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Abstract: A model for tracking objects whose topological properties change over time is proposed.
Such changes include the splitting of an object into multiple objects or the merging of multiple objects
into a single object. The proposed model employs a novel formulation of the tracking problem in
terms of homology theory whereby 0-dimensional homology classes, which correspond to connected
components, are tracked. A generalisation of this model for tracking spatially close objects lying in
an ambient metric space is also proposed. This generalisation is particularly suitable for tracking
spatial-temporal phenomena such as rain clouds. The utility of the proposed model is demonstrated
with respect to tracking communities in a social network and tracking rain clouds in radar imagery.
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1. Introduction

The ability to accurately track objects is a fundamental requirement for many applications.
For example, when attempting to make inferences with respect to future weather conditions, the ability
to track weather phenomena, such as a snow storm, is necessary for predicting the future location
of such phenomena [1]. When a robot is attempting to perform the task of object grasping and
manipulation, the ability to accurately track the manipulator and target objects is necessary for
generating and executing suitable motion plans [2]. Finally, when attempting to prevent the spread of
an infectious disease, the ability to track social network communities is necessary to identify those
most at risk and in turn take preventative measures.

In many instances of the object tracking problem, one cannot directly observe the objects in
question. Instead, one typically indirectly observes the objects through sensor measurements at a
sequence of discrete times (this is known as partial observability). In such cases, tracking requires
that the set of objects plus their locations be inferred from these measurements at each time. It also
requires that correspondences between the same object existing at different times be inferred. In many
cases, object properties can change between consecutive times making it difficult to correctly infer
these correspondences. For example, when tracking a person in a video sequence, both the appearance
and shape of the person may change significantly over time. When tracking a weather phenomenon,
both the shape and topology of the phenomenon may change significantly over time. In the context of
this work, changes in the topology of an object include the formation of holes plus the splitting into
and merging of multiple connected components. When attempting to track objects with changing
properties, it is necessary to employ a method of tracking which is robust and can successfully track
objects in the presence of such changes.

Many solutions to the problem of object tracking have been proposed which are robust with respect
to changes in appearance and shape [3]. However, tracking objects robustly with respect to changes in
topology represents an open research problem [4]. In this article, we propose a novel tracking model
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which is robust to such changes. The model assumes that the objects have been accurately modelled
at a sequence of discrete times using a sequence of simplicial complexes. A simplicial complex is
a general combinatorial representation capable of modelling a variety of types of objects and, as a
consequence, the proposed model is a general model capable of tracking a variety of types of objects.
We now illustrate the proposed model with respect to tracking objects in a graph.

Figure 1 illustrates the result of tracking objects in a graph at four consecutive discrete times
using the proposed model where each vertex is labelled with a unique letter [5]. Note that the graph
in question is not embedded in any space. In this case, individual objects correspond to connected
components of the graph where the same object existing at multiple consecutive discrete times is
represented using a single unique vertex colour. In the first discrete time, it is inferred that a single red
object exists. In the second discrete time, it is inferred that the red object has split into red and blue
objects. In the third discrete time, it is inferred that the blue object has grown in size. Finally, in the
fourth discrete time, it is inferred that the blue and red objects have merged to form a single red object.

The proposed model formulates the problem of tracking in terms of homology theory, whereby
it tracks 0-dimensional homology classes which correspond to connected components. Persistent
homology is a commonly employed approach from homology theory to tracking homology classes
of given dimension. However, in its native form, persistent homology is only capable of inferring
the appearance and subsequent disappearance of such classes and cannot infer their locations [6].
Generalising persistent homology to overcome this limitation and perform object localisation represents
the contribution of this article. For a given dimension, persistent homology returns a result that may
be uniquely represented using a persistence diagram. A persistence diagram is a multiset of points
where a point with coordinates (p, q) indicates that a homology class of given dimension appeared at
discrete time p and subsequently disappeared at discrete time q [7,8]. Similar to persistent homology,
the proposed tracking method returns a result that may be uniquely represented using a persistence
diagram. However, it also returns a map from points in the persistence diagram to corresponding
homology classes. To illustrate this map, consider again the example of tracking objects in a graph
described above. The corresponding persistence diagram is displayed in Figure 2. Each point in the
persistence diagram has a colour equal to that of the object it maps to. For example, the blue point
with coordinates (2, 4) in Figure 2 indicates that the blue object in Figure 1 appeared at discrete time 2
and disappeared at discrete time 4. Note that any object which exists at discrete time 4, which is the
final discrete time, is determined to disappear at an unobserved discrete time 5. This is the case for the
red object in Figure 1.

