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Abstract: A non-minimum phase system has the unique 

characteristic of undershoot or over and undershoot based on the 

number of zeros and the location of zeros in the systems. A 

fractional PID controller has the ability to capture more 

dynamics, as there are two more parameters to tune compared to a 

traditional PID controller. In this paper, a fractional PID 

controller is designed for single and multi-variable non-minimum 

phase systems. A simple optimization method for the tuning of a 

fractional PID controller has been applied. Six different single 

variable plants were simulated covering different cases of 

non-minimum phase systems. Simulation results showed that zero 

crossing is reduced to a greater extent by fractional PID controller 

as compared to traditional PID controller for single variable 

systems. This paper also provides experimental validations for 

design and tuning of a fractional PID controller for a 

multi-variable non-minimum phase quadruple-tank system. Fine 

tuned experimental results agree well with simulation results, 

thereby validating the applicability of the fractional PID 

controller for multi variable non-minimum phase systems.   

Index Terms: Fractional PID Controller, Non Minimum 

Phase, Fractional Calculus, Quadruple Tank System,   

Multi-variable Control System.  

I. INTRODUCTION 

             If a transfer function has poles and/or zeros in the 

right-hand side of the s-plane, then this system is referred to 

as a non-minimum phase system [15]. Non-minimum phase 

systems exhibit the phenomena of undershoot or over- and 

undershoot based on the number of zeros and the location of 

zeros in the systems. Bicycle dynamics is a good example of 

a non-minimum phase system [4]. A design based on the 

fuzzy PID controller using a genetic algorithm for 

non-minimum phase system was discussed by Tzuu-Hseng et 

al. in 1997 [27, 51]. Astrom [5] in 1980 proposed direct 

methods for non-minimum phase systems. In his work, a 

pole-placement method and adaptive algorithm were 

discussed. A variable-structure approach was presented by 

Bartolini and many others in different papers [9, 8]. A PID 

controller is also used in the design of control systems having 

non-minimum phase behavior [24, 30, 52]. In most of these 

works, advanced control-system theory is used to control 

non-minimum phase systems [19, 38, 20]. The design of an 

advanced control system is very complex and time 

consuming. In case of a PID controller, work appears to be 

limited to simulation and covers only a few cases of 
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non-minimum phase systems. So, a simple fractional PID 

(FPID) controller design approach is proposed to control 

non-minimum phase systems. Fractional calculus has been 

highly regarded by mathematicians since its inception. In the 

last few decades, the use of fractional calculus in science and 

engineering has progressed remarkably. Fractional PID 

controller is one of the applications of fractional calculus [33, 

32, 17, 53]. In the current study, a fractional PID controller 

was used for reducing the effect of non-minimum phase 

system characteristics (zero crossing characteristics). A 

simple optimization approach was implemented to design 

fractional PID controller for non-minimum phase systems. 

Six different single variable non-minimum phase plants were 

simulated. Closed-loop responses of fractional PID controller 

were compared with those from a traditional PID controller. 

Multi variable plant simulation results were verified with a 

quadruple-tank system capable of being set up as a multi 

variable minimum or a non-minimum phase system. This 

paper is structured as follows. In the following section, 

fractional calculus and fractional PID controller are 

introduced. Different types of non-minimum phase systems 

are also described. Section 2 outlines methodology adopted 

in the current work, wherein firstly the six single variable 

simulation plants are described. Multi variable experimental 

set-up details are also provided. Tuning methodology of 

FPID controller is presented with a flow chart to show 

optimization approach used in this work. In Section 3, open 

loop / PID / FPID controller results of single / multi variable 

simulation plants and multi variable experimental model are 

compared and discussed. Tuned parameters and time domain 

specifications are also presented in this section. Conclusions 

and recommendations are provided in Section 4.  

1.1 Non-Minimum Phase System 

 Minimum and non minimum phase systems can be described 

respectively by the following transfer functions, 

𝐺1(𝑠) =
1+𝑠𝑇

1+𝑠𝑇1
 (1) 

𝐺2(𝑠) =
1−𝑠𝑇

1+𝑠𝑇1
 (2) 

Amplitude responses for both systems are same, but the 

phase responses are different. In case of non-minimum phase 

systems, 𝐺2(𝑠) , phase contribution is more than that of 

minimum phase systems 𝐺1(𝑠). In non minimum systems, 

mostly there is an undershoot or over and understood 

response. Zero crossing for this kind of response is better 

minimized using a fractional PID controller.  
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Typical examples of step responses for non-minimum phase 

systems are shown in Fig. 1,covering cases of one and two 

positive poles located on the right-hand side of the s-plane. 

