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Abstract: The gas sensor array has long been a major tool for measuring gas due to its high sensitivity,
quick response, and low power consumption. This goal, however, faces a difficult challenge because
of the cross-sensitivity of the gas sensor. This paper presents a novel gas mixture analysis method for
gas sensor array applications. The features extracted from the raw data utilizing principal component
analysis (PCA) were used to complete random forest (RF) modeling, which enabled qualitative
identification. Support vector regression (SVR), optimized by the particle swarm optimization (PSO)
algorithm, was used to select hyperparameters C and γ to establish the optimal regression model
for the purpose of quantitative analysis. Utilizing the dataset, we evaluated the effectiveness of
our approach. Compared with logistic regression (LR) and support vector machine (SVM), the
average recognition rate of PCA combined with RF was the highest (97%). The fitting effect of SVR
optimized by PSO for gas concentration was better than that of SVR and solved the problem of
hyperparameters selection.
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1. Introduction

Gas is everywhere in our lives. The gas exhaled by humans contains a labeled gas that can
indicate certain diseases. For example, a large amount of acetone appears in the exhalation of a diabetic
patient [1], a large amount of ammonia appears in the exhalation of a uremic patient [2], and surfaces
produce fungi and volatilize organic compounds after food deteriorates [3,4]. The generation of gas is
closely related to changes occurring in the substances around it. Since it can be used as a basis for
analyzing such changes, gas detection is particularly important.

Gas sensor arrays associated with machine learning algorithms are widely used in different fields,
such as the use of an electronic nose to judge the quality of food [5], predict food additives in juice [6],
evaluate paraffin samples [7], classify different essential oils [8], monitor air quality using drones in real
time [9–14], analyze the spatial distribution of air pollutants [15], and predict future air quality [16,17].
In addition, they can be used to determine leak sources based on the gas concentration distribution [18].
However, the gas sensor element has cross-sensitivity, which makes it is impossible to use a single gas
sensor to effectively detect the composition of a gas mixture.

In light of this problem, a wide variety of machine learning algorithms have been used for
gas identification or gas quantification, including kernel principal component analysis (KPCA) [19],
linear discriminant analysis (LDA) [8], logistic regression (LR) [20], support vector machines for
classification and regression (SVM [7] and SVR [16,21]), artificial neural networks (ANN) [14], and
reservoir computing [22]. It is also a good method to select the appropriate parameters from the sensor
response signals for the identification and concentration estimation of mixed gas [4,23]. A summary of
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gas mixture analysis methods is shown in Table 1. There are three works on qualitative identification
(QAL-ID), which have been applied to gas mixtures, volatile gas of paraffin, and essential oils. There
are also reports on quantitative analysis (QTY-ANLS), which were applied to gas mixtures, emissions
of LNG (liquefied natural gas) bus or food additives in fruit juice, and air pollutants.

Although the above strategies can, to a certain extent, be effectively used for mixture detection
and prediction of concentration, they still pose problems. KPCA requires choosing the appropriate
kernel function and parameter ξ, which reduces the training efficiency. The classification model based
on ANN requires a large number of training samples to achieve good training results, and is prone to
overfitting and local optimum. In addition, the structure of a neural network is generally determined
by an empirical method, which leads to a certain degree of gas identification accuracy decline. In many
previous works, SVR has been shown to outperform other competing methods in regression tasks for
gas quantification [24,25]. However, the hyperparameters of this algorithm are determined using the
grid search method [6], which traverses the subspace of the specified value parameter to select the
optimal value. Since the value space of a hyperparameter is not restricted, in many cases, any real
value can be taken, and the choice of the subspace is not simple.

To avoid such problems, the main objective of this study was to propose a gas mixture analysis
method to be applied to a gas sensor array. This proposal must include qualitative identification and
quantitative analysis for gas mixtures, which would make it possible to use a gas sensor array to
effectively detect the composition of a gas mixture.

Table 1. Summary of gas mixture analysis methods.

