
Research Article
SmartFix: Indoor Locating Optimization Algorithm for
Energy-Constrained Wearable Devices

Xiaoliang Wang,1,2 Ke Xu,1,2 and Ziwei Li1,2

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

Correspondence should be addressed to Ke Xu; xuke@mail.tsinghua.edu.cn

Received 21 March 2017; Accepted 11 June 2017; Published 26 July 2017

Academic Editor: Zhe Yang

Copyright © 2017 Xiaoliang Wang et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Indoor localization technology based on Wi-Fi has long been a hot research topic in the past decade. Despite numerous solutions,
new challenges have arisen along with the trend of smart home and wearable computing. For example, power efficiency needs
to be significantly improved for resource-constrained wearable devices, such as smart watch and wristband. For a Wi-Fi-based
locating system, most of the energy consumption can be attributed to real-time radio scan; however, simply reducing radio data
collection will cause a serious loss of locating accuracy because of unstable Wi-Fi signals. In this paper, we present SmartFix, an
optimization algorithm for indoor locating based onWi-Fi RSS. SmartFix utilizes usermotion features, extracts characteristic value
from history trajectory, and corrects deviation caused by unstable Wi-Fi signals. We implemented a prototype of SmartFix both on
Moto 360 2nd-generation Smartwatch and on HTC One Smartphone. We conducted experiments both in a large open area and in
an office hall. Experiment results demonstrate that average locating error is less than 2 meters for more than 80% cases, and energy
consumption is only 30% of Wi-Fi fingerprinting method under the same experiment circumstances.

1. Introduction

With massive application demands, recent decade has wit-
nessed remarkable achievements on indoor localization
based on different schemes [1–10], such as IOT [11, 12] and
smart home system [13]; indoor localization plays a signif-
icant role. Thanks to the evident convenience where Wi-Fi
technology has beenwidely used, indoor localization strategy
by usingWi-Fi RSS has caught extensive attention since 2000.
This strategy deploys the localization algorithm on smart
terminals such as smartphones or tablets and assumes that the
devices locate at the place exactly the same as the tester does.
Hence, we can locate through locating the smart devices. Suc-
cessful as it is, concerning relative special applications (such
as smart home or office settings), it may encounter some
restrictions due to false binding relationship between users
and traditional smart devices. Luckily, wearable devices (such
as smart watches, wristbands, rings, and glasses) have been
developed rapidly and became increasingly popular in recent
years.Their closer binding relationship and longer usage time
improve the applicability of indoor localization algorithm.

On the other hand, with new opportunities due to
the popularity of wearable devices and indoor localization
technology, challenges have yet been proposed. For example,
wearable devices have lower capability in computing than
traditional devices. Also, their less storage capacity and
simpler hardware functionality block the direct usage of
indoor localization technology on wearable devices. More
importantly, considering current battery capacity of wearable
devices is only one-tenth of that of traditional smart devices.
The improvements on high energy consumption of localiza-
tion algorithms must be the top issue to make localization
technology on wearable devices possible.

In one single real-time localization phase, energy con-
sumption includes two main parts: computation and col-
lection of Wi-Fi fingerprints (the same as Wi-Fi RSS).
Because of various kinds of influences including random
fluctuations and multipath loss due to walls, furniture, and
people moving, it demands more RSS collection to ensure
indoor localization accuracy. According to our experiment,
energy consumption caused by real-time collection occupies
99% of all in that of localization algorithm (See Table 1).
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Table 1: Energy consumption in localization phase (mAh).

Device Method Signal collection Calculation Proportion

HTC One
SmartFix 0.1917 0.0005 99.74%
MoLoc 0.3105 0.0003 99.90%
Wi-Fi 0.1917 0.0003 99.84%

Moto 360
SmartFix 0.00806 0.00036 95.68%
MoLoc 0.01310 0.00008 99.38%
Wi-Fi 0.00806 0.00008 98.98%

The question is how to minimize the frequency of
collection and at the same time guarantee acceptable accu-
racy? Nowadays, auxiliary sensors, for example, gyroscope,
accelerate sensor, infrared, and camera, are introduced to
dynamically adjust the collection frequency, reduce the
energy consumption, and ensure the localization accuracy.
The assisted sensors collect the mobile information and
help improve the localization results, such as MoLoc [14],
a strategy which implements inertial sensors to directly
obtain the information of the user. However, all the methods
mentioned above have to function with the help of auxiliary
hardware and sensors, and, according to our survey, those
devices will not cause evident energy burden to traditional
smart devices, but, in terms of wearable devices which are
sensitive to energy consumption, energy consumption of
such sensors is unneglectable. Therefore, considering these
constraints, current strategies should be further improved.

