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Abstract: It is known widely that an interconnection network can be denoted by a graph G = (V, E),
where V denotes the vertex set and E denotes the edge set. Investigating structures of G is necessary
to design a suitable topological structure of interconnection network. One of the critical issues in
evaluating an interconnection network is graph embedding, which concerns whether a host graph
contains a guest graph as its subgraph. Linear arrays (i.e., paths) and rings (i.e., cycles) are two
ordinary guest graphs (or basic networks) for parallel and distributed computation. In the process
of large-scale interconnection network operation, it is inevitable that various errors may occur at
nodes and edges. It is significant to find an embedding of a guest graph into a host graph where all
faulty nodes and edges have been removed. This is named as fault-tolerant embedding. The twisted
hypercube-like networks (THLNs) contain several important hypercube variants. This paper is
concerned with the fault-tolerant path-embedding of n-dimensional (n-D) THLNs. Let Gn be an
n-D THLN and F be a subset of V(Gn) ∪ E(Gn) with |F| ≤ n− 2. We show that for two different
arbitrary correct vertices u and v, there is a faultless path Puv of every length l with 2n−1 − 1 ≤ l ≤
2n − fv − 1− α, where α = 0 if vertices u and v form a normal vertex-pair and α = 1 if vertices u and
v form a weak vertex-pair in Gn − F (n ≥ 5).

Keywords: combinatorics; multiprocessor interconnection networks; computer network reliability;
network topology; hypercubes; twisted hypercube-like networks THLNs; fault tolerance;
path-embedding

1. Introduction

As the infrastructure of cloud computing and the innovation platform of next generation network
technology, the research of data center networks has become a hot topic in the academic and industrial
circles in recent years. The performance of data center networks determine the performance of cloud
computing to a large extent. Data center networks require a cluster of large number of switches,
servers, and links. So what kind of topological network structure is used to connect these thousands
of network components to make the system have the best performance and the lowest cost? What
method is used to design such an interconnected network?

It is widely known that an interconnection network can be denoted by a graph G = (V, E), where
V denotes the vertex set and E denotes the edge set. Investigating structures of G is necessary to design
a suitable topological structure of an interconnection network.

The n-dimensional hypercube [1], which possesses many outstanding properties such as recursive
structure, relatively small degree, high symmetry, effective routing, and broadcasting algorithms [2],
is one of the most efficient, versatile interconnection networks and, thus, becomes the preferred
topological structure of parallel processing and parallel computing systems [3,4]. Thus, a hypercube is
also one of the topological structures of data center networks [5]. Although hypercube networks have
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many excellent properties, it is well known that they also have inherent shortcomings, such as a large
diameter. Therefore, many scholars have proposed some hypercube variants, aiming at improving the
defects of hypercubes, such as Efe’s crossed cubes [6], Cull’s and Larson’s Möbius cubes [7], Hilbers’s
twisted cubes [8], and Yang’s locally twisted cubes [9]. These hypercube variants retain the good
properties of hypercubes, but also have many properties superior to hypercubes, such as the diameter
of hypercube variants being almost half of the diameter of hypercubes.

One of the critical issues in evaluating an interconnection network is how well other existing
networks can be embedded into this network. This problem can be modeled by the following graph
embedding problem: Given a host graph G2 = (V2, E2), which denotes the network into which other
networks are to be embedded, and a guest graph G1 = (V1, E1), which denotes the network to be
embedded, the problem is to find a mapping from each node of G1 to a node of G2, and a mapping
from each edge of G1 to a path in G2. Graph embedding has good applications in allocating concurrent
processes to processors in the network, and transplanting parallel algorithms developed for one
network to a different one [10,11]. Linear arrays (i.e., paths) and rings (i.e., cycles) are two ordinary
guest graphs (or fundamental networks) for parallel and distributed computing.

The hypercubes and hypercube variants can embed paths [12–14], cycles [15,16], trees [17,18], and
meshes [19–21]. A path (respectively, cycle) is a Hamiltonian path (respectively, Hamiltonian cycle) if
it passes through every vertex of graph G once and only once. If a graph contains a Hamiltonian cycle,
then it is Hamiltonian. A graph G is Hamiltonian connected if for any pair of distinct vertices u and v,
there exists a Hamiltonian path Puv.