 

 
Figure  1: Typical examples step responses of non 

minimum phase systems. 
 

Non-minimum phase system behavior can be observed in 

many plants, e.g., DC motor with field regulation, hydraulic 

pumps, blast furnace [13], quadruple-tank system [25], 

conventional aircraft motion having pitch axis control surface 

aft of the center of mass [16], transportation lag in control 

system [15] etc. A system may become non-minimum phase 

system if its minimum phase continuous time system is 

transformed into an equivalent discrete model. A 

non-minimum phase system often occurs because of time 

delays that are not integral multiples of the sample interval 

[13]. For example, in case of level control of a volume of 

boiling water, when cold water is added to raise the level, the 

initial effect is bubble formation. This leads to an initial 

reduction in water level [26]. 

There are many issues related to control system design of 

non-minimum phase systems:   

• System responds in the opposite direction of the 

steady state;  

• Internal stability problem;  

• Problem in phase response;  

• Value of phase angle greater than 90 degrees;  

• Limitation in control bandwidth, resulting in limited 

disturbance rejection; and  

• Slower closed-loop response.  

The following sub-section introduces fractional calculus to 

understand the basis of fractional PID controller used to 

control non minimum phase systems. 

1.2 Fractional Calculus 

Fractional calculus is three centuries older than classical 

calculus, but very less popular in the research field [14]. In 

the last few decades, many researchers have conducted 

investigations in different areas of science and engineering 

(control systems, speech signal processing, modeling, etc.) 

using fractional calculus [17]. 

There are numerous definitions of fractional 

differentiation-integral available in many books and papers 

on fractional calculus. From an engineering point of view, the 

Caputo definition is the most popular [12, 1, 32]. It’s 

popularity is due to a straightforward connection between the 

type of initial conditions and the type of fractional derivative. 

As stated by Podlubny [41], this definition allows initial 

conditions such as 𝑦′′(0), 𝑦′(0)  etc., unlike fractional 

condition such as 𝑦0.4(0) . A derivative of constant is 

bounded in the case of the Caputo definition. This definition 

is given by:    

𝐷𝛼 =
1

Γ(𝑛−𝛼)
∫

𝑓𝑛(𝜏)

(𝑡−𝜏)𝛼−𝑛+1 𝑑𝜏
𝑡

𝑎
 (3) 

where, 

(𝑛 − 1) ≤ 𝛼 ≤ 𝑛, 

𝑛 is an integer number and 𝛼 is a real number and 𝑎 and 𝑡 are 

the limit of integration. Say, if 𝛼 is 0.8, then 𝑛 would be 1 as 

0 ≤ 0.8 ≤ 1. Two other definitions are given as follows.  

Riemann-Liouville fractional definition is defined by    

 

𝐷𝛼 =
1

Γ(𝑛−𝛼)
(

𝑑

𝑑𝑡
)

𝑛

∫
𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑛+1 𝑑𝜏
𝑡

𝑎
 (4) 

where,  

(𝑛 − 1) ≤ 𝛼 ≤ 𝑛 

𝑛  is an integer number, 𝛼  is a real number and 𝐽  is the 

integral operator and 𝑎 and 𝑡 are the limits of integration. 

Grunwald-Letnikov’s fractional definition is defined by 

𝐷𝛼 =  lim
ℎ→0

1

ℎ𝛼
∑ (−1)𝑟 (

𝑛
𝑟

) 𝑓(𝑡 − 𝑟ℎ)
[
𝑡−𝑎

ℎ
]

𝑟=0 (5) 

where, [
𝑡−𝑎

ℎ
]  is the integer part and 𝑎  and 𝑡  are limits of 

integration.  

1.3 Fractional PID Controller 

 Fractional-order controller was introduced by Podlubny for 

fractional-order systems [41, 39, 40] in 1994. The beauty of 

this controller is that it is less sensitive to changes in system 

variables and tuning parameters of controller [28, 29]. 

