
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

1050

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

Abstract: One of the well-known property of graph is graph

coloring. Any two vertices of a graph are different colors such that

they are adjacent to each other. The objective of this paper is to

analyse the behavioral performance of Tabu Search method

through serial and parallel implementations. We explore both

parallel and serial Tabu search algorithm for graph coloring with

arbitrary number of nodes.

Index Terms: Algorithm analysis, Graph coloring, Parallel

processing, Tabu search.

I. INTRODUCTION

A graph is an illustrated representation of different sets of

objects and the links between these objects. These links

together give an abstract representation of relationships. In

graph theory, the objects are called vertices, whereas the links

in between them are called edges. A vertex is defined as an

entity and on the other hand the edge, is said to be the

relationship or association between these two entities. Vertex

coloring is the most common graph coloring problem. The

problem starts off simply, you have m colors and need to find

a way to color the vertices of your graph in such a manner,

where no two adjacent vertices connected by an edge have the

same color. The minimum number of colors that one

completes coloring a Graph G, is called the chromatic

number. Other examples of graph coloring types include Edge

Coloring – no vertex is incident to two edges, which have the

same color, and Face Coloring – Geographical Map Coloring.

However, we choose to avoid using these for our analysis as

we are planning to work with vertices which are easier to

calculate and visualize when speaking about a classroom

arrangement or any such application. In addition, the

aforementioned coloring techniques can be transformed into

Vertex Coloring using various matrix operations. Various

algorithms are used to find the Chromatic number for any

Graph. They use different approaches and provide varying

results depending on the graph size. In this paper, we evaluate

the behavioral performance of Tabu Search method through

serial and parallel implementations. The number of cores and

graph size would be determining factors for each algorithm.

The structure of the paper as follows: Section 2 presents the

relative study of the work. Section 3 discusses the graph

coloring algorithm and section 4 produces the implementation

results and its discussion. Section 5 conclude the paper.

Revised Manuscript Received on July 09, 2019.

Rutanshu Jhaveri, School of CSE, VIT University, Vellore, India.

Narayanan Prasanth, School of CSE, VIT University, Vellore, India.

K.Jayakumar, School of CSE, VIT University, Vellore, India.

K.Navaz, Dept. of CSE, Annamacharya Institute of Technology and

Sciences Tirupathi, India

II. RELATED WORKS

 Allwright et al. [1] presented some parallel graph coloring

algorithms dependent on understood sequential heuristic

calculations, and contrast them and some existing parallel

algorithms. These calculations are actualized on both SIMD

and MIMD parallel models and tried for speed, effectiveness,

and for shading arbitrary triangulated networks and diagrams

from sparse matrix. Buhua Chen et al. [2] introduced a new

parallel genetic algorithm to take care of the Graph coloring

problem (GCP) in view of Computer Unified Device

Architecture (CUDA). All the operators such as initialization,

crossover, mutation and selection are designed to be parallel

in threads. Additionally, the execution of their algorithms is

contrasted and alternate algorithms utilizing benchmark

charts, and exploratory outcomes demonstrates that their

calculation merges significantly more rapidly than different

calculations and accomplishes focused execution for solving

GCP. Frank et al. [3], the paper portrays another graph

coloring algorithm, the Recursive Largest First (RLF)

coloring algorithm. Adding onto RLF, an assortment of

existing coloring methods are introduced and their execution

on a wide scope of test data is contrasted with that of the RLF

algorithm. Additionally portrayed is a methodology for

producing arbitrary graphs with known chromatic number.

The presence of such a technique, until now ailing in the test

writing, gives a standard strategy to testing the exactness of

graph coloring algorithms. Gend Lal et al. [4] describes an

efficient algorithm for GCP colouring problem using less

number of colours. The proposed scheme is applicable for all

types of graphs. The algorithm divides the neighbours of a

vertex into two categories N-type and V-type, and checks the

colour filled in V-type neighbor before filling in the current

vertex. Algorithm selects a colour from the list of colours, K

every time from the beginning of the list colour so that it can

make use less number of colours. They also compare their

results with those obtained using genetic algorithms, Brown’s

algorithm and other heuristics algorithms. Michael Elkin et.