The data center network stores a large amount of important data information and requires high
reliability. Because of the large number of switches, servers, and links in the data center network,
it is difficult to avoid failures. Fault tolerance ensures that a variety of tasks that are being performed,
such as information processing or algorithms, can run normally when some resources (servers, switches,
or links) in a data center network fail. A good network can ensure that the remaining subnets
will function properly even if some nodes or edges have errors. Therefore, it is of great practical
significance to study the fault-tolerant performance of the network. Fault-tolerant embedding is to find
an embedding of a guest graph into a host graph where all faulty nodes and edges have been removed.

Much work has been done on the fault-tolerant embedding [22–42]. In 2007, Fan et al. [13] proved
that twisted cubes TQn can embed a path of length l between any two different nodes for any faulty
set F ⊂ V(TQn) ∪ E(TQn) with |F| ≤ n− 3 and any integer l with 2n−1 − 1 ≤ l ≤ |V(TQn − F)| − 1
(n ≥ 3). In 2008, Ma et al. [33] proved the same result of path-embedding in crossed cubes CQn.
A survey paper of Xu and Ma [23] lists almost all results on this topics until 2009. In 2012, Ye et al. [35]
proved that a path of length l can be embedded between any two different nodes in n-dimensional
locally twisted cubes LTQn for any faulty set F ⊂ V(LTQn) ∪ E(LTQn) with |F| ≤ n − 3 and any
integer l with 2n−1 − 1 ≤ l ≤ |V(LTQn − F)| − 1 (n ≥ 3). In 2018, we [37] proved the fault-tolerant
path-embedding in augmented cubes AQn with up to (2n− 4)-faults. However, if there are n− 2
faulty elements in TQn, CQn, LTQn respectively which are adjacent to one vertex, then the vertex must
be a 2-degree vertex. It is extremely difficult to find the path with some length in this extreme case.
Therefore, we [26] put forward the concept of weak 2-degree vertex and weak vertex-pair, where we
simultaneously proved that the weak 2-degree vertex and weak vertex-pair are unique if they exist
in a graph. Afterward we improved the fault-tolerant Hamiltonian path embedding with n− 2 fault
elements, excluding only the weak vertex-pair in twisted hypercube-like networks (THLNs).

The hypercube-like networks (HLNs) are a large class of interconnection networks [24,25,43].
Twisted hypercube-like networks (THLNs) proposed by Yang [40] in 2011, are a subclass in HLNs.

Definition 1 ([40]). An n (n ≥ 3)-dimensional (n-D) twisted hypercube-like network (THLN) is a graph
defined recursively as follows.

(1) A 3-D THLN is isomorphic to the graph depicted in Figure 1a.
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(2) For n ≥ 4, an n-D THLN Gn is obtained from two vertex-disjoint (n− 1)-D THLNs, denoted by
G0

n−1 and G1
n−1, in this way:

V(Gn) = V(G0
n−1) ∪V(G1

n−1),
E(Gn) = E(G0

n−1) ∪ E(G1
n−1)∪

{(u, φ(u)) : u ∈ V(G0
n−1)},

where φ : V(G0
n−1) → V(G1

n−1) is a bijective mapping. In the following, we will denote this graph Gn as
Gn = ⊕φ(G0

n−1, G1
n−1). Figure 1b plots a 4D THLN.

(a) 3D THLN (b) 4D THLN

Figure 1. Example of weak vertex-pair.

Specifically, the previously-mentioned hypercube variant networks (crossed cubes CQn, Möbius
cubes MQn, twisted cubes TQn, and locally twisted cubes LTQn) are all THLNs. In 2005, Park et al. [24]
demonstrated that all n-D THLNs are Hamiltonian with at most n− 2 faulty elements and Hamiltonian
connected with at most n− 3 faulty elements. Furthermore, using the Hamiltonian connectivity of
THLNs, some scholars [13,33,35] have improved the lower bound of the path length in each THLNs
with n− 3 faults. In 2018, Zhang et al. [26] improved the upper bound of fault tolerant Hamiltonian
connectivity to n− 2 excepting only a pair of vertices and gave the definitions of weak vertex-pair and
normal vertex-pair as follows.

Definition 2 ([26]). Let F ⊂ V(Gn) ∪ E(Gn) with |F| = n− 2. If Gn − F contains a vertex w such that
NGn−F(w) = {w1, w2}, then w is called as a weak 2-degree vertex and (w1, w2) is called as a w-weak vertex
pair (short for weak vertex pair).