Fractional PID controller has an iso-damping property and is 

more robust than other classical controllers [41]. A fractional 

PID controller has five parameters to tune as shown in Eq. 

(6). A block diagram of a fractional PID controller is shown 

in Fig. 2. It has the following structure [46, 7]     

 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑃 +

𝐾𝐼

𝑆𝜆 + 𝐾𝐷𝑠𝜇 , (𝜆, 𝜇 ≥ 0) (6) 

 

where, 𝐶(𝑠) is the controller transfer function, 𝑈(𝑠) is the 

control signal, 𝐸(𝑠) is the error signal, 𝐾𝑃 is the proportional 

constant gain, 𝐾𝐼  is the integration constant gain, 𝐾𝐷  is the 

derivative constant gain, 𝜆 is the order of integration and 𝜇 is 

the order of differentiation. 

 

 
Figure  2: Block diagram of fractional PID controller. 
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Fractional-order system can be approximated by many 

methods cited in literature [18, 54, 31]. In this paper, 

approximation method is used to realize fractional PID 

controller. Oustaloup recursive approximation is the most 

popular method for approximate fractional order [11, 37, 36]. 

It is given by:    

𝑠𝜈 ≈ 𝐾 ∏
1+𝑠/𝜔𝑘

1+𝑠/𝜔′𝑘

𝑁
𝑘=−𝑁  (7) 

The approximation equation above can by synthesized using 

the following equations,  

𝜔𝑢 = √𝜔ℎ𝜔𝑏 

where 𝜔ℎ , 𝜔𝑏 are the frequency bounds for approximation.  

𝜔0
′ = 𝛼−0.5𝜔𝑢; 𝜔0 = 𝛼0.5𝜔𝑢; 

 
𝜔𝑘+1

′

𝜔𝑘
′ =

𝜔𝑘+1

𝜔𝑘

= 𝛼𝜂 > 1 

 
𝜔𝑘+1

′

𝜔𝑘

= 𝜂 > 0;
𝜔𝑘

𝜔𝑘
′ = 𝛼 > 0 

 

𝑁 =
log(𝜔𝑁/𝜔0)

log(𝛼𝜂)
 

The fractional PID controller is also implemented in real time 

applications using analog and digital approximation methods 

methods [22]. In most cases, the order of fractional PID 

controller is in the range of 0 to 2 [34, 2, 44]. More details on 

fractional PID controller can be found in [43, 42, 45]. 

II. METHODOLOGY 

2.1 Single Variable Simulation Plants 

In this section, a fractional PID controller is designed for 

non-minimum phase system. A simple optimization approach 

is described for the tuning of fractional PID controller. Table 

1 shows summary of the single variable plants simulated in 

present work. First four plants are taken from Guy Beale [10]. 

In these examples, type 0 and type 1 with one and two zeros 

are located on the right-hand side (RHS) of the s-plane. Plant 

3 and plant 4 are identical except for the sign of plant gain 

value. Plant 5 is referred from class notes of Roy Smith [47]. 

In plant 6, there is no real zero, but there are complex zeros 

on the RHS which show undershoot [23].   
 

Table  1: Transfer functions used for simulation. 

  Plant   

Transfer 

Function  

 Remarks  

𝑃1(𝑠)   
−0.5(𝑠−0.1)

𝑠(𝑠+1)2   

Type 1 and one positive 

zero at RHS  

𝑃2(𝑠)   
0.5(𝑠−0.1)2

𝑠(𝑠+1)2   

 Type 1 and two positive 

zero at RHS  

𝑃3(𝑠)  
−0.5(𝑠−0.1)

(𝑠+1)3   

Type 0 and one positive 

zero at RHS  

𝑃4(𝑠)  
0.5(𝑠−0.1)

(𝑠+1)3   Type 0 and one positive 

zero at RHS 

𝑃5(𝑠)   
−𝑠+3

(𝑠+1)(𝑠+5)
  

 One positive zero at 

RHS  

𝑃6(𝑠)  
(𝑠2−10𝑠+27)

(𝑠+1)3   

Non real non 

minimum-phase zeros  

 

All these plants are examples of non-minimum phase 

systems. Practically, one can find one or two zeros on the 

RHS of the s-plane in most of the non-minimum phase 

systems. Sometimes, this zero can be complex as shown in 

plant 6. Quadruple system is also an example of 

non-minimum phase system based on the location of zeros. In 

this system, there is only one zero on the RHS of the s-plane. 