Methodology Application

Two-dimensional wavelet transformation feature extraction +
linear-SVM classifier [26] QAL-ID for gas mixture

PCA and partial least squares (PLS) feature extraction + SVM, RF,
extreme learning machine (ELM) [7] QAL-ID for volatile gas of the paraffin

Fuzzy adaptive resonant theory map (ARTMAP) and linear
discriminant analysis (LDA) [8] QAL-ID for gas mixture of essential oils

Two-dimensional wavelet transformation feature extraction + PLS
regression [26] QTY-ANLS for gas mixture

Least-squares support vector machine-based (LSSVM-based)
nonlinear regression [24] QTY-ANLS for gas mixture

Reservoir computing [22] QTY-ANLS for gas mixture

Gradient boosted regression tree [27] QTY-ANLS for emissions of LNG bus

Long Short-Term Memory(LSTM) [28] QTY-ANLS for gas in coal mine

SVM, RF, extreme learning machine (ELM), and partial least
squares regression (PLSR) [6] QTY-ANLS for food additives in the fruit juice

Genetic algorithm + SVR [21] QTY-ANLS for gas chromatography

Neural network [12] QTY-ANLS for air pollutants

Empirical wavelet transformation (EWT)-multi-agent evolutionary
genetic algorithm (MAEGA)-nonlinear auto regressive models
(NARX) [17]

QTY-ANLS for air pollutants

SVR [16] QTY-ANLS for PM2.5

Principal component correlation analysis (PCCA) and LSTM [29] QTY-ANLS for natural gas

Multiple regression (MR) and SVR [25] QTY-ANLS for methane

2. Gas Mixture Analysis Method

As shown in Figure 1, the mixed gas analysis method proposed in this paper is mainly divided
into two parts: qualitative identification and quantitative analysis. We used PCA combined with
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random forest (RF) as a tool for qualitative identification, and the quantitative analysis adopted SVR
optimized by the particle swarm optimization (PSO) algorithm (PSO + SVR).

For the qualitative identification, we chose 1/10 of a dataset to determine the number of principal
components. After that, 9/40 of the dataset were extracted features utilizing PCA, which was used
to build the random forest model. Then, the feature set extracted from another 9/40 was used for
testing the generated model, through which we obtained the identification results. For the quantitative
analysis, 9/40 of the dataset was used for training the optimization model (PSO + SVR), after which the
combination of C and γ are obtained. By applying the combination of C and γ to SVR, we obtained the
regression model. Finally, the quantitative analysis results for the last 9/40 of the dataset were obtained.

Sensors 2019, 19, x 3 of 12 

 

2. Gas Mixture Analysis Method 

As shown in Figure 1, the mixed gas analysis method proposed in this paper is mainly divided 
into two parts: qualitative identification and quantitative analysis. We used PCA combined with 
random forest (RF) as a tool for qualitative identification, and the quantitative analysis adopted SVR 
optimized by the particle swarm optimization (PSO) algorithm (PSO + SVR). 

For the qualitative identification, we chose 1/10 of a dataset to determine the number of principal 
components. After that, 9/40 of the dataset were extracted features utilizing PCA, which was used to 
build the random forest model. Then, the feature set extracted from another 9/40 was used for testing 
the generated model, through which we obtained the identification results. For the quantitative 
analysis, 9/40 of the dataset was used for training the optimization model (PSO + SVR), after which 
the combination of C and ߛ are obtained. By applying the combination of C and ߛ  to SVR, we 
obtained the regression model. Finally, the quantitative analysis results for the last 9/40 of the dataset 
were obtained. 

Determine the number of 
principal components
（1/10 of data set)

PCA

Feature set

Build RF 
classifier

PCA

Feature set

QAL Test

Model

QAL Training
（9/40 of data set)

QAL Testing
(9/40 of data set)

PSO+SVR
(10-fold cross validation)

QTY Test

QTY Training
(9/40 of data set)

Model

QTY Testing
(9/40 of data set)

Optimal C and γ

Result Result

Qualitative identification Quantitative analysis

 
Figure 1. Gas mixture analysis method. 
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3.1. Principal Component Analysis 

Feature extraction is an important topic and the basis of pattern recognition and machine 
learning [30]. Principal component analysis is a method of feature extraction. The basic idea of it is to 
transform the original features into a group of new features in order of importance, from the largest 
to the smallest, through a set of orthogonal vectors [29]. These new features are linear combinations 
of the original features and they are unrelated to each other. We have provided a working process of 
principal component analysis. 

Consider the original sample X = ,ଵݔ] ,ଶݔ … , [ெݔ ∈ ℝெ×ே, where N is the number of variables, M 
is the number of samples, and ݔ௜ ∈ ℝே(݅߳ܯ) represents the ith N-dimensional sample. 