al. [5] initiate the study of combinatorial algorithms for

Distributed Graph Coloring problems. In a distributed setting

a communication network is modeled by a graph G = (V, E) of

maximum degree Δ. The vertices of G host the processors,

and communication is performed over the edges of G. The

goal of distributed vertex coloring is to color V with (Δ + 1)

colors such that any two neighbors are colored with distinct

colors. Currently, efficient algorithms for vertex coloring that

require O(Δ + log∗ n) time are based on the algebraic

algorithm of Linial that employs set-systems. Evstigneev et.

al. [6] shown that certain

sequential coloring algorithm

heuristics like largest-first

(LF), smallest-last (SL), and

Parallel and Serial Graph Coloring

Implementations with Tabu Search Method

Rutanshu Jhaveri, Narayanan Prasanth, Jayakumar K, Navaz K

Parallel and Serial Graph Coloring Implementations with Tabu Search Method

1051

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

saturation largest-first (SLF), as applied to some classes of

graphs and to special cases of vertex coloring in distributed

algorithms, produce an optimal or near-optimal coloring.

Scott sallinen et al. [7] presents an event-based framework,

and a novel, on the web, conveyed graph coloring algorithm.

The execution for coloring static graphs, utilized as an

execution pattern, is up to a request of size quicker than past

outcomes and handles massive graphs with more than 257

billion edges. Our system bolsters dynamic graph coloring

with execution everywhere scale superior to GraphLab's static

examination. Our experience shows that online solutions are

possible, and can be more effective than those dependent on

snapshotting. Omari et. al [8] proposed two new algorithms in

their paper work. They compared empirically in terms of used

colors with some of the known heuristic graph coloring

algorithm such as Largest Degree Ordering (LDO), First Fit

(FF), saturated Degree Ordering (SDO), and incident degree

ordering (IDO). Shilp et al [9] presents two parallel CREW

(Concurrent Read Exclusive Write) PRAM algorithms for

ideal coloring of general graphs on stream processing

architectures, for example, the GPU. The algorithms are

actualized utilizing OpenCL. The principal calculation

introduces the strategies for processing vertex free sets on the

GPU and after that appoints hues to them. The second

calculation centers around the advancement of the vertex

autonomous set calculation for edge-transitive charts by

exploiting the structures of such diagrams and after that

appoints coloring to every one of the standardized

independent sets. In Gopalakrishnan et al [10], the paper

centers around structuring three new transformative

administrators utilizing Tabu seeking which are required to

counterbalance the issues in the current understood strategies

in minimal search space and generations, other than

augmenting the level of fruitful goes through adequately

conveying promising qualities for accomplishing quick

stochastic combination with littler populace measure N. In the

main technique, Single Parent Conflict Gene Extended

Crossover and Conflict Gene Mutation with Advanced Local

Guided Search administrators are planned and utilized. These

administrators have been prepared with Conflict Gene

Removal limitations in the second strategy to limit the pursuit

space and to expand the level of effective keeps running of the

hereditary calculation. Multipoint Single Parent Conflict

Gene Crossover and Multipoint Conflict Gene Mutation with

Advanced Local Guided Search administrators are utilized

alongside a Conflict Gene Removal limitation in the third

strategy. In [11], graph colouring issue emerges in various

networking applications. It illuminates it in a completely

decentralized manner (ı.e., with no message passing). It

proposes a novel calculation that is consequently receptive to

topology changes, and this paper demonstrates that it

converges to an appropriate colouring in O(N log N) time

with high probability for generic graphs, when the quantity of

accessible colours is more noteworthy than Δ, the maximum

degree of the chart, and in O(log N) time if Δ = O(1). Mehmet

Deveci et al [12] graph algorithms are trying to parallelize on

many core architectures because of complex information

conditions and sporadic memory access. This paper considers

the very much examined issue of coloring the vertices of a

graph. In numerous applications, it is essential to compute a

coloring with few colors in near-linear time.

III. PARALLEL GRAPH COLORING ALGORITHM

Any algorithm that can color the set of vertices in parallel

such that no two vertices are in parallel, then it is termed as

Parallel Graph Coloring Algorithm. One of the well-known

algorithm for graph coloring problems is Tabu search method

[13].