(a) (b) (c) (d)

Figure 1. The result of tracking objects in a graph at four consecutive discrete times using the proposed
method is illustrated where each vertex is labelled with a unique letter. In this case, individual
objects correspond to connected components of the graph where the same object existing at multiple
consecutive discrete times is represented using a single unique vertex colour.
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Figure 2. The persistence diagram corresponding to the example of tracking objects in a graph of
Figure 1 is displayed. Each point in the persistence diagrams has a colour equal to that of the object to
which it maps.

The layout of this article is as follows. Section 2 reviews related works on homology theory and
tracking objects robustly with respect to changes in topology. Section 3 describes the proposed tracking
model. This section also describes a generalisation of this model for tracking objects in an ambient
metric space where objects correspond to sets of spatially close homology classes. For many real
world tracking problems, such as tracking weather phenomena, this is the more appropriate model.
Section 4 presents an evaluation of the model and demonstrates application of the model to tracking
communities in a social network and tracking rain clouds in radar imagery. Finally, Section 5 presents
research conclusions and future research directions.

2. Related Works

This section presents a review of related approaches to modelling the topology of time series
data and tracking objects with changing topological properties. Kramár et al. [9] employed persistent
homology to study image time series data for different types of fluid dynamics. By measuring the
Bottleneck distance between persistence diagrams corresponding to consecutive pairs of images, the
authors were able to detect discontinuities in topological features. The authors also developed a tool
called the TDA Persistence Explorer which allows one to identify with each point in the persistence
diagram a pair of elements in the simplicial complex which caused the appearance and disappearance
of the topological feature in question. Gonzalez-Diaz et al. [10] proposed a method for object tracking
which is formulated in terms of persistent homology as opposed to zigzag persistent homology which
is considered in this work. Their method is designed for tracking in image time series and is less
general than that proposed in this work. Corcoran et al. [7] employed zigzag persistent homology
to characterise the spatial-temporal behaviour of a swarm. However, the method proposed does not
perform object localisation.

Several models for tracking objects with dynamic topology have been proposed by those working
in the domain of Geographical Information Science (GIS). Liu et al. [11,12] proposed a tracking model
which considers objects corresponding to multiple connected components. This model is conceptual in
nature and no corresponding computational model is proposed. Worboys et al. [13] and Jiang et al. [14]
proposed models for tracking topological changes in spatial phenomena using a geosensor network.
These models are mostly conceptual in nature and cannot directly be applied to real data without
further development. For example, the models proposed Worboys et al. [13] and Jiang et al. [14]
assume a continuous representation of change in topology. This assumption is not exhibited by most
real world data and consequently the authors limited their evaluation to simulated data. An important
distinction between these and the proposed model is that these models are formulated in terms of
logic while the proposed model is formulated in terms of homology theory.

There exist many techniques for performing clustering of spatial temporal data [15]. However,
the problem of clustering assumes that object locations remain constant over time and is distinct from
the problem of tracking.
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3. Tracking Model

This section presents the proposed tracking model. The model assumes that the objects have
been modelled at a sequence of discrete times using a sequence of simplicial complexes. In most real
world scenarios, this sequence will be obtained by performing a triangulation of the objects in question
where triangulation is the process of constructing a simplicial complex representation. As illustrated
in Section 1, this is a very general representation which facilitates the tracking of a variety of types
of objects.

This section is structured as follows. Section 3.1 presents background material on homology theory
and formulates the problem of tracking in terms of computing maps between 0-dimensional homology
classes which correspond to connected components. A fundamental component of computing these
maps is the pullback of the zigzag diagram which is explained in Section 3.2. Subsequently, Section 3.3
describes how the pullback is employed to compute the maps in question. Section 3.4 describes
how object tracking is inferred from these maps. Finally, Section 3.5 presents a generalisation of the
proposed model for tracking objects in an ambient metric space where objects correspond to sets of
spatially close homology classes.

3.1. Model Formulation

An (abstract) simplicial complex K is a finite collection of sets such that for each σ ∈ K all subsets
of σ are also contained in K. Each element σ ∈ K is called a simplex or k-simplex where k = |σ| − 1
is the dimension of the simplex. The faces of a simplex σ correspond to all simplices τ where τ ⊂ σ.
The dimension of a simplicial complex K is the largest dimension of any simplex σ ∈ K.