Firstly, the data of each dimension are decentralized. That is, the characteristics of each 
dimension are subtracted from their average values, as shown in Equation (1). ݔ௜௝(݅ ∈ ,ܯ ݆ ∈ ܰ) is the 
ith sample of the jth variable, and ݔ௜௝∗ is the decentralized value of ݔ௜௝ . Secondly, the covariance 
matrix of ܺ∗ is calculated using Equation (2), and the eigenvalues and eigenvectors of it are obtained 
by eigenvalue decomposition. Then, the eigenvalues are sorted from largest to smallest as 
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3. Qualitative Identification Method for Gas Mixture

3.1. Principal Component Analysis

Feature extraction is an important topic and the basis of pattern recognition and machine
learning [30]. Principal component analysis is a method of feature extraction. The basic idea of it is to
transform the original features into a group of new features in order of importance, from the largest to
the smallest, through a set of orthogonal vectors [29]. These new features are linear combinations of
the original features and they are unrelated to each other. We have provided a working process of
principal component analysis.

Consider the original sample X = [x1, x2, . . . , xM] ∈ RM×N, where N is the number of variables, M
is the number of samples, and xi ∈ RN( iεM) represents the ith N-dimensional sample.

Firstly, the data of each dimension are decentralized. That is, the characteristics of each dimension
are subtracted from their average values, as shown in Equation (1). x j

i (i ∈M, j ∈ N) is the ith sample

of the jth variable, and x j∗
i is the decentralized value of x j

i . Secondly, the covariance matrix of X∗ is
calculated using Equation (2), and the eigenvalues and eigenvectors of it are obtained by eigenvalue
decomposition. Then, the eigenvalues are sorted from largest to smallest as λ1, λ2, . . . , λN, and
the corresponding eigenvectors are α1,α2, . . . ,αN. Finally, the reduced number p is determined by
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the cumulative contribution rate of the eigenvalue for variance rCCR (Equation (3)), which utilizes
rCCR ≥ 99%:

x j∗
i = x j

i −
x j

1 + x j
2 + . . .+ x j

M
M

; (1)

C =
1
M

X∗X∗T; (2)

rCCR =

∑p
i=1 λi∑N
j=1 λ j

× 100. (3)

3.2. Random Forest

The random forest method comes from the decision tree and bagging methods. The decision tree
learns a model from the given training dataset to classify new samples. The algorithm needs two sets
of data: the training data used to construct the decision mechanism and the test data used to verify
the constructed decision tree. The process of the decision tree learning algorithm (Algorithm 1) is
presented below.

Algorithm 1. Decision Tree

Input: Training set D =
{
(x1, y1), (x2, y2), . . . , (xm, ym)

}
;

Attribute set A = {a1, a2, . . . , ad}

Process: Function Tree Generate (D, A)

1. Generate the node
2. If all samples in D belong to the same category C, then

3. Mark node as leaf node of class C
4. End if
5. If A = ∅ or the samples in D have the same value in A, then
6. Mark node as leaf node, its category is marked as the class with the largest number of samples in

D; return
7. End if
8. Choose the optimal partition properties a∗
9. For every value av

∗ of a∗, do
10. Generate a branch for node; let Dv represent the sample subset of D evaluated at a∗ to the av

∗

11. If Dv is empty, then
12. Mark branch node as leaf node, its category is marked as the class with the largest number of

samples in D; return
13. Else
14. Take TreeGenerate(Dv,A\{a∗}) as branch node
15. End if
16. End for

Output: A decision tree with root node

On the basis of the bagging integration decision tree, the random forest further introduces random
attribute selection in the training process of the decision tree.

4. Quantitative Analysis Method for Gas mixture

4.1. Support Vector Regression

Support vector regression is an important application branch of support vector machine. The
basic idea is to find a regression plane to which all the data of a set are closest.
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Consider training samples D =
{
(x1, y1), (x2, y2), . . . (xm, ym)

}
, yi ∈ R (m is the number of the

samples), which aims to learn a regression model shaped like Equation (4), so that f (x) is as close as
possible to y (the absolute value), and ω and b are the model parameters to be determined:

f (x) = ωTx + b. (4)

Suppose we can tolerate maximum deviation ε between f (x) and y, namely, only when the
difference between f (x) and the absolute value y is larger than ε is the loss calculated. This is equivalent
to making f (x) the center, built with a width of 2ε intervals, and if the training samples are in this
interval, the prediction will be right. We can obtain a loss function g(n) with Equation (5) (N is the
number of samples, yn is the true value, and tn is the predicted value):

g(n) =
1
2

∑N

n=1

{
yn − tn

}2 +
1
2
‖ω‖2. (5)