In this paper, we propose a novel indoor localization strat-
egy, SmartFix. It can cooperate with any indoor localization
technology based on Wi-Fi RSS and enhance the accuracy
with a very little extra energy cost of calculation but a large
save of signal collection energy cost. SmartFix is an indoor
localization technology free from auxiliary sensors. Aided
with machine-learning algorithm, we obtain the relative
features given the trajectories of users in certain areas and
modify the localization results. Compared to traditional
localization technology, SmartFix can achieve certain level of
accuracy provided with only one RSS value. It also performs
well in energy saving. In comparison to original Wi-Fi
fingerprinting method, SmartFix can save 70% of energy by
achieving same localization accuracy.

2. Motivation and Challenges

The main problem for designing wearable-based indoor
localization technology is to improve the energy efficiency.
To find out the key point of that, we conducted experiments
on HTC One and Moto 360 and recorded and figured out
the present components of localization algorithms. After
that, according to the results, we analyzed the common
questions on Wi-Fi-based algorithm and introduced how
SmartFix takes advantage of history trajectories to improve
the performance in localization.

2.1. Analysis of Energy Consumption. We divide the localiza-
tion phase into two parts, that is, the signal collection and the
calculation. We did experiments on Moto 360 Smartwatch
and HTC One Smartphone. For the experiments that we

discuss in this paper, we scan Wi-Fi channel numbers 1, 6,
and 13 for every location and scan and collect RSS data of
all Wi-Fi hotspots nearby in every 3 seconds. For the build-
in sensor (accelerometer and gyroscope), we collect the data
with 50Hz and 500Hz sampling rate on Smartphone and
25Hz and 200Hz on Smartwatch.

Firstly, we recorded the capacity of battery during the
RSS signal collection stage and calculated the average power
consumption for collecting one set of RSS signal data.
Secondly, we operated the locating algorithm on Smartwatch
and Smartphone for many times, recorded the capacity of
battery, and calculated the average energy consumption of
running the algorithm one time for one location. Data
analysis shows that the proportion of energy consumption of
signal collection and that of calculation can reach up to 99%
(see Table 1).

In fact, due to the low stability of Wi-Fi signal detec-
tion and the influence of environmental factors, the signal
strength always fluctuates. Onemethod to tackle this problem
is to use probability estimation which relies on a special
amount of real-time data. We did experiments to verify that
increasing the amount of real-time data and using probability
estimation will enhance localization accuracy.

We implemented the basic Wi-Fi fingerprinting method
(K-NN) and FreeLoc [6] which relies on the relative RSS
order of different APs. Since there are only several APs in
the experiment, the localization performance of FreeLoc is
not good or even worse compared to that applying K-NN.
We use simple probability estimation to simulate the effect
of different amounts of real-time data. Sharing the same
real-time data, both methods will lose 40% accuracy when
the number of real-time data reduces from nine to two per
location because of the unstable Wi-Fi signals [15]. Although
the amount of real-time data is very important to locating
accuracy, it will certainly cause more energy consumption.

We utilize the features of user motion to meet the
demands of energy efficiency and the locating accuracy.There
are several locating methods using user motion to help opti-
mize the locating performance.The existing methods mainly
use built-in sensors to directly obtain motion information
whichwill add the diversity built by RSS fingerprints and help
distinguish different locations. MoLoc uses digital compass
and accelerometer to make user motion available. Judging
from our experiment, it shows that although the energy
consumption of built-in sensors does not seem to be a burden
to traditional smart devices such as smart phones, it cannot be
negligible when deployed in wearable devices which aremore
sensitive to energy efficiency. Table 2 shows the proportions
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Table 2: Energy consumption of different parts with MoLoc.