A. Tabu Search Method

Tabu search, created by Fred W. Glover in 1986 and

formalized in 1989, is a local scan strategy utilized for

scientific improvement. Nearby inquiries take a potential

answer for an issue and check its prompt neighbors (that is,

arrangements that are comparable aside from a couple of

minor subtleties) in the desire for finding an enhanced

arrangement. Nearby hunt strategies tend to wind up stuck in

imperfect locales or on levels where numerous arrangements

are similarly fitted. Tabu pursuit improves the execution of

these procedures by utilizing memory structures that depict

the visited arrangements or client gave sets of guidelines. In

the event that a potential arrangement has been recently

visited in a certain short-term period or on the off chance that

it has damaged a standard, it is set apart as "unthinkable" with

the goal that the calculation does not think about that

plausibility more than once.

B. Performance Study

We started with the analytical study of parallel processing

on Tabu Search Algorithm. Based on our hypothesis, we

assumed that parallel processing would be much faster and

cause the coloring to have a shorter duration. Pj2 library [14]

was used for parallelizing the algorithms on certain class of

graph. Parallel Java 2 (PJ2) is an API and middleware for

parallel programming in 100% Java on multicore parallel

computers, cluster parallel computers, hybrid multicore

cluster parallel computers, and GPU accelerated parallel

computers [14]. It also includes a lightweight map-reduce

framework.

Parallel Processing

The Tabu search algorithm implemented with several factors

into consideration such as number of nodes in test input,

number of cores for each coloring process, whether the task

file was for parallel or sequential graph coloring. Total time

(ms) taken for the given graph is measured by the number of

nodes and cores. Below are the screenshots which depict the

obtained results for different node size. Then, we tabulated

these results and tried to find relationships with various

parameters aforementioned.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

1052

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

5-Node Graph

Fig. 1 Total time taken for graph coloring with node size 5

number of core used for implementation is 1

Core = 1, Node number = 5,

Time Taken = 15ms, Colors required = 3

Fig. 1 provides the result of the graph coloring using Tabu

search method whose graph node size is 5. Total number of

cores used during implementation is 1 and total number of

color required is 3. The above scenario took 8ms for the

completion of the coloring process. Fig. 2 provides the result

of the same graph coloring process which is implemented with

3 cores and total number of color required is 3. It also took

8ms for the completion of the coloring process.

Cores = 2, Node number = 5,

Time Taken = 8ms, Colors required = 3

Fig. 2 Total time taken for graph coloring with node size 5

number of cores used for implementation is 3

Cores = 4, Node number = 5, Time Taken = 13ms, Colors

required = 4

Fig. 3 Total time taken for graph coloring with node size 5

number of core used for implementation is 4

Fig. 3 provides the result of the graph coloring using Tabu

search method whose graph node size is 5. Total number of

cores used during implementation is 4 and total number of

color required is 4. The above scenario took 13ms for the

completion of the coloring process. We did not exceed

number of cores more than four because then we were getting

anomalous results with negative numbers as colors.

Figure 4 A 10-Node Graph

Fig.1.5 depicts a graph with 10 nodes. In the subsequent

section, performance of graph coloring (with node size 10)

through parallel processing is computed and the results are

depicted as screenshots.

Core = 1, Node number = 10,

Time Taken = 103ms, Colors required = 3

Parallel and Serial Graph Coloring Implementations with Tabu Search Method

1053

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

Fig. 5 Total time taken for graph coloring with node size

10 number of core used for implementation is 1

Fig. 5 shows the result of the graph coloring with node size 10

and is implemented with 1 core. Total number of color

required is 3 and takes 103ms for the completion of the

coloring process. Fig. 6 shows the result of the graph coloring

with node size 10 and is implemented with 2 cores. Total

number of color required is 3 and takes 105ms for the

completion of the coloring process.

Cores = 2, Node number = 10,

Time Taken = 15ms, Colors required = 3

Fig. 6 Total time taken for graph coloring with node size

10 number of core used for implementation is 2

Fig. 7 shows the result of the graph coloring with node size 10

and is implemented with 1 core. Total number of color

required is 4 and takes 9ms for the completion of the coloring

process.

Cores = 4, Node number = 10,

Time Taken = 9ms, Colors required = 4

Fig. 7 Total time taken for graph coloring with node size

10 number of core used for implementation is 4

Figure 8 20-Node Graph

Fig.8 depicts a graph with 20 nodes. Now, performance of

graph coloring (for node size 20) through parallel processing

is computed and the results are depicted as screenshots.