The optimization problem can be re-expressed by introducing relaxation variables ε. For each data
point xn, the condition which makes the prediction point locate in the interval band is Equation (6),
and the points above and below the interval satisfy Equation (7), where y(xn) is the true value, and ζn

and ζ̂n are the positive and negative values of tn beyond the interval 2ε:

yn − ε ≤ tn ≤ yn + ε, (6)

tn ≤ y(xn) + ε+ ζn and tn ≥ y(xn) − ε− ζ̂n. (7)

The optimization problem of support vector regression can be written as Equation (8):

min
ω,b,ζn,ζ̂n

C
N∑

n=1

(
ζn + ζ̂n

)
+

1
2
‖ω‖2

s.t.
tn ≤ y(xn) + ε+ ζn

tn ≥ y(xn) − ε− ζ̂n

ζn ≥ 0, ζ̂n ≥ 0, n = 1, . . . , N.
(8)

4.2. PSO

Particle swarm optimization seeks the optimal solution through cooperation and information
sharing among individuals in the group. It simulates the swarm behavior of insects, herds, birds, and
fish, which search for food in a cooperative way, with each member of the group constantly changing
its search patterns by learning from its own experience and that of other members. The whole process
of the algorithm is as follows:

Step 1. Initialize a group of particles with the group size n, set their original velocity and location,
and set the maximum number of iterations at the same time;

Step 2. Define the fitness function to evaluate the fitness of each particle;
Step 3. Find the optimal solution for each particle (individual extremum), from which a global value

is found, which is called the global optimal solution;
Step 4. Update the velocity and position of the particle by Equations (9) and (10), where Vid and Xid

are the d dimensional velocity and position of particle i, Pid and Pgd are the d dimensional
optimal position searched by particle i and the global optimal position of the whole group, ω
is the inertia factor, C1 and C2 are the learning factor, and random(0, 1) is a random number
between (0, 1):

Vid = ωVid + C1random(0, 1)(Pid −Xid) + C2random(0, 1)
(
Pgd −Xid

)
, (9)
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Xid = Xid + Vid. (10)

Step 5. The algorithm will be terminated when the number of iterations reaches the setting; otherwise,
it will return to step 2 to continue execution.

4.3. SVR Optimized by the PSO Algorithm

The performance of SVR depends on the appropriate choice of hyperparameters C and γ. The
penalty coefficient C reflects the degree of the algorithm’s penalty on the sample data exceeding the ε
pipelines, and its value affects the complexity and stability of the model. If C is too small, the penalty
for the sample data exceeding ε pipelines is small and the training error becomes larger. If C is too
large, the learning accuracy will be improved correspondingly, but the generalization ability of the
model will be worse. γ reflects the degree of correlation between the support vectors. If it is very
small, the connection between the support vectors is relatively loose, learning machines are relatively
complex, and promotion ability cannot be guaranteed; on the other hand, if it is too large, the influence
between support vectors will be too strong, and the regression model will have difficulty achieving
sufficient accuracy.

Particle-swarm-optimized SVR was used here to select the optimal combination of C and γ, which
can solve the problem of hyperparameter selection and improve the prediction accuracy. The algorithm
flow of particle-swarm-optimized SVR is shown in Figure 2.
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The algorithm steps were as follows:

Step 1. Import the original data, divide it into training data and test data, and normalize these;
Step 2. Initialize the parameters of PSO, including population n, particle velocity v, and position x,

and iteration number;
Step 3. Calculate the fitness value of the particle. The current fitness value of the particle is compared

with the fitness value of the historically optimal position. If it is better, it will be regarded as
the current optimal position. Compared with the global optimal position fitness value of each
particle, if it is better, it will be considered the current global optimal position;
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Step 4. Update the velocity and position of the particle by Equations (9) and (10);
Step 5. Determine whether termination conditions are met. If they are satisfied, the optimal C value

and γ value are output and assigned to SVR. Otherwise, return to step 3;
Step 6. Test the optimal model of SVR and obtain the prediction results.

5. Experiments and Results

5.1. Dataset

The dataset used was based on the UCI (University of California Irvine) dataset [25], which
consists of the responses of methane, ethylene, air, and their mixtures in arrays of 16 sensors (TGS2600,
TGS2602, TGS2610, and TGS2620; four units of each type) with a continuous measurement time of
10,486 s. The gas-sensing material of this type of gas sensor is a metal oxide which is adsorbed on the
surface of the metal oxide when it is heated to a certain high temperature in the air. When a reducing
gas occurs, the surface concentration of the negatively charged oxygen decreases, causing the resistance
of the sensor to decrease. Some parameters of these four types of sensors are presented in Table 2.