Drum-boiler dynamics is another example of a non-minimum 

phase system. In this system, the complicated 

shrink-and-swell dynamics create a non-minimum phase 

behavior [3]. Even the inverted-pendulum linearized model 

has one pole and zero on the RHS for certain parameters of 

the system [23]. 

2.2 Experimental Set-up of Multi-variable System 

A quadruple-tank system experiment set-up is devised to 

examine the proposed method of FPID controller tuning. This 

set-up can be configured as minimum and non-minimum 

phase systems. Moreover, this set-up has multiple inputs and 

multiple outputs (multi-variable) system with non linearity 

present in the system. The quadruple-tank experiment system 

has four tanks and two pumps. Control variables are levels of 

lower tanks (ℎ1and h 2). These variables are controlled by 

adjusting the speed of the pumps (𝜐1 and 𝜐2). The flows of 

the two pumps (𝑃1 and 𝑃2) are split up by three-way valves. 

Pump 1 feeds tanks 1 and 4, whereas pump 2 feeds tanks 2 

and 3. The flow ratios of pump 1 and pump 2 are given 

respectively by 𝛾1 and 𝛾2.  

   

 
Figure  3: Schematic block diagram of the multi-variable 

experimental setup. 

 



 

Application of Fractional PID Controller to Single and Multi-Variable Non-Minimum Phase Systems 

 

2804 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B2805078219/19©BEIESP 

DOI: 10.35940/ijrte.B2805.078219 

 

 
Figure  4: Multi-variable experimental set up for 

quadruple tank system. 

 

Schematic block diagram of the experimental setup is shown 

in Fig. 3. Actual experimental set up is shown in Fig. 4. The 

parameters 𝛾1, 𝛾2 ∈ (0,1) are the settings of three-way valves 

prior to experiment. Changing 𝛾1  and 𝛾2  of the three-way 

valve determines whether the system phase is minimum or 

non-minimum. It is a non-minimum phase system if 0 <
𝛾1 + 𝛾2 < 1 and minimum phase system if 1 < 𝛾1 + 𝛾2 < 2 

[25]. The positions of the three-way valves determine the 

location of multi-variable zero. Different constants for 

quadruple-tank system are shown in Table 2. During the 

experiment, 𝛾1=0.43 and 𝛾2 = 0.34 are selected such that the 

system behaves as a non-minimum phase system as 

explained above. In this set-up, pump flow is a manipulated 

variable which can be controlled by variable frequency drive 

(VFD). 

 

Table  2: Constants for experimental set up. 

   

  

Constant  

  Description    Value  

𝐴𝑖 Cross section area of tank i  196 𝑐𝑚2  

𝑎𝑖  Cross section area of the 

outlet hole(for tank i)  
 0.64 𝑐𝑚2  

        g Acceleration due to 

gravity  
 981 𝑐𝑚/𝑠2  

𝑘𝑖  Pump flow constants   3.3 𝑐𝑚3/𝑠𝑉  

 

The quadruple-tank system was connected through Open 

Platform Communication (OPC) protocol. This protocol 

establishes communication of real-time plant data between 

control devices from different PLC manufacturers. Using 

OPC protocol, data can be read and written in milliseconds. 

In Simulink, the OPC client can be configured with local or 

remote host depending upon the location of the OPC server. 

For read and write operations, OPC read and write a block of 

Simulink was used with the appropriate tag as configured in 

the OPC server. The block diagram of hardware connection 

with Simulink is shown in Fig. 5.  

 
Figure  5: Experimental Set-up Interface with 

MATLAB/Simulink 

 

The quadruple-tank system is governed by the following 

equations [25]:  

 
𝑑ℎ1

𝑑𝑡
= −

𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝜐1 

 
𝑑ℎ2

𝑑𝑡
= −

𝑎2

𝐴2
√2𝑔ℎ2 +

𝑎4

𝐴2
√2𝑔ℎ4 +

𝛾2𝑘2

𝐴2
𝜐2 

 
𝑑ℎ3

𝑑𝑡
= −

𝑎3

𝐴3
√2𝑔ℎ3 +

(1−𝛾2)𝑘2

𝐴3
𝜐2 

 
𝑑ℎ4

𝑑𝑡
= −

𝑎4

𝐴4
√2𝑔ℎ4 +

(1−𝛾1)𝑘1

𝐴4
𝜐1 (8)  

 where,  

𝐴𝑖 is cross section area of tank i. 