If F = {a, b}, for instance, then w is a weak 2-degree vertex and (w1, w2) is a weak vertex-pair in
G4 − F (See Figure 2).

w
w1 w2

a

b

×

×

4D THLN(G4)

Figure 2. Example of weak vertex-pair.

Unquestionably, for the weak vertex-pair (w1, w2), any correct path Pw1w2 of length l ≥ 3 cannot
include the weak 2-degree vertex w. It follows there is no correct Hamiltonian path joining vertices w1

and w2 in Gn − F [26]. However, we proved that Gn − F (n ≥ 5) contains at most one weak 2-degree
vertex w and one w-weak vertex-pair for any F ⊂ V(Gn) ∪ E(Gn) with |F| ≤ n− 2 in reference [26].

We first give the useful Definition and Theorem in reference [26] as follows.

Definition 3 ([26]). If (w1, w2) is not a weak vertex-pair for any vertex w ∈ V(Gn − F), then (w1, w2) is
called as a normal vertex pair.
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Theorem 1 ([26]). Let Gn be an n-dimensional THLN and F ⊂ V(Gn) ∪ E(Gn) with |F| ≤ n− 2. Then for
any vertex-pair (u, v) in Gn − F, there is a (n− 2)-fault-tolerant Hamiltonian path Puv connecting vertices u
and v except (u, v) being a weak vertex-pair.

In the paper, we studied the path-embedding in a THLN with n− 2 faulty elements and showed
that if F ⊂ V(Gn) ∪ E(Gn) and |F| ≤ n− 2, then for arbitrary two different correct vertices u and v,
there is a fault-free path Puv of every length l with 2n−1 − 1 ≤ l ≤ 2n − fv − 1− α, where α = 0 if
vertices u and v form a normal vertex-pair and α = 1 if vertices u and v form a weak vertex-pair in
Gn − F (n ≥ 5).

To do this simply, we can denote Gn = L⊕ R, where L = G0
n−1 and R = G1

n−1. For any vertex
x ∈ L (or R), let xR (or xL) be the sole vertex adjacent to vertex x in R (or L), and NL(x) (or NR(x)) be
the set of vertices that are adjacent to vertex x in L (or R). Let EC be the set of edges that join L to R
and EL(x) (or ER(x)) be the set of edges incident to vertex x in L (or R).

We use Puv to represent the path from vertex u to vertex v. If Puw = (u, u1, . . . , us, w),
Pwv = (w, w1, . . . , wt, v) and V(Puw) ∩ V(Pwv) = {w}, we use Puw + Pwv to denote the path
Puv = (u, u1, . . . , us, w, w1, . . . , wt, v), Puv(u1, w1) to represent the subpath of Puv which is from vertex
u1 to vertex w1, luv to denote the length of Puv, duv to denote the distance between vertex u to vertex
v. We denote FL = F ∩ L, FR = F ∩ R, FC = F ∩ EC, Fv = F ∩ V(Gn), Fe = F ∩ E(Gn), fv = |Fv|,
f L
v = |Fv ∩V(L)|, f R

v = |Fv ∩V(R)|. We have fv = f L
v + f R

v .
This paper is organized as follows. Section 2 demonstrates the main result. Section 3 concludes

the paper.

2. Main Result

In this section, we will establish the main result of the paper. We depict Theorem 2 as follows.

Theorem 2. If F ⊂ V(Gn) ∪ E(Gn) and |F| ≤ n− 2, then for any two distinct fault-free vertices u and v,
there exists a fault-free path Puv of every length l with 2n−1 − 1 ≤ l ≤ 2n − fv − 1− α, where α = 0 if vertices
u and v form a normal vertex-pair and α = 1 if vertices u and v form a weak vertex-pair in Gn − F (n ≥ 5).

Proof. We prove the theorem by induction on n ≥ 5. The result holds for n = 5 by developing
computer program (https://github.com/ZhangHeidi/Hypercubes/blob/master/vcn02.c) using the
depth-first searching technique combining with backtracking and a branch and bound algorithm.
Assume that the theorem holds for n − 1 with n ≥ 6, then we must show the theorem holds for
n. In general, we assume |FR| ≤ |FL|. Then |FR| ≤ b n−2

2 c ≤ n − 4. Since for any vertex x ∈ R,
|NR(x)| = n− 1. Because of |FR| ≤ n− 4, we have |NR−FR(x)| ≥ 3. Then there is no weak vertex-pair
in R− FR.

