed to predict fish production forecast of reservoirs. Ecology of reservoirs is 

dynamic, extraordinarily advanced and nonlinear in nature. There are several drivers have an effect on the 

fisheries, both internal and external environmental parameters. Many researchers have assessed fish yield 

potential based on leaner models using multiple linear regressions. Accurate modelling to predict fish yield of 

the reservoirs and lakes helps to understand behaviour of the system and managers can formulate appropriate 

management practices to improve fish yield. This paper provides an in-depth review on existing model 

developed from simple empirical estimation to high-level non-linear model for assessing fishery potential of 

lakes and reservoirs. 
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I. INTRODUCTION 

 

Fish is nutritious food and rich in protein, minerals, 

vitamins and essential nutrients. As fishes are very 

cheap comparatively other animal proteins, many 

low-income groups prefer fish in their diet. Most 

important, the fisheries sectors play a great role in 

the nation building by providing nutritional health 

security and livelihood support to many people in the 

country particularly in rural area and give many 

ecosystem services to the mankind. India is richly 

endowed with vast inland open waters in form of 

rivers and canals (1,71,334 km), reservoirs (3.15 

million ha), floodplain wetlands (0.24 million ha), 

estuaries (0.27 million ha) and ponds and tanks (2.25 

million ha) (Sinha 1999). These resources provide 

employment and livelihood support to many people 

as well as contribute more to Indian economy by 

foreign exchange earnings to the country. Most 

important, the fisheries sector plays a great role in 

the nation building by providing nutritional health 

security. 

 

In India, reservoirs are prime resource in terms of 

both surface area and production. It offers immense 

scope for increasing fish production. More than 3 

million ha of manmade reservoirs available in the 

country can increase the production. As populations 

are increasing rapidly, another blue revolution is 

necessary to double the fish production from these 

resources to meet the demand. Accurately predicting 

reservoir yield will help fisheries managers to use 

available various scientific management practices to 

enhance the fishery production in the reservoir. 
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Ecology of reservoirs is dynamic, very complex and 

nonlinear in nature. There are many drivers 

influencing the fisheries both internal and external 

environmental parameters. Many researchers have 

tried to assess fish yield potential based on leaner 

models by using multiple linear regression analysis 

techniques (Jowett, 1993). These empirical models 

are capable of solving many linear problems, but 

some time it cannot give accurate results when 

relationships among the variables are non-linear in 

nature. Advance tools like neural network, fuzzy 

logic, wavelet transform and genetic algorithm will 

give better and accurate results for non-linear 

problems. 

 

II. PREDICTION OF FISH YIELD USING 

EMPIRICAL MODEL 

 

Many researchers predicated fish yields in lakes and 

reservoirs for the last 70 years using simple empirical 

estimation. Rawson (1952) demonstrated the first 

model to estimate fish yields of lakes based on mean 

depth. Some others also tried to assess fish yield 

potential from biotic and morphometric parameters 

(Hayes, 1957; Northcote and Larkin, 1956). Ryder 

(1965) improves existing estimation further by 

developing morpho-edapic index (MEI) by using total 

dissolved solids or conductivity/depth using 23 

temperate lakes.  Later many researchers used other 

dependent variables such as lake surface area, 

temperature and other parameters along with MEI 

for prediction of fish yields in lakes and reservoirs in 

many countries. (e.g. Toews & Griffith, 1979; Jenkins, 

1982; Schlesinger & Reglier, 1982;  Machena & Fair, 

1986).  Ryder (1965) applied this method in Canada. 

Matuszek (1978) used mean depth and total dissolved 

solids concentration of large North America lakes. 

Morpho-edaphic index along with soci-economic 

variables such as numbers of fisher men, boat and 

effort are used to predict yield of African lakes 

(Henderson and Welcomme, 1974).  Maximum 

Sustainable fish yield of Sri Lanka reservoirs were 

calculated (Wijayaratne and Amarasinghe, 1984; 

Nissanke et al., 2000) and (Hasan et al., 2001) 

predicted fish yield based on chlorophyll-a, Secchi 

depth and morpho-edaphic index in Bangaladesh.  