𝑎𝑖 is cross section area of the outlet hole (for tank i). 

ℎ𝑖 is water level of tank i. (Range: 0 to 60 cm)  

𝜐𝑖 is the voltage applied to pump i.  

𝑘𝑖 is the pump i flow constant.  

Firstly, FPID controller is tuned using classical 

tuning method considering 𝜆 = 𝜇 = 1. For tuning using the 

classical method, non-linear model (Eq. 8) is linearized at an 

operating point using a linearizing method (Taylor Series 

Expansion). This model has been derived by researchers as 

shown below [25, 21]. 

 

(9) 

where, x is the state of the system(ℎ1, ℎ2, ℎ3 and ℎ4), U is the 

system input (𝜐1 and 𝜐2) and Y is the system output (ℎ1 and 

ℎ2). 

In Eq. 9, areas of all tanks was the same. Constants’ values 

for this equation are given in Table 2. Using the quadruple 

tank model, a mathematical model was developed in 

Simulink as shown in Fig. 6. 

This model was tuned by 
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Simulink block of the PID controller. 

 
Figure  6: Simulation of multi-variable experimental 

model in Simulink.  

2.3 Optimization Approach 

 

 
Figure  7: Optimization flowchart for tuning of a 

fractional PID controller. 

 

In the optimization approach (Fig. 7), initially the system is 

tuned by a classical tuning method (Ziegler and Nichols) 

assuming 𝜆 = 𝜇 = 1 [6]. For optimization of controller 

parameters, a simple Nelder Mead method is used [50, 48, 49, 

35]. It is a heuristic search method that can converge on 

non-stationary points to optimize solutions. Following 

constrains are considered for the same:  

0 ≤ 𝜆, 𝜇 ≤ 2 

and  

−10 ≤ 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷 ≤ 10 

An Integrated Square Error (ISE) performance index is used 

as the cost function, defined as:    

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0
 (10) 

where, e(t) is the error signal. 

After selecting constraints and performance index, 

optimization algorithm is applied on cost function. In the 

optimization algorithm, initial values of parameters are taken 

from results of the classical tuning method. If an optimal 

result is not achieved, then only gain parameters (𝐾𝑃, 𝐾𝐼  and 

𝐾𝐷) are optimized keeping exponent parameters (𝜆 and 𝜇) 

constant. Once again, if optimal results are not achieved, then 

only exponent parameters are optimized, keeping gain 

parameters constant. The above steps are repeated until the 

desired results are obtained. Also, one may change 

constraints of fractional PID controller parameters based on 

the previous iteration results. 

To compare with fractional PID controller results, a 

classical PID controller is also implemented in Simulink and 

tuned using Simulink auto-tune feature. A PID controller has 

the following form:    

(11) 

where, 𝑃 is the proportional gain, 𝐼 is the integration gain, 𝐷 

is the derivative gain, and 𝑁 is the filter coefficient. In this 

structure, a low pass filter removes high frequency noise 

from the system. If pure derivative action is required, then a 

higher value of 𝑁  is required, generally around 1000 to 

10000. 

2.4 Fine tuning 

In real time plants, fine tuning helps to get better response 

from the system by suitably varying controller parameters. 

For PID controller, there are general guidelines are available 

for fine tuning. Similarly, certain guidelines are also 

available for FPID controllers in [44]. By changing the orders 

of differentiation and integration, overshoot of the system can 

be minimized.The various simulation and experimental 

results are discussed in the next section. 

III. RESULTS AND DISCUSSION 

 In this section, open loop and step responses of the 

six simulation plants are discussed. All of these simulated 

plants are single input single output systems.  

3.1  Single Variable Simulation Plants 

3.1.1 Single Variable Simulation Plants - Open Loop results 

Fig. 8 shows open loop responses of all simulation plants. 

Table 3 shows zero crossing results of open loop system. 