Let u, v be any two distinct fault-free vertices in Gn − F. By Theorem 1, there is a faultless path
Puv of length l = 2n − fv − 1 if vertices u and v form a normal vertex-pair in Gn − F. Then we only
need to find each length l with 2n−1 − 1 ≤ l ≤ 2n − fv − 2 between arbitrary different vertices u and v
in Gn − F. We divide the proof to two cases: (1). |FL| ≤ n− 3; (2). |FL| = n− 2.

Case 1. |FL| ≤ n− 3. We discuss this case by the following two cases: (1). u, v ∈ V(L− FL) or
u, v ∈ V(R− FR); (2). u ∈ V(L− FL) and v ∈ V(R− FR).

Case 1.1. u, v ∈ V(L− FL) or u, v ∈ V(R− FR). Firstly, we prove the case of u, v ∈ V(L− FL).
Since |FL| ≤ n− 3, by induction hypothesis, there is a faultless path Puv of each length l with

2n−2− 1 ≤ l ≤ 2n−1− f L
v − 2 in L− FL. Notice that there exist b l+1

2 c vertex-pairs in Puv. Since b l+1
2 c −

(n− 2) ≥ 2n−2

2 − (n− 2) ≥ 4 (n ≥ 6), there is a faultless edge ab ∈ E(Puv) with aR, bR, aaR, bbR /∈ F.
Since |FR| ≤ n− 4, by induction hypothesis, there is a faultless path PaRbR of each length laRbR with
2n−2 − 1 ≤ laRbR ≤ 2n−1 − f R

v − 1 in R − FR. Let P1
uv = Puv(u, a) + aaR + PaRbR + bRb + Puv(b, v).

Then P1
uv is a faultless path of length l1

uv with 2n−1 − 1 ≤ l1
uv ≤ 2n − fv − 2 in Gn − F (see Figure 3a).

https://github.com/ZhangHeidi/Hypercubes/blob/master/vcn02.c
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For u, v ∈ V(R− FR), by a similar discussion, we can get a faultless path P1
uv of each length l1

uv
with 2n−1 − 1 ≤ l1

uv ≤ 2n − fv − 2 in Gn − F.
Case 1.2. u ∈ V(L− FL) and v ∈ V(R− FR).
By the definition of Gn, |EC| = 2n−1. Since 2n−1 − (n− 2) ≥ 28 (n ≥ 6), there is a faultless edge

ab with ab ∈ EC, a, b /∈ {u, v} and a, b /∈ F. By induction hypothesis, there is a faultless path Pua of
each length lua with 2n−2 − 1 ≤ lua ≤ 2n−1 − f L

v − 2 in L− FL and a faultless path Pbv of each length
lbv with 2n−2 − 1 ≤ lbv ≤ 2n−1 − f R

v − 1 in R− FR. Let Puv = Pua + ab + Pbv. Then Puv is a faultless
path of each length luv with 2n−1 − 1 ≤ luv ≤ 2n − fv − 2 in Gn − F (see Figure 3b).

u

v

a

b

aR

bR

L = G0
n−1 R = G1

n−1

(a)

u

a

v

b

L = G0
n−1 R = G1

n−1

(b)

Figure 3. (a) Illustration of proof of Case 1.1; (b) Illustration of proof of Case 1.2.

Case 2. |FL| = n− 2. Then |FR| = |FC| = 0. We divide the proof into two cases: (1). |FL ∩V(L)| ≥
1; (2). |FL ∩V(L)| = 0.

Case 2.1. |FL ∩V(L)| ≥ 1. Let x ∈ FL ∩V(L). In this situation, there exist three cases as follows:
(1). u, v ∈ V(L− FL); (2). u ∈ V(L− FL) and v ∈ V(R− FR); (3). u, v ∈ V(R).

Case 2.1.1. u, v ∈ V(L− FL).
We mark the faulty vertex x as faultless temporarily. Let FL

1 = FL− x, then |FL
1 | = |FL| − 1 = n− 3.