 

 

Others have found that phytoplankton production 

can predict fish yield more accurately (Oglesby, 

1977) or total phosphorus and macro benthos 

biomass/mean depth found to be the best predictors 

of fish yield better than MEI (Hanson and 

Legget,1982). Surface area alone or Lake Shoreline 

development is useful predictor variables of fishyield 

in North American lakes (Youngs and Heimbuch, 

1982). Hrbacek (1969) found that significant 

correlation between primary production and carp 

yield in European ecosystems. Melack (1976) and 

Toews and Griffith (1979) reported that primary 

production is an estimator of fish yield. Stocking 

densities of fingerlings in inland reservoirs can be 

calculated based on estimation of potential fish 

production using morpho-edaphic index (MEI) 

(Welcomme, 1976). Surface area can alone be the 

best predictor of fish yield reported by researchers 

from North American lakes (Youngs and Heimbuch, 

1982). 

 

Models have been developed using reservoir depth, 

volume and area for estimation of fishery yield 

(Rawson, 1952; Jenkins and Morais, 1971; Moreau 

and De Silva, 1991). Downing et al., (1990) reported 

annual phytoplankton production correlated (r2= 

0.79) than MEI, total phosphorus concentration and 

macro benthos biomass/mean depth, were the best 

univariate predictors of fish yield (r2= 0.84 and r2= 

0.48, respectively). Hanson and Leggett (1982) 

reported catchment land use patterns are key 

parameters for fish yield prediction of reservoir (De 

Silva et al., 2001). Rawson (1938) grouped lake 

productivity parameters in three groups i.e climatic, 

morphometric, and edaphic 
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A. Potential Fish Yield from Morphological 

parameters 

Reservoir area, volume, depth, and shoreline 

development or gradient is some of the key 

morphological parameters to assess the productivity 

(Ryder, 1978(. The mean depth alone a single most 

important parameter to assess the fish yield )Rawson, 

1952; Henderson and Welcomme, 1974; Ryder et al., 

1974; Mehner et al. 2007). Henderson & Welcomme 

(1974) first applied Ryder's morphoedaphic index to 

tropical fisheries in African lakes and derived 

relationship from 17 fully exploited lakes where more 

than 1 fisherman fishing km-2 lake area. Oglesby 

(1977) reported that mean depth was not relevant 

variable for assessing fish yield, where lake having 

more than 25m deep. Schlesinger & Regier (1982) 

found that fish yield - MEI relationships accurate 

only to lakes within regional level and generalizing 

the relationship need to include other dependent 

variable such as mean annual air temperature into the 

model. Hanson & Legget (1982) developed many 

equations based on total dissolved solids (TDS)and 

total phosphorus concentration (TP( which was 

highly correlated and much better predictor of fish 

yield.  Downing et al. (1990) has reported based on 

his study that fish production is closely correlated 

with annual phytoplankton production (R2 = 0.79), 

mean total phosphorus concentration (R2 = 0.67), and 

annual average fish standing stock (R2 = 0.67) but 

least correlated with the morphoedaphic index 

(p>0.05). Schneider & Hadrich, (1989) reported that 

fish landings varied proportion to lake area. 

 

Moreau & De Silva )1991( developed fish yield model 

using multiple regression for lakes and reservoirs of 

Sri Lanka, Thailand and Philippines using area and 

effort. Moreau & De Silva )1991( also tested a number 

of models using predictor variables catchment/lake 

area ratio, mean depth, transparency, total alkalinity, 

chlorophyll a concentration, primary productivity 

and fishing effort. Crul)1992( correlated with catch )t 

y-1( and area )km2( for 46 lakes and 25 reservoirs in 

Africa. 

 

Brämick, U and Roland (2003) estimated fish yield 

potential based on data of 786 lakes in north-east 

Germany using primary production and total 

phosphorus. Relationship between fish yield 

potential and total phosphorus or chlorophyll a or 

primary production of phytoplankton have been 

published and reviewed (Nurnberg 1996; Knösche, R., 

& Barthelmes, D. 1998). John A. Downing and Céline 

Plante(2011) estimated annual fish production using 

independent variables temperature, phosphorus 

concentration, chlorophyll a concentration, primary 

production, and pH .Knösche, R., & Barthelmes, D. 