Device Type Wi-Fi Built-in sensor Calculation

HTC One mAh 0.1916 0.1189 0.0003
proportion 61.60% 38.30% 0.10%

Moto 360 mAh 0.00806 0.00504 0.00008
proportion 61.17% 38.21% 0.62%

of energy consumption of different parts while carrying out
a localization process with MoLoc on Moto 360 Smartwatch
and HTCOne Smartphone. Despite the differences in energy
consumption of two devices, their proportion is nearly the
same. The result validates our conclusion.

2.2. Features of User Motion in History Trajectory. In avoid-
ance of extra energy consumption from build-in sensors,
SmartFix does not require data directly from sensors but
instead advances its localization accuracy by implementing
machine-learning algorithms onhumanmotion feature along
the trajectories.

Consistent location coordinates indicate information of
trajectory; as a whole, we can learn its motion features in
certain areas. Firstly, human motion is limited by physical
space, and it also depends on his/her destination. What is
more, whether a person is familiar with the surroundings
should also be considered when learning his/her motion
features. We believe that, given certain area, one has specific
destination and is quite familiar with that area, and his/her
trajectories are bound to follow some fixed rules and display
some similar patterns. If we can obtain and learn from this
motion mode, it will do much good to help improve the
performance and decrease the cost in localization, which is a
big deal to Location Based Service. For example, under smart
home circumstances, by obtaining the location information
of users, smart home management system can automatically
operate on temperature, humidity, lights, videos, and security
systemandmanage various smart devices, which can enhance
its applicability and become more user-friendly.

On the other hand, concerning an unfamiliar environ-
ment, though the destination is specific, when one person
first steps into this area, there will be relative more random
moves. Typical examples such as shoppingmall, train station,
and airport, in which random motions occur much more
often and hence motion features which we pay attention to
cannot be extracted. However, after awareness of the area
when giving a large bunch of records of trajectories and
eliminating those random variables, motion features can be
captured by majority of actual trajectories.

According to conclusion mentioned before, we figure out
when we provide Location Based Service in a given area; we
can benefit from history information on the trajectories or
those similar patterns that the majority follows to improve
the localization result, which is key to this paper.

3. SmartFix Architecture

This section elaborates the design for SmartFix localization
algorithm. Also, there is an specific example at the end of the
part to help explain the operation and details for SmartFix.

3.1. Feature Selection of History Trajectory. As a localization
strategy is aided by history information, the first problem
we are faced with is how to efficiently collect the location
information or coordinates of points. In this paper, we take
advantage of pedometer and gyroscope equipped on smart
devices to collect the path and turning angles of trajectories.
Firstly, we conducted small scale experiments recording the
trajectories of users, which is labelled as Test A with 500
records. On this basis, we implement machine-learning algo-
rithms to learn from these data and they automatically cluster
into three feature values which are probability of continuous
turnings, range of turning angles, and proportions of turning
during one trajectory. All these features cannot be presented
by Wi-Fi fingerprint matching algorithms due to its random
distributed RSS value, which can cause irregular fluctuations
on the localization.

For further testing of those three features, we chose two
areas as use cases. One is a laboratory with 200 squaremeters.
And another is an open area with a square ring shape. It
is about 1898 square meters. Total 2000 records have been
collected and saved as Test B. As experiment results, all
these three features also follow the rules in a larger scale
test base. Therefore, we believe that, through learning from
these three features, we can efficiently eliminate error fluc-
tuations as much as possible and hence increase localization
accuracy. Below we will separately discuss three modes and
the patterns they follow. Wi-Fi RSS value will be influenced
by many factors such as multipath effects, temperature, and
humidity change or electromagnetic change. All these effects
pose a negative impact on localization accuracy. Continuous
turnings happen much more often under the circumstances
by applying Wi-Fi RSS localization technology. However,
according to our experiment, this abnormal mode can hardly
be spotted in actual trajectory as shown in Figure 1.

In this case, a trajectory moves from point (1) to point
(5) keeping the straight direction. However, based on Wi-
Fi detection, the result displayed is located randomly on
either side of the actual trajectory. Here comes the question
that is it safe enough for us to conclude that the continuous
turning pattern given byWi-Fi detection is only a result from
error matching and should not be considered by deciding the
correct result? To answer this question, we cluster the motion
features from Test A and the result shows that it is positive as
is shown in Figure 2.