A p-chain on a simplicial complex K is defined in Equation (1) where each σi ∈ K is a p-simplex
and each λi is an element in a specified field. The set of p-chains forms a group called the chain
group Cp(K). The boundary map ∂p is a map from a p-simplex to the sum of its (p− 1)-simplex faces
as defined in Equation (2). Here, [v0, . . . , v̂i, . . . , vp] is the (p− 1)-simplex obtained by deleting the
0-simplex vi from the p-simplex [v0, . . . , vp]. This map is distributive and extends to the chain groups
giving the sequence of chain groups in Equation (3).

c = ∑ λiσi (1)

∂pσ =
p

∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp] (2)

. . . −→ Cp+1(K)
∂p+1−−→ Cp(K)

∂p−→ Cp−1(K)
∂p−1−−→ . . . (3)

A p-chain c is a p-cycle if ∂c = 0 and a p-boundary if there exists a (p + 1)-chain d where
c = ∂d. The sets of all p-cycles and p-boundaries form groups which are denoted Zp(K) and Bp(K),
respectively. Each of these groups is a subgroup of Cp(K). As a consequence of the fact ∂p+1∂p = 0,
it can be proved that Bp(K) ⊆ Zp(K). The quotient group Hp(K) = Zp(K)/Bp(K) is a vector space
and is called the p-dimensional homology group of K. For those unfamiliar with homology theory,
good introductions to the topic can be found in [16,17]. A useful introduction of the application of
homology theory to graphs and networks can be found in [18]. The elements of Hp(K) are called
p-dimensional homology classes. Each homology class is an equivalence class over cycles where two
cycles in the same homology class are said to be homologous. This means they differ by a boundary [19].
A homology class of Hp(K) corresponds to a p-dimensional hole in the simplicial complex K. Note
that a homology class of H0(K) corresponds to a connected component in the simplicial complex K;
this is a consequence of the fact that all 0-simplices in a connected component differ by the boundary
of a 1-chain equal to the sum of 1-simplices connecting the 0-simplices in question. The number of
homology classes in Hp(K) is called the pth Betti-number. The focus of this article is tracking objects
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which we define as connected components; therefore, we consider the 0-dimensional homology classes
and ignore higher order homology classes.

There exist a number of algorithms to compute the number and locations of the homology
classes of Hp(K) for a given simplicial complex K and dimension p [6]. In this work, we assume a
sequence of n simplicial complexes K1 . . .Kn obtained by triangulating the objects in question at a
sequence of n discrete time steps. We wish to track 0-dimensional homology classes existing within
this sequence. Toward this goal, for a given i in the range i . . . (n− 1), we define an injective map
Ti which maps the homology classes of H0(Ki) to the homology classes of H0(Ki+1). Given this,
we formulate the problem of tracking as computing the sequence of maps Ti defined in Equation (4)
where i = 1 . . . (n− 1). For i < j, two connected components corresponding to a homology class in
H0(Ki) and a homology class in H0(Kj) are determined to be the same object if and only if there exists
a composition of maps Ti ◦ · · · ◦ Tj−1 between the homology classes in question.

H0(K1)
T1−→ H0(K2)

T2−→ H0(K2)
T3−→ . . .

Tn−1−−→ H0(Kn) (4)

3.2. Pullback of the Zigzag Diagram

Before defining computation of the maps Ti, we first define the pullback which is a subspace of
the direct sum of 0-dimensional homology groups in question. Toward this goal we first construct the
zigzag diagram of simplicial complexes with inclusion maps defined in Equation (5) [20]. Note that
Ki and Kj are subcomplexes of Ki ∪Kj. The term zigzag refers to the fact that the sequence of maps
do not have a uniform direction and instead point in both forward and backward directions. As is
illustrated in the next section, the mapping of consecutive simplicial complexes to their union in the
zigzag diagram facilitates the definition of the required map between homology classes. By applying
the 0-dimensional homology functor to the zigzag diagram of Equation (5), this gives the zigzag
diagram of homology groups with induced linear maps defined in Equation (6) [20].

K1 → K1 ∪K2 ← K2 → · · · ← Kn (5)

H0(K1)→ H0(K1 ∪K2)← H0(K2)→ · · · ← H0(Kn) (6)

LetKi andKj be a pair of consecutive simplicial complexes in the sequence of simplicial complexes;
that is, j = i + 1. Furthermore, let f and g be the inclusion maps defined in Equation (7), and let f∗ and
g∗ be the induced maps defined in Equation (8). Recall that 0-dimensional homology classes correspond
to connected components. Both f∗ and g∗ are surjective maps which map a 0-dimensional homology
class in the domain to a 0-dimensional homology class in the codomain if and only if the connected
component corresponding to the former is a subset of the connected component corresponding to
the latter. This property is a consequence of the fact that individual 0-dimensional homology classes
correspond to connected components. That is, the images of the inclusion maps f and g applied to two
connected components differ by a 1-chain if they map to the same path connected component ([21],
page 64).