(1998) estimated lake fisheries yield from primary 

plankton production or total phosphorus. John Mark 

HansonandWilliam Leggett (2011) reported that total 

phosphorus concentration and macro benthos 

biomass/mean depth best predictor than 

morphoedaphic index. Kolding, J., & Van Zwieten, P. 

A. (2012) reported water-level fluctuation and mean 

depthis a simple estimatorfor fish productivity in 

tropical lakes and reservoirs. 

Wijeyaratne and Amarasinghe )1987( showed that 

maximum sustainable yield )MSY( in several 

reservoirs of Sri lanka were correlated with the 

morphoedaphic index. Amarasinghe et al. )2002( 

have shown catchment features like ratio of 

catchment, land use patterns and reservoir capacity 

are important predictor variables in Sri Lankan. 

Ramakrishna )1990( reported that catchment has a 

positive impact on the Indian reservoirs productivity, 

provided the catchment is moderately fertile 
(Natarajan, 1976, 1977, 1979; Jhingran, 1986(.  

Vollenweider (1969( reported that Flushing rate 

)inflow/storage capacity( is important variable for fish 

production as it regulates nutrient loading. 
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B. Potential Fish Production from Primary 

Production  

Oglesby (1977) has derived relationships between 

fish and summer standing crop of phytoplankton. 

Jones & Hoyer (1982), correlated sport fish harvests 

with summer chlorophyll a in US reservoirs and 

lakes. Liang et al., (1981) derived relationship 

between net fish yield and gross primary production 

in sub-tropical Chinese lakes and ponds. Relative fish 

biomasses expressed as gillnet CPUE were found 

correlated to chlorophyll a, total phosphorus, total 

nitrogen and total organic matter in a large number 

of Argentinean lakes and reservoirs (Quiros, 1990). 

 

Xiong )1996(, shown that 15 factors such as mean 

depth, catchment area, water temperature, 

precipitation, dissolved oxygen content, total 

phosphorus, phytoplankton biomass and the number 

of stocked fingerlings responsible for fish yield. 

C. Fish Yields from Socio-economic Variables 

Fishing effort, number of fishermen or number of 

boats or units of fishing gear are important predictor 

socio-economic variables for predict fish yield 

(Henderson & Welcomme, 1974; Bayley, 1988). 

 
TABLE – I. LIST OF MODELS DEVELOPED TO 

PREDICT FISH YIELDS  IN LAKES AND 

RESERVOIR 

 

Author(s) Predictor 

variable 

Remarks 

Rawson (1952) Mean depth Fish yield 

prediction of 

Lakes 

Crul)1992( Area Establishedrela

tion-ship 

between catch 

and area from 

46 lakes and 

25 reservoirs 

in Africa 

Rawson,1952; 

Jenkins and Morais, 

1971; Moreau and 

De Silva, 1991; 

Bernascek, 1997 

Depth, 

Volume and 

Area 

Models have 

been 

developed 

based on 

morphometric 

features 

Ryder (1965) 

 

Total 

dissolved 

solids or 

conductivity 

divided by 

mean depth 

Morpho-

edaphic Index 

)MEI( 

predictive 

yield model 

for lakes and 

reservoir 

D. R. Toews and J. S. 

Griffith (1979) 

 

Morphoeda

phic-

index)MEI( 

Predicted fish 

yield using 31 

African lakes. 

Schlesinger & Regier 

(1982) 

Air 

temperature 

and MEI 

Prediction of 

fish yield from 

reservoirs 

having less 

than 25 m 

depth 

Oglesby (1977) and  

Biro & Vörös (1988) 

 

Chlorophyll

-a 

 

Predictive 

yield model 

 

Ryder (1978) Reservoir 

area, 

Volume, 

Depth, and 

Shoreline 

developmen

t or gradient 

Predict the  

reservoir or 

lake 

productivity 

Biro&Vörös (1988) 

and Moreau & De 

Silva (1991) 

Ratio of 

surface area 

to 

catchment 

area 

)CA( 

 

Predicting the 

fish yields of 

lakes and 

reservoirs in 

Sri Lanka 

Nissanka, 

Amarasinghe & De 

Silva (2000) 

Ratio of the 

CA to 

reservoir 

capacity 

 

Better 

predictor 

variable for 

fish yield 

Hrbacek (1969) Primary 

production 

Reported 

highly 

significant 
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relationship 

between 

primary 

production 

and carp yield 

from European 

ecosystems. 