In Figure 2, abnormal turning refers to continuous turn-
ing in one single trajectory. Like the trajectory from point (1)
to point (4) through point (2) and point (3) in Figure 1, the
directions of paths (1)-(2), (2)-(3), (3)-(4) are changing all the
time.This form of path located by basic Wi-Fi RSS method is
more likely to contain the error points caused by unstableWi-
Fi signal, and that is why we focus on the abnormal turning
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Figure 1: User motion A.

Straight Turning Abnormal turning
Motion pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
ta

ge
 in

 tr
aj

ec
to

ry

Exp 1
Exp 2

Figure 2: Percentage of motion pattern.

rate in actual trajectory. As a result, 81% of actual trajectory
remains straight and about 13% of moves are turnings. The
rest, lower than 6% of situations, might present a continuous
turning in a single trajectory. In order to bemore convincing,
we tested with a much larger scale of data of Test B and the
result is accorded with our presumption, which indicates that
by eliminating such abnormal patterns in the trajectories can
help improve the performance in localization.

Throughout the clustering for Test A, distribution of
turning angles is another evident feature learned from the tra-
jectories. Under traditional Wi-Fi detection, there is always a
problem in locating turning points. On the other hand, range
of turning angles depends much on the physical distribution
of the place. For example, if the area is relatively spacious such
as the building hall, trajectories will display the patterns with
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Figure 3: User motion B.

much more straight moves and turnings with small angles.
Or, if the place is physically limited in space such as laboratory
and office, straight moves will be cut apart andmore turnings
with larger angles will be presented. Hence, this feature is
highly dependent on the certain place. It might be applicable
within areas which share similar physical distribution. But
in terms of even large scale, it is not fully representative for
data from a given area to be widely used as a test base. Its
limitation on robustness from different areas is presented in
the following experiments; however, there is no denying for
its efficiency. First of all, we clustered on Test A and obtained
the distribution of turning angles from 0 to 180. Due to the
dominance of straight moves, angles less than 10 degree will
be considered straight moves in this operation. After that,
with a larger scale Test B, including experiment areas 1 and 2,
we separately clustered the trajectories and results are shown
in Figure 3.

In this experiment, we find out that there is a different
range of turning angles for each od the experiment areas.
The majority of each of the areas are different because of
their specific physical distribution. In the case of experiment
area 1, turning angles are mainly clustered around 30 degrees,
with maximum value of 40 degrees. 90% of all are distributed
within the range of 20 to 40 degrees. Meanwhile, for area 2,
the majority stays at 50 degrees, with most of the cases being
lower than 60 degrees. And turning angles in the range from
30 to 50 occupy 90% of total records. Based on these rules,
as is shown in Figure 4, we can improve the localization by
modifying the turning points with more convincing turning
angles. The third feature we captured from Test A is the
proportion of turning in a whole trajectory. As is shown
in Figure 5, we calculate the percentage of turnings in one
trajectory given enough length and set it as a threshold.
During the decision process, we calculate the percentage of
turnings of the trajectory and compare it with our threshold.
If that value excesses the threshold, wemanually put a penalty
value on its probability to prevent the situation for turnings
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Figure 4: Turning angle distribution.
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Figure 5: User motion C.

with high frequency. Through this way, it can also help us to
adjust the trajectory.

However, like second one, this feature is also limited by
physical factors. Directed by this limitation, we conducted
another experiment to test its robustness. Different from
previous experiment, for those trajectories with less than
10 moves, no valuable information can be extracted and is
considered unrepresentative. We select the samples which
has much more steps and the result is shown in Figure 6.
This can conclude that there will always be a threshold for
each experiment area. But these values differ from each
other given different physical factors. Meanwhile, the curve
displays with a wave shape which indicates that as the length
of trajectories increases, the turnings occur regularly in a
relatively stable range in both areas 1 and 2. Based on these
strategies, we design our localization algorithm, SmartFix.
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Figure 6: Proportion of turning.

Next part will evaluate the performance of SmartFix in a
more detailed degree.