To illustrate the maps f∗ and g∗, consider the example in Figure 3. Here, simplicial complexes
corresponding to Ki and Kj are represented in Figure 3a,b, respectively, and their union Ki ∪ Kj is
represented in Figure 3c. In the figure, individual path-connected components are labelled with
a unique letter in the range a–g. In this example, f maps the 0-dimensional homology classes
corresponding to the connected components a and b in Ki to the 0-dimensional homology classes
corresponding to the connected components f and g in Ki ∪ Kj, respectively. Similarly, g maps the
0-dimensional homology classes corresponding to the connected components c and d in Kj to the
0-dimensional homology class corresponding to the connected component f inKi ∪Kj. It also maps the
0-dimensional homology class corresponding to the connected component e in Kj to the 0-dimensional
homology class corresponding to the connected component g in Ki ∪Kj.
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Ki
f−→ Ki ∪Kj

g←− Kj (7)

H0(Ki)
f∗−→ H0(Ki ∪Kj)

g∗←− H0(Kj) (8)

The pullback P of the maps f and g is defined in Equation (9) and is a subspace of the direct
sum H0(Ki)⊕ H0(Kj) [22]. Specifically, the pullback is the set of all pairs of 0-dimensional homology
classes of Ki and Kj which map to the same 0-dimensional homology class of Ki ∪Kj. To illustrate the
pullback consider again the example provided in Figure 3. Here, the pullback is {(a, c), (a, d), (b, e)}
where 0-dimensional homology classes are stated in terms of the labels of the connected components
they correspond to.

P =
{
(α, β) ∈ H0(Ki)⊕ H0(Kj) : f∗(α) = g∗(β)

}
(9)

(a) (b) (c)

Figure 3. Two simplicial complexes Ki and Kj and their union Ki ∪ Kj are displayed in (a–c),
respectively. Red dots represent 0-simplices, blue lines represent 1-simplices and green triangles
represent 2-simplices.

3.3. Map of Homology Groups

Each element in the pullback P defines a map from an element of H0(Ki) to an element of H0(Kj).
That is, if (α, β) ∈ P, this defines a map from α ∈ H0(Ki) to β ∈ H0(Kj). Recalling that j = i + 1, if we
were to construct the required map Ti to be union of all elements in the pullback, this might not be an
injective map (A map is injective if and only if every element of the map’s codomain is the image of at
most one element of its domain and furthermore the image of every element of the map’s domain is at
most one element of its codomain). For example, if a connected component splits into two connected
components, the pullback will contain two elements and the resulting map will not satisfy the property
that the image of every element of the map’s domain is at most one element of its codomain. Persistent
homology computes an injective map between homology classes [8]. To maintain consistency with
persistent homology, we construct the required map Ti to be injective by assigning it to be the union
of a subset of the maps defined by the elements in the pullback. This subset is constructed using
that outlined in Algorithm 1, which employs a heuristic giving preference with respect to persistence
homology classes which firstly have persisted for longer and secondly correspond to larger connected
components.

Algorithm 1 first defines independent total orders on the elements of H0(Ki) and H0(Kj) (Lines 3
and 4). A total order on the elements of H0(Ki) is defined using the lexicographical order over the time
since appearing followed by the size of the corresponding connected component. A homology class
appears at Kb if its preimage under the map Tb−1 is the empty set. A total order on the elements of
H0(Kj) is defined using the order over size of the corresponding connected components. To illustrate
these independent orderings, consider again the example of Figure 3. Assume the homology class
corresponding to the connected component a was born before that corresponding to the connected
component b. In this case, the total order on the homology classes of Ki will be that corresponding to a
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followed by that corresponding to b. As a consequence of the fact that all the connected components in
Kj are of equal size, any ordering of the homology classes in question is valid.

Given the total orders defined above, a total order on the elements of the pullback P is defined
using the lexicographical order (Line 5). These elements are then iterated through in decreasing order
(Line 6) and each element is added to the map Ti if its addition does not invalidate the injective
property (Lines 7 and 8).

Algorithm 1: Compute Map Ti : H0(Ki)→ H0(Kj).

Input: The pullback P as defined by Equation (9).
Output: Injective map Ti from H0(Ki) to H0(Kj).

1 begin
2 Ti = ∅.
3 Compute the total order (H0(Ki),≤i).
4 Compute the total order (H0(Kj),≤j).
5 Compute the total order (P,≤P).
6 for t ∈ Sorted(P) do
7 if Ti ∪ t is injective then
8 Ti = Ti ∪ t
9 end

10 end
11 return Ti
12 end

To illustrate the construction of Ti, consider again the example provided in Figure 3 where the
pullback is {(a, c), (a, d), (b, e)}. Here, the lexicographical order is (b, e) ≤ (a, d) ≤ (a, c) and as a
consequence the subset used to construct Ti is {(a, c), (b, e)}.