 

Melack (1976), 

Toewsand Griffith 

(1979) and 

Plante&Lalonde 

(1990) 

Gross 

primary 

production 

Useful 

estimator of 

fish yield 

based on data 

of African 

lakes. 

Hanson and 

Legget(1982) 

Total 

phosphorus 

Better 

predictors of 

fish yields 

than the MEI 

Jenkins and Morais 

(1971); Youngs and 

Heimbuch (1982) 

Surface area 

alone 

Opined that 

surface area 

can alone be 

the predictor 

of fish yield of 

North 

American 

lakes 

Henderson and 

Welcomme(1974) 

Electrical 

conductivity 

Studies based 

on Africa and 

Srilanka 

Morpau and De Silva 

(1991) 

Watershed 

area and  

Mean depth 

Asian reservoir 

 

Ramakrishniah(1990

), Ramakrishniah el 

al. 1998) 

C/A radio 

along with 

MEI 

Modified MEI 

model 

incorporating 

the drainage 

parameter, the 

ratio of 

catchment to 

reservoir area 

(C/A), (based 

on 19 Indian 

reservoir) 

S. S. De Silvaet. 
al.(2001) 

Catchment 

parameters 

i.e forest 

GIS Model  

using 11 

reservoirs of 

cover )FC( 

and shrub-

land )SL( to 

reservoir 

surface area 

)RA( and/or 

reservoir 

capacity 

)RC( 

Sri Lanka 

Amarasingheet al. 
)2002( 

Ratios of 

forest cover 

and/or 

shrub cover 

to reservoir 

capacity or 

reservoir 

area 

Prediction of 

fish yield 

Downing et al. 
)1990( 

Phyto-

plankton 

production, 

Total 

Phosphorus 

concentratio

n , Annual 

average fish 

standing 

stock 

Prediction of 

fish yield 

Xiong)1996( Phyto-

plankton 

primary 

production 

Methodology 

developed to 

predict silver 

carp and 

bighead carp 

production(Ch

ina) 

Xiong (1996) Mean depth, 

Catchment 

area, Water 

temperature

, 

Precipitatio

n, Dissolved 

oxygen 

content, 

Total 

phosphorus, 

Phyto-

plankton 

Reported 

major factors 

influencing 

fish yield 
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biomass and 

Number of 

stocked 

fingerlings 

Henderson & 

Welcomme, 1974; 

Bayley, 1988 

Fishing 

effort 

( number of 

fishermen) 

or number 

of boats or 

units of 

fishing gear 

Socio-

economic 

variable to 

predict fish 

yield 

John A. Downing 

and  Céline Plante 

(2011) 

Temperatur

e, Lake 

phosphorus 

concen-

tration, 

Chlorophyll

-a concen-

tration, 

Primary 

production, 

and pH. 

 

Estimated 

annual 

production of 

fish 

populations   

Jeppe Kolding and 

PaulA.M.van 

Zwieten(2012) 

Water-level 

fluctuation 

and mean 

depth 

Simple robust 

indicator of 

fish 

productivity in 

tropical lakes  

C Nissanka; U S 

Amarasinghe; and S 

S De Silva 

Chlorophyll

a, Dissolved 

phosphorus 

and Total 

phosphorus, 

Alkalinity to 

mean depth 

)MEIa( and 

Conductivit

y to mean 

depth and 

CA/RC 

ratios 

All these 

parameters 

were found 

positively 

influence with 

fish yield in 

reservoirs 

Dillon &Rigler 

(1974), 

Oglesby (1977) 

Lianget al. (1981) 

Bulon&Vinberg 

Total 

phosphorus 

)TP(, 

Chlorophyll

-a or 

Empirically 

derived 

relations 

between Fish 

Yield Potential 

(1981) 

Hanson&Leggett 

(1982) 

Peters (1986) 

Leach et al. (1987) 

Downinget al. (1990) 

Qutros (1990 & 

1991) 

Barthelmes (1992) 

Downing&plante 

(1993) 

Nurnberg (1996) 

Knosche&Barthelme

s(1998) 

Primary 

production 

of 

phytoplankt

on )PP( 

)FYP(or Fish 

Biomass)FB(. 

