

MANAGED STORAGE SYSTEMS AT CERN

Ingo Augustin and Fabrizio Gagliardi
CERN, Geneva, Switzerland

Abstract
The amount of data produced by the future LHC experiments requires
fundamental changes in the management of the mass storage environment.
At present the contents of the CERN tape libraries are not transparently
managed. The experimental data rates and volumes will grow by more than
an order of magnitude in future. This implies major changes in the
management of centrally stored data. Several efforts to address this
challenge are described in this paper.

1. INTRODUCTION

Traditionally the majority of High-Energy Physics experiments have recorded their data locally at the
experimental sites and later transferred the tapes to the computer center. Since 1995 experiments li ke
NA48 send their data online to the computer center via dedicated fibers where it is stored centrally
(Central Data Recording). The sheer amount of data (100 TB/year for NA48) and the data rates
require high performance storage devices, which are too expensive for individual collaborations.

LHC will exceed the present requirements by orders of magnitude. ALICE plans to take data at
more than 1GB/sec. Others will produce data at 100MB/sec. Each of these experiments will collect at
least 1 PB/year (1 PB = 1 PetaByte = 1015 Bytes ~ 1.5 milli on CD-ROMs or a bookshelf of a length
of 5000 km). Although CERN will be one of the biggest storage faciliti es in the world, the storage
itself of this data is not a problem. However, large storage faciliti es are usually used for backup or
archives. This implies that the data is written once, and rarely read back. In our environment the
situation is reversed. We write data once, but improved calibrations and reconstruction will require
more than one pass reading the raw data. Eff icient data retrieval becomes important. In order to
achieve this, optimized access to resources (disks, tapes...) has to be guaranteed. This article
describes some of the efforts CERN has undertaken to tackle this task.

2. THE CERN PETABYTE PROBLEM

The maximum data rate of the LHC experiments is 1-2 GB/sec. Taking into account that the data has
to be read several times, a network (and of course storage) bandwidth of several GB/sec seems
necessary. Current tape drives and disks operate with a bandwidth of at most tens of MB/sec, which
implies that hundreds of devices are necessary to achieve the needed throughput. Even with tapes (or
disks) of a size of 100 GB per piece, at least 10'000 of them are needed for each of the LHC
experiments every year. Global collaborations and the more and more systematic production of
analyzed data leads to round-the-clock operations of all computing systems. This, and the sheer
amount of data, requires automated operations. Human resources are also scarce everywhere.

The future experiments will all used asynchronous readout models. Pipelining of data,
buffering and highly sophisticated event filtering allows (or even requires) parallel streams of data.
These streams can be handled and stored independently. The number and throughput of these streams
can be adjusted to network and storage capabiliti es and is therefore highly scalable. Suff icient disk-
buffers can de-couple the data acquisition performance from the central data recording, thus ensuring
the highest possible performance of the tape system.

Usually the data has to be reconstructed several times due to improved calibrations and
reconstruction software. The large amount of data requires centralized procedures to do this. A
systematic reconstruction of the whole data can be viewed as the reversal of central data recording.

The classical HSM model features the migration from expensive, fast and small devices, such
as RAM to inexpensive, slow and large devices (tapes).

Figure 1: Classical storage model where the data migrates from high performance storage devices to cheaper
and slower ones.

During the recent years this pyramid has begun to be distorted. Disks are getting bigger and
bigger, and their prices have dropped, but the data rates did not change accordingly. At the same time
the tapes became bigger and faster (with still more progress announced by the vendors), but the price
is relative stable. Therefore, the relative financial share of tape storage in a HSM installation
increases. The steady accumulation of large amounts of data makes it to costly to keep the data on
disks for a long time. On the other hand, the data will be reprocessed several times during the first
few years. Therefore access to the mass storage system is required. Optimization of these accesses is
mandatory. Nowhere in the whole storage chain can performance be more easily degraded than at the
tape level.

For example: the current workhorses of the CERN tape system are StorageTek Redwood
drives. Transfer rates of about 10 MB/s and 50 GB capacity per tape volume are their principal
characteristics. In terms of operations the time which is required to mount, load and position the tape
is also important. If one transfers a file of 50GB to (or from) a tape, one achieves 10MB/s reduced
slightly (2%) by the operational tape handling overhead (typically 100 sec for this type of drives).
During the time of the overhead the drive can not be used for transfers. Many of the experiments use
Linux as their standard operating system. At present Linux restricts the filesize to 2GB. This filesize
appears reasonably large, but the impact on the performance of tape operations is now dramatic: 100
sec for tape loading and positioning, 200 sec for the transfer of 2 GB. This means the effective tape
throughput came down from 98% to 66% of its design maximum. One third of the capacity is lost.
With hundreds of drives being necessary to operate at the LHC data rate, this means hundreds of
thousands of Swiss Francs that have to be invested additionally.

In this example the impact of the user (experiments) data model on the mass storage was
shown. Access patterns li ke random access to the tapes are potentiall y even worse as the overhead
easily becomes the dominant constraint of the input and output of the data. Therefore, the sequential
mass storage on tapes has to be de-coupled from the user by using large disk pools (staging) or the
users (experiments) have to get involved closely into the operations of the mass storage system. It is
unlikely that the experiments will be keen to adjust their data models to the needs of hardware, which
will certainly change during the decades of LHC operations.

Fast access Expensive

Cheap

Small

Large

Cache Memory

RAM Memory

Fast Disks

Slow Disks

Fast Robot Tapes

High Capacity Robot Tapes

Shelved TapesSlow

The current model of LHC computing is built around computing farms, consisting of thousands
of PCs. Although the assembly of such an amount of computers in a networking environment is not a
problem per se (CERN already has this amount), the fact that they are working on the same data in a
coordinated way provokes severe problems. Maintenance, configuration management and monitoring
will be challenges. The computing farms can be used for online filtering or reconstruction during
central data recording and for systematic reconstruction or analysis at later stages. In either way they
will have to access the mass storage system, either to act as a data source or as a sink. Without
optimization this kind of access will present itself as random access to the mass storage system. As
described before this immediately introduces problems.

CERN investigated several routes to overcome this mismatch between the volatile PC-farm
environment and the relatively inflexible mass storage environment. These will be described in a later
section.

3. CERN STORAGE REQUIREMENTS

The CERN storage requirements can be separated in two general areas. First there are the objective
requirements, which have to be fulfill ed in order to do the job:

� Aggregate transfer rate at least tens of gigabytes/second with hundreds of streams in the 10-100
MB/s range.

� Continuous operation (operator attendance < 8 hrs/day)
� Storage capacity in the 10 - 100 PB range
� Thousand of simultaneous clients
� Large total number of f iles (~264)
� File sizes only limited by operating system
� Reliable and error free transactions
� All this has to be achieved within the available budget (not yet defined)

It is standard CERN policy not to rely on a single provider for a system, if possible. Therefore
a storage system should support different computer platforms and storage hardware. It is very li kely
that most of the computing for LHC is done on PC-farms, hence a support of these (at least as clients)
is mandatory. Ideally the storage system itself would be running on PCs.

This last point leads to the second set of requirements. They are more a result of the need to
achieve the goals within the given financial framework and the available human resources.

The experience with previous and current systems shows that easy manageabilit y and eff icient
monitoring are key issues for the operation of a large storage system. Especially when users are
accessing data on tape, resources li ke tape drives are easily wasted due to ineff icient scheduling.
Priorities, quotas, user groups fall i n the same category.

The storage system should operate in a fully distributed environment.

These operational aspects are weaker in the sense that these topics can be used to compare and
evaluate different systems, but are not 'show-stoppers'.

4. THE IEEE MASS STORAGE MODELS

In the early nineties the need for large storage systems became noticeable. The IEEE Storage System
Standards Working Group (SSSWG) tried to identify the high-level abstractions that underlie modern
storage systems [1,2]. The model should be applicable in a heterogeneous distributed environment.
Many aspects of a distributed system are irrelevant to a user of the system. As a result, transparency

became the key point of the model. In this context, transparency means that the user accesses the
data always in the same way: he does not know where it is or whether other users are using it.
Behavior of operations and parameters should be always the same, regardless where the data is
physically stored.

Figure 2: Components of the IEEE Mass Storage Systems Reference Model (V4)

4.1 Mass Storage System Reference Model Version 4

4.1.1 Mover

The Mover changes or monitors the read/write state of a device (e.g., positioning within the physical
volume or performing loading and unloading operations).

4.1.2 Physical Volume Repository (PVR)

The PVR is a module that manages individual objects (cartridges, slots and transfer agents such as
robots). It locates, mounts and dismounts cartridges on drives.

4.1.3 Storage Server

The Storage Server maps the physical volumes (cartridges, disks) to logical ones. The Bitfile Server
as its client sees only a uniform logical space for each of the user or storage groups. The Storage
Server consists of several sub-modules that allocate a PVR for a given data transfer, administrate the
user/storage groups, enforce quotas. These modules become quite complicated if optimized tape,
tape-drive or network usage is desired.

4.1.4 Bitfile Server

A bitfile server handles the logical aspects of bitfiles that are stored in one or more storage servers of
the storage system. It creates the appropriate attributes of the bitfile li ke account-ID, access-control
information, storage class, priority, backup information… Additionally the bitfile server maintains
access statistics and records the real location of the file.

4.1.5 Name Server

If a file is submitted into a storage system, the bitfile server creates a unique bitfile-ID. The human-
readable ID (/usr/xys/public/blabla/phd.tex) is convenient for people, but ambiguities can easily
occur. The name server maps these filenames to the unique bitfile-IDs. This allows a storage system
to be viewed as a global space rather than as space of host computers containing locally identified
files.

Bitfile Server

Storage Server

Name Server

Physical Volume
Repository

Physical Volume
Repository

Physical Volume
Repository

MoverMoverMover
MoverMoverMoverMoverMoverMover

MoverMoverMover

MoverMoverMover
MoverMoverMoverMoverMoverMover

MoverMoverMover

MoverMoverMover
MoverMoverMoverMoverMoverMover

MoverMoverMover

Client

4.2 Reference Model for Open Storage System Interconnection (MSS Version 5)

It is the successor of the previously described MSS model version 4. It is much more abstract than the
old version. Mover and PVR are maintained, but the Physical Volume Library (PVL) and the Virtual
Storage Service (VSS) have replaced everything else. The PVL manages physical volumes, such as
tapes and disks. The VSS takes over the remaining functionality in order to present an abstract view
of storage. Internally the old bitfile is now seen as composition of transfer units. This allows
composition schemes, such as concatenation, replication, striping and various RAID methods. The
big advantage is the possible redundancy and throughput during data migration. A file can be stored
much faster when it is striped over several tapes (of course using the same number of drives).
Unfortunately this involves the same number of tape mounts when the file has to be read back. In
most tape libraries the data is read never or only occasionally. The situation in High-Energy Physics
is different. Although one of the systems at CERN (HPSS) is capable of striping over tapes, this
feature is not used.

5. CURRENT CERN PROJECTS

CERN investigated possible commercial solutions for quite some time and HPSS, a joint
development by US DoE and IBM seemed the only potential “product” with enough performance and
scalabilit y to fulfill HEP requirements for the future generation of experiments. An HPSS evaluation
project was therefore started in the fall of 1997. In parallel an internal project to develop further the
in-house STAGER product was started. This was felt essential given the time scale of the COMPASS
experiment scheduled to take data in 2000-2001. It was also decided to collaborate with DESY and a
consortium of research and industrial partners in the EU supported Eurostore project.

5.1 HPSS Evaluation

HPSS [3] (High Performance Storage System) was first installed in the fall of 1997 on a test IBM
system. The original test configuration included RS6000 AIX machines with IBM 3590 tape drive
drives in IBM 3494 tape robots.

For HPSS to be successfully adopted by CERN multi -vendors support was essential. High level
discussions with the HPSS consortium were therefore started while a joint project with digital was
initiated to develop a port to Digital Unix of the HPSS data movers. This was carried out by a joint
team of CERN and Digital experts during 1997/98 and delivered to the HPSS support team in IBM
Houston for inclusion in the successive base line delivery kits.

A first prototype production service was started in August 1998. This included a user tape
hierarchy for the Chorus experiment and Central Data Recording storage for the NA57 experiment.
More than 2TB and 3000 files were managed.

An interesting test for the Objectivity/HPSS Interface was also implemented. This was
particularly important given the strategic interest for Objectivity [4] and somehow the confli ctual
nature of the two products. This test stored 1TB for Atlas in 2000 files. Small testbeam setups for
LHCB & Alice were also implemented.

Data is separated by Class of Service. The class of services (COS) defined were:
� COS 1 (User Tapes): 230GB AIX disk on 3590 tapes
� COS 2 (Raw Data on Redwood): 243GB DUX disk on Redwood tapes
� COS 4 (Testbeam): 32GB AIX disk on 2 Redwood copies (25GB, 50GB)
� COS 5 (Atlas 1TB Milestone): COS 1 disks on Redwood tapes
� COS 6 (Compass Test): COS 2 disks on Redwood tapes

The current tape mount rate (without NA57 data acquisition running) is about 100 per day.

5.1.1 Ongoing Work

A joint IT/Alice Mass Storage Project was started to investigate the use of a commercial HSM to
manage their high acquisition rate of sequential data.

Milestones for recording “ raw data” to tertiary storage were agreed:
� 30MB/s sustained in 1Q1999 (achieved with 4 sources & 2 sinks - IBM only)
� 100MB/s by 4Q1999 (need to “borrow” ~12 Redwoods when Alpha performance improved) -

interesting to compare with the in house CASTOR project.

5.1.2 Experience and problems
� Architecture: random data access performance is slow via the standard provided API.
� Networking: it was diff icult at the beginning to get HIPPI working, but it is mostly stable by now.

HPSS software reliabilit y is high but the overall service reliabilit y is much dependent on network
and media problems.

� Manageabilit y: hard in the CERN computing environment. It assumes experienced operators to be
available and to this we must add the cost of maintaining a DCE environment, which is
otherwise not needed at CERN. The future of DCE is also questionable in the open commercial
market.

� Operation: frequent reconfigurations caused service interruptions.
� Portabilit y: this is very criti cal for CERN and HEP. The first implementation of the Digital

Alpha 4100 data mover was slow (HIPPI to Redwood) in SMP configurations.

5.1.3 Successes

Excellent support from the HPSS IBM team in Houston was verified. The HPSS product itself has
been stable, no data were lost because of HPSS. Sequential performance using the complex interface
is only limited by hardware performance.

“Retirement” of old media to new products can migrate data gracefully. This is very important
now that the li fetime of tape technology is not more than 4-5 years.

A single name space for all files is a good concept and works well .

HPSS allowed an eff icient use of the shared disk pools and tape storage. Tapes are fill ed
completely with consequent reduction of media consumption. The interface to HPSS has been
developed using CERN standard libraries such as rfcp and the CERN stager. This allows new user
applications to be added quickly and with minimum effort from the users.

5.1.4 CERN HPSS Plans

The original idea was to decide by end of 1999 if to commit to HPSS (i.e. use it for Compass in 2000)
or drop it. However the Alpha port support and packaging by the HPSS consortium is not complete
yet.

The first components of the Sun Solaris port in development at SLAC are now in the product.
The BABAR experiment has started with HPSS and Objectivity at SLAC and at IN2P3 in Lyon,
therefore we will be able to learn much soon.

The current strategy is therefore to continue a low level production use of HPSS to gain more
experience and be ready to reconsider it as the final solution in case of positi ve and conclusive
product developments.

5.2 CASTOR

In January 1999, CERN began to develop CASTOR (“CERN Advanced Storage Manager”). Its main
goal is to be able to handle the COMPASS and NA48 data (25 + 35 MB/s) in a fully distributed
environment and in a completely device independent fashion. Scalabilit y should be good so we could
also handle LHC data (100 MB/s per experiment) starting in 2005. Sequential and random access
should both be supported with good performance.

CASTOR objectives are therefore:

High performance, good scalabilit y, high modularity (to be able to easily replace components
and integrate commercial products as far as they become available and show a better total cost of
ownership and price performance factors).

CASTOR will provide HSM functionality with a single large name space. Migrate/recall
functions are all focussed on HEP requirements, therefore keeping the design and implementation
simple and less expensive.

It will be available on all Unix and NT platforms and will support most SCSI tape drives and
robotics. System dependencies are grouped in few files to ease portabilit y.

A user/operator/administrator graphical interface (GUI+WEB) is foreseen, but a command line
interface will be retained for more automatic production use.

In the spirit of the CERN developed software it should remain easy to clone and deploy
CASTOR outside CERN. CASTOR aims at using as much as possible commodity hardware
components such as inexpensive PCs as tape servers.

The first version of CASTOR will be deployed at CERN during winter 1999/2000 and a large
test (100MB/s during 7 days) will be attempted for ALICE in February 2000.

Support for Storage Area Networks (SAN) will be integrated with the goal of decreasing the
number of data movers and servers. In the SAN model CPU servers are directly connected to the
disks and share data. This is a move away from the traditional tape and disk server model,
eliminating data copies between disk servers and CPU servers. SAN uses native filesystems, which
give much better performance than NFS. It is important to acquire expertise in the area of emerging
technology but even with SAN some HSM functionality will still be needed.

Support for different data storage models is being planned:
� disk pools
� local caches
� Storage Area Networks
� local disk and tape drives.

5.3 EuroStore

The third project with CERN participation is EuroStore [5], an European Union funded ESPRIT
project. CERN, QSW (a supercomputer manufacturer) and DESY formed together with various
smaller European enterprises a consortium to develop a scalable, reliable and easy manageable
storage system almost entirely based on Java. QSW developed the Parallel File System (PFS), which
is used in their high performance computer systems. DESY was the developer of the HSM system.
The current storage system of DESY will reach its limits of scalabilit y with the appearance of
HERA B. The similarity of requirements for a storage system at CERN and DESY made a
collaboration in this field desirable. The role of CERN and the commercial collaborators was the
definition of user requirements and the assessment of the developed software according to these
requirements.

The excessive requirements of LHC in terms of scalabilit y and reliabilit y, together with the
necessity of f lexible administration and maintenance, made up the bulk of the user requirements for
the EuroStore software. These user requirements have been used also for HPSS, CASTOR and
MONARC [6].

Similar to HPSS the EuroStore HSM is based on the IEEE mass storage standard. The
complete HSM service is built out of sub-services implemented as separate processes or threads
running on the same or different heterogeneous platforms. The communication mechanism between
all these sub-services is done with a secure message passing environment, called Cell -
Communication.

The HSM supports the notion of Storage Groups to allow a single Store to be divided into
several sub-domains containing specific user groups and/or dataset types. The Store represents the
root of the internal HSM object structure, which is built out of Storage Groups. The Storage Group is
further subdivided into Volume Sets, which act as the source and destination for the HSM internal
migration of datasets. The Volume Set is itself built out of Volume Containers defining the set of
physical volumes belonging to a single physical li brary. To describe and control the internal HSM
migration there exists an object, called Migration Path, which encloses the migration condition and
the source/destination Volume Set. Each dataset stored in the HSM has a link to an existing
Migration Path describing the dataset migration characteristics.

The HSM provides a simple service to the PFS (or other clients), namely storing and retrieving
complete datasets (or files in the PFS nomenclature) sequentially. A future version of the EuroStore
HSM might support read operations on parts of datasets (partial reads). This simplicity is mirrored in
the data access API in that it contains only 3 functions: create/write a dataset, read an existing dataset
and remove an existing dataset. In addition, the API will support simple query operations (ask for all
files on a given volume, etc.) for its clients (li ke PFS). The data access API is implemented as a C
based thread safe library.

The PVL supports additional functions:
� Priorities, specified by the client application. This was an important requirement of the EuroStore

collaborators of the Health sector.
� Configurable numbers of write operations on a given Volume Set. This allows the choice between

storage in chronological order, as in Central Data Recording, and the policy based selection of
available resources (the PVL would choose a volume and a drive according to the current
situation).

� Regular expression assigned to a storage device (drive). The PVL will manage a defined set of
mainly request dependent variables that can be used to construct a regular expression. For
example, a drive might be available during the time between 3:00 and 4:00 only for a user called
oracle_backup on the host oracle_server.cern.ch. During all other times other users could use the
drive.

� Virtual li brary partitioning allows dynamic resource allocations li ke "20% of the tape drives are
given to a certain client/user-group".

The modular design of the EuroStore HSM provides the necessary scalabilit y. Every
component (e.g. movers, PVRs, PVLs, Bitfile servers) can be located on a different computer. The
implementation in Java will provide the necessary portabilit y to cover a wide range of heterogeneous
hardware platforms.

The EuroStore prototype was deployed at CERN during April 1999. The hardware platform
consists of four dual processor SUN Enterprise 450 servers. Each of the servers is equipped with four
8 GB hard disks, which build the components of one or more Parallel File Systems. The PFS can be

striped over several nodes of the cluster. The data is transferred between the nodes via a switched
ELAN/ELITE network (max. 250 MB/s). Each of the E450s is connected to the CERN LAN with
Gigabit Ethernet. At present the prototype uses two StorageTek 9840 tape drives, located in one of
the automated tape libraries of CERN.

During the initial assessments many configurations have been tested and, except for the usual
programming bugs, no conceptual problem could be found. The GUI based administration and
management of the HSM system proved to be very effective and flexible. The implementation of an
HSM in Java has been successfully demonstrated, although the issue of performance and reliabilit y
could not be really addressed yet, due to the ongoing development of the prototype. The EuroStore
project will continue until summer 2000. DESY intends to deploy the EuroStore HSM as a
production system at the end of the project.

6. FUTURE DEVELOPMENTS

The current plans at CERN are to continue the lines of development described above while exploring
ways to increase the interoperabilit y of HEP HSM systems.

7. CONCLUSION

It is clear that while commodity components computing seems to offer scalable and affordable
solutions for LHC computing, the management of the data will remain a diff icult challenge to tackle.

Disk storage is the only component which seems so far to follow the Moore price evolution
curve of PCs. Tape and robotics seem to stagnate or have a very slow evolution at best.

The HSM commercial market doesn’ t seem to match HEP requirements, although some
analysts predict tremendous growth in this field in a near future.

Until this happens probably we need to take a conservative approach and develop simple in
house solutions in collaboration with other major HEP centres which share our needs.

We should in parallel continue to monitor technology and market evolution to spot trends,
which we could exploit, and commercial products, which we could acquire.

The impact of large distributed data access models such as the ones investigated by MONARC
should be taken into appropriate consideration.

ACKNOWLEDGEMENTS

The authors want to acknowledge the contributions of the Data Management section of the PDP
group of the CERN IT-division. In particular J.-P. Baud, C. Curran and H. Renshall provided
valuable input by reviewing the manuscript.

REFERENCES
[1] S. Coleman and S. Mill er, ed., Mass Storage System Reference Model Version 4, May 1990,

Technical Committee on Mass Storage Systems and Technology, Institute of Electrical and
Electronics Engineers.

[2] A. Abbott et al., Reference Model for Open Systems Interconnection, September 1994, IEEE
Storage Systems Standards Working Group (P1244), Institute of Electrical and Electronics
Engineers.

[3] http://www.sdsc.edu/hpss/hpss.html

[4] http://www.objectivity.com

[5] http://www.quadrics.com/eurostore

[6] http://www.cern.ch/MONARC

RELATED WEB PAGES
http://nicewww.cern.ch/~fab/default.htm

http://www.cern.ch/eurostore/

http://www.ssswg.org/

http://home.cern.ch/~hepmss/

http://www.nsic.org/

http://www.snia.org/

DATA STORAGE TECHNOLOGIES FOR LHC

Les Robertson
CERN, Geneva, Switzerland

Abstract
The paper introduces some of the technologies that could be used for storing
and managing the many PetaBytes of data that will be collected and
processed at the Large Hadron Colli der (LHC) accelerator, which is
scheduled to begin operation at CERN in 2005. The state of the art of the
current mainline hardware technologies is described, with a discussion of
the li kely evolution during the next five years. This paper is a summary of
the material provided in the lecture notes, which include more detailed
descriptions of some of the fundamental technologies and costs issues. The
notes also introduce some more exotic techniques, and discuss the storage
capacity and performance requirements of the experiments that will use the
LHC accelerator.

1 MAGNETIC HARD DISKS

The principal technology used for permanent storage of digital computer data for the last thirty years
is the magnetic hard disk. The state of the art hard disk product today can store 72 GigaBytes of data
in a container 10 cm wide and 4 cm high, the format of the standard disk slots in a personal computer.
The data is stored on twelve rigid disk platters mounted on a spindle that is rotated by an electric
motor at around 10,000 rpm. There is one recording head for each disk surface, the heads being
mounted on a set of arms (the accessor) that can move the heads across the recording surface of the
disk. The data is recorded in concentric tracks as the disk platter rotates beneath the head.

Magnetic disk platters must provide a magnetic layer suitable for high-density recording and a
surface layer that is smooth and durable to support very low head-flying heights. The platter is
usually made by sputtering a thin layer of material with high magnetisation and coercivity1

characteristics on to a rigid aluminium or glass substrate. This is followed by applying a very thin
protective layer (diamond li ke carbon) and a lubricant.

The magnetic layer is usually a cobalt alloy (CoCrTa, CoPtCr, …). The aluminium substrate is
generally first coated with a chromium layer before the magnetic layer is applied. When the disk is
powered off , the heads “ land” on an area near the centre of the disk, which is laser textured to avoid
the heads sticking to the otherwise perfectly smooth disk surface. Current production disks are
recorded at a density of 3-4 Gbits per square inch (Gb/in2), while laboratory prototypes have been
demonstrated at over 35 Gb/in2. The areal density of delivered products is increasing at around 60%
per year, requiring continuous improvements in materials, manufacturing techniques and head
technology.

The area used to store individual bits decreases as the storage density increases. These smaller
bit sizes imply smaller grains in the magnetic material, and higher coercivity (to sharpen the
transitions between the bits). But there are limits beyond which the magnetic polarisation becomes
unstable, when the fluctuations in thermodynamic energy at operating temperatures have a moderate
probabilit y of causing magnetic state changes. This is called the super-paramagnetic limit . This is not

1 coercivity: The coercive force is the magnetic field which must be applied to neutralise the magnetic

orientation of a material. Coercivity is a measure of how stable the magnetic orientation is in the material.

a fixed limit , as it depends on the magnetic properties of the materials, the recording method, shape of
the bit pattern, etc. The limit with today’s materials and heads is in the region of 40 Gb/in2, but it is
expected that this will be pushed progressively up as new materials, heads and techniques are applied
to the problem. Some industry experts think that 100 Gb/in2 will be reached before magnetic
recording in the current sense will have to be replaced.

Data is recorded by passing a current through a tiny coil i n the record head to generate a
magnetic field of suff icient strength to overcome the coercivity of the recording material. Until a few
years ago an inductive head was used to read back the information: the fluctuations in the magnetic
field as the magnetised bits pass beneath the read head induce a current in the sensing coil . With
reducing bit sizes, progressively weaker magnetic fields are available for the read head to sense and
during the 1990s inductive read heads were abandoned
in favour of magneto-resistive (MR) technology. MR
heads use a material such as an NiFe alloy, which has
the property that, placed in a magnetic field, its
resistance changes with the strength of the magnetic
flux. In an MR head such a material is used to form a
conductor placed perpendicular to the plane of the
recorded medium. A sense current is passed through the
conductor, and the signal appears as a voltage drop
proportional to the strength of the magnetic field.

While inductive heads detect the rate of change in the magnetic field, MR heads sense directly
the field strength. The output signal strength is proportional to the sense current, giving several
advantages in overcoming noise in high density, high data rate systems. MR heads have an even
greater advantage over inductive sensors in low-velocity recording applications such as low power
disk, and magnetic tape.

An MR read head still
needs an inductive head for
writing and erasing. The MR
element is sandwiched
between two magnetic
elements that shield it from
the field of neighbouring
recorded bits - a bit li ke the
way the tube of a telescope
keeps out stray light from the
surroundings. To reduce the
weight on the accessor the
dual head is often
manufactured as a single thin
film composite head.

Today's most advanced heads use the Giant Magneto-Resistive (GMR) effect. GMR sensors are
made of four layers. The sensing, or magneto-resistive layer changes magnetic orientation according
to the field of the recorded material. This is covered by a conducting layer, separating it from the
pinned layer, which has a fixed magnetic orientation maintained by the permanently magnetised
exchange layer.

Isense

�
R � H

�
V � I

�
R

magneto-resistive read head

picture: IBM Research - Almaden

Composite head: inductive write, MR read

The sensing current passes
through the first three layers,
electrons moving freely within
these layers. The physical
mechanism used depends on the
electron spin. Electrons with a
direction of spin parallel to the
magnetic field encounter low
resistance, while electrons with a
spin opposite to the magnetic
orientation of the material
encounter higher resistance.

Because a GMR head
exploits the different behaviour
of conduction electrons with spin parallel to or opposed to the magnetic orientation of the field it is
also referred to as a Spin Valve. The following diagram explains the operation in more detail . When
both pinned and sensing layers have the same magnetic orientation, some electrons are stopped in
both materials, while electrons of opposite spin flow freely in both materials. On the other hand,
when the pinned and sensing layers have opposite orientations, electrons of both spins tend to be
stopped when they flow into the layer of opposite orientation - giving a higher resistance.

The effective density of recording is measured as the number of bits per square inch of
recording surface. Today the bits are much wider than they are long because the narrowness of the
track is limited by various mechanical factors concerned with positioning of the heads and track-

GMR layersGMR layers

exchange layer - magnetised

pinned layer (Co)

conducting layer (Cu)

MR (sensing) layer (NiFe)

sense current

picture: IBM Research - Almaden

following. The length of the bit is less constrained, limited only by the electro-magnetic properties
mentioned above, and the size and sensiti vity of the head. At an areal recording density of 10 Gb/in2,

the bit is about 1 micron wide and 0.06 microns long.

The speed with which data can be recorded and read back from a hard disk is proportional to
the linear recording density (number of bits per inch measured along the track) and the rotational
speed of the disk. The linear density is increasing at about the square root of the annual rate of
increase of the areal density, or some 26% per year. However, the rotational speed has increased by
barely 50% in the past ten years. We shall therefore see a growing discrepancy between data rate and
disk capacity. It has not been found practical or cost-effective to use parallel heads to increase the
data transfer rate, and this problem is more li kely to be alleviated by the continued decrease in the
overall size (capacity) of the disk unit.

Before beginning to transfer data from the disk the head must be positioned over the correct
track (seek time), and then we must wait for the beginning of the data segment to come under the
head (called the latency). The seek time has hardly improved by 50% over the past ten years. The
latency, the time taken for half a revolution of the disk, has also not improved very much in that time.
Without a data cache in the disk controller this would lead to very poor performance for small data
transfers. The data cache, several MBytes in size in current disks, uses techniques li ke read-ahead
buffering, and speed matching between the disk and the data channel to improve performance.

There is some way to go in further developing the current hard disk technology, before the
physical limit s are reached, but several alternative technologies are being explored which could
ultimately lead to much higher recording densities. One such line of development uses materials
developed for magneto-optical devices. These are composites of rare earths and transition metals
(such as GdFeCo, TbFeCo), which have very stable magnetisation at normal operating temperatures,
and a low Curie point2. The material is heated above its Curie point by a laser, and then magnetised
using an induction coil . The data is read back using the conventional magneto-optic technique - the
magnetic field changes the polarisation of the reflected laser beam (Kerr effect).

However, the recording density of laser-based systems is limited by the resolution of the optics
to about one half of the wavelength, which is 0.35 microns for red light. A novel technique used to
reduce the laser spot size combines a Solid Immersion Lens (SIL) with the near field effect, or
evanescent coupling. The SIL, based on work performed at Stanford University, focuses the laser
beam internally on the surface of the lens, which is made from a material with a very high refractive
index. The energy of the
laser is then transferred
between the lens surface
and the recording layer
using the near field effect
which operates within one
wavelength of the radiating
surface. The TeraStor
Corporation has
demonstrated a disk using
this technique.

2 Curie point: The temperature above which a material loses its magnetic orientation

induction coil

SIL

mirror

magnetic layer

substrate

laser
objective lens

evanescent coupling

2 MAGNETIC TAPE

Magnetic tape has traditionally been used as an inexpensive storage medium for backup of disk data,
and for archiving old versions of f iles. It used to be a clear two orders of magnitude cheaper than
disk, and had excellent shelf storage characteristics in terms of volumetric storage density, and
ruggedness. More recently, for the past fifteen years or so, large reliable tape robots have enabled
gigantic quantities of data to be available cheaply with an access time of a few minutes. StorageTek,
the leader in the development of high volume tape robots, uses the name Nearline to describe this
class of storage. However, in recent years, hard disk and optical storage have begun to provide strong
competition for magnetic tape in terms of both volumetric storage density and cost.

Magnetic tape is made from a thin flexible substrate, about 10 microns thick, made from
Polyethelyne3. The recording layer used by most high quality magnetic tapes today is microscopic
metal particles held in a binder which coats the substrate - MP tape. Metal Evaporated (ME) tape is
manufactured using a process in which the substrate is passed through cobalt or cobalt-nickel vapour,
which condenses in a thin layer on the surface. ME tape has better recording characteristics at very
high frequencies.

The tape is usually stored in a single-reel cartridge. When mounted on a drive the end of the
tape is pulled out of the cartridge and attached to a take-up spool. The drive then moves the tape back
and forth past the recording heads by controlli ng the cartridge reel and the take-up spool. The tape
path is carefully designed to minimise friction and tape tension. Some systems use cassettes where
both reels are mounted in the container. This avoids extracting the tape and is usually much faster in
loading. However, the cassette hold less tape than can be packed into a single reel cartridge.

The recording and read technologies use developments from the higher performance and higher
density hard disk industry, but there are major mechanical problems with tape which are not present
in hard disks.

Magnetic tape is basically a sequential access medium. The tape is loaded at the beginning, and
must then be positioned by spacing across intervening data until the desired position is found. This is
not entirely true, as modern tapes are recorded in parallel bands recorded along the length of the tape
(as we shall see later), but data written on a tape cannot be deleted, or re-written (there is no update
possibilit y). New data must be appended to the current end of data. Most tapes maintain a directory
that is written in a special area at the start of the tape, and updated before the tape is dismounted. This
contains the addresses of the beginning of each file on the tape, and allows the drive to use
positioning information in pre-recorded servo tracks to space relatively quickly to the start of a
specific file.

There are two basic techniques for recording data on magnetic tape: linear, where the tracks are
recorded parallel to the length of the tape; and helical, where the tracks are recorded at an angle
across the width of the tape.

2.1 Linear Recording

In linear tape recording, the tape passes over a
fixed head, which usually contains several sets
of recording elements to enable several tracks
to be recorded or read back in parallel in order
to increase the effective data transfer rate. Each
set comprises a write and read element, so that
recorded data can immediately be re-read and
checked for errors. In order to support bi-directional recording, a third element (read) is required on

3 PET: polyethylene terephthalate, or PEN: polyethylene naphthalate

read elements

write element

tape

the other side of the write element. Erase elements may also be required. In linear recording the tape
barely touches the head, reducing wear of the head elements and the risk of damage to the tape.

The multi -track head writes a series of parallel tracks
along the tape until the end-of-tape marker is detected.
Then the head is moved slightly across the tape, and
recording proceeds with the tape running in the opposite
direction. This continues until all of the data bands have
been written. Since the head elements are generally wider
than the track, track groups actually comprise a set of
parallel tracks, separated by tracks that belong to another
track group. This multi -track-group method of recording is
called serpentine recording.

There are a number of practical problems that must be addressed by the designers and
manufacturers of magnetic tape systems. Friction between the tape and head leads to head wear and
the risk of tape damage. Dust and debris from the slitti ng process used to cut half-inch tapes from
broad strips of medium can exacerbate this problem. The path followed by the tape as it moves from
one reel to the other must be as simple as possible, to ensure that minimum tension is required to
maintain the extremely thin medium in contact with the heads. The capstans in the path usually
employ air bearings to reduce friction. As the temperature and humidity change, so the substrate
expands and contracts. The lateral expansion/contraction of the tape poses a major problem for
parallel track recording, as the distance between tracks may vary between the time the tracks are
written and read. Finally, when the tape is stored on a shelf or in a robot slot gravity slowly distorts
the reel of tape, making it more diff icult for the tape guidance system to position it. Tape should
always be stored vertically, and should be re-spooled regularly to minimise this problem.

2.2 Helical scan recording

Helical scan recording was developed for the entertainment business, in order to obtain higher
recording densities - both higher track densities and higher linear densities.

In these systems (used in the mass
market VCR) the tape is partiall y
wrapped around a scanner mounted at
an angle to the direction of the tape. The
tape moves slowly past the scanner,
which contains a set of head elements
that spin at a much higher speed. The
effective relative speed of head and tape
is therefore increased without incurring
the mechanical diff iculties of moving the tape along the
tape path at high speed. Data transfer rate can be
maintained by increasing the rotational speed of the
scanner or by including more than one set of recording
elements in the scanner. But it is not necessary to resort
to parallel track recording.

There are some fundamental problems encountered with helical scan technology, which make it
more diff icult to achieve the level of data integrity that can be obtained with linear techniques. The
main problems are:

� Head wear due to the increased contact pressure coming from the tape wrap on the scanner
(capstan effect).

head

tape

scanner

fence

tracks

� The helical wrapping around the scanner is achieved by riding the tape on a fence or step
that protrudes from the scanner. This requires that the tape edge has been formed very
accurately during slitti ng, and there is a high risk of edge damage. Once the edge is
damaged the recorded tracks develop a curvature which makes it diff icult for the read head
to follow. In contrast, linear tapes reserve a guard band at each edge of the tape to minimise
problems arising from manufacturing or usage damage.

Helical scan tape systems achieve today substantiall y higher track densities than that possible
with linear recording methods. For example, the StorageTek Redwood drive achieves 2,800 tracks per
inch, enabling it to record 50 GBytes of user data on 1,200 feet of half inch tape. In contrast the 9840
linear tape system from the same company only stores 20 GBytes of user data on a 900 foot tape, at
about 600 tracks per inch. New techniques adapted from hard disk technology will allow linear
recording to narrow this gap.

2.3 Data compression

One significant advantage of sequential recording systems li ke magnetic tape is that data compression
can be used by the recording system to improve the apparent recording density. This is not possible
with a random access system like hard disk, where the physical address of any data block must be
able to be computed directly from its logical position in the file. Early compression systems used
algorithms that were effective for commercial data streams, but gave littl e advantage in the case of
the random patterns encountered in scientific data or data where straightforward compression
techniques had already been applied - such as raw physics events.

More recently, the availabilit y of inexpensive but high performance processors has enabled
more sophisticated compression algorithms to be used. In common use today is DLZ1. This is one of
the set of Lempel-Ziv compression algorithms which map variable length input strings to variable
length output symbols. During compression, the algorithm builds a dictionary of strings which is
accessed by means of a hash table. Compression occurs when input data matches a string in the table
and is replaced with the output symbol. Advanced DLZ1 algorithms perform well even on pre-
compressed scientific data.

2.4 Technology trends

Unlike in the case of the hard disk market it is rather diff icult to identify clear trends in magnetic tape
developments. Historically there have been long periods in which a single standard and recording
density has dominated the market. During the past 25 years, as can be seen from the diagram below,
there have been three distinct generations of data centre quality tape systems.

� the 9-track “6250 bpi” technology using iron oxide which was introduced in 1974;
� the 3480/90 technology, using 18 or 36 tracks on a chrome dioxide medium, which was

first introduced in 1984;
� in 1995 the first of a number of new products appeared, all i ncompatible, but using MP

tape, and giving a leap from 800 MByte cartridges to multi -GByte systems

Helical scan has proven to be too diff icult a technology for the quality required at the high end
- data applications have a completely different definition of reliabilit y from video applications, where
helical scan is the standard. Products with acceptable reliabilit y for digital applications are
unacceptably expensive. We are not likely to see this change, as linear technology is steadily
achieving higher areal densities.

The major applications for magnetic tape are backup and archiving - which require a different
level of reliabilit y from applications which keep the master copy of the current data on tape - li ke
high energy physics applications. The model of using tapes as a storage medium for active data needs
to be reconsidered.

Since it is diff icult to generalise about industry trends, we have to look at specific
manufacturers and products in order to have an idea about how things may develop over the next 5
years. The situation at the top end of the market is quite satisfactory, with three or four competitors
using proven linear technology aimed at the data centre. The manufacturers have announced “ road
maps” , explaining how they can realistically develop their systems to improve the capacity and
performance by a factor of 2-4 over the next 5 years, without requiring fundamental changes in
technology.

At the low end of the market the major products at present use helical scan. As we have seen
this is a more diff icult technology than linear recording. More important however is the competition
that these products, aimed at the mass market, will experience from optical systems.

3 OPTICAL RECORDING

For over twenty years claims have been made that optical recording will displace magnetic recording
for secondary or at least tertiary storage. The reason is (or was) that optical systems have the potential
for much higher areal densities - up to 5 Gbits per square inch in the case of a red laser. There have
been many products using optical techniques, almost all write-once systems, but the achieved density
(user data bits per square inch) has been disappointing, performance modest, and costs for media and
drives too high. Recordable optical disk was used only for special applications - such as those where
the fact that it was write-once was an advantage. Meanwhile magnetically recorded hard disk has
steadily improved in density, performance and cost, to the point where it has now exceeded the
maximum recording density of purely optical systems.

Paradoxically, although optical recording has lost this fundamental advantage, for the first time
we are beginning to see real competition, at least for magnetic tape, coming from optical products.
The reason is that recordable CDs and DVDs, products emerging from the mass market of
entertainment, have achieved reliabilit y and price levels which place them in direct competition with

A re a l D e n s ity o f N e w T a p e

P ro d u c ts

0 .0 1

0 .1 0

1 .0 0

1 0 .0 0

1 0 0 .0 0

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5

y e a r

M
b

it
s

 p
e

r
s

q
u

a
re

 i
n

c
h

F e C r M P ta p e

low end tape systems. In addition, as these are random access systems, they offer a substantiall y
different (better) level of functionality.

3.1 Write Once - CD-R and DVD-R

Recordable (write once) CDs and DVDs
use a disk made from a polycarbonate
substrate. The recording layer uses heat-
sensiti ve material, usually Cyanine dye.
The heat of the recording laser chemically
decomposes spots in the dye layer and
physically deforms the adjacent substrate.
During playback, the decomposed spot
absorbs light from the playback laser, and
the substrate deformation scatters the
light, together making the spot look li ke a
pit which can be read by a CD or DVD
ROM drive. The disk is mechanically pre-
formatted with a flat-bottomed helical
groove. The ridge between adjacent
grooves is called the land, which has a flat
surface. Address information (sector
headers, etc.) is embossed on the disk
during manufacturer.

The disks can be made double sided, and DVD-R disks can store up to 4.7 GBytes on each side.
This technology does not support the dual layer per side technique used by mechanically formed
DVD-ROM disks. The recording speed of current products is about 1.3 MBytes/second.

3.2 Erasable DVD-RAM

Re-writeable optical disks use phase change technology. The recording layer consists of an alloy of
tellurium, germanium and antimony. A laser beam heats the material above the 600°C melting point.
The layer cools to a crystalli ne or amorphous state depending on the power level of the laser. With
high power the material melts quickly and cools quickly forming an amorphous spot. At lower power
the process is slower and the surface assumes its crystalli ne state. When reading takes place the
amorphous spots have much lower reflectivity than the crystalli ne spots - so they look li ke “pits” .

The DVD-RAM format uses a substrate with pre-formed groove and sector headers. Data is
recorded in the groove and on the “land” , or ridge between the grooves, to increase the capacity. This
involves re-focussing the laser. The original DVD-RAM format has a capacity of 2.6 GBytes per
side, but a second version of the standard has been agreed by the DVD Forum which uses a reduced
spot size to hold 4.7 GBytes per side.

BIBLIOGRAPHY
The Complete Handbook of Magnetic Recording, Finn Jorgensen, Tab Books 1995, ISBN 0-07-

033045-X
Magnetic Storage Handbook - Second edition, C. Denis Mee, Eric D. Daniel, McGraw-Hill 1996,

ISBN 0-07-041275-8
Magnetic Recording Technology, C. Denis Mee, Eric D. Daniel, McGraw-Hill Publishing Company

1996, ISBN 0-07-041276-6
Digital Magnetic Recording, Albert S. Hoagland, James E. Monson, John Wiley & Sons 1991, ISBN

0-47-140144-7
DVD Demystified, Jim Taylor, McGraw-Hill 1997, ISBN 0-07-064841-7

� �
��

	
 �
�
�

��

recording laser

deformation

� � � � � � � � � � � � � � �� � � � � ! " # � � $ % � �& ' () *) + , - .
/ 0 1 / 2 3 4 2 5

SOFTWARE BUILDING

A.N.Dunlop, B.Ferrero Merlino, R.Jones, M.Nowak, Z.Szkutnik

Overview
This track combined software engineering lectures with exposure to the
software technologies and packages relevant for LHC experiments. It
showed, in a practical sense, how software engineering can help in the
development of HEP applications based on the LHC++ software suite and
also gave a taste of working on large software projects that are typical of
LHC experiments. The lectures provided an overview of LHC++ and
covered those aspects of software engineering most relevant for HEP
software development.

1. EXERCISES

The hands-on tutorial introduced a series of exercises to solve given problems. The tutorials followed
the natural progression of physics analysis exploring the major LHC++ packages on the way. The
students completed the tutorials in groups of two.

Essentially, the students were required to develop several C++ programs in succession starting
from skeletons:

i) Populate an event database using HepODBMS according to a defined object model.

ii) Build an event tag database from data prepared in I. Select some interesting event attributes and
copy them to the event tag database.

iii) Use the Gemini minimisation package to find the minima values for a given set of problems.

iv) Read event tag database built i n II and display the contents. Use the LHC++ inter-active graphical
tools to apply more cuts.

2. LECTURES

2.1 Track Introduction

Speaker: R.Jones

The goal of this track was to provide an overview of LHC++, which is a comprehensive,
mainstream and modern software suite for development of physics analysis software. This overview
was coupled with an introduction to those aspects of software engineering that are considered
relevant for physics analysis software development. The exercises provided practical hands-on
experience of using the major LHC++ packages. The intention was that students should come away
with practical knowledge of how to develop physics analysis software in an organised manner. It was
not a goal of this track to teach C++, object-oriented concepts, WNT or give details of the physics
involved in LHC experiments.

The LHC++ lectures are documented as separate papers in these proceedings. Below is a short
summary of the track introduction, closing and software engineering lectures.

2.1.1 Introduction to Software Engineering and OO methodologies

Speaker: A.N.Dunlop

A definition of what is meant by software engineering gave a starting point for this lecture
which then went on to explain how the scale of the software project determines the software process
required to successfully run the project to completion.

Various processes exist for OO software (OOSE, OMT, Booch, Fusion, Martin-Odell , Unified
etc.) and have varying definitions for the phases involved during the project but the Unified process is
centred around the architecture and follows a number of iterations driven by use-cases.

2.1.2 An Overview of UML and use-cases

Speaker: A.N.Dunlop

This lecture covered the basic structure of UML, the notation and types of diagrams that can be
used to describe the software under development. Emphasis was put on the use cases as a means of
driving the development and how they are used at various phases.

2.1.3 Software Design

Speaker: R.Jones

The task of design was introduced as consisting of three levels: architecture, mechanistic and
detailed based on the scope of the decisions made. Each level was further defined to show its goals,
techniques and deliverables. The UML class, sequence and collaboration diagrams were explained
and examples drawn from the exercises. The concept of patterns, how they can be applied to analysis
and design and examples from LHC++ packages and the exercises were given.

2.1.4 Software Testing

Speaker: R.Jones

This lecture covered the basic principles of software testing and \why programs have defects.
The cost of defect removal and the classification of defects were addressed. The use and basis of
software inspections as a means for removing defects was shown to be the most effective way of
improving the quality of software. The different types of testing (unit, integration, regression and
acceptance) were described and how CASE tools can help in these tasks. The lecture finished with a
set of axioms about testing that can improve the way most software developers approach the subject.

2.1.5 Wrap-up on Software Engineering Issues

Speaker: R.Jones

This aim of this lecture was to look at some aspects that affect the long-term well being of
development projects. It started by asking three questions:

• Why is the software process so important?

• What is so good about iterative development anyway?

• Why can’ t we just get on with writing the code?

To answer the first question, the most common reasons for failure of software projects were
listed with how activities, such as adequate analysis and design, can be used to avoid them. The
second question was addressed by giving an example of what iterative development means and by
showing the unfortunate results of not using it.

Hopefully the students understood that by answering the first two questions the answer to the
third becomes clear. As a means of supporting iterative development cycles, configuration
management systems were introduced and the lecture finished by emphasising that software always
costs something (time or money): either some up-front by investing in analysis and design or more
later to fix all the problems.

2.2 Feedback session

The track finished with a feedback session during which the students asked questions about how to
apply the software engineering techniques in different situations, including how to introduce software
inspections and how to motivate developers to worry about those issues concerned with software
maintenance. There were detailed questions about the use of Objectivity and Gemini in LHC++.

READING LIST

Software Engineering

1. R.S. Pressman, Software Engineering: A Practitioner's Approach, McGraw Hill , 4th Edition, 1996,
ISBN: 0070521824

2. H.E. Eriksson & M. Penker, UML Toolkit, Wiley, 1998, ISBN: 0471191612

3. M. Fowler, Uml Distill ed: Applying the Standard Object Modelling Language, Addison-Wesley,
1997, ISBN: 0201325632

4. Software Engineering Resources http://www.rspa.com/spi/

THE LHC++ ENVIRONMENT

Bernardino Ferrero Merlino
CERN IT Division - CH 1211 Geneva 23 Switzerland

Abstract
The LHC++ project is an ongoing effort to provide an Object-Oriented
software environment for future HEP experiments. It is based on standards-
conforming solutions, together with HEP-specific extensions and
components. Data persistence is provided by the Objectivity/DB Object
Database (ODBMS), while the IRIS Explorer Visualization system is the
foundation for the Interactive Analysis environment. To complement the
standard package, a set of C++ class libraries for histogram management,
ntuple-li ke analysis (based on Objectivity/DB) and for presentation
graphics (based on Open Inventor) have been developed.

1. INTRODUCTION

Over a period of many years, CERN, in conjunction with other laboratories, built up a large
collection of routines and programs oriented towards the needs of a physics research laboratory. This
software – almost entirely written in Fortran, is referred to collectively as the CERN Program Library
or CERNLIB [1]. For many years, it was assumed that CERNLIB would simply be migrated from
Fortran 77 to Fortran 90. However, in the early ’90s an important change took place, namely the
adoption of object-oriented techniques and programming languages such as C++ and – more recently
– Java. As a result of these changes, the need for the “C++-equivalent of CERNLIB” arose. The
LHC++ project was initiated in 1995 to address these issues. Given the falli ng manpower envelope of
the laboratory, it was clear that there would be insuff icient resources to develop and support
everything in-house and so alternatives, such as collaborative development and the use of commercial
components, were investigated.

The current LHC++ [2] strategy relies on both commercial and HEP-specific components. It’ s
noteworthy that the LHC++ environment is built using a ‘ layered’ approach, where all basic
functionality are implemented as standalone C++ class libraries that are then integrated using a more
sophisticated Modular Visualization System (MVS). A sketch of the LHC++ components is given in
Table 1 below:

Description Components
Data Analysis IRIS Explorer - HEPExplorer
Custom graphics MasterSuite - HEPInventor
Basic graphics OpenInventor - OpenGL
HEP math HEPFitting – GEMINI - CLHEP
Basic math NAG C library
Histograms HTL
Database HepODBMS
Persistency Objectivity/DB
C++ Standard Libraries (STL)
HEP specific CLHEP

Table 1 - LHC++ Components

2. LHC++ COMM ERCIAL COMPONENTS

Many factors contributed to the choice of the commercial components of LHC++. These included the
functionality of the individual packages, their adherence to standards – either de-facto or de-jure –
their interoperabilit y, their market share (including other HEP laboratories) and of course cost!
Several of the suppliers chosen already had a long-established relationship with CERN from previous
software packages and the systems themselves were “interrelated” . This is important as it not only
guarantees their interoperabilit y but simpli fies the issues related to ensuring consistent releases across
multiple platforms – these issues having been already addressed by the vendors concerned.

2.1 Objectivity/DB ODBMS

In order to study solutions for storing and handling the multi -PB data samples expected with LHC,
the RD45 Project [3] was established in 1995. The proposed solution should also be able to cope with
other persistent objects, such as histograms, calibration and monitoring data, and so forth. It was
found that the best candidate for handling this problem is an Object Database Management Group
(ODMG) [4] compliant object database used together with a mass storage system, based upon the
IEEE reference model for mass storage systems [5]. After considering a few alternatives, the
presently favored solution is built upon Objectivity/DB [6] and HPSS (High Performance Storage
System) [7].

2.2 IRIS Explorer

IRIS Explorer [8] is a toolkit for visualization of scientific data, which can be manipulated via
visual programming tools. Users define their analysis application by connecting building blocks,
called modules, into a so-called map (see Figure 1 below). Modules act like filters: they read one or
more streams of input data and produce one of more streams of output data. The behavior of modules
is controlled (interactively) by a set of parameters. IRIS Explorer comes with a rather complete set of
modules for performing basic data transformations and it is straightforward to create new modules.
IRIS Explorer is built on top of recognized graphics standard such as OpenGL [9] and Open Inventor
[10], thus making possible to integrate third party packages based on the same standards, e.g.
GEANT-4 [11].

2.3 OpenGL

OpenGL is an industry standard for graphics. It is vendor-neutral and multi -platform, and is
optimized for building environments for developing 2D and 3D visual applications. Several vendors
already offer a hardware implementation of the standard, thus ensuring that rendering speed will be
optimal.

2.4 Open Inventor

Open Inventor is an object-oriented 3D toolkit built on top of OpenGL, providing a
comprehensive solution to interactive graphics programming. Its programming model is based on a
3D scene database optimized to ease building graphics applications. It includes a large set of objects,
such as cubes, polygons, text, materials, cameras, lights, track-balls, handle boxes, 3D viewers,
editors and defines a standard file format (IV) for 3D data interchange files, that is the basis for the
Virtual Reality Modeling Language (VRML) [12] standard.

Figure 1 – example of a “Map” in IRIS Explorer

2.5 MasterSuite

MasterSuite [13] is a C++ toolkit for data visualization, containing class libraries with
extension nodes to Open Inventor. These extensions cover both 2D (drawing, charting, etc.) and 3D
(drawing, legends, etc.). In addition, it provides a set of classes to develop viewers for scientific data
for output on screen as well as in vector-PostScript format.

2.6 NAG C Library

The NAG C Library [14] is a collection of about 400 user-callable mathematical and statistical
functions. The library includes faciliti es in the area of minimization, ordinary differential equations,
Fourier transform, linear algebra, zeros of polynomial, statistics, time series etc. The library uses
double precision throughout to ensure maximum accuracy of results. The correctness of each library
function is evaluated and verified by specially written test programs performed on each of the
machine ranges for which the library is available.

3. LHC++ HEP-SPECIFIC COMPONENTS

Although the commercial components on which LHC++ is built offer a solid foundation, they do not
– in general – provide the complete functionality that is required in the HEP community. To cater for
such needs, small extensions – typically some 2-3K lines of code – are provided.

3.1 HepODBMS

HepODBMS [15] is a set of class libraries built on top of the ODMG C++ interface. Their purpose is
to provide a higher level interface than is specified by the ODMG, to simpli fy the porting of existing
applications and provide a minimum level of support for transient-persistent switching. Furthermore,
these libraries help to insulate applications against changes between releases from a given vendor and
between the products of different vendors. The HepODBMS libraries provide classes to deal with
session management, clustering hints, tag and event collections.

3.2 The Histogram Template L ibrary (HTL)

The Histogram Template Library (HTL) [16] is a C++ class library that provides powerful
histogram functionality. As the name suggests, it exploits the template facilit y of C++ and is designed
to be compact, extensible, modular and fast. As such it only deals with histograms (summary data
representing the frequency of values) and not with the whole set of values. Furthermore, although
simple file-based I/O and "line printer" output are supported, it is not coupled to more advanced I/O
and visualization techniques. In the context of LHC++, such capabiliti es are provided by other
components that full y interoperate with HTL.

HTL itself offers the basic features of HBOOK [17] as well as a number of useful extensions,
with an object-oriented (O-O) approach. These features include the following:

� booking and filli ng of 1D, 2D and profile histograms;
� computation of statistics such as the mean or r.m.s of a histogram;
� support for operations between histograms;
� Browsing of and access to characteristics of individual histograms.

 3.3 HEPInventor

 HEPInventor [18] proposes an easily understandable and user-friendly way to present data in
physics programs. It is implemented as a graphical class library built on top of MasterSuite to provide
an interface between HTL and its presentation graphics.

 3.4 HEPExplorer

 HEPExplorer [19] is a set of HEP-specific IRIS Explorer modules, which help a physicist set
up an environment to analyze experimental data, produce histograms, fit models and prepare data
presentation plots. IRIS Explorer Maps that implement simple analysis-related tasks, such as
visualize and fit a histogram, produce histograms out of tag data (see section 4), etc. are part of the
package as well .

 3.5 Gemini/HEPFitt ing

 Gemini [20] is a class library providing basic minimization/fitting capabiliti es. The library
integrates under the same interface both MINUIT [21] and NAG minimizers, although classes are
provided to access features that are unique to one minimization engine (such as NAG support for
linear and non-linear constraints).

 HEPFitting [22] is a utilit y library to fit either HTL or vectors of data, with a handy interface to
specify complex fit functions assembling gaussian, polynomial or exponential terms, as well as user
defined functions.

 3.6 CLHEP

 A set of HEP-specific foundation and utilit y classes such as random generators, physics
vectors, geometry and linear algebra is packaged in the CLHEP class library [23]. CLHEP is
structured in a set of packages independent of any external package (interdependencies within
CLHEP are allowed under certain conditions).

4. ANALYSIS SCENARIO

 The analysis scenario can be split i n two parts. The first part concerns populating the database with
reconstructed event data and is usually done in a C++ program, typically running in batch jobs. The
second part implies using an interactive tool, such as the IRIS Explorer framework, to actually
produce summary data, usually as histograms, out of the event data. Histograms can then be
manipulated, fitted using an appropriate tool and eventually printed in a PostScript file to embed in a
paper or a slide presentation.

 4.1 The ‘batch’ par t

 The main task of this part is populating the Objectivity data store with event information
coming, very li kely, from a former reconstruction phase. Most new HEP experiments assume that it
will be possible to make both raw data and reconstructed data available on-line thanks to the
integration between Objectivity/DB and HPSS. Each experiment will have its own data model and
physicists should be able to navigate through it. This is a major problem for a general-purpose
Interactive Analysis environment, since, unlike the Ntuple case, a common and pre-defined data
model, shared amongst all experiments, is no longer imposed.

 Since all data needed for analysis is supposed to be on-line, the role of the Ntuple replacement
could be quite different. While reasonably small personal data collections will still exist, the main
concern will probably be how to index large event stores to speed up the analysis.

 The RD45 Project suggested one approach to deal with both problems. The idea it to speed up
queries by defining for each event a Tag, i.e., a small set of its most important physics attributes plus
an association with the event where the Tag data come from. A collection of tag objects is saved
together in a Tag Database, something intermediate between an Event Directory and an Ntuple. Since
they are globally defined for the whole experiment, concrete tags can be optimized so that they offer
a very eff icient way to make initial cuts on attributes, thus achieving a high degree of selectivity. On
top of that, at any moment users can cross the association to the event to retrieve any other details
about the full event, which are not contained in the Tag.

 In general the experiment or group will make the selection of key attributes characterizing events, so
that concrete tags are mostly defined for experiment-wide or workgroup-wide data sets. However,
individual physicists have the possibilit y to define their own simpler data collection by using the
Generic Tag mechanism. This second lightweight procedure allows users to define a tag on the fly,
without creating a persistent class. Compared to the concrete tag, there is, of course, a small
performance penalty, but this is most of the time balanced by an increased flexibilit y, since at any
time new fields can be added to the tag and the association to the complete event data remains
available.

 The set of individual tags is called an Explorable Collection, i.e., a collection of objects
implementing an interface for access from IRIS Explorer.

 4.2 An example: creating a Tag collection out of existing events

 The Event we want to create the Tag from is composed by two kinds of information:
� Tracking information, represented by a variable size array of tracks
� Calorimeter information, represented by a variable length array of clusters

/// persistent Tracker class

class Tracker : public ooObj {

public:

ooVArrayT<Track> tracks;

private:

};

/// persistent Calo class

class Calo : public ooObj {

public:

ooVArrayT<Cluster> clusters;

};

/// persistent Event class

class Event : public ooObj {

private:

 int evtNo;

public:

 d_Ref<Tracker> tracker;

 d_Ref<Calo> calo;

} ;

So, for each event, we will have a collection of tracks and a collection of clusters, plus a unique
event identifier.

The classes implementing a single track or cluster will contain information related to the
particle traversing the two sub-detectors:

// Basic track: persistent by embedding

class Track {

public:

double getPhi() { return phi;}

 double getTheta() { return theta;}

 double getPt() { return pt;}

private:

 double phi;

 double theta;

 double pt;

};

// Basic cluster: persistent by embedding

class Cluster {

public:

 double getPhi() { return phi; }

 double getTheta() { return theta; }

 double getEnergy() { return energy; }

private:

 double phi;

 double theta;

 double energy;

};

The tag we want to create will contain the pT and phi attribute of the tracks having maximum
and minimum pT, plus the event unique identifier. Hence the Tag description will be something li ke:

HepExplorableGenericTags highPt; // create a tag collection

// define fields all fields that belong to genTag

 TagAttribute<long> eventNo (highPt,"eventNo");

 /* track with highest pT*/

 TagAttribute<double> ptPlus (highPt,"ptPlus");

 TagAttribute<double> phiPlus(highPt,"phiPlus");

 /* track with lowest pT*/

 TagAttribute<double> ptMinus (highPt,"ptMinus");

 TagAttribute<double> phiMinus(highPt,"phiMinus");

It’ s now possible to scan the events, identify the tracks with minimum/maximum pT and
replicate their pT and phi attributes in the Tag:

ooItr(Event) eventItr;

eventItr.scan(container("Events"));

while(eventItr.next())

 {

 HepRef(Tracker) aTracker = eventItr->tracker;

 int maxTrack = 0, minTrack = 0;

 for (int track=0; track < aTracker->getNoOfTracks(); track++) {

 if (aTracker->tracks[track].getPt()

 > aTracker->tracks[maxTrack].getPt())

 maxTrack = track;

 if (aTracker->tracks[track].getPt()

 < aTracker->tracks[minTrack].getPt())

 minTrack = track;

 }

highPt.newTag(); // create a new tag (all fields have default values)

 eventNo = eventItr->getEventNo();

 ptPlus = aTracker->tracks[maxTrack].getPt();

 phiPlus = aTracker->tracks[maxTrack].getPhi();

 ptMinus = aTracker->tracks[minTrack].getPt();

 phiMinus = aTracker->tracks[minTrack].getPhi();

}

It is noteworthy that the Tag’s attribute are managed exactly as standard C++ variables: the
overloaded assignment operator will t ake care of putting the values in the Tag that will be stored in
the database.

4.3 The interactive par t

Interactive Analysis in IRIS Explorer is implemented by a set of HEPExplorer modules.
Generally speaking, the current set of modules allows users to extract data from an Objectivity/DB
data store and put them in one or more HTL histogram(s). In particular the user can select an
Explorable Collection, define a set of cuts over the collection as a C++ expression, define the input
streams for the HTL histogram(s) to produce and automatically generate and compile C++ code that
implements the cuts and fill t he histograms.

Apart from accessing the data in the tag, users can invoke C++ functions that implement, e.g.,
common physics or access the experiment specific event object (by traversing the association
between a tag and its related event). User-defined functions can be used whenever a C++ expression
is allowed. This means, for example, that reconstruction C++ code can be used in the analysis module
(and the other way round).

Since there’s no interpreter involved, the analysis code can use any C++ feature supported by
the local compiler (templates, STL, exceptions, etc.)

An alternative to code generation/dynamic compilation is the use of a restricted C++ syntax to
specify the cuts. Such restricted syntax is then interpreted to filter the data that will fill t he histogram.
An example of such approach is the TagViewer module (see Figure 2 below):

Figure 2 – The TagViewer Module

The cuts are expressed as a simple C++ expression involving only Tag variables, relational and
logical operators.

5. CONCLUSIONS

The HEPExplorer package is a successful effort to integrate IRIS Explorer and Objectivity/DB
so that high energy physicists can ‘exercise’ the analysis chain, from event to paper, on data stored in
an object oriented database.

We believe IRIS Explorer is a good environment for data analysis and visualization: its
compliance with graphics standard, its simple development environment, its robustness and
modularity being certainly the main good points.

The layered approach has proved to be an effective way to cope with change.Since the first
release of LHC++ (July 1998) we have already changed the basic C++ libraries (from Rogue Wave’s
Tools.h++ to STL) and the whole histogram package (from HistOOgrams to HTL) without major
impact on any other part of the package.

REFERENCES

[1] CERN Program Library (CERNLIB): see http://wwwinfo.cern.ch/asd/index.html.

[2] LHC++: see http://wwwinfo.cern.ch/asd/lhc++/index.html

[3] RD45 - A Persistent Object Manager for HEP, see
http://wwwinfo.cern.ch/asd/rd45/index.html.

[4] The Object Database Management Group (ODMG): see http://www.odmg.org/.

[5] The IEEE Storage System Standards Working Group: see http://www.ssswg.org/.

[6] Objectivity/DB: see http://www.objectivity.com.

[7] The High Performance Storage System: see http://www.sdsc.edu/hpss/.

[8] IRIS Explorer User Guide, ISBN 1-85206-110-3, 1995.

[9] OpenGL Reference Manual, ISBN 0-201-63276-4, Addison Wesley, 1992.

[10] OpenInventor Reference Manual, ISBN 0-201-62491-5, Addison Wesley, 1994.

[11] An Object-Oriented Detector Simulation Toolkit (GEANT-4): see
http://wwwcn.cern.ch/pl/geant/geant4.html.

[12] Virtual Reality Markup Language (VRML): see http://vrml.wired.com/.

[13] 3DMasterSuite: see http://www.tgs.com/.

[14] NAG C library: see http://www.nag.co.uk/.

[15] HEPODBMS: see http://wwwinfo.cern.ch/asd/lhc++/HepODBMS/user-guide/ho.html.

[16] HTL: see http://wwwinfo.cern.ch/asd/lhc++/htlguide/htl.html.

[17] HBOOK: see http://wwwinfo.cern.ch/asdoc/hbook_html3/hboomain.html.

[18] HEPInventor: see http://home.cern.ch/~couet/HEPInventor_doc/.

[19] HEPExplorer: see http://wwwinfo.cern.ch/asd/lhc++/HepExplorer/index.html.

[20] GEMINI: see http://wwwinfo.cern.ch/asd/lhc++/Gemini/.

[21] MINUIT - Function Minimization and Error Analysis Package, CERN Program Library
Long Writeup D506: http://wwwinfo.cern.ch/asdoc/minuit_html3/minmain.html.

[22] HEPFitting: see http://wwwinfo.cern.ch/asd/lhc++/HepFitting/.

[23] CLHEP - A Class Library for HEP, see
http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

[24] PAW - the Physics Analysis Workshop - CERN Program Library Long Writeup, Q121

GEMINI AND HEPFITTING COMPONENTS OF LHC++

Zbigniew Szkutnik *)
Department of Applied Mathematics, University of Mining and Metallurgy, Cracow, Poland

Abstract
Design concepts and usage of Gemini and HEPFitting components of
LHC++ environment are presented. Gemini's approach to error analysis and
the relation of Minos-type errors and Hessian-based errors are briefly
discussed.

1. INTRODUCTION

Gemini [1] is a GEneral MINImization and error analysis package implemented as a C++ class
library. It provides a unified object oriented Application Programming Interface to various
minimizers. The currently supported set of minimizers (Minuit [2] and NAG C [3]) can be extended.
For the common subset of functionality, it is up to the user which minimization engine does the work.
The user can easily switch between various minimizers without essential changes in the application
code. Gemini finds a minimum of an objective function, possibly subject to general constraints, and
performs an error analysis. While being a part of LHC++, Gemini only depends on the actual
minimizer and may thus be used without the other LHC++ components.

HEPFitting [4] is a collection of C++ fitting classes, based on Gemini. It allows for loading
data, defining a model and a fitting criterion, performing a fit and obtaining fit results, including error
analysis. Basic HEPFitting classes are derived from Gemini classes and thus inherit Gemini's basic
minimization and error analysis features. Additional, special features of HEPFitting include a simple
way of setting parameters for the error analysis and a mechanism for building a model out of
predefined components as well as for defining an arbitrary model. A suitable objective function to be
minimized is automatically created, according to the fitting method chosen. Models can be fitted both
to HTL histograms [5] and to arbitrary data points which can be loaded via user's arrays.

The intended primary area of application of both packages is batch data processing. Thus, apart
from a simple text-mode printout of Minos- and Hessian based confidence regions, the packages do
not provide any other visualization tools.

2. THE CONCEPT AND IMPLEMENTATION OF GEMINI

2.1 Prerequisites

Minuit, a FORTRAN minimization package, has been in successful use in HEP for more than 30
years. Especially, its error analysis has become a de facto standard in physics data analysis. An
analysis of users' requirements at the early stage of the Minuit-replacement project [6] showed that a
Minuit's successor should provide Minuit's functionality in a Minuit-style and, additionally, that some
new features li ke, e.g. general constraints, should be provided. It has also been stressed on many
occasions that Minos-type error analysis must be possible with the new package, in order that it can
be accepted by the HEP community.

No single commercially available product could fulfill all the requirements, although we
identified the family of NAG C minimizers as the most prospective candidate, both with respect to
functionality and to performance. We thus decided to write a small (currently about 3200 lines of
code) C++ open-ended package which could internally use various working engines and which would

*) The author was working for LHC++ while being a Scientific Associate at CERN in 1997 and 1998 .

provide all the requested functionality in the requested style. Switching between various minimizers
should not require any essential changes in the user's code in order to ease the cross-checks and the
transition period for the Minuit-users. This is how Gemini came to li fe.

Special effort proved to be necessary in order to implement Minos-type errors. Being standard
within the HEP community, this type of errors is by no means standard in the non-HEP world. To the
best of our knowledge, Minuit was the only package which implemented this type of errors. We thus
decided to write a special Minos analysis module for Gemini, so that any type of minimizer could be
plugged-in, regardless on whether it is able to perform the Minos analysis or not.

2.2 Functions and objects

The basic types of objects used within Gemini are: the objective function object, the minimization
object and the contour object.

The objective function is the function to be minimized. It is defined by the user as a C/C++
function, which computes the objective function value and, optionally, its gradient, for a given vector
of function arguments. The function is then captured into an objective function object, which is of the
type OBJfun.

The minimization object is the main object, which contains the complete problem definition. It
also provides methods for assigning an objective function object, defining the objective function
arguments and their admissible regions, setting minimization options, running a minimizer, obtaining
the current status of the minimization process, obtaining results and error analysis. If the
minimization object is declared as being of type CMinuit, then Minuit is used as the minimization
engine. Similarly, if it is of type NAGmin, then NAG C minimizers are used. A generic pointer of the
type (GEmini *) can point both to CMinuit and NAGmin type objects and can be used, if
minimization objects are dynamically allocated on the heap. This allows the user to select the
minimizer at run time rather than at compilation time.

A contour is a set of points from the boundary of a (bounded) set in a two-dimensional
subspace. In Gemini, it typically represents either an elli ptical boundary of a Hessian-based
confidence region for a selected pair of parameters, or a Minos contour, i.e. the curve on which the
minimum of the objective function, with respect to all the remaining parameters, equals the current
minimum plus a user-defined value. Contours are implemented in Gemini as an abstract data type
with overloaded assignment and addition operators. Addition means, in this case, merging and can be
used for overlaying the contours. A public method plot() produces a text-mode printout of, possibly
overlayed, contours.

2.3 Example

The following example is a complete C++ program. It minimizes the Powell 's quartic function of four
arguments defined as

4422)(10)2()(5)10(),,,(uxzyuzyxuzyxf ��������
subject to one nonlinear constraint

12222 ���� uzyx

and one linear constraint

0���� uzyx .

Note that, for the unrestricted problem with the Powell 's objective function, the Hessian
becomes singular at the origin and the minimum point is not uniquely defined. With added
constraints, the Hessian singularity point is excluded from the admissible region. Also note that this

nonlinear optimization problem cannot be solved with Minuit, which only allows for simple bound
constraints to be imposed.

#include " gemini.h"

inline double square(double x) { return(x*x); }
const int nop=4; // number of parameters

// objective function (Powell's quartic function of 4 vars)

void myfun(int n, double g[], double * objf, const double parms[], int code)
{
 // define aliases for convenience
 const double & x=parms[0], & y=parms[1], & z=parms[2], & u=parms[3];

 * objf = square(x+10*y) + 5*square(z-u) + square(square(y-2*z)) +
 10* square(square(x-u));
 if(code == 2){
 // gradient components
 g[0] = 2*(x+10*y) + 40*(x-u)*square(x-u);
 g[1] = 20*(x+10*y) + 4*(y-2*z)*square(y-2*z);
 g[2] = 10*(z-u) - 8*(y-2*z)*square(y-2*z);
 g[3] = -10*(z-u) - 40*(x-u)*square(x-u);
 }
}

// non-linear constraint function (sum of squares equals 1)

void nlf(int nop, double g[], double * val, const double parms[], int code)
{
 const double & x=parms[0], & y=parms[1], & z=parms[2], & u=parms[3];

 * val = square(x) + square(y) + square(z) + square(u);

 if(code == 2){
 // gradient components
 g[0]=2*x; g[1]=2*y; g[2]=2*z; g[3]=2*u;
 }
}

int main()
{
 // capture objective function into objective function object
 OBJfun fcn (myfun);

 // create main minimization object
 NAGmin nlp ("Non-linear optimization example", nop, & fcn);

 // impose non-linear constraint
 if(nlp.setNlinConstraint(11, nlf, 1.0, 1.0)) exit(1);

 // impose linear constraint
 double lincoef[nop];
 lincoef[0] = lincoef[1] = lincoef[2] = lincoef[3] = 1.0;
 if(nlp.setLinConstraint(1, lincoef, 0, 0)) exit(1);

 nlp.printSetup();
 if(nlp.minimize()) exit(1);
 nlp.printResults();

 return(0);
}

3. ERROR ANALYSIS IN GEMINI

3.1 General concept of errors

The general concept of 'errors' or 'uncertainties' in Gemini is the same as in Minuit. For a given
objective function)(

�
F to be minimized, with),...,(1 p

��� �
, and for a given error parameter UP,

the 'uncertainty set' US of the solution)
~

,...,
~

(
~

1 p

��� �
 is defined as

}UP)
~

()(:{US ��	

 FF (1)

For any sub-vector of
 ~ , the uncertainty set is constructed as the orthogonal projection of US
onto the corresponding plane spanned by the selected components.

This purely geometrical concept is meaningful, in qualitative sense, for arbitrary objective
functions. 'Errors' or 'uncertainties' are related to the shape of the objective function in a
neighborhood of the minimum.

Well -defined quantitative meaning, in probabili stic terms, can be assigned to such defined
'errors' or 'uncertainties' in statistical problems, when the objective function is a fit criterion, for
example a chi-squared, log-li kelihood or least squares loss function.

Error analysis based on the plain difference)
~

()(

 FF � is called Minos analysis, as in
Minuit. In this context, we also use terms li ke Minos error and Minos confidence region. Minos
analysis can be computationally very costly, however, as it requires multiple function minimization
to find points on the boundary of US or of its projection. It will be seen below, how Minos analysis
can formally be justified in statistical terms. For maximum likelihood estimators and standard
minimum chi-squared estimators, for example, it can be done via the asymptotic chi-squared
distribution of a suitably transformed li kelihood ratio.

A standard way to overcome the computational diff iculty of Minos analysis is to approximate

)
~

()(

 FF � with)
~

()
~

(5.0

 ��� HT , with H being the Hessian of F at � ~ . One obtains this

approximation via the standard Taylor expansion of F around � ~ and using the fact that the gradient
of F at the minimum is zero. With this approximation, approximate versions of both US and its
projections can be found analytically, so that multiple function minimization can be avoided. This
leads to the standard Hessian-based error analysis and is related to asymptotically normal
distributions of estimators.

In the following sections, those two approaches are described in more detail and their links to
standard statistics exposed. Only unconstrained minimization problems are discussed here. For a
discussion of error analysis for problems with constraints, see e.g. [1]. It is always assumed that the
problem is regular enough for the underlying mathematical theory to be applicable. The aim of this
description is to expose the main ideas rather than to present technical details. Relevant mathematical
results can be found, for example, in the books [7-9].

Ref. [10] is a standard statistical reference for HEP-physicists. It contains, in particular, a
discussion of the Minos idea in less formal terms of an 'implicit transformation to linearity and back',
which provides further insight into the idea of Minos.

3.2 Minos error analysis

The Minos uncertainty set US for the whole vector
 is defined above in (1). In order to obtain an
uncertainty set for two components only, say 1

�
 and 2

�
, we have to project US onto the plane

spanned by those components. This projection is a set of points),(21

��
 such that

UP)
~

()(�� ��
FF , for some p

��
,...,3 . Equivalently, it is the set of points),(21

��
 such that the

minimum of)(�F with respect to p�� ,...,3 and with 1� and 2� fixed is not greater than

UP)
~

(��F . The boundary of this set is thus the contour of the function

)(min),(
~

,...,21 3
��� �� FF

p

�
which corresponds to UP)

~
(),(

~
21 �� ��� FF .

For a single parameter, say 1
� , we define a function

)(min)(ˆ
,...,1 2

�� �� FF
p

�
and construct the uncertainty set, or the projection of US, as UP})

~
()(ˆ:{ 11 �� ��� FF . For a

regular function F, genuine local minimum � ~ and 'small ' UP, this will be an interval],[11
�� , say.

The positi ve and negative Minos errors are then defined as, correspondingly, 11

~�� � and 11

~ �� � .

In order to give Minos errors a quantitative, statistical meaning, let us assume first that F

equals -2*log-likelihood for a regular statistical model. The unrestricted minimum � ~ of F is then a

maximum likelihood estimator of � . Let further � ˆ be the minimum of F, subject to r independent

restrictions on � . It is well -known that, for any true � which satisfies the restrictions,)
~

()ˆ(�� FF �
is asymptotically chi-squared distributed with r degrees of freedom - a fact used for the construction
of the so-called asymptotic li kelihood ratio test (� -test).

It follows immediately that, for any true � with the given values of the first two components,

)
~

(),(
~

21

���
FF � is asymptotically chi-squared distributed with two degrees of freedom (we impose

two constraints by fixing the values of 1

�
 and 2

�
) and, for any true � with the given value of the

first component,)
~

()(ˆ
1

��
FF � is asymptotically chi-squared distributed with one degree of freedom

(we fix the value of 1

�
 only).

A standard Neyman asymptotic (1- �)-confidence region for),(21

��
 can then be constructed

as

})
~

(),(
~

:),{(2121 !!!!!
cFF "#

with c being the (1- $)-quantile of the chi-squared distribution with two degrees of freedom. This is

exactly the projection of US, with UP = c , onto the plane spanned by the first two components.

Similarly, an asymptotic Neyman (1- $)-confidence region for 1

!
 is

})
~

()(ˆ:{ 11 !!!
cFF "#

with c being the (1- $)-quantile of the chi-squared distribution with one degree of freedom. Again,

this is the projection of US with UP = c onto the first axis.

With obvious modifications, similar argument applies, of course, to any subset of the
components of % , which leads to the following conclusion:

If F equals -2*log-likelihood, then Minos confidence regions for r components of % have
the asymptotic coverage probabilit y 1- $, if UP is the (1- $)-quantile of the chi-squared

distribution with r degrees of freedom. With r = 1 and UP = 1, the coverage probabilit y
corresponds to that of a ' & one-sigma error bar' for a single parameter.

The scale factor of F is essential. Additi ve terms, which do not depend on ' can be dropped,
however.

In Gaussian models, -2*log-likelihood equals, up to a constant, additi ve term, the chi-squared
fit criterion and the whole analysis applies. In many other cases, the equality holds asymptotically,
thus validating the Minos analysis with F being the chi-squared fit criterion. In particular, this is true
for the Poisson histogram cells counts model (see e.g. [1]).

3.3 Hessian-based error analysis

In the Hessian-based error analysis,)
~

()(((FF) is approximated with)
~

()
~

(5.0 (((())* HT ,

with H being the Hessian of F at (~ . The approximate version US' of the uncertainty set US,
corresponding to a given value of the UP parameter takes then the form

UP})
~

()
~

(5.0:{US' +))*, (((((HT . (2)

The orthogonal projection 'USr of US' onto the plane spanned by, say, the first r components

of ' consists of all points),...,(1 r((such that the minimum of)
~

()
~

((((()) HT with respect to

pr ((,...,1- is not greater than 2*UP. Let us split .. ~/ into two sub-vectors: I. consisting of the

first r components and II. consisting of the remaining p-r components. Correspondingly, we can

write

01
23456

212

121

HH

HH
H T

with 1H of size (r, r) and 2H of size (p-r, p-r). Looking for a minimum with respect to II

7
 and with

I

7
 fixed, we have then

)(2)
~

()
~

(2121 IIII
T
IIII

T
II

T
I

T GHHHH
77777777777 688699

and

III
T

II HHG
777

212 22)(grad 86 .

The equation 0)
~

(grad 6
IIG

7
 gives the minimum point I

T
II HH

77
12

1
2

~ :;< . The minimum

value is

I
TT

III HHHHG ===)()
~

(12
1

2121

:;<
which gives

UP})(5.0:{ 12
1

2121
' >;?< :

I
TT

IIr HHHHUS === .

On the other hand, using the symmetric, block matrix inversion formula, we have

@A
BCDE ;

;<@A
BCDE :

:::
)(

)(

12
1

2

1
12

1
2121

1

212

121

XHIHX

XHHHH

HH

HH
TT

T

T (3)

with 1
12

1
212112

1
2)(

::: ;;< TTT HHHHHHX . This means that, with 1)5.0(
:?< HS , we can write

UP})
~

()
~

(:{US' 1 FGGH I JJJJJ ST

and, denoting by rS the upper left (r, r) portion of S , the projection 'USr takes the form

UP}:{ 1' FH I
Ir

T
IIr SUS JJJ

. (4)

In order to set this in relation with statistics, recall that if F equals -2*log-likelihood, then the

maximum likelihood estimator J ~ is, in regular cases, asymptotically normally distributed

)I,AN(~
~ -1KJJ

where HI KK E5.01 LHI is the Fisher information matrix for the whole data set. Again, in regular

cases, one can reasonably assume that)
~

(E JK HH M and use the inverse of)
~

(5.0 NHO as an

estimate of the asymptotic covariance matrix of N ~ .

This is clearly related to (2) and means that, since)
~

()
~

(1 NNNN PP QST is asymptotically chi-

squared distributed with p degrees of freedom, in order to have the asymptotic 1- R coverage
probabilit y for US', one should set UP to the (1- R)-quantile of the chi-squared distribution with p
degrees of freedom.

Further, rS in (4) can be interpreted as the covariance matrix of the marginal distribution of

),...,(1 rNN and, in view of its asymptotic normality, setting UP in (4) to the (1- R)-quantile of the chi-

squared distribution with r degrees of freedom, we get the asymptotic coverage probabilit y 1- R for
'USr .

For the chi-squared fit criterion, the approximation argument from the previous section applies.
More generally, the above argument can be extended to any M-estimator, in which case the
asymptotic covariance matrix needs not to be the inverse of the Fisher information matrix, but
continues to be the (properly normalized) inversed Hessian.

For practical recommendations on how to set the value of the error parameter UP, see [1].
Note, however, that if the HEPFitting package is used, then the value of UP is automatically set,
according to the fitted model and the fitting method.

4. THE CONCEPT AND USAGE OF HEPFITTING

4.1 Basic features

HEPFitting is a small C++ package (currently about 1200 lines of code) built on top of Gemini with
the aim to ease the most common fitting applications of the minimizers. HEPFitting can internally
use both Minut and NAG C minimizers. No change in the application code is needed, the switch
being done when the application code is being compiled. If _MINUIT_ is defined at compilation
time, then Minuit is used. Otherwise, NAG C minimizers are used.

The main fitting object of the type HEPHistofit contains a complete definition of the fitting
problem and provides methods for defining the problem, loading data, performing the fit and
obtaining results. The fitting region can be restricted by imposing interval limit s on space variables,
as well as by including/excluding any single histogram bin or data point.

Currently implemented fitting criterions are chi-squared and Poisson maximum likelihood.
Various options are provided for handling empty bins and zero-errors data points. The user only
defines the model itself. A suitable objective function to be minimized is automatically defined by
HEPFitting, according to the selected fitting criterion, and the error parameter is properly set so that

the computed errors are the standard one-sigma-errors. All available components of the objective
function gradient are constructed from the model function gradient, as provided by the user in the
model function. The package checks, whether the data set and the model assigned to the fitting object
are compatible with respect to the space dimensionality.

Special methods are provided for obtaining both elli ptical (or Hessian-based) and Minos
confidence regions for a selected pair of parameters, which only require that the user specifies the
requested confidence level.

4.2 Defining the model

The fitted model is encapsulated in an object of the type MODELfun, which can be used to capture an
arbitrary user's model, defined as a C/C++ function, as well as to compose a model out of predefined
elementary models, li ke Gaussian, polynomial and exponential ones. Any additional functionality
needed in the user's application can be added through the inheritance mechanism, in which case the
user derives his/her own class from MODELfun and overrides the virtual member function modelfun
with the actual model function.

When a model is fitted to a histogram, the model function values in bin reference points are
multiplied by bin volumes, before being compared to bin contents. The model function thus
represents the intensity function of the underlying Poisson process or a density function and is
independent of the particular histogram binning. The user can ignore bin volumes by selecting special
options, as described in [4].

Various ways of defining a model are described in detail i n [4]. Here, we only discuss the way
a model can be constructed out of predefined components.

A single-component model may easily be defined with a specialized constructor of MODELfun
which takes the component name as an argument (G for Gaussian, E for exponential, Pn for
polynomial of degree n). The model object created this way may immediately be assigned to a fitting
object. For example, in order to fit a Gaussian and then a second-degree polynomial, one can proceed
as follows

 ...
 MODELfun model1("G");
 MODELfun model2("P2");
 HEPHistoFit myFittingObject;

 myFittingObject.setModel(&model1);
 // perform the fit
 ...
 myFittingObject.setModel(&model2);
 // perform the fit
 ...

In order to compose a multi -component model from the built -in standard models, the user has
to derive his/her own class from MODELfun and override the virtual member function modelfun. The
overriden function defines the expression. The components used in the expression may be added en
bloc using the MODELfun public method setComponents(char *string), where string is composed
of blank- or comma-separated components symbols. For other techniques which may be used, see [4].

The order, in which the components are added or, equivalently, the order in which they are
placed in string is significant. The global vector of parameters consists of the components' parameters
stored in the order, in which the components have been added. Similarly, the indices, by which the
components are referenced in the expression, correspond to the order, in which the components have
been added.

The component functions are referenced in the expression as f(i,x,p), where i stands for the
component's index and takes values 0, 1, 2, ..., the vector of space coordinates is denoted by x and p is
the global vector of parameters, as passed through the arguments of the modelfun(...) function.

If only the four basic operations (+ - * /) are used to build the expression, then there is a simple
way to also provide the gradient with respect to parameters, which can significantly improve the
performance of the minimizer. The rule can be formulated as follows: "Look at the components
f(i,x,p) as if they were all functions of the same single variable p, use df(i,x,p) to denote derivatives,
apply well-known differentiation rules and assign to g the resulting expression". A suitable gradient
vector will t hen automatically be created and used.

4.3 Example

In the following example, the model is defined as the product of a second-degree polynomial and a
Gaussian. Since the parametrization of such a model is redundant, the Gaussian's 'mass' parameter
has to be fixed, before performing a fit. Otherwise, the model would not be identifiable.

class myModelObject : public MODELfun{
public:
 // define the epression by overriding modelfun()
 double modelfun(const double x[], const double p[], array_n<double>& g,
 int code){
 // compute gradient, if requested
 if(code==2)
 g = df(0,x,p)*f(1,x,p)+f(0,x,p)* df(1,x,p);

 // return model function value
 return f(0,x,p)*f(1,x,p);

 }
};

int main(){
 // create empty fitting object
 HEPHistoFit myFittingObject;

 // create model object and define model's components, then assign
 myModelObject P2Gmodel;
 P2Gmodel.setComponents("P2,G");
 myFittingObject.setModel(&P2Gmodel);

 // load data, set initial parameters' values e.t.c.
 ...

 // fix the first parameter of the Gaussian at 1 (It's
 // the 4th parameter preceded by 3 parameters of P2
 myFittingObject.parmDef(4,"Gmass",1,1,1,1);

 // perform a fit
 myFittingObject.perform(PoissonMLfit);
 myFittingObject.printResults();

 // 90% confidence regions for the free parameters of the Gaussian
 GeminiContour c1, c2;
 MyFittingObject.ellipticalConfidenceRegion (5,6,c1,0.90);
 MyFittingObject.minosConfidenceRegion (5,6,c2,0.90);
 (c1+c2).plot(); // overlay and plot
}

5. CONCLUSIONS

With Gemini, we believe to have a flexible and open framework for function minimization.
Numerous tests have proved that the family of NAG C minimizers can satisfy the requirements of the
HEP community. However, with its own Minos analysis module, Gemini becomes independent of the
minimizer actually used, so that NAG C may easily be replaced with another minimizer, without
affecting the users' code.

Using HEPFitting helps the users to keep to a minimum the amount of code written in order to
perform standard fits. The implementation of the build-in elementary models and the internal
mechanism of computing all available derivatives of the objective function result in considerable
improvements in the minimizer's performance, by keeping the number of the model function calls at
the minimum.

ACKNOWLEDGEMENTS

The author kindly acknowledges CERN's hospitality while working on the CSC 99 lecture.

REFERENCES
[1] Gemini - A minimization and error analysis package in C++, User's & Reference Guide

(1998), see: http://wwwinfo.cern.ch/asd/lhc++/Gemini/.

[2] MINUIT - Function minimisation and error analysis package, CERN Program Library Long
Writeup D506 (1994), see: http://wwwinfo.cern.ch/asdoc/minuit_html3/minmain.html.

[3] NAG C Library Manual, Mark 5, Vol. 2, The Numerical Algorithms Group Limited (1998),
see: http://www.nag.co.uk/.

[4] HEPFitting - A C++ fitting API for HEP based on Gemini, User's & Reference Guide (1998),
see: http://wwwinfo.cern.ch/asd/lhc++/HepFitting/.

[5] Histogram Template Library, User Guide (1999),
see:http://wwwinfo.cern.ch/asd/lhc++/htlguide/htl.html

[6] Minuit++, Replacement for Minuit and HEP statistical tools. User Requirements Document
(1997), see: http://wwwinfo.cern.ch/asd/lhc++/requirements/stable/URD/html/

[7] S.D. Silvey, Statistical inference (Chapman and Hall , 1975).

[8] Y. Bard, Nonlinear parameter estimation (Academic Press, 1974).

[9] R.J. Serfling, Approximation theorems of mathematical Statistics (Wiley, 1980).

[10] W.T. Eaddie, D. Drijard, F. James, M. Roos and B. Sadoulet, Statistical methods in
experimental physics (North-Holland, 1971).

DATA STORAGE AND ACCESS IN LHC++

Marcin Nowak
CERN IT Division, RD45 project - CH 1211 Geneva 23 Switzerland

Abstract
This paper presents LHC data requirements as well as some features of
HEP data models and explains how an ODBMS can be used to address
them. Essential features of object databases will be discussed, followed by
those specific to Objectivity/DB, which is the database currently used in
LHC++. The differences between transient and persistent data models will
be given with some rules for how to convert the former into the latter.
Next, the paper will focus on HepODBMS layer, which is a set of HEP
specific classes extending the functionality of a database and forming an
interface used by other LHC++ software components. The concept of event
collections and object naming will be discussed.

1. INTRODUCTION

Experiments at the Large Hadron Collider (LHC) at CERN will generate huge quantities of data:
roughly 5 petabytes (1015 bytes) per year and about 100 PB over the whole data-taking period (15+
years). Data will be collected at rates exceeding 1GB/s and later analyzed, perhaps many times. The
analysis frameworks of the new experiments will be developed using object-oriented (OO)
technologies and consequently their data will be represented in object-oriented data models, often of
significant complexity.

These factors form a challenging data storage and management problem and it seems clear that
the traditional solutions based on sequential Fortran files would not be adequate. In 1995 the RD45
project was initiated at CERN to investigate new solutions and technologies. The emphasis was put
on commercial products, with the hope of minimizing development costs and maintenance effort over
the very long period of use. The evaluation of different technologies such as language extensions for
persistency, light-weight object managers, object request brokers and object databases led to the
recommendation of an Object Database Management System as the main data management product,
together with a Mass Storage System to provide physical storage.

Studies of the various ODBMS products on the market, particularly with respect to their ability
to satisfy LHC data management requirements, resulted in the selection of a particular database:
currently Objectivity/DB.

Experiment Data Rate Data Volume

ALICE

CMS

ATLAS

LHC-B

1.5 GB/sec

100 MB/sec

100 MB/sec

20 MB/sec

1 PB/year (during one month)

1 PB/year

1 PB/year

200 TB/year

Table 1 Expected Data Rates and Volumes at LHC

2. OBJECT DATABASES

2.1 Data Model

In OO programming style the data is represented as a set of objects interconnected with each other in
various ways, depending on the object model. Figure 1 shows a simple example of the data model for
a HEP Event.

(Y H Q W((YY HH QQ WW

7 U D F N / LV W77 UU DD FF NN // LL VV WW

7 U D F N H U77 UU DD FF NN HH UU & D OR U&& DD OO RR UU ���

7 U D F N77 UU DD FF NN
7 U D F N77 UU DD FF NN7 U D F N77 UU DD FF NN

7 U D F N77 UU DD FF NN
7 U D F N77 UU DD FF NN

+ LW / LV W++ LL WW // LL VV WW

+ LW++ LL WW+ LW++ LL WW+ LW++ LL WW+ LW++ LL WW+ LW++ LL WW

Figure 1: Simple Logical Model of Event Data Objects

An application working with a given data model would traverse the connections between
objects to find the data it needs or to modify their contents. It may also modify the network of objects
by adding or removing some of them. In the Event model example, the application could navigate
from the main Event object to its tracking detector, retrieve a particular track from the track list, then
navigate to all associated hit objects to perform a track refit.

2.2 Transient Objects

In the traditional run-cycle, an application would first create in memory the objects it needs and then
fill them with some data. Next, it would perform the actual task it was designed for: working with its
data representation. Finally, the program would store the results and delete objects from memory. In
this scenario, the lifetime of an object is rather short and always bound to the application execution
time – the objects exist only within the context of a single program. In the database terminology such
objects are called transient (i.e. temporary).

OO languages support transient objects and navigation between them (the latter via pointers
and references in C++). Creating and traversing in-memory networks of objects is very efficient and
type-safe even for polymorphic classes. This, however, assumes that the entire network of objects is
maintained in the memory. There is little support from today’s languages regarding I/O operations on
such networks of objects.

2.2.1 Object Input / Output

Providing I/O for complex data models is a difficult task for the programmer. In the first place, 2
different data formats have to be maintained for every class that is to be stored, namely:

• Class definition used by the application, including pointers to other objects

• Data encoding format used when storing in a file

The formats must be assumed to be different, as the run-time format is tightly coupled to the
operating system and even compiler version. Thus, even if we start with an exact memory copy in a
file, the possibility of handling different run-time formats must be provided: the application code has

to perform conversions between the two representations. The problem increases further since any
individual class definition is likely to change over the long run period of LHC, leaving some objects
in the old format stored on tape.

The programmer has also to decide:

• How to perform the conversion.
The conversion of object attributes may require byte-swapping or alignment adjustment, which is
a time-consuming, but rather straightforward operation. What is more difficult is storing the
connections between objects, which constitute the shape of the object network. This requires
translating pointers and references into a storable format and a special code that will be able to
rebuild the network later.

• When to perform the I/O.
All data transfers have to be initiated explicitly. Typically, some amount of data has to be read
from disk when the application starts and all useful results have to be stored at the end. During
the execution time, additional I/O operations may be required when the program follows a link
referencing an object that is not yet in memory. In a multi-user environment, part of the data in
memory may become stale as a result of an update performed – by another user or process – upon
the corresponding object on disk. Such situations must be detected to avoid data corruption.

• How much data to transfer.
In a complex HEP application it is difficult to predict which data items will be used. In many
cases all of the event data is read, just in case it is needed. This approach may result in degraded
performance.

Code that deals with object I/O often constitutes a large part of the application. Maintaining
this code is both tedious and error-prone. Consistency between the disk and memory representation is
not performed automatically and errors in this layer may lead to obscure software problems. In
addition, large amounts of I/O related code in a class makes programs less understandable and may
obscure the actual services provided by the class.

2.3 Object Persistency

Persistent objects are the opposite of transient objects. They do not disappear when the application
finishes (they persist). This is possible because they do not belong to the application context, but
rather to the context of a persistent store. In the case of an ODBMS, they belong to a database
context. A persistent object will disappear only when explicitly deleted from the store.

Programs working with persistent objects do not “own” them – they receive only a copy from
the store. It is possible for more then one program to access the same object at the same time in a
“read” mode.

Object databases maintain the consistency between objects on disk and in memory. The
programmer never deals with the disk representation – but sees only the run-time definition of the
class. This feature is called “tight language binding”. The ODBMS also takes care of all I/O that has
to be performed to retrieve an object. All the problems discussed in section 2.2.1 are handled by the
system and not by the application programmer.

Persistent objects are real objects. They support run-time type identification, (multiple)
inheritance, polymorphism (virtual functions) and abstract data types. In C++ they can also be
instances of templated classes.

2.4 Transactions

Object databases provide transactions in a similar way that relational databases do. The transactions
are atomic, consistent, isolated and durable (so-called A.C.I.D. [2] properties) and are usually not
nested. All data access is done inside a transaction – otherwise the store is not accessible. The

standard transaction types are “read” and “update”. Some systems provide additional types of
transactions that e.g. allow simultaneous read and write to the same objects An example of such a
transaction type is the multiple reader, one writer (MROW) transaction supported by Objectivity/DB.

As all data access occurs inside a transaction, all I/O operations are transaction bound. At the
start of a transaction, only the connection to the database is established. As the application proceeds
to navigate in the data network and access objects, the relevant pieces of data are retrieved. The
ODBMS tries to ensure that there are no unneeded data transfers, in order to optimise performance.
If the application modifies objects or creates new ones, the changes may be kept in memory or
written to disk, but they are not immediately visible to other clients. Only when the transaction is
committed, all modifications are flushed to disk and registered in the database.

Transactions in database systems are the main tool to ensure data consistency. If a transaction
is interrupted (aborted) in the middle, the database status is not changed.

2.5 Navigational Access

As described above, the main method of finding an object in the network is by navigation. Transient
objects use pointers and references as links. A pointer is a memory address and uniquely identifies an
object in the application context (or virtual memory address space). Persistent objects, which exist in
the database context, need a different kind of identification.

When a new persistent object is created, the ODBMS assigns to it a unique Object Identifier
(OID). The actual implementation of the OID varies between different systems, but they have
common functionality – they allow the object to be found in the disk store. OIDs that point directly to
the object are called physical and OIDs that use indirection are called logical. Logical OIDs give
more flexibility at the cost of performance and scalability.

Object Identifiers replace pointers and references in persistent objects. They are used to create
uni-directional (pointing in one direction, like a C++ pointer) associations between them. In most
products they also enhance the idea of pointers by allowing:

• bi-directional associations
bi-directional association is a relation between 2 objects. From an implementation point of view
it may look just like 2 objects pointing to each other, but the ODBMS makes sure that pointers on
both sides are set correctly (or reset) at the same time. It is not possible to modify only one of
them, thus ensuring consistency.

• 1-to-n associations
1-to-n association is a relation between one object and an arbitrary number of objects on the other
side. It may be uni- or bi-directional.

The OID is typically hidden from the programmer by wrapping it in a smart pointer
implementation. Smart pointers are small objects that behave semantically in the same way as normal
pointers, but they also provide additional functionality. If the smart pointer provided by ODBMS is
dereferenced (in C++ by using “*” or “->” operator on it) the system is able to check if the object
pointed to is already in memory, and if not, read it from disk using the OID contained in the smart
pointer. After that, the smart pointer behaves just like a normal pointer. All this happens without any
additional code in the application.

The ODMG standard [1] defines ODBMS smart pointer as a templated class d_Ref<T>. Figure
2 shows an example program using d_Ref<> in the same way as normal C++ pointer.

Collection<Event> events; // an event collection
Collection<Event>::iterator evt; // a collection iterator

// loop over all events in the input collection
for(evt = events.begin(); evt != events.end(); evt++)

{
// access the first track in the tracklist
d_Ref<Track> aTrack;

 aTrack = evt->tracker->tracks[0];

// print the charge of all its hits
for (int i = 0; i < aTrack->hits.size(); i++)

cout << aTrack->hits[i]->charge
 << endl;

}

Figure 2: Navigation using a C++ program

As a consequence of the tight binding of ODBMS to the programming language the application
programmer perceives the database store as a natural extension to application memory space. Using
the database one can create networks of objects much larger than would be possible in memory, with
indefinite lifetime and the possibility to efficiently navigate among them.

2.6 Database Schema

If the ODBMS is to be able to perform automatic conversion between object representation on disk
and in memory, it has to have detailed information about the object. It has to know the type, name
and position of every attribute in the object. This information needs to be registered in the database
before any object of a given class can be stored. All class definitions known to the ODBMS are called
the database schema.

The schema registration process depends on the ODBMS and on the programming language. In
Objectivity/DB a C++ class is entered into the schema by a program that pre-processes the header
files. The headers may contain normal C++ classes, with the exception that object associations
should replace pointers.

2.7 Concurrent Access to Data

ODBMS products provide support for multiple clients working on the same data store and
concurrently updating it. Usually ODBMSs introduce a central “lockserver” that co-ordinates the
updates by keeping a lock table for the whole system. To ensure data consistency in the system, all
data changes are part of a transaction. If a transaction accesses part of the database, this region is
locked with an appropriate lock mode (read, write or MROW). Subsequent clients trying to operate
on the same region must first contact the lockserver to determine what type of access is allowed at a
given time. All locks that a transaction has acquired last until the end of the transaction (either by
commit or abort).

Locking and transactions are the mechanisms that allow concurrent access to a data store.
Without them it would not be possible to guarantee data consistency.

3. CHOOSING ODBMS FOR LHC++

The next section describes specific features of Objectivity/DB - the ODBMS system that the RD45
project currently recommends as the data storage and management product for LHC experiments.
The following list mentions requirements that were considered the most important for the selection:

• Standard compliance – ODMG [1]
The use of a standards compliant API may make it easier to replace one ODBMS component
with another system, if such need arises

• Scalability to hundreds of PB

• Mass Storage System interface
LHC experiments will require a database able to store 100 PB of data, a large part of which will
have to be kept in MSS (on tapes)

• Distributed system

• A centralised system will not be able to efficiently deal with such large amounts of data and serve
many client applications accessing it concurrently

• Heterogeneous environment
Research institutes have very diverse computing environments – a system that will be used by all
of them should be interoperable between most of them

• Data replication
Replicating the most frequently used data to remote institutes may have a big impact on
performance

• Schema versioning
The system should allow changes in the class definitions that will inevitably happen in the long
run period of LHC

• Language heterogeneity
LHC++ is written in C++, but there are graphical presentation tools implemented in Java that
would profit from direct access to the database

• Object versioning
This feature is used by various applications, such as a detector calibration database package

4. OBJECTIVITY/DB SPECIFIC FEATURES

This chapter focuses on specific features of Objectivity/DB.

4.1 Federations of Distributed Databases

The Objectivity/DB ODBMS supports a so-called federation of distributed databases. Each database
within a federation corresponds to a filesystem file and may be located on any host on the network.
There is one central federation (FDB) file containing the catalogue of all databases and the class
schema. Hosts on which database files are located run the Objectivity data server (ooams). In
addition, there is a central lockserver program located on a selected machine.

 Client applications may use one Objectivity federated database at a time. To access the data
within a federation, the database client software first reads the FDB catalogue to find where the data
is located and then connects directly to the data server on a machine hosting the right database.

Before any data is read or modified, the client contacts the lockserver to obtain a lock. These
operations are all performed transparently to the user, who only deals with (networks of) objects.
Figure 3 shows an example of a Federated Database with 2 client applications accessing it from
different hosts.

$SSOLFDWLRQ$SSOLFDWLRQ

2EM\�&OLHQW2EM\�&OLHQW

2EM\�6HUYHU2EM\�6HUYHU 2EM\2EM\
/RFN�6HUYHU/RFN�6HUYHU 2EM\�6HUYHU2EM\�6HUYHU

+366�&OLHQW

+366�6HUYHU+366�6HUYHU

$SSOLFDWLRQ$SSOLFDWLRQ

2EM\�&OLHQW2EM\�&OLHQW 2EM\�6HUYHU2EM\�6HUYHU

$SSOLFDWLRQ�+RVW$SSOLFDWLRQ�+RVW $SSOLFDWLRQ�	�'LVN�6HUYHU$SSOLFDWLRQ�	�'LVN�6HUYHU

'LVN�6HUYHU'LVN�6HUYHU 'DWD�6HUYHU'DWD�6HUYHU
FRQQHFWHG�WR�+366FRQQHFWHG�WR�+366

Figure 3 Distributed Applications Sharing a Federated

4.2 Physical Store Implementation

All ODBMS products use a multilevel hierarchy to implement the possibly distributed physical store.
Objectivity/DB uses a hierarchy of five different levels. The topmost level - the Federated Database -
keeps the catalogue of physical location of all databases that constitute the federation. Each database
is structured internally into “containers” - contiguous areas of objects within a database file.
Containers consist themselves of database “pages” – regions of fixed size determined at the
federation creation time. Every page has “slots” for actual object data (but objects larger then a single
page are allowed). Figure 4 illustrates the physical storage hierarchy in Objectivity/DB.

) H G H U D W L R Q) H G H U D W L R Q

' D W D E D V H' D W D E D V H

& R Q W D L Q H U& R Q W D L Q H U

3 D J H3 D J H

2 E M H F W2 E M H F W

Figure 4 Storage Hierarchy in Objectivity/DB

The structure of the physical store hierarchy is directly reflected by the internal structure of the OID
implementation. A 4-tuple of 16-bit numbers that represent database, container, page and slot number
is used to uniquely references any object within the store.

'DWDEDVH�'DWDEDVH� &RQW&RQW���� 3DJH�3DJH� 6ORW�6ORW�

Figure 5 Object Identifier Implementation used by Objectivity/DB

4.2.1 Separation of Logical and Physical Storage Model

The concept of OIDs allows any object to be accessed directly in the potentially large distributed
store without requiring the application programmer to know the details of the store implementation,
such as file and host names. Since information about the physical layout of the store is kept in a
central place by the ODBMS, it is much easier to change the storage topography without
compromising existing applications. One may change the location of a particular file to a new host by
moving the data and changing the catalogue entry. Since the catalogue is shared by all database
applications, they will use the data from the new location without any modifications.

Figure 6: Physical Storage Hierarchy and Logical User View

4.2.2 Data Clustering and Re-Clustering

An important feature offered by several ODBMS products is the support for object clustering. When
a persistent object is created, the programmer may supply information where the object should be
placed within the physical storage hierarchy. In C++ a clustering hint may be passed as an argument
to the new operator. For example, the statement

d_Ref<Track> aTrack = new(event) Track;

instructs the database to create a new persistent track object physically close to the event object. This
ability to cluster data on the physical storage medium is very important for optimising the
performance of applications which access data selectively.

The goal of this clustering optimisation is to transfer only useful data from disk to the
application memory (or one storage level below: from tape storage to a disk pool). Grouping data
close together that will later be read together can drastically reduce the number of I/O operations
needed to acquire this data from disk or tape. It is important to note that this optimisation requires
some knowledge about the relative contributions of different access patterns to the data.

An simple clustering strategy is the “type based clustering” where all objects of some
particular class are placed together: e.g. Track and Hit objects within an event may be placed close to
each other since both classes will often be used together during the event reconstruction.

For physics analysis this simple approach is probably not very efficient since the selection of
data that will be read by a particular analysis application depends more on the physics process. In this
case one may group the analysis data for a particular physics process together.

4.3 Data Replication

Objectivity/DB supports the replication of all objects in a particular database to multiple physical
locations. The aim of this data replication is twofold:

• To enhance performance:
Client programs may access a local copy of the data instead of transferring data over a network.

• To enhance availability:
Clients on sites which are temporarily disconnected from the full data store may continue to work
on the subset of data for which local replicas are available.

Figure 7 shows a simple configuration where one database is replicated from site 1 to two other
remote sites over a wide area network.

6LWH��6LWH��
6LWH��6LWH�� 6LWH��6LWH��

:LGH�$UHD�1HWZRUN:LGH�$UHD�1HWZRUN

Figure 7 Database Replication

Any state changes of replicated objects on either site are transparently propagated to all other
replicas by the database system. In the case that some of the replicas are not reachable, a quorum-
based mechanism is used to determine which replica may be modified and a backlog of all changes is
kept until other replicas become online again.

The data replication feature is expected to be very useful, for example to distribute central
event selection data to multiple regional data centres.

4.4 Schema Generation

The schema generation for C++ classes in Objectivity/DB is performed using a pre-processor
program (see Figure 8). The program scans class definitions of persistent classes in Objectivity’s
Data Definition Language (DDL) and generates C++ header and implementation files for persistent
classes. The generated header files define the class interface for clients of a persistent class. The
generated implementation files contain C++ code which implements smart-pointer types and various
collection iterators for each persistent class. All generated files are then compiled together with any

other application code and linked against the Objectivity library to form a complete database
application. The database schema is stored centrally in the federation file.

Figure 8 Schema Capture and Build Process

4.5 Creating Persistent Classes

The Data Definition Language used by Objectivity/DB is the C++ programming language extended
with object associations. This makes it easy to convert transient applications and eliminates the need
to learn a new programming language.

Classes become persistent by inheriting from d_Object class:

Class Event : public d_Object { ... };

Persistent classes should not contain pointers – memory pointers are meaningless in the persistent
store address space. They should be replaced by references to persistent objects:

Event *event_pointer; // Event is transient

d_Ref<Event> event_reference; //Event is persistent

The “event_reference” follows the same semantic rules as the C++ pointer “event_pointer”.

The notion of pointers is further enhanced with 1-to-n and bi-directional associations. Below, the
“events” attribute is a set of object references:

d_Ref<Event> events[];

 Bi-directional association is a two-directional link between objects. It has to be declared in both
classes, but modification to it is an atomic operation that changes the values on both ends at the same
time:

d_Ref<Event> event <-> tracker; // in Tracker

d_Ref<Tracker> tracker <-> event; // in Event

4.5.1 Persistent STL

There are some standard C++ classes that contain and use pointers internally, such as all STL
containers. These classes can not be used directly with a database. Objectivity provides a special
version of STL that can be used in persistent objects. The names of classes are the standard ones
preceded by “d_”, e.g. d_vector, d_map. Here is an example declaration of a vector of Events:

d_vector<Event> my_events;

4.6 Object Naming

The normal way of working with a network of objects is navigation. However, the navigation has to
start somewhere! Objectivity/DB allows any given object to be named and later located using this
name. Objects can be named in different scopes:

• on the global level of the federation

• in scope of database or a container

• in scope of any other persistent object

Using different scopes enables the creation of personal namespaces.

4.7 Object Collections

It is very common to group objects into collections. Collections can be physical, logical or a mix of
the two:

• Physical grouping is achieved by placing objects into one of the physical containers or databases
of the federated database. The size of the collection is then limited by the size of the physical
container it is located in.

• Logical collection is a group of references to persistent objects. The references may be stored in
one of the container classes, such as a vector. The size of the collection is limited by the capacity
of the collection class.

• Mixed collection is a logical collection of physical containers. The size of such a collection is
practically infinite.

5. HEPODBMS LAYER

HepODBMS is a software layer that is located between the ODBMS and all other LHC++ modules.
Its two main functions are to provide insulation from the database API and HEP specific storage
classes.

5.1 API Independence

During the lifetime of the LHC, new versions of commercial components will be released and maybe
even new products will be adopted. To make transitions between them easier, the dependence on the
API of a specific vendor should be minimized. This can be achieved by using standard compliant
products. However, many software products use a proprietary API that makes most efficient use of
their internal architecture or are simply not fully standard compliant.

In Objectivity/DB, the structure of the federated database does not exactly reflect the ODMG
database - for example, there is no notion of federation or containers in the ODMB standard. Hence,
the API that deals with them is non-standard. HepODBMS tries to minimize dependence on these
non-standard features by providing naming indirection and providing a higher-level database session
control class.

5.2 API Enhancements

5.2.1 Database Session Control

HepODBMS contains a session control class HepDbApplication that provides:

• Easy transaction handling

• Methods to create databases and containers and to find them later by name

• Job and transaction level diagnostics

• The ability to set options through environmental variables

Figure 9 shows an example of a simple application using the HepDbApplication class to initialize the
connection to a federated database, start a transaction and create a histogram.

Main(){
HepDbApplication dbApp; // create an appl. Object
dbApp.init(“MyFD”); // init FD connection dbApp.startUpdate();
// update mode transaction
dbApp.db(“analysis”); // switch to db “analysis”

 // create a new container
ContRef histCont = dbApp.container(“histos”);

 // create a histogram in this container
HepRef(Histo1D) h = new(histCont) Histo1D(10,0,5);

dbApp.commit(); // Commit all changes
}

Figure 9 Setting up a DB session using the HepDbApplication class

5.2.2 Object Clustering

The “new” operator generated by Objectivity for each persistent class accepts an additional parameter
– the so-called clustering hint described above. Any other persistent object, container or database
may serve as a clustering hint. The ODBMS will attempt to place the new object as close to the hint
object as possible. In case the hint is a container or a database, the new object will be created in the
container or database.

HepODBMS contains clustering classes that allow clustering objects according to different
algorithms. The HepContainerHint class is used to store objects in a series of containers or even
databases, creating a logical container of unlimited size. Special iterators allow access to all of the
objects later as if they were in one container.

5.2.3 Event Collections

LHC++ users will require both “normal” size and very large (109) event collections. HepODBMS
provides the h_seq<T> class that presents the programmer with a single STL-like API for all types of
collections. The actual implementation of the collection depends on a strategy object that can be
supplied by a user. Currently implemented strategies include:

• Vector of object references

• Paged vector of references

• Single container

• Vector of container references

The EventCollection class is defined as below:

typedef h_seq<Event> EventCollection;

Figure 10 shows an example of how to iterate over a collection of events using an STL-like iterator.

EventCollection evtCol(); // Event collection
EventCollection::const_iterator it; // STL like iterator

For(it = evtCol.begin(); it != evtCol.end(); ++it)

 Cout << "Event: " << (*it)->getEventNo() << endl;

Figure 10 Iterating over an event collection

6. CONCLUSION

HEP data stores based on Object Database Management Systems (ODBMS) provide a number of
important advantages in comparison with traditional systems. The database approach provides the
user with in a coherent logical view of complex HEP object models and allows a tight integration
with multiple of OO languages such as C++ and Java.

The clear separation of logical and physical data model introduced by object databases allows for
transparent support of physical clustering and re-clustering of data which is expected to be an
important tool to optimise the overall system performance.

The ODBMS implementation of Objectivity/DB shows scaling up to multi-PB distributed data stores
and provides integration with Mass Storage Systems. Already today a significant number of HEP
experiments in or close to production have adopted an ODBMS based approach.

REFERENCES
[1] The Object Database Standard, ODMG 2.0, Edited by R.G.G.Cattell, ISBN 1-55860-463-4,

Morgan Kaufmann, 1997

[2] C++ Object Databases, Programming with the ODMG Standard, David Jordan, Addison Wesley,
ISBN 0-201-63488-0, 1997

BIBLIOGRAPHY

Object Data Management: Object Oriented and Extended Relational Database Systems
R.G.G.Catell, Revised Edition, Addison-Wesley, ISBN 0-201-54748-1, 1994

The Object-Oriented Database System Manifesto M. Atkinson, F. Bancilhon, D. DeWitt, K.
Dittrich, D. Maier, and S. Zdonik. In Proceedings of the First International Conference on
Deductive and Object-Oriented Databases, pages 223-40, Kyoto, Japan, December 1989.

Object Databases As Data Stores for High Energy Physics, Proceedings of the CERN School
of Computing, 1998, CERN 98-08

Object Oriented Databases in Hi High Energy Physics, Proceedings of the CERN School of
Computing, 1997, CERN 97-08

The RD45 collaboration reports and papers,
http://wwwinfo.cern.ch/asd/cernlib/rd45/reports.htm

RD45 - A Persistent Object Manager for HEP, LCB Status Report, March 1998,
CERN/LHCC 98-x

Using an Object Database and Mass Storage System for Physics Production, March 1998,
CERN/LHCC 98-x

RD45 - A Persistent Object Manager for HEP, LCB Status Report, March 1997,
CERN/LHCC 97-6

Object Database Features and HEP Data Management, the RD45 collaboration

Using and Object Database and Mass Storage System for Physics Analysis, the RD45
collaboration

GLOSSARY:
 ACID Transactions – Atomic, Consistent, Isolated, Durable
 MB – Megabyte, 1 000 000 bytes
 GB – Gigabyte, 1000 MB
 PB – Petabyte, 1 000 000 GB
 HEP – High Energy Physics
 MSS – Mass Storage System
 ODBMS – Object Database Management System
 ODMG – Object Database Management Group (standards committee)
 LHC - Large Hadron Collider
 LHC++ - project aiming to replace the current CERNLIB libraries with a suite of OO
software
 DDL – Data Definition Language used by Objectivity/DB
 OID – Object Identifier
 MROW - multiple reader, one writer transaction where the old contents of a database region
that is being modified by a writer is still accessible to other database clients in read-only
mode

TRACK: INTERNET SOFTWARE TECHNOLOGIES

F.Fluckiger, track co-ordinator

1. INTRODUCTION TO THE TRACK

This track explored the general field of the Software-based technologies in use or planned
over Internets and Intranets. Indeed, over the past 10 years, the field underwent considerable
changes. In the late 80's, the Internet software -we understand by this the software that runs
on end-systems, where the final services are delivered, or on associated server systems- was
composed, from an architectural point of view, of essentially three layers.

They were:
� the transport software (also known as the TCP/IP suite)
� what could be called the middleware software, that is the intermediate software, not

directly visible to the end-user, lying somewhere between the transport and the
application software (example being the Domain Name Service -DNS- software)

� and finally the application software.

The latter was restricted to essentially three applications: remote login (Telnet), file
transfer (FTP) and e-mail .

Then, came the web … With the introduction of this new application, the landscape
changed drastically. First, a new application: web browsing rapidly became the main Internet
application.

This was enriched by the deployment of a series of techniques -available from the
inception of the web- to allow not only passive consultation of information, but also
transaction between client and server systems. This included the handling of forms as
specified by the initial standard for describing web pages (HTML) and later on the
specification of a standard way for a server to recuperate the data input on an electronic form
(Common-Gateway Interface: CGI).

The next stage in the development of Internet software technologies was the release by
SUN of JAVA (and its script version, JavaScript) a new language to write in particular small
programs to be associated with web pages. These programs could be carried by web pages
travelli ng from the server to the client system, to be interpreted and executed by the client
system -that is, in practice the web browser. This opened a new class of application were part
of the usual transaction process (for example, checking the validity of certain data entered by
the user in the form field) could be directly performed by the client without triggering
multiple exchanges between the two parties.

Then, a new wave of application arrived, significantly distinct from the previous one,
as not targeted to the computer-literate users: audio and audio-applications. Though the
initial quality was extremely poor, the first implementations gave a clear indication of the
wide scope of this field: ranging from two-way communication between pairs (audio, video-
phony) to one-way broadcast applications (the Internet audio and "TV channels").

More recently, the Internet applications tackled another major field of computing
activities, that of distributed computer. The technique called mobile agents allows pieces of
programs to travel through an itinerary of computers, execute functions, possibly meet at
certain points or return to their origin after completion of their circuit. The areas of potential
use are vast, and many are still t o be discovered.

1.1 Overview of the Track

The Internet Software Technologies track was composed of three distinct though connected
topics: Distributed Computing using Software Topics Agents, Transaction Technologies, and
Advanced Web.

The first course focused on a promising technique for supporting distributed
computing: the use of agents written in Java. This method is applied to the specific field of
Distributed Physics Analysis. The class comprised 3 lectures where the agent technology
were introduced and the Java programming presented. Then, students moved to exercises
where they wrote physics analysis algorithms in Java, and agent-based job submission
systems, then finally merged their outcome into a global system.

The second course "Web-based Transaction Technologies" described the mechanisms
and techniques for supporting client-server interactions based on web forms. It started with a
presentation of the HTML language, then carried on with scripting languages (JavaScript)
and the CGI interface. Two hours of exercises where students developed a simple transition
system based on forms and associated CGI programs complemented the 4 hours of lectures.

The third course was devoted to a selection of more advanced web-based software
topics. This included a presentation of the XML language as well as the SMIL language for
the support of synchronised multimedia documents.

1.2 Introduction to XML and SMIL

(Based on view material from M. Podgorny at CSC99)

1.3 When the web was invented at CERN in the late eighties, the inventor, Tim Berners Lee
designed at the same time to technique by which a client system can dialogue with a remote
server (the HTTP protocol) and the way in which pages can be described. The language by
which web pages are described was called HTML. HTML is a mark up language. This is a
methodology to encrypt data with information about itself.

Like HTML, XML relies on rules to specify tags and the use of tag-processing applications
that knows how to deal with the tags. XML is in practice a subset or a more general language
called SGML. The specifications are being developed by the World Wide Web Consortium
(W3C), supervised by the XM working group.

The most important difference between HTML and XML is that while HTMPO is a
well defined and closed set of tags, XML is a meta-language for defining other mark-up
languages: it specifies the standards with which you can define your own mark-up language.
Therefore, XML may allow each specific industry to develop its own tag set to meet its
unique needs. As a side result, XML may be used to describe documents intended to be
mainly displayed on a screen (such a "web documents" to be displayed by a web browser)
but also documents primarily intended to be printed.

XML is gaining momentum in the Internet software community and well as with major
application software manufacturers.

Various other languages are XML-derived languages. An example is RDF, the
Resource Description Framework, a standard for exchange what is called "meta-data" and
enable better searching on the web.

Another example is SVG, the Scalable Vector Graphics language which allows the
description of two-dimensional graphics in SGML. When available, browsers will no longer
have to load and display byte-consuming images when simple schematics and figures are to
be represented.

The Synchronised Multimedia Integration Language, SMIL, enables simple authoring
of TV-like multimedia presentations such a training courses on the web. When you use a
CD-ROM, it is frequent that you display sequences of different media which are
synchronised together (such as a piece of text, synchronised when displayed with a sound to
be played out, followed a few second later by an animation,...). To author such sequences,
CD-ROM authors use specific languages, which allows to specify syntonisation between the
various media components of the document. SMIL is a similar type of language, but
designed to author documents which are aimed at being accessed over the Internet.

	Intro
	p1
	full_document
	p97
	List of participants