3.4. Tracking

As stated in the model formulation of Section 3.1, for i < j, homology classes in H0(Ki) and H0(Kj)

are determined to be the same object if and only if there exists a compositions of maps Ti ◦ · · · ◦ Tj−1
between the homology classes in question. Given this, we compute the set of homology classes
corresponding to each object in the sequence K1 . . .Kn using the approach outlined in Algorithm 2.

Algorithm 2 first constructs a graph G = (V, E) where the set of vertices V correspond to
homology classes and the set of edges E correspond to the existence of a map Ti between the homology
classes in question (Lines 2–12). Each connected component in this graph corresponds to an individual
object and the set of homology classes contained in a given connected component equals those
corresponding to the object in question. The connected components in G are computed using a breadth
first search and the set of homology classes in each of these components is constructed (Lines 13–16).
Finally, Algorithm 2 returns R, which equals a set of sets (Line 17).

Given the result of Algorithm 2, it is straight forward to compute the persistence diagram for
the 0-dimensional homology group. There exists a bijective map between points in the persistence
diagram and 0-dimensional homology classes. A point with coordinates (p, q) in the persistence
diagram indicates that the corresponding homology class appeared and disappeared, respectively, at
simplicial complexes with indices p and q, respectively. If a 0-dimensional homology class appears
in Kp but never disappears, it is represented as a point in the persistence diagram with coordinates
(p, n + 1). That is, we assume it disappears in a subsequent simplicial complex Kn+1, which is not
observed. For a given point (p, q) in a persistence diagram, the value q − p is referred to as the
persistence of the homology class in question.
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Algorithm 2: Tracking in sequence K1 . . .Kn.
Input: Sequence of maps T1 . . . Tn−1 defined in Equation (4) and computed using Algorithm 1.
Output: A set R where each element is a set of homology classes corresponding to an

individual object.

1 begin
2 G = (V = ∅, E = ∅).
3 for i← 0 to n do
4 for h ∈ H0(Ki) do
5 V = V ∪ h
6 end
7 end
8 for i← 0 to n− 1 do
9 for h ∈ dom Ti do

10 E = E ∪ (h, Ti(h))
11 end
12 end
13 R = ∅
14 for C ∈ ConnectedComponents(G) do
15 R = R ∪ {v : v ∈ C}
16 end
17 return R
18 end

Consider again the example in Figure 3 where individual connected components are labelled with
a unique letter in the range a–g and let the indices i and j of the simplicial complexes in question be 1
and 2, respectively. The persistence diagram corresponding to this sequence of simplicial complexes
will contain three points with coordinates (1, 3), (1, 3) and (2, 3). Here, we are assuming that all
0-dimensional homology classes which exist in K2 disappear in K3 which is not observed. One of
the two points with coordinates (1, 3) corresponds to the object with connected components a and c.
The other point with coordinates (1, 3) corresponds to the object with connected components b and e.
Finally, the point with coordinates (2, 3) corresponds to the object with the connected component d.

There is a map from points in a persistence diagram to 0-dimensional homology classes.
As illustrated in the example of tracking objects in a graph presented in Section 1, it is possible
to make this map explicit when visualising the data in question. This is achieved by colouring each
point in the persistence diagram with a unique colour and subsequently colouring all 0-dimensional
homology classes correspond to that point with the same colour.

3.5. Tracking in a Metric Space

In many instances of the tracking problem, the objects in question lie in an ambient metric space
where an individual object might not correspond to a single 0-dimensional homology class but instead
a set of such classes which are spatially close. For example, the problem of tracking a rainstorm may
be formulated in terms of tracking a set of homology classes or connected components in R2 which are
spatially close and where each corresponds to an individual rain cloud. In this section, we propose
a generalisation of the proposed tracking method capable of tracking such objects corresponding to
spatially close homology classes.

In the original model, we assume a sequence of n simplicial complexes K1 . . .Kn obtained by
triangulating connected components at a sequence of n discrete time steps. In the generalised model,
we assume an additional sequence of n simplicial complexes K′1 . . .K′n obtained by triangulating
an enlargement of the original connected components at the same sequence of discrete times.
The consequence of this enlargement is that very close objects will merge to form a single homology
class. The enlargement may be defined as the subset of the ambient space that is within a specified
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distance of the connected components. Alternatively, if the connected components are defined on
a regular grid or image/array the enlargement may be defined as the morphology dilation. The
relationship between these two sequences of simplicial complexes is that spatially close connected
components in a given Ki will form a single larger connected component in K′i . To illustrate consider
the sequence of simplicial complexes K1 and K2 represented in Figure 4a,b, respectively, plus the
corresponding sequence of simplicial complexes K′1 and K′2 represented in Figure 4c,d, respectively.
The connected components labelled a and b in K1 are spatially close and consequently form a single
larger connected component labelled g in K′1. Similarly, the connected components labelled d and e in
K2 are spatially close and consequently form a single larger connected component labelled r in K′2.