Initial undershoots are observed for plants 1, 3, 5 due to 

presence of one zero in RHS of corresponding s-planes. This 

kind of phenomenon occurs if and only if the system has an 

odd number of positive zeros [23]. Longer initial undershoots 

may lead to inaccurate controller design. In case of plant 4, 

step response first overshot and then bent towards a negative 

value. For plant 2 and 6, two zero crossings are observed. 

First crossing is during initial overshoot and the second one is 

during second undershoot. This kind of phenomenon exhibits 

if and only if the system has an even number of positive zeros 

[23].  
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Figure  8: Step response of single variable non minimum 

phase systems without controller 
 

Table  3: Zero crossing for non minimum phase systems 

(seconds). 
  

 Plant  Open 

Loop  

𝑃1(𝑠)   2.1525  

𝑃2(𝑠)   21.9783  

𝑃3(𝑠)   1.7963  

𝑃4(𝑠)                1.7960(*)  

𝑃5(𝑠)   0.4427  

𝑃6(𝑠)   0.6337  

3.1.2 Single Variable Simulation Plants - PID vs FPID 

results (* first overshoot) 

Tuned parameters for PID and FPID controllers are tabulated 

in Tables 4 and 5. Closed-loop system responses are shown in 

Fig. 11. Zero crossings for these controllers are tabulated in 

Table 6. Zero crossings of various simulation plants are 

plotted for comparisons in Fig. 12. Zero crossing 

improvements by FPID controller with respect to open loop 

and PID controller is shown in Fig. 13. The respective time 

domain specifications are shown in Table 7. Rise time, peak 

time and % peak overshoot indicate transient responses of the 

simulation plants considered in current study. Plants 1 and 3 

show only one small undershoot in their PID and FPID 

responses. This is due to the presence of one zero in the RHS 

of s-plane (pole zero map) of the corresponding transfer 

functions. The effect of non-minimum phase was also 

observed to be reduced in FPID response as compared to PID 

response. For plant 2, there was overshoot and undershoot in 

both PID and FPID controllers responses because of two 

zeros in the RHS of s-plane. The FPID response for the 

second zero crossing was also reduced. In plant 4, 

closed-loop responses attained desired value very quickly, 

showing significant improvement over open loop results. 

Plant 5 closed loop responses also reach desired value fast. 

There is no overshoot in FPID controller response as 

observed in case of corresponding PID controller response. 

Initial undershoots were observed in closed loop responses of 

plants 4 and 5 due to one zero in RHS of respective s-planes. 

In case of plant 6, the FPID controller response is fast and 

exhibits higher under/overshoot amplitudes. The settling time 

of PID controller is observed to be lesser in comparison to 

FPID controller. This may be due to two conjugated complex 

zeroes on RHS of plant 6 s-plane.  
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Figure  9: Closed loop responses of non minimum phase 

systems for unit step. 

 

FPID zero crossing is reduced by 46 %, 37 %, 33% and 25 % 

for plants 1, 2, 6 and 3 respectively as compared to 

corresponding open loop system responses. Zero crossing for 

FPID controller has increased for plants 4 and 5. However, 

for the same plants (4 and 5) FPID zero crossing reduction is 

observed with respect to PID controller responses. FPID 

controller zero crossings decrease by 40 %, 37 %, 29 %, 15 

%, 13 % and 5 % for plants 6, 3, 1, 2, 4 and 5 respectively as 

compared to PID controller responses. The average reduction 

of FPID zero crossing is 22 % as compared to open loop 

system and 23 % as compared to PID controllers. Overall, 

non-minimum phase systems effect was reduced as the 

fractional PID controller was able to capture more dynamics 

because of fractional order. 

In comparison to PID controller, the fractional PID 

controller exhibits better response with respect to zero 

crossing and time domain specifications, such as rise time. 

 

Table  4: Simulation results for PID controller. 
 

  

Plant  

 PID Parameters  

  

P  

 

I  

 

D  

 N  

𝑃1(𝑠)   0.62504   0.00169   0.58949  35.54286  

𝑃2(𝑠)   2.5140   0.00054   -18.6129   0.13506  

𝑃3(𝑠)   0.45099   0.37974   0   100  

𝑃4(𝑠)   -0.45099   -0.3797   0   100  

𝑃5(𝑠)  0.97832   1.31777   0   100  

𝑃6(𝑠)   0.15080   0.50278   0   100  
 

Table  5: Simulation results for fractional PID 

controller. 
   