By induction hypothesis, there is a faultless path Puv of each length luv with 2n−2 − 1 ≤ luv ≤
2n−1 − ( f L

v − 1) − 2 = 2n−1 − f L
v − 1 in L − FL

1 . If the path Puv contains the faulty vertex x, let
a, b ∈ NPuv(x); otherwise, we can arbitrarily select a vertex c from the path Puv. Let a, b ∈ NPuv(c).
Since |FR| = 0, by induction hypothesis, there is a faultless path PaRbR of each length laRbR with
2n−2 − 1 ≤ laRbR ≤ 2n−1 − 1 in R. Let P1

uv = Puv(u, a) + aaR + PaRbR + bRb + Puv(b, v). Then P1
uv is a

faultless path of each length l1
uv with 2n−1 − 1 ≤ l1

uv ≤ 2n − fv − 2 in Gn − F (see Figure 4).

u

v

a

b

x
aR

bR

L = G0
n−1 R = G1

n−1

Figure 4. Illustration of proof of Case 2.1.1.

Case 2.1.2. u ∈ V(L− FL) and v ∈ V(R).
We mark the faulty vertex x as faultless temporarily. Let FL

1 = FL− x, then |FL
1 | = |FL| − 1 = n− 3.

By induction hypothesis, there is a faultless path Pux of each length lux with 2n−2 − 1 ≤ lux ≤
2n−1 − ( f L

v − 1)− 2 = 2n−1 − f L
v − 1 in L− FL

1 . Let x1 ∈ NPux (x). There are the following two cases:
(1). xR

1 = v; (2). xR
1 6= v.

Case 2.1.2.1. xR
1 = v.

Let ab ∈ E(Pux) with a, b /∈ {u, x1, x}. We mark the correct vertex v as faulty temporarily.
Let FR

1 = FR + v, then |FR
1 | = |FR| + 1 ≤ n − 4 (n ≥ 6). By induction hypothesis, there is a

faultless path PaRbR of each length laRbR with 2n−2 − 1 ≤ laRbR ≤ 2n−1 − 2 in R − FR
1 . Let Puv =

Pux(u, a) + aaR + PaRbR + bRb + Pux(b, x1) + x1v. Then Puv is a faultless path of each length luv with
2n−1 − 1 ≤ luv ≤ 2n − fv − 2 in Gn − F (see Figure 5a).

Case 2.1.2.2. xR
1 6= v.
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By induction hypothesis, there is a faultless path PxR
1 v of each length lxR

1 v with 2n−2 − 1 ≤ lxR
1 v ≤

2n−1 − 1 in R. Let Puv = Pux(u, x1) + x1xR
1 + PxR

1 v. Then Puv is a faultless path of each length luv with

2n−1 − 1 ≤ luv ≤ 2n − fv − 2 in Gn − F (see Figure 5b).

u

x1 v

a
b

x

aR

bR

L = G0
n−1 R = G1

n−1

(a)

u

x
x1

v

xR
1

L = G0
n−1 R = G1

n−1

(b)

Figure 5. (a) Illustration of proof of Case 2.1.2.1; (b) Illustration of proof of Case 2.1.2.2.

Case 2.1.3. u, v ∈ V(R).
Since |FR| = 0, by induction hypothesis, there is a faultless path Puv of length l = 2n−1 − 1 in R.

Thus, we only need to consider each length l with 2n−1 ≤ luv ≤ 2n − fv − 2. We prove this case by the
following two cases: (1). |{uL, vL} ∩ Fv| ≥ 1; (2). |{uL, vL} ∩ Fv| = 0.

Case 2.1.3.1. |{uL, vL} ∩ Fv| ≥ 1. In general, assume uL ∈ Fv. We mark the faulty vertex uL as
faultless temporarily. Let FL

1 = FL − uL, then |FL
1 | = |FL| − 1 = n− 3.

Let S = NR(v)− u. Then |S| ≥ n− 2. Since |FL
1 | = n− 3, there is a vertex v1 ∈ S with vL

1 /∈ F.
By induction hypothesis, there is a faultless path PuLvL

1
of each length luLvL

1
with 2n−2 − 1 ≤ luLvL

1
≤

2n−1 − ( f L
v − 1)− 2 = 2n−1 − f L

v − 1 in L− FL
1 . Let u1 ∈ NPuLvL

1
(uL).

If uR
1 6= v, let FR

1 = FR + {v1, v}, then |FR
1 | = |FR| + 2 = 2 ≤ n − 4(n ≥ 6). By induction

hypothesis, there is a faultless path PuuR
1

of each length luuR
1

with 2n−2 − 1 ≤ luuR
1
≤ 2n−1 − 3 in R− FR

1 .