(a) (b)

(c) (d)

Figure 4. The simplicial complexes K1 and K2 in (a), (b), respectively, correspond to the triangulation
of objects at two discrete time steps. The simplicial complexes K′1 and K′2 in (c), (d), respectively,
correspond to the triangulation of an enlargement of objects at the same two discrete time steps. Each
connected component is labelled with a unique letter.

In the generalised tracking model, we apply the original tracking model to the sequence of
simplicial complexes K′1 . . .K′n. Recall that this model will compute the set of homology classes
corresponding to each object in the sequence K′1 . . .K′n. For example, applying the original tracking
model to the sequence K′1,K′2 in Figure 4 computes that two objects exists in the sequence where one
object corresponds to the homology classes with labels g and r while the other corresponds to the
homology classes with labels h and s.

We next propagate the result of this tracking to the sequence K1 . . .Kn using that outlined in
Algorithm 3. For each subset of homology classes r in the sequence K′1 . . .K′n corresponding to
an individual object in that sequence, a corresponding subset of homology classes in the sequence
K1 . . .Kn is constructed (Lines 3–5). Specifically, a homology class in the sequenceK1 . . .Kn is included
in this set if it is a subset of a homology class in the set r. This subset evaluation assumes an inclusion
map of Ki into K′i . This map will be surjective because the homology classes in K1 . . .Kn are enlarged
in K′1 . . .K′n. Applying this propagation to the example in Figure 4 computes that two objects exists in
the sequence K1,K2 where one object corresponds to the connected components with labels a, b, d and
e while the other corresponds to the connected components with labels c and f .



Math. Comput. Appl. 2019, 24, 84 10 of 16

Algorithm 3: Propagate tracking in sequence K′1 . . .K′n to sequence K1 . . .Kn.

Input: Output R of Algorithm 2 applied to the sequence K′1 . . .K′n. The sequence K1 . . .Kn.
Output: A set P where each element is a set of homology classes corresponding to an

individual object.

1 begin
2 P = ∅.
3 for r ∈ R do
4 P = P ∪ {s : s ∈ H0(Ki), s ⊂ h, h ∈ r, h ∈ H0(K′i), i ∈ {1 . . . n}}
5 end
6 return P
7 end

4. Results

This section presents an evaluation of the proposed tracking model implementation and
demonstrates the applicability of this model to real world tracking problems. Section 4.1 evaluates the
accuracy of the model implementation using random small scale instances for which results may be
compared to manually generated ground truth. Section 4.2 describes the application of the tracking
model to a temporal network corresponding to a real online social network. Finally, Section 4.3
describes the application of the generalised model described in Section 3.5 to rainfall radar data
obtained from the UK Meteorological (Met) Office.

4.1. Model Accuracy

This section describes a set of experiments performed to evaluate the accuracy of the tracking
model implementation. In each experiment, a sequence of random simplicial complexes K1 . . .Kn of
dimension 1 was generated. The model was applied to each sequence and the resulting persistence
diagrams were manually compared to corresponding ground truth persistence diagrams. The ground
truth persistence diagrams in question were manually generated. Note that, since tracking is modelled
in terms of elements of the 0-dimensional homology classes, it is not necessary to consider simplicial
complexes of dimension greater than 1.

The following procedure was employed to generate each sequence of n random simplicial
complexes. First, a set of m 0-simplices {[vi] | i = 1 . . . m} was generated and in turn used to
generate a set of (m

2 ) 1-simplices {[vi, vj] | i = 1 . . . m, j = 1 . . . m, j > i}. Finally, each simplicial
complex Ki was generated by initialising it to be empty and adding the closure of each 1-simplex in the
above set randomly with probability p. In all experiments, values of 5, 10 and 0.05 were assigned to the
variables n, m and p, respectively. Figure 5 displays a sequence of four random simplicial complexes
generated using this procedure.