Plant   Fractional PID Controller  

 

𝑲𝑷  

 

𝑲𝑰  

 

𝝀  

 

𝑲𝑫  

 

𝝁  

𝑃1(𝑠)   0.74678  4.0938e-08   0.12834   1.2749   1.2872  

𝑃2(𝑠)   5.4155   -0.36102   0.041858   10   1.0414  

𝑃3(𝑠)   1.4148   0.66235   0.97086   1.329   1.0063  

𝑃4(𝑠)   0.044327   -0.46071   1.0217   -1.2287   0.14235  

𝑃5(𝑠)  1.9301   1.3151   1.0609   -0.22508   0.098241  

𝑃6(𝑠)   1.5482  0.87392   1.1668   0.17681   1.4925  

    

Table  6: Zero crossing for non minimum phase systems 

(seconds). 
  

 Plant   PID  Fractional PID  

𝑃1(𝑠)   1.6242   1.1598  

𝑃2(𝑠)   16.4   13.9  

𝑃3(𝑠)   2.1199   1.3445  

𝑃4(𝑠)   2.1184   1.8535  

𝑃5(𝑠)   0.4982   0.4750  

𝑃6(𝑠)   0.7110   0.4252  

 

 
Figure  10: Zero crossing for single variable simulation 

plants 

 

 
Figure  11: Zero Crossing Improvement for FPID with 

respect to open loop system and PID controller for single 

variable simulation plants 
   

  
 

 



 

Application of Fractional PID Controller to Single and Multi-Variable Non-Minimum Phase Systems 

 

2808 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B2805078219/19©BEIESP 

DOI: 10.35940/ijrte.B2805.078219 

 

Table  7: Time specification for simulation plants 

   

  

Plants  

 

Rise Time 

(sec)  

 

Peak Time 

(sec)  

 Peak Overshoot 

(%)  

Plant 1  6.5946  9.5545  6.7442  

Plant 2   27.5311   36.99   5.81  

Plant 3   7.7285   9.3137   1.26  

Plant 4   10.4426   15.2346   3.48  

Plant 5   4.0195   6.3950   1.56  

Plant 6   1.4388   1.8068   8.08  
 

3.2 Experimental Results of Multi-variable System 

The mathematical model of quadruple tank system was 

simulated using closed loop control. This is an example of a 

multi input and multi output system. The resultant tuning 

parameters of PID and FPID controllers are shown 

respectively in Table 8 and Table 9. The PID and FPID 

controller responses for the same are shown respectively in 

Figs. 12 and 13. From these figures, the superiority of FPID 

responses over PID controller in terms of settling time, rise 

time etc. is clearly evident. Moreover, FPID controller is able 

to remove initial undershoots seen in PID responses. 

  

Table  8: PID controller parameters for experimental 

model 
   

  

Parameters  

 𝑲𝑷    𝑲𝑰     𝑲𝑫    N 

 Level  

of Tank 1   

 -0.05822  -6.99 E -06   -107.7868   2.3510  

 Level  

of Tank 2  

 2.4279   0.0405   20.7294   0.0833  

 

Table  9: Fractional PID controller parameters for 

experimental set up after optimization approach. 

   

  

Parameters  

 

𝑲𝑷  

  

𝑲𝑰   

  

𝝀  

  

𝑲𝑫   

  

𝝁  

Level of Tank 

1  

 

2.971  

 

2.979  

 

0.98  

 

4.607  

 

0.151  

 Level of Tank 

2  

 

2.966  

 

4.962  

 

0.987  

 

4.88  

 

0.108  

 

Figure  12: Step response of multi-variable mathematical 

model for PID controller 

   

 
Figure  13: Step response of multi-variable mathematical 

model for FPID controller 

 

To obtain real responses from the experimental set-up, FPID 

controller was set with the parameters of PID controller 

having 𝜆 = 1 and 𝜇 = 1. The resultant response is shown in 

Fig. 14. This response shows that the output oscillates 

between wide limits of actual tank levels. In case of tank 1 

level, it is not even reaching the desired set point, showing 

offset in the recorded response. For tank 2 level, output 

response is reaching the desired value with some overshoots. 