3.2. Background Data and Location Model. SmartFix uses
trajectory connectivity and motion tendency to locate and
enhance accuracy, so in the collection phase, in addition
to the RSS values in each position; SmartFix also uses
the relationship between various locations. For example,
in a region of 𝑁 positions, surveyors need to collect the
RSS fingerprint information of the APs at each location:
fingerprint𝑖 = (RSS1,RSS2, . . . ,RSS𝑚), where 𝑚 represents
the number of APs. Besides, SmartFix requires relative
positions of those 𝑁 nodes and connectivity relations to
develop an indoor locationmodel.The indoor locationmodel
can be represented as a weighted adjacency matrix𝑀:

𝑀 =(𝜑1,1 𝜑1,2 ⋅ ⋅ ⋅ 𝜑1,𝑁𝜑2,1 𝜑2,2 ⋅ ⋅ ⋅ 𝜑2,𝑁... ... d
...𝜑𝑁,1 𝜑𝑁,2 ⋅ ⋅ ⋅ 𝜑𝑁,𝑁),

𝜑𝑖,𝑗 = {𝑘, loc𝑖 and loc𝑗 are adjacent0, loc𝑖 and loc𝑗 are not adjacent.

(1)

We set 𝑘 as an integer greater than 0, 𝜑𝑖,𝑗 = 𝑘 indicates
that location 𝑗 is on the number of 𝑘 directions of location𝑖, which will be used for the judgment of motion tendency.
The adjacency matrix𝑀 indicates the connectivity relations
corresponding to indoor locations.

SmartFix assumes that the location model is available
from floor plan or direct input from users. There are some
studies focusing on the construction of indoor location
models which may be used for SmartFix in the future.

On that basis, we set up some auxiliary points located
between every two localization points. Their density is much
larger than that of localization points and those points do not
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Input: 𝑝𝑎𝑡ℎ
Output: estimated path 𝑝𝑎𝑡ℎ
(1) 𝑝𝑎𝑡ℎ ← [ ]
(2) for all 𝑖 ∈ every possible points do
(3) 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛( )
(4) 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡[𝑖] ← 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡
(5) 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑃𝑒𝑟𝑟[𝑖] with 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡[𝑖]
(6) 𝑝pre[𝑖] = ∏𝑛𝑖=1 𝑃point ∗ 𝑃𝑒
(7) 𝑃cur[𝑖] = ∏𝑛𝑖=1 𝑃point
(8) for all 𝑖 ∈ every possible points do
(9) if (𝑝𝑄[𝑖] > 𝑀𝐴𝑋) then
(10) 𝑀𝐴𝑋 = 𝑃𝑄[𝑖]
(11) 𝑝𝑎𝑡ℎ ← 𝑃𝑄[𝑖]𝑚𝑎𝑥
(12) return 𝑝𝑎𝑡ℎ

Algorithm 1: SmartFix.

have RSS fingerprints. Due to underlying accuracy limits of
Wi-Fi localization, the difference for those auxiliary points
only by applying fingerprint matching cannot be told. But
judgingmotion pattern along the trajectory is consistent with
all the points not only those localization points. Hence, we
add those auxiliary points to help improve the performance
in SmartFix.

3.3. Localization Algorithm considering Motion Feature. The
core idea of SmartFix is to use the features of indoor human
motion, for example, to use the continuity of motion trajec-
tory tomodify themoving path. For indoor LBS triggering on
smart home scenes, users cannot jump from one to another
nonadjacent location. So the current localization result must
be related to the last one. For example, the last location
along a path should be the reference factor of the possible
current location. Judging by the value of the element 𝜑𝑖,𝑗 in
adjacency matrix 𝑀, we learn the connectivity of loc𝑖 and
loc𝑗. If the last location loc𝑖 is adjacent to the current location
loc𝑗, which indicates that moving from loc𝑖 to loc𝑗 is possible,
the possibility will be multiplied with an enhancement factor.
Instead, if loc𝑖 and loc𝑗 are not adjacent, then random error
is bound to occur in the current or last measurement; we
weaken the probability of the occurrence by multiplying a
dull factor to amend the estimated trajectory.