 

 

Reiner Knösche  and 

D. Barthelmes (1998) 

Primary 

plankton 

production 

)PP( or 

Total 

phosphorus 

The most 

promising 

limnological 

parameters for 

fish yield 

estimation 

JeppeKoldingandPau

l A.M.van 

Zwieten)2012( 

Water-level 

fluctuation 

and mean 

depth 

Reported 

simple and 

robust 

indicator of 

fish 

productivity in 

tropical lakes 

and reservoirs 

Hoyer (1982) chlorophyll 

a 

Correlated 

sport fish 

harvests in US 

reservoirs 

 

III. ARTIFICIAL NEURAL NETWORKS (ANNs) 

 

Artificial Neural Networks (ANNs) are mathematical 

models designed to mimic the information processing 

functions of a network of neurons in the brain 

(Hinton1992; Jensen 1994). Humans and animals are 

processing information by neurons. Computer 

algorithms mimic the way biological systems are 

functioning called artificial neural networks. The 

brain is a highly complex, nonlinear and parallel 

processing system computing many times faster than 

digital computer. It is widely used in many 

disciplines for modelling. An artificial neural 
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network is highly popular because of similarity in 

biological systems and has anability to learn from 

experiences and improving its performance. It is a 

very powerful tool for modelling non-linear and 

complex, imprecise and noisy data. It has an ability to 

manipulate large amounts of data and generalize 

results. 

 

A. Prediction of Fish Yields in Lakes and Reservoirs 

using Artificial Neural Network 

 

ANN have been used in many ecological modeling, 

phytoplankton production (Scardi, 1996), fish species 

richness prediction (Brosse, Set al., 1998), and 

prediction of density and biomass of various fish 

populations (Baran et al., 1996; Lek et al., 1996a,b; 

Mastrorilloet. al., 1997). Many authors have reported 

that ANN predicts more accurate than multi leaner 

regression (Ehrman et al .1996; Leket. al. 1996b; 

Scardi1996).  

 

Laë, R., Lek, S., & Moreau, J. (1999) predicted fish 

yield of African lakes using Artificial neural networks 

using six input variables such as catchment area, 

maximum area, fishing effort, conductivity, depth, 

altitude and latitude. The structure of the feed 

forward neural network is six input neuron with one 

hidden layer of five neurons, sigmoid functions, and 

backpropagation algorithm for the training of the 

ANNs. The result shows that correlation coefficients 

between the estimated and observed values were 

significantly very high. 

Zhang, H., & Zimba, P. V. (2017) developed multi-

layer neural networks to assess effects of estuarine 

freshwater fluxes on fish abundanceusing artificial 

neural network.  The predictor variable consists of 

inflow, evaporation, precipitation and annual catch 

rate of fish species of Nueces Estuary. The network 

was trained using Levenberg-Marquardt back 

propagation algorithm. Maravelias, C. D., Haralabous, 

J., & Papaconstantinou, C. (2003) predicted 

distributions of demersal fish species in the 

Mediterranean Sea using ANN. The input variables 

are biomass/abundance ratio, depth of the water 

column, latitude and longitude, and 

monthlysampling of675 sample stations of North 

Aegean Sea.Error back-propagation (EBP) algorithm 

is used to learn the network. 

 

Baran, Pet.al.(1996) developed stochastic models to 

predict trout population density or biomass on a 

mesohabitat scale using neural networks. 

Backpropagation algorithm was used to train habitat 

variables width, gradient, mean depth, coefficient of 

variation of depth, mean bottom velocity, coefficient 

of variation of bottom velocity, froude number, area 

of cover, area of shelter, pool deep water area and 

elevation. The result shows that the back propagation 

neural network estimatedmore accuratelythan the 

multiple regression. 

 

Brosse, S. et. al. (1999) predicted fish spatial 

occupancy and abundance in a mesotrophic reservoir 

using Artificial Neural Network.The input databased 

on 306 observations collected using electrofishing. 