Core = 1, Node number = 20,

Time Taken = 9ms, Colors required = 4

Fig. 10 shows the result of the graph coloring with node size

20 and is implemented with 1 core. Total number of color

required is 4 and takes 9ms for the completion of the coloring

process. Fig. 6 shows the result of the graph coloring with

node size 10 and is implemented with 4 cores. Total number

of color required is 4 and takes 7ms for the completion of the

coloring process.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

1054

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

Fig. 9 Total time taken for graph coloring with node size

20 number of core used for implementation is 1

Cores = 2, Node number = 20,

Time Taken = 7ms, Colors required = 4

Fig. 10 Total time taken for graph coloring with node size

20, number of core used for implementation is 2

Cores = 4, Node number = 20,

Time Taken = 7ms, Colors required = 5

Fig. 11 Total time taken for graph coloring with node size

20, number of cores used for implementation is 4

Fig. 6 shows the result of the graph coloring with node size 20

and is implemented with 4 cores. Total number of color

required is 5 and takes 7ms for the completion of the coloring

process.

Tabu Search Algorithm – Sequential Processing

Below are the screenshots which shows the results of graph

coloring by Tabu Search method through sequential

processing. We were shocked to realize that most of the

sequential processes gets completed in the time period of

around 0ms-1ms.

Core = 1, Node number = 5,

Time Taken = 0ms, Colors required = 3

Fig. 12 Sequential process of the graph coloring process

with 5 nodes and 1 core

Parallel and Serial Graph Coloring Implementations with Tabu Search Method

1055

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

Core = 1, Node number = 10,

Time Taken = 1ms, Colors required = 3

Fig. 13 Sequential process of the graph coloring process

with 10 nodes and 1 core

Core = 1, Node number = 20,

Time Taken = 0ms, Colors required = 4

Fig. 14 Sequential process of the graph coloring process

with 20 nodes and 1 core

Fig. 12, 13 and 14 shows the result of the graph coloring

(sequential processing) with node size 5, 10 and 20

respectively and is implemented with 1 core.

Table 1 Consolidated results of Tabu parallel search

GraphColSmp

Nodes In

Graph

Cores Time/ms Colors

Required

5 1 15 3

5 2 8 3

5 4 13 4

10 1 103 3

10 2 15 3

10 4 9 3

20 1 12 4

20 2 7 4

20 4 7 5

Fig. 15 Time v/s Cores graph

Fig.15 shows the graph of Time v/s Cores required for

computation. It is clear that the time is inversely proportional

to number of cores. So, more the cores for bigger graph

reduces the computation time required. We have ignored the

number of colors required out here since we only want to

visualize the relationship between cores and time. The above

bar graph considers all the parameters such as colors required,

time and cores. The optimum balance between all these

parameters is set when the number of core is two. In Table 2,

we see that Sequential process takes almost negligible amount

of time and this proves our hypothesis as false. We

understood that the sequential processing may take more time

because of overhead. In general, when people make sweeping

statements about computer performance, there are far more

variables at play here, and you can't really make that

assumption. For example, inside your for loop, you are

doing nothing more than Math.Pow, which the processor

can perform very quickly. If this is an I/O intensive operation,

requires each thread to wait for a long time, or even if it were

a series of processor-intensive operations, you would get

more out of parallel processing (assuming you have a

multi-threaded processor). But as it is, the overhead of

creating and synchronizing these threads is far greater than

any advantage that parallelism might give you.

Fig. 16 Results for Tabu

Sequential algorithm

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

1056

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B1840078219/19©BEIESP

DOI: 10.35940/ijrte.B1840.078219

Table 2 Consolidated results of graph coloring process

during sequential processing

IV. CONCLUSION

In this paper, we discussed both serial and parallel

implementation of Tabu search algorithm for a class of

connected graphs. The performance of Tabu parallel search

algorithm for graphs is comparatively better than the Tabu

serial algorithm. In addition to that, the performance gets

improved when the number of nodes keep increasing. On the

other hand, Tabu serial search algorithm offer better

performance when the size of the graph is relatively small. We

can extend this study to all class of graphs with suitable

restrictions.

REFERENCES

1. J.R.Allwright, R.Bordawekar, P.D.Coddington, K.Dincer and

C.L.Martin, “A comparison of parallel graph coloring algorithms”,

Northeast Parallel Architecture Center, Syracuse University, Tech. Rep.,

1995

2. B.Chen, B.Chen, H.Liu and X.Zhang, “A Fast Parallel Genetic

Algorithm for Graph Coloring Problem Based on CUDA”, in 2015

International Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC) IEEE, pp. 145-148, 2015.