In the next step, FPID controller was set with optimised FPID 

controller parameters obtained via simulation of the 

quadruple tank mathematical model (Table 9). The resultant 

actual tank level responses are shown in Figs. 15 and 16. 

Thus, FPID controller gives much better response as 

compared to PID controller in case of real world systems 

also. 

 

 
Figure  14: Step response of actual system using PID 

tuning method. 
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Figure  15: Step response of tank 1 after optimization 

method. 
 

 
Figure  16: Step response of tank 2 after optimization 

method. 

 

As mentioned in methodology, further fine tuning was 

applied to closed loop control of real-time system under 

study. This was done to improve attainment of the desired set 

point. Experimental set up response was fine tuned by 

changing different FPID controller parameters, such as the 

orders of differentiation and integration [44]. By changing 

these orders, overshoot of the system was minimized. Even 

general guidelines for tuning of PID controller can be used 

for the fine tuning of the FPID controller. The fine tuned 

parameters of the fractional PID controller are shown in 

Table 10. Fine tuned responses of real time experimental 

set-up are compared to mathematical model FPID controller 

responses as shown in Figs. 17 and 18. These figures show 

that the simulation (mathematical model) and fine tuned 

experimental responses have good agreement. The various 

time domain specifications after fine tuning are tabulated in 

Table 11. 

  

Table  10: Fractional PID controller parameters for 

experimental set up after fine tuning. 
   

  Parameters   

𝑲𝑷  

  

𝑲𝑰   

  

𝝀  

  

𝑲𝑫   

  

𝝁  

 Level of Tank 1   

2  

 

2  

 

0.5  

 

8  

 

0.4  

 Level of Tank 2   

2  

 

4  

 

0.5  

 

2.5  

 

0.4  

 
Figure  17: Comparison for Step response of tank 1 with 

model and actual plant after fine tuning. 

 
Figure  18: Comparison for Step response of tank 2 with 

model and actual plant after fine tuning. 

 

Table  11:  Performance specifications for experimental 

set up after fine tuning. 

   

Output    

Rise Time  

  

Peak Time  

Peak Overshoot  

Level of 

tank 1  

37 Sec   70 Sec  16.57 %  

Level of 

tank 2  

 66 Sec   82 Sec   20 %  

IV. CONCLUSION 

The primary contribution of this paper is applying the FPID 

controller for non-minimum phase systems. FPID controller 

has been implemented for simulated and real time 

non-minimum phase systems using simple tuning approach. 

As many as six different single variable plants were 

simulated using closed loop controllers. Closed-loop 

responses of FPID controller were smoother than those by 

classical PID controller. The non-minimum phase system had 

an undershoot or over and undershoot effect. This effect 

(measured by zero crossing parameters) was reduced by 

FPID controller as compared to PID controller. The simple 

approach adopted to tuning of FPID controller yielded 

improved results. Also, implementation of the classical PID 

tuning method for optimization with initial conditions was 

shown to be effective and useful. Simulation results for 

multi-variable system were verified using an experimental 

setup of a quadruple-tank system. 
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 A quadruple-tank system was linearized and the obtained 

model was used for the tuning of parameters. Communication 

was established using an OPC protocol which was 

implemented in Simulink. FPID controller showed 

characteristics of dealing with a multi-variable system 

without the use of a relative gain array (RGA) matrix. This 

RGA matrix is used for decoupling the multi-variable 

process. Zero crossing is present in experimental model for 

PID controller. Zero crossing is not observed in the FPID 

controller for experimental model and experimental set-up. 

So, the effect of non-minimum phase system is successfully 

reduced. Tuning of the experimental set up was obtained 

using the approach shown in the simulation. Later on, fine 

tuning of the FPID controller was also performed on the 

experimental set up. For optimization, initial parameters were 

obtained using the Simulink block of the PID. The close 

agreement among simulation and fine tuned experimental 

results show that it is possible to control a multi-variable 

system without decoupling theory. This also indicates that 

FPID controller is able to control the dynamics of a 

non-minimum phase system effectively. Based on current 

work it is recommended that for all kind of plants, FPID 

controller should be employed for better results as compared 

to PID controllers. 
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