The relationships between physical parameters and 

the abundance fish species are studied. Eight 

independent environmental variables depth, distance 

from the bank, slope of the bottom, flooded 

vegetation cover, percentage of boulders, percentage 

of pebbles, percentage of gravel and percentage of 

mud are used to quantify fish density. Structure of 

the network is feed-forward with eight input neurons, 

one hidden layer with 10 nodes with bias and 

aoutput layer (8-10-1). The network was trained 

using back-propagation algorithm to predict 

accurately with minimum error.  

 

Scardi, M., et.al (2008) evaluated ecological integrity 

of streams and rivers using an expert system based 

fish assemblage model. Twenty-seven environmental 

parameters along with fish assemblage composition of 

63 locations in Latium streams and rivers were used 

in this study. Neural network was trained using most 
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popular error back-propagation algorithm. Aoki, I., 

and Komatsu, T. (1997) predicted the winter catch of 

young Japanese sardine (Sardinopsmelanostictus) 

from climatic, hydrological and biological parameters 

in the Joban-Boso Seas of the Pacific coast of central 

Japan using neural network. A feed-forward three 

layers an input, hidden and an output layer is used. 

Predictor variables are hydrological and biotic 

parameters. Hydrological parameters consist of 

southern limit of the Oyashio, path type of Kuroshio, 

northern limit of the Kuroshio Extension, sea surface 

temperature in the northeastern sea area of Japanand 

sea surface temperature in the fishing ground. 

Zooplankton, climatic southern oscillation index, far 

east zonal index and east sea index are biological 

parameters. The network trained by back-

propagation algorithm to predictchanges in the 

sardine abundance. 

 

Joy, M. K., & Death, R. G. (2004) developed 

predictive model and spatial mapping of decapod 

assemblages using combination of GIS and neural 

networks. Single hidden-layer feed forward multi-

layer perceptron trained by back propagation error 

algorithm are used in this network. Catchment area, 

average catchment elevation, elevation upstream end 

of reach, average catchment slope, average annual 

catchment rainfall, average catchment air 

temperature, estimated river flow, reach length, 

latitude, stream order, catchment rainfall, distance 

from the coast, lake catchment area, catchment land 

use proportion and catchment geology proportions 

(surface rock) are input variables. The decapod was 

predicted with high degree of accuracy from 

geospatial landscapepredictor variables.  

 

Olden, J. D., & Jackson, D. A. (2001). Developed fish–

habitat models for nine fish species using Artificial 

Neural Networks. The study was conducted using 

data of 128 lakes from the Madawaska river drainage 

and 32 lakes from the Oxtongue river drainage of 

Canada. The habitat input variables are area, 

maximum depth, shoreline perimeter, elevation, total 

dissolved solids, pH, summer stratification (0, 1) and 

littoral-zone predator (0, 1). Artificial neural 

networks predicted accurately abundance as well as 

occurrence of fish species. 

 

Kılıç, H., et. al (2007) developed ANN models to 

predict primary production of reservoir by using 

preprocessing technique of an Automata Networks 

(AN) to find suitable variables for subsequent ANN 

modeling. The AN based preprocessing followed by a 

ANN application predicted primary productivity 

accurately using Chl-a. The correlation coefficient as 

high as 0.83 and RMSE was as low as 2.69g/l was 

achieved withdouble hidden layer structure with 10 

neurons.  

 

Kuo, J. T., Hsieh, M. H., Lung, W. S., & She, N. (2007) 

predict reservoir water quality using Artificial Neural 

Network with back-propagation algorithm. The input 

variables are dissolved oxygen (DO), total phosphorus 

(TP), chlorophyll-a (Chl-a), and secchi disk depth 

(SD). Results show that correlation coefficients 

between predicted values and measured data are 0.7 

with reasonable accuracy. 

 

IV. CONCLUSION 

 

Prediction of reservoir and lakes fish yield is the 

important factor for the fishery managers to improve 

the decision-making processes of reservoir fishery 

management and use appropriate management 

practices to enhance the fish production.  There is 

extensive literature available over the past decade on 

prediction of fish yield in reservoir and lakes both in 

linear and non-linear models. Many authors reported 

that Artificial Neural Network model is giving high 

level of accuracy than Multilinear Regression Model. 
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