For a given sequence of random simplicial complexes, in order to facilitate a comparison to
ground truth, the proposed tracking model plus corresponding persistence diagram were visualised
using the following procedure. The set of objects were sorted in ascending order based on the index
i of the simplicial complex Ki in which they appeared. If more than one object appeared in a single
simplicial complex, the objects in question were randomly ordered. The objects were then mapped
to integer values equalling their position in this ordering. That is, the first object that appeared was
mapped to the value 1, the second object that appeared was mapped to the value 2, etc. Through a
composition of maps, these integer values were in turn mapped to RGB colour values in a colour map
that exhibits the property that similar values are mapped to similar colours. This has the effect of
mapping objects that appeared at similar indexes to similar colours. Using this mapping from objects
to colours, each 0-simplex and point in the persistence diagram was coloured according to the object it
was determined to correspond to. This allows the visual mapping between objects in the sequence of
simplicial complexes and corresponding points in the persistence diagram. In this work, we used a
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jet colour map. The positioning of each simplicial complex was determined using the force-directed
graph drawing algorithm [23].

(a) (b) (c) (d)

Figure 5. A sequence of four random simplicial complexes K1, K2, K3 and K4 is displayed in (a–d),
respectively. Each 0-simplex [vi] is represented by a red dot and labelled with its corresponding index i.
Each 1-simplex is represented by a black line segment joining the corresponding two 0-simplex faces.
The positioning of each simplicial complex was determined using the force-directed graph drawing
algorithm [23].

To illustrate this visualisation procedure, consider Figure 6, which visualises the proposed tracking
model applied to the sequence of four simplicial complexes in Figure 5. The persistence diagram
corresponding to this tracking is displayed in Figure 7. In K1, two objects appear and these are
coloured blue and green. In K2, these objects merge to form a single object coloured blue. In K3,
a single blue coloured object exists. Finally, in K4, this object splits to form two objects coloured blue
and red. For this sequence of random simplicial complexes, the proposed tracking model equals the
expected tracking.

The above experiment was repeated 25 times and in all cases the proposed tracking model
equalled the expected tracking. This demonstrates the implementation accuracy of the proposed
tracking model.

(a) (b) (c) (d)

Figure 6. The proposed tracking model applied to the sequence of four simplicial complexes in Figure 5
is displayed. Each 0-simplex is uniquely coloured according to the object to which it corresponds.

Figure 7. The persistence diagram corresponding to the tracking of Figure 6 is displayed and contains
three points.
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4.2. Tracking Temporal Network

This section describes the application of the proposed tracking model to the temporal network
described in [24] and hosted by the Stanford Network Analysis Project (https://snap.stanford.edu/
data/CollegeMsg.html). The network in question is a multigraph where vertices correspond to users of
an online social network and edges correspond to messages sent between users. Each edge is labelled
with the time, represented as a Unix timestamp, at which the message in question was sent. Given
this network, we constructed a sequence of n simplicial complexes K1 . . .Kn of dimension 1 using the
following procedure.

Let tmin and tmax equal the minimum and maximum times, respectively, at which a message
was sent and let ∆x equal (tmax − tmin)/n. We subdivided the interval [tmin, tmax] into n
subintervals [x1, x2], [x2, x3] . . . [xn, xn+1] where xi = tmin + (i− 1)∆x. For each subinterval [xi, xi+1],
we triangulated the subset of the network active during this subinterval as follows. We constructed a
simplicial complex Ki containing a 0-simplex corresponding to each user who exchanged a message
during the interval plus a 1-simplex corresponding to each pair of users who exchanged a message
during the interval where the two 0-simplex faces correspond to the users in question.

For the sequence of simplicial complexes K1 . . .Kn, application of the proposed tracking model
was visualised using the procedure described in Section 4.1. That is, each 0-simplex and point in the
persistence diagram was coloured according to the object to which it was determined to correspond
where objects that appear at similar times are mapped to similar colours.

For a value of n equal to 20, visualisations of simplicial complexes K1, K7, K13 and K20 are
displayed in Figure 8. The corresponding persistence diagram is displayed in Figure 9a. Recall that,
if an object appears in Ki but never disappears, it is represented as a point in the persistence diagram
with coordinates (i, n + 1). That is, it is assumed to disappear in a subsequent simplicial complex
Kn+1, which is not observed. Through inspection of the persistence diagram, we observe that a small
subset of objects persist for significantly longer than other objects. One of these objects persists over
the entire sequence and is coloured dark blue. This object is evident in the set of simplicial complexes
of Figure 8.

For a value of n equal to 100, visualisations of simplicial complexes K1, K34, K67 and K100 are
displayed in Figure 10. The corresponding persistence diagram is displayed in Figure 9b. Again,
through inspection of the persistence diagram, we observe that a small subset of objects persist
for significantly longer than other objects. Two of these objects are coloured dark and light blue,
respectively, and are evident in the set of simplicial complexes of Figure 10.