Let Puv = PuuR
1
+ uR

1 u1 + PuLvL
1
(u1, vL

1 ) + vL
1 v1 + v1v. Then Puv is a faultless path of each length luv with

2n−1 ≤ luv ≤ 2n − fv − 2 in Gn − F (See Figure 6a).
If uR

1 = v, let FR
1 = FR + v, then |FR

1 | = 1 ≤ n− 4 (n ≥ 6). By induction hypothesis, there is a
faultless path Puv1 of each length luv1 with 2n−2 − 1 ≤ luv1 ≤ 2n−1 − 2 in R− FR

1 . Let Puv = Puv1 +

v1vL
1 + PuLvL

1
(vL

1 , u1)+ u1v. Then Puv is a fault-free path of each length luv with 2n−1 ≤ luv ≤ 2n− fv− 2
in Gn − F (See Figure 6b).

u1

uL

vL1 v

uR
1

u

v1

L = G0
n−1 R = G1

n−1

(a)

u1

uL

vL1

v

u

v1

L = G0
n−1 R = G1

n−1

(b)

Figure 6. (a) Illustration of proof of uR
1 6= v in Case 2.1.3.1; (b) Illustration of proof of uR

1 = v in
Case 2.1.3.1.

Case 2.1.3.2. |{uL, vL} ∩ Fv| = 0. We mark the faulty vertex x as faultless temporarily. Let FL
1 =

FL − x, then |FL
1 | = |FL| − 1 = n− 3.

Since |FL
1 | = n− 3, by induction hypothesis, there is a faultless path PxvL of each length 2n−2− 1 ≤

lxvL ≤ 2n−1 − ( f L
v − 1)− 2 = 2n−1 − f L

v − 1 in L− FL
1 . Let x1 ∈ NPxvL (x).

If xR
1 = u, let FR

1 = FR + {u, v}, then |FR
1 | = |FR|+ 2 = 2 ≤ n− 4 (n ≥ 6). Let ab ∈ E(PxvL) with

a, b /∈ {x, x1, vL}. By induction hypothesis, there is a faultless path PaRbR of each length laRbR with
2n−2− 1 ≤ laRbR ≤ 2n−1− 3 in R− FR

1 . Let Puv = ux1 + PxvL(x1, a) + aaR + PaRbR + bRb + PxvL(b, vL) +

vLv. Then Puv is a faultless path of each length luv with 2n−1 ≤ luv ≤ 2n − fv − 2 in Gn − F (See
Figure 7a).
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If xR
1 6= u, let FR

1 = FR + v, then |FR
1 | = |FR|+ 1 = 1 ≤ n− 4 (n ≥ 6). By induction hypothesis,

there is a faultless path PuxR
1

of each length luxR
1

with 2n−2 − 1 ≤ luxR
1
≤ 2n−1 − 2 in R − FR

1 . Let

Puv = PuxR
1
+ xR

1 x1 + PxvL(x1, vL) + vLv. Then Puv is a faultless path of each length luv with 2n−1 ≤
luv ≤ 2n − fv − 2 in Gn − F (See Figure 7b).

x1

x

vL v

u

a

b

aR

bR

L = G0
n−1 R = G1

n−1

(a)

x1

x

vL

xR
1

u

v

L = G0
n−1 R = G1

n−1

(b)

Figure 7. (a) Illustration of proof of xR
1 = u in Case 2.1.3.2; (b) Illustration of proof of xR

1 6= u in
Case 2.1.3.2.

Case 2.2. |FL ∩V(L)| = 0. Then FL = Fe = F.
Let x ∈ V(Gn) with dGn−F(x) = δ(Gn − F). There are the following two cases: (1). x /∈ {u, v};

(2). x ∈ {u, v}.
Case 2.2.1. x /∈ {u, v}.
Let e be an edge with e ∈ Fe, F1 = F − e + {x}, then |F1| = n− 2 and |F1

v | = 1. We show that
(u, v) is a normal vertex pair in Gn − F1 as follows.