Table 2. The characteristics of the four types of sensors.

Sensors Sensitivity (Rate of Change for RS) Stability Detection Range (ppm)

TGS2602 0.08~0.5 Long-term stability 0~10
TGS2600 0.3~0.6 Long-term stability 0~10
TGS2610 0.5~0.62 Long-term stability 500~10,000
TGS2620 0.3~0.5 Long-term stability 50~5000

In order to facilitate observation, the sensor responses and concentration values were normalized,
as shown in Figure 3. The four channels from top to bottom were TGS2602, TGS2600, TGS2610,
and TGS2620, as well as the concentration of two gases. As shown in Figure 3, TGS2602 responded
significantly to changes in ethylene concentration, but the response curve was not very obvious.
TGS2600 and TGS2620 responded to changes in methane and ethylene, TGS2610 responded significantly
to changes in methane concentration, and the four sensors had slow responses to rapidly changing gases.
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5.2. PCA Feature Extraction

The data matrix of PCA was 10,476 rows and 16 columns. The input matrix was artificially scaled
so that the mean was 0 and the variance was 1. The covariance matrix of the normalized data was
calculated to obtain a matrix of 16 rows and 16 columns. The 16 eigenvalues and contribution rates
are shown in Table 3. When there were four principal components, the cumulative contribution rate
reached 99.69% (more than 99%), which could almost represent all the information. From the fifth
principal component, the cumulative contribution rate increased with a smaller step and gradually
approached zero. It can be confirmed that the dataset decreased from the original 16 dimensions to four
dimensions. In the literature [7], the volatile gas characteristics of paraffin samples were also analyzed
using PCA. Using the first three principal components, it can be seen that the paraffin samples were
clearly divided into four grades, and the eigenvalue contribution rate of these principal components
was 93.34%, but the first five principal components were finally extracted to form a new feature dataset.

Table 3. The eigenvalues and contribution rate of PCA.

Principal Components Eigenvalues Contribution Rate/% Cumulative Contribution Rate/%

PC1 10.134 63.33 63.33
PC2 4.204 26.27 89.61
PC3 1.277 7.98 97.59
PC4 0.336 2.10 99.69
PC5 0.025 0.15 99.85
PC6 0.016 0.10 99.95
PC7 0.003 0.02 99.97
PC8 0.002 0.01 99.98
PC9 0.002 0.01 99.99
. . . . . . . . . . . .

PC16 0.000 0.00 100.00

5.3. Qualitative Identification for Gas Mixture

The feature vector sets of training data were used to model the random forest, and then the feature
vector sets of the test data were qualitatively identified by the model. In order to confirm the relevance
of the random forest algorithm, we compared this algorithm with two other algorithms: LR and SVM.
We chose these algorithms in their basic form. In our comparisons, we used the default parameters of
each algorithm, as cited below:

LR: penalty: ‘l2’, C: ‘1’, solver: ‘lbfgs’, multiclass: ‘multinomial’;
SVM: ‘kernel: ‘linear’, decision_function_shape: ‘ovo’.

Figure 4 shows the confusion matrices for three classifiers, which were able to separate the four
classes. In [31], they also used a confusion matrix to visually compare two classifiers. The sum of all
values in the matrix is the total amount of data for classification. The values on the diagonal are the
correctly identified data of each category, while the values off the diagonal are the misidentified data of
each category. Comparing all of the data on the diagonal lines of the three figures (Figure 4a–c), we can
see that the value on the diagonal of the RF is the largest, indicating that RF had the highest probability
of correctly identifying each class compared with LR and SVM. The values on the diagonal of LR and
SVM were similar, indicating that the classification effect of LR and SVM was similar. From Figure 4,
we can see that the RF confusion matrix had the highest values on the diagonal and the lowest values
off the diagonal. We calculated the average recognition rate η for each classifier using Equation (11) (xii
is the value on the diagonal, i ∈ 1, 2, 3, 4; x is the total classification data). We found that η of RF was the
highest (97%), and the average recognition rate of LR and SVM was 85%, which is 12% less than RF:

η =
x11 + x22 + x33 + x44

x
× 100% (11)



Sensors 2019, 19, 3917 9 of 12

Sensors 2019, 19, x 9 of 12 

 

ߟ = ଵଵݔ + ଶଶݔ + ଷଷݔ + ݔସସݔ × 100% (11) 

 

(a) (b) (c) 

Figure 4. The confusion matrix of the three algorithms (1: single methane; 2: single ethylene; 3: air; 4: 
mixture). (a) The confusion matrix of the random forest (RF) classifier. (b) The confusion matrix of the 
logistic regression (LR) classifier. (c) The confusion matrix of the support vector machine (SVM) 
classifier. 

5.4. Quantitative Analysis for Gas Mixture 

Quantitative analysis for a gas mixture should be carried out after qualitative identification, in 
which the concentration estimation for a single gas and mixed gas by optimized SVR is carried out. 

The number of particles and iterations were 81 and 10, respectively. The kernel function of SVR 
was selected as “rbf”, and 10-fold cross-validation was used in the training process. First, the training 
set was used for model training, and the best combination of C and ߛ was selected. Then, the test set 
was used for testing, and the concentration estimation results were obtained, with the determination 
coefficient R2 (Equation (12), in which ݕො௜  is the estimation value, ݕത  is the average of the actual 
concentration, and ݕ௜ is the actual value) of the test samples as the evaluation criteria of the model 
to estimate ability. The value of R2 is between 0 and 1, and the closer it is to 1, the better the regression 
model. The selected values of C and ߛ  in different categories are shown in  
Table 4. The prediction effects of the four classes based on SVR improved by PSO model are shown 
in Figure 5. It can be seen from the fitting curve in Figure 5 that the gas concentration fitting effects 
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Figure 4. The confusion matrix of the three algorithms (1: single methane; 2: single ethylene; 3:
air; 4: mixture). (a) The confusion matrix of the random forest (RF) classifier. (b) The confusion
matrix of the logistic regression (LR) classifier. (c) The confusion matrix of the support vector machine
(SVM) classifier.

5.4. Quantitative Analysis for Gas Mixture

Quantitative analysis for a gas mixture should be carried out after qualitative identification, in
which the concentration estimation for a single gas and mixed gas by optimized SVR is carried out.

The number of particles and iterations were 81 and 10, respectively. The kernel function of
SVR was selected as “rbf”, and 10-fold cross-validation was used in the training process. First, the
training set was used for model training, and the best combination of C and γ was selected. Then,
the test set was used for testing, and the concentration estimation results were obtained, with the
determination coefficient R2 (Equation (12), in which ŷi is the estimation value, y is the average of the
actual concentration, and yi is the actual value) of the test samples as the evaluation criteria of the
model to estimate ability. The value of R2 is between 0 and 1, and the closer it is to 1, the better the
regression model. The selected values of C and γ in different categories are shown in Table 4. The
prediction effects of the four classes based on SVR improved by PSO model are shown in Figure 5.
It can be seen from the fitting curve in Figure 5 that the gas concentration fitting effects for the four
categories were very good, except for the deviation of some sample points. The errors between the
predicted and actual values fluctuated around 0, which indicates that the fitting effects were very good.
In [7], they also used this way to compare three feature extraction methods.

R2 =

∑
(ŷi − y)2∑
(yi − y)2 . (12)

Table 4. Parameters and concentration estimation results of different categories.

Categories Single Gas Mixed Gas

Components Methane Ethylene Methane Ethylene
C 22,481 13,892 27,047 8546
γ 2.86 0.45 0.44 0.28

R2 0.996 0.979 0.979 0.828
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In order to prove the regression effect of SVR optimized by the PSO algorithm, Figure 6 shows
the comparison between our proposed methodology and SVR. It can be seen from Figure 6 that the
approach based on SVR optimized by the PSO algorithm provided a smaller prediction error than SVR,
which proves that the regression effect does improve through our method.
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6. Conclusions

In this work, a novel qualitative and quantitative analysis strategy was proposed to provide
accurate analysis of multicomponent gas mixtures. The proposed strategy combined PCA with random
forest (PCA + RF) for identification. PCA can extract the principal components that contain most of
the information and reduce the redundant factors. Random forest, as a classifier, was used to identify
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the gas mixture. The methodology also used SVR optimized by PSO as a tool to quantify the gas
component of a mixture.

The experimental results show that the best identification performance was obtained by PCA +

RF compared with LR and SVM. Its recognition rate was 97%, a gain of 12% compared with LR and
SVM. SVR optimized by PSO had a better regression result for every gas component than SVR, and at
the same time, it solved the problem of selecting the hyperparameters of SVR.
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