The essence of the SmartFix algorithm is applying prun-
ing and BFS to a tree with fixed height which contains all
possible paths and its probability, finding the leaf node with
the biggest cumulative probability as the current localization
results. The algorithm introduces a queue cur𝑄 containing
the results of the possible current paths; the elements of the
queue are tuples which hold the current position, the current
path, and the cumulative probability. In every localization, it
will calculate the cumulative probability 𝑄 of each possible
path based on the current result and the last queue pre𝑄 and
rebuild cur𝑄 for the next locating.𝑄𝑛
= {{{{{{{

𝑄𝑛−1 × 𝑞𝑖 × 𝑃, loc𝑖 is adjacent and matching𝑄𝑛−1 × 𝑞𝑖 × 𝑅, loc𝑖 is not adjacent𝑄𝑛−1 × 𝑈, loc𝑖 is adjacent but not matching,

(2)

where loc𝑖 is the current position and 𝑞𝑖 is the probability
of loc𝑖 by the current measurement. First of all, in judging
motion patterns, if current motion is a turning, and then
we will consider previous pattern, and together we can
choose a specific strategy to modify the result. According
to Algorithm 1, if there is a left turning followed by a right
turning or a right one followed by a left one, considering
our strategy in fixing continuous turnings, we assume that
this pattern hardly happens under indoor circumstances. We
therefore revise this motion into a straight move. Given three
points which form these two motions, our method is to find
an alternate point which can allow these two motions to be
straight moves. Also, each of these points should be linked
with its previous one to ensure its connectivity. After that, we
generate this new trajectory and replace previous one with it.

Additionally, if either of conditions, left to left, left to
right, right to right, and right to left, is satisfied, applying the
same rules according to out learning data, we also assume that
turning angles should stay at certain range which depends on
its place.Therefore, we also search for an alternative to ensure
that its turning angle lies in that range.

Besides these two modification strategies, we also intro-
duce another assisted judging rule by setting a threshold
for turning proportion. Given enough length of trajectories,
if turning proportion excesses that threshold, we manually
give its probability a penalty factor to decrease its possibil-
ity. Because the threshold is learned by actual trajectories
provided in this area, so if there is a higher percentage in
turnings, we believe it is wrongmatching ofWi-Fi that causes
the problem.Therefore, we also add this motion features into
our localization strategy.

The core algorithm calculates the probability of each
possible trajectory and chooses the one with maximum
likelihood to be optimal trajectory for this localization. With
RSS matching kept on, we continuously acquire a modified
trajectory with updated probability, and, finally, ultimate
trajectory with maximum possibility can be obtained as best
localization result for this strategy (see Algorithm 1). Our
method is to implement BFS to prune a probability tree. The
subjects are all the traces given certain length, including all
possible trajectory. Current trace with maximum likelihood



Wireless Communications and Mobile Computing 7

Exp 1

Exp 2

Figure 7: Floor plan of experiments.

will be considered as optimal trace for now. Also, previous
likelihood is saved for further judgment. After repeating the
process till the end, we will finally get a best trace which fits
our strategy best.The strategy of SmartFix has been described
by Algorithm 1.

4. Evaluation

This section presents the experimental setups, results, and
analyses of our experiment.

4.1. Experiment Settings. We implemented the prototypes of
TinyLoc [16], MoLoc [14], and basic Wi-Fi fingerprinting
method (𝑘-neighbor algorithm) onMoto 360 2nd-generation
Smartwatch (as shown in Figure 10) to compare the local-
ization accuracy and energy efficiency. TinyLoc is one of
our previous works which is based on two certain principles
to optimize the locating results. TinyLoc is more focused
on the energy efficiency than locating accuracy. Certain
principles will simplify the modeling and reduce the amount
of calculation. In contrast, SmartFix analyzes the history
trajectory of people in given area to generate the character
value of given physical area and special locations to optimize
locating results.Moloc [14] also leverages usermotion against
unstable Wi-Fi RSS fingerprint. The basic idea of MoLoc is
that user motion patterns collected by built-in sensors of
mobile phones add to the diversity built by RSS fingerprints
and improve the locating accuracy. At the same time, we
implemented the prototypes of both original version and
optimized version using SmartFix for comparison.

Additionally, considering the variety of indoor environ-
ment, we conducted the