If δ(Gn − F) ≥ 4, we discuss δ(Gn − F1) in the following four cases.
(1) For any correct vertex x1 ∈ NGn−F(x) with e /∈ EGn(x1). Notice that δ(Gn − F) ≥ 4, then

dGn−F1(x1) = dGn−F(x1)− 1 ≥ 3.
(2) For any correct vertex x1 ∈ NGn−F(x) with e ∈ EGn(x1). Since F1 = F − e + {x}, we have

dGn−F1(x1) = dGn−F(x1) ≥ 4.
(3) For any correct vertex x1 /∈ NGn−F(x) with e ∈ EGn(x1). Notice that δ(Gn − F) ≥ 4, then

dGn−F1(x1) = dGn−F(x1) + 1 ≥ 5.
(4) For any correct vertex x1 /∈ NGn−F(x) with e /∈ EGn(x1), Since F1 = F − e + {x}, we have

dGn−F1(x1) = dGn−F(x1) ≥ 4.
Above all, we conclude that δ(Gn − F1) ≥ 3.
If δ(Gn − F) ≤ 3, then |EGn(x) ∩ F| ≥ n − 3. For any z ∈ V(Gn − F1), since |F| = n − 2 and

|EGn(x) ∩ EGn(z)| ≤ 1, we have |(EGn(z) ∪ NGn(z)) ∩ F1| ≤ 3. It follows that δ(Gn − F1) ≥ n− 3 ≥ 3
(n ≥ 6).

Hence, there is no weak vertex-pair in Gn − F1, i.e., (u, v) is a normal vertex pair in Gn − F1. By
the proof of Case 2.1 and Theorem 1, there is a faultless path Puv of every length l with 2n−1 − 1 ≤ l ≤
2n − |F1

v | − 1 = 2n − 2 in Gn − F (n ≥ 5).
Case 2.2.2. x ∈ {u, v}. In general, assume that x = u.
Let e be an edge with e = uy ∈ Fe with y 6= v and F1 = F − e + {y}, then |F1| = n − 2 and

|F1
v | = 1. We show that (u, v) is a normal vertex pair in Gn − F1 as follows.

Let z be an arbitrary vertex of V(Gn − F1)− {u, v}.
If δ(Gn − F) ≥ 4, similar to the above discussion in Case 2.2.1, we have δ(Gn − F1) ≥ 3. It means

that dGn−F1(z) ≥ 3.
If δ(Gn − F) ≤ 3, then |EGn(u) ∩ F| ≥ n− 3. Since |F| = n− 2 and |EGn(u) ∩ EGn(z)| ≤ 1, we

have |(EGn(z) ∪ NGn(z)) ∩ F1| ≤ 3. It follows that dGn−F1(z) ≥ n− 3 ≥ 3 (n ≥ 6).
Hence, (u, v) can not be a z-weak vertex pair in Gn − F1, i.e., (u, v) is a normal vertex pair in

Gn − F1. By the proof of Case 2.1 and Theorem 1, there is a faultless path Puv of every length l with
2n−1 − 1 ≤ l ≤ 2n − |F1

v | − 1 = 2n − |F1
v | − 1 = 2n − 2 in Gn − F (n ≥ 5).
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3. Concluding Remarks

This paper improved the previous result of Hamiltonian connectivity in twisted hypercube-like
networks (THLNs) with n− 2 fault elements and extended the path-embedding in an n-D THLN
(n ≥ 5) with a set F of up to n− 2 faulty elements. We have proved that for arbitrary two different
correct vertices u and v, there exists a fault-free path Puv of every length l with 2n−1 − 1 ≤ l ≤
2n − fv − 1− α, where α = 0 if vertices u and v form a normal vertex-pair and α = 1 if vertices u and v
form a weak vertex-pair in Gn − F (n ≥ 5).

The lower bound of the path length cannot be uniformly improved in THLNs. We designed
an efficient algorithm (https://github.com/ZhangHeidi/Hypercubes/blob/master/vcn02.c) to find
a lower bound d-rank path in each THLN with up to n− 2 fault elements (where d represents the
shortest distance between any two vertices in the graph) and the lower bound of path is different
in each graph of THLNs. It is worthwhile to investigate the lower bound of path individually in
every THLN.

By the discussion in reference [26], MQn, LTQn, TQn, CQn ∈ THLNs. The proposed theorem in
the paper can be applied to several multiprocessor systems, including n-dimensional Möbius cubes
MQn [7], n-dimensional locally twisted cubes LTQn [9], n-dimensional twisted cubes TQn [8] for odd
n, and n-dimensional crossed cubes CQn [6]. In this paper, we apply our strategy to these four network
topologies (MQn, LTQn, TQn, CQn). In future work, we will extend our strategy to other graphs of
hypercube-like networks.
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