(a) (b) (c) (d)

Figure 8. The simplicial complexes K1, K7, K13 and K20 corresponding to the temporal network
described in Section 4.2 are visualised in (a)–(d), respectively. The number of 0-simplexes in each of
these simplicial complexes is 235, 402, 241 and 159, respectively. The number of connected components
in each of these simplicial complexes is 4, 28, 17 and 21, respectively.

https://snap.stanford.edu/data/CollegeMsg.html
https://snap.stanford.edu/data/CollegeMsg.html
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(a) (b)

Figure 9. The persistence diagrams corresponding to the tracking of Figures 8 and 10 are displayed in
(a), (b), respectively. The total number of points in these diagrams are 158 and 856, respectively; many
of these points have the same coordinates.

(a) (b) (c) (d)

Figure 10. The simplicial complexes K1, K34, K67 and K100 corresponding to the temporal network
described in Section 4.2 are visualised in (a)–(d), respectively. The number of 0-simplexes in each of
these simplicial complexes is 4, 18, 75 and 66, respectively. The number of connected components in
each of these simplicial complexes is 2, 6, 10 and 15, respectively.

4.3. Tracking Rain Clouds

This section describes the application of the generalised model, described in Section 3.5, to rainfall
radar images obtained from the UK Meteorological (Met) Office [25]. The Met office updates the data
every 15 min with a 15-min delay due to processing time. For a given time, the image data in question
categorise the rainfall at each location in a 500× 500 regular grid over Ireland and the UK. Specifically,
the level of rainfall is one of eight categories based on the number millimetres per hour (mm/h) of
rainfall at that location. For the purposes of applying the proposed tracking model, we converted the
original categorisation of rainfall level to a binary categorisation corresponding to the categorises of
less than 0.01 mm/h of rainfall and greater than or equal to 0.01 mm/h of rainfall. The threshold value
of 0.01 mm/h was chosen because the Met office categorises levels of rainfall less than this value as
no rainfall.

Given these data, we considered the problem of tracking objects corresponding to spatially close
connected components of R2 with a rainfall level greater than this threshold. Recall that the generalised
tracking model requires that at each time we triangulate both the original and enlarged connected
components. We triangulated the original connected components using the following procedure. If a
location in the regular grid was greater than or equal to the threshold, a corresponding 0-simplex was
added. If the rainfall at two horizontally or vertically adjacent locations was greater than or equal to the
threshold, a 1-simplex was added where the two 0-simplex faces correspond to the locations in question.
The enlarged connected components were constructed by performing a binary morphology dilation
of the gird of points with a rainfall level greater than the threshold [26]. Specifically, six iterations
of binary dilation using a 3 × 3 structuring element with connectivity 1 were applied. The enlarged
connected components were triangulated using the same procedure described above for triangulating
the original connected components.
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Figures 11 and 12 illustrate the application of the model to two short sequences of rainfall radar
images. The persistence diagrams corresponding to these figures are displayed in Figure 13a,b,
respectively. In these figures, all connected components corresponding to the same object are uniquely
coloured. It is evident from these figures that the model accurately tracks objects corresponding to
spatially close connected components. For example, the connected components in the centre of the
radar images of Figure 11 are spatially close and are correctly determined to correspond to a single
object, which is coloured orange. A video clip displaying a longer tracking sequence can be viewed
online at the following URL: https://youtu.be/w_IZSZEzAsg.

(a) (b) (c) (d)

Figure 11. The robust tracking of objects in a sequence of four rain radar images is illustrated.
The objects in question correspond to spatially close connected components and are uniquely coloured.

(a) (b) (c) (d)

Figure 12. The robust tracking of objects in a sequence of four rain radar images is illustrated.
The objects in question correspond to spatially close connected components and are uniquely coloured.

(a) (b)

Figure 13. The persistence diagrams corresponding to the tracking of Figures 11 and 12 are displayed
in (a), (b), respectively. The total number of points in these diagrams is six and nine, respectively; many
of these points have the same coordinates.

https://youtu.be/w_IZSZEzAsg
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5. Conclusions

As stated in Section 1, the ability to accurately track objects is a fundamental requirement for many
applications. The tracking model proposed in this article offers a solution to the problem of tracking
objects whose topological properties change over time. Many real world phenomena exhibit this
property and therefore the proposed model has many potential applications. This includes tracking
social networks and weather phenomena, which are briefly examined in Section 4. In future work,
we plan to examine these and other applications in greater detail. To support application of the
proposed tracking model to other problems, a pure Python implementation plus sample data will be
made freely available on GitHub.

Conflicts of Interest: The authors declare no conflict of interest.
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