3. F.T.Leighton, “A graph coloring algorithm for large scheduling

problems”, Journal of research of the national bureau of standards,

84(6), pp.489-506, 1979.

4. G.L.Prajapati, A.Mittal and N.Bhardwaj, “An efficient colouring of

graphs using less number of colours”, in IEEE Information and

Communication Technologies (WICT), pp. 666-669, 2012.

5. L.Barenboim and M.Elkin, “Combinatorial algorithms for distributed

graph coloring”, Distributed Computing, 27(2), pp.79-93, 2014.

6. V.A.Evstigneev, “Graph coloring in a class of parallel local algorithms”,

Numerical Analysis and Applications, 4(3), pp.189, 2011.

7. S.Sallinen, K.Iwabuchi, S.Poudel, M.Gokhale, M.Ripeanu and

R.Pearce, “Graph colouring as a challenge problem for dynamic graph

processing on distributed systems” IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis, pp.

347-358, 2016.

8. H.Al-Omari and K.E.Sabri, “New graph coloring algorithms”,

American Journal of Mathematics and Statistics, 2(4), pp.739-741,

2006.

9. S.Sengupta, Parallel graph coloring algorithms on the GPU using

OpenCL” IEEE International Conference on Computing for Sustainable

Global Development (INDIACom), pp. 353-357, 2014

10. R.Marappan and G.Sethumadhavan, “Solution to Graph Coloring Using

Genetic and Tabu Search Procedures”, Arabian Journal for Science and

Engineering, 43(2), pp.525-542, 2018

11. Alessandro Checco and J.Doug Leith, “Fast, Responsive Decentralized

Graph Coloring”, In IEEE/ACM Transactions on Networking, Vol. 25,

No. 6, December 2017, Page(s): 3628 – 3640.

12. Mehmet Deveci, Erik G Boman, Karen D Devine, and Sivasankaran

Rajamanickam, “Parallel Graph Coloring for Manycore Architectures”

in IEEE International Parallel and Distributed Processing Symposium

(IPDPS), 2016

13. Hertz and D. de Werra, “Using tabu search techniques for graph

coloring”, computing, 39:345–351, 1987.

14. https://www.cs.rit.edu/~ark/pj2.shtml

AUTHORS PROFILE

Rutanshu Jhaveri completed his B.Tech Computer

Science and Engineering at Vellore Institute of

Technology, Vellore, India in the year 2019. His primary

interest in the area of parallel and distributed computing,

High performance computing and Graph coloring

algorithms.

Dr. Narayanan Prasanth is an Associate Professor at

School of Computer Science and Engineering, VIT

Vellore India. He received his B.Tech IT from

Pondicherry University, M.E CSE from Anna

University and Ph.D CSE from M.S University

Tirunelveli. His research interest includes Network

Switch Scheduling, Switching architecture and SDN. He has published more

than 20 papers in various conferences and journals. He is a life member of

ISTE and member of CSTE.

Dr. Jayakumar Kaliappan received the B.E., degree in

Computer Science and Engineering from M.K.

University, India in 2002, M.E., degree in Computer

Science and Engineering from Anna University, India in

2005 and Ph.D. degree in the field of Intrusion Detection

Systems from Anna University, India in 2018. He is currently working as an

Associate Professor at the School of Computing Science and Engineering,

VIT University, Vellore, India. He has presented and published more than 20

papers in conferences and Journals. His current research interests include:

Intrusion Detection Systems, Data mining and Machine Learning. He is a

Life Member of Indian Society for Technical Education.

Dr. Navaz K pursued Bachelor of Technology and Master

of Engineering from Anna University of Tamilnadu,

India in year 2006 and 2009 respectively. He is also

completed Ph.D from MSU Tirunelveli and currently

working as Associate Professor in Department of

Computer Science and Engineering, Annamacharya Institute of Technology

and Sciences, Tirupathi, India. He is a member of IAENG & ICSES

computer society. He has published more than seven research papers in

reputed international journals including Thomson Reuters (SCI & Web of

Science) and conferences. His main research work focuses on Computer

Networks, Network Security, Cloud Security and Privacy, IoT and

Computational Intelligence based education. He has 9 years of teaching

experience and 5 years of Research Experience.

GraphColSmp

Nodes In Graph Cores Time/ms Colors

Required

10 1 0 3

5 1 1 3

20 1 0 4

https://www.cs.rit.edu/~ark/pj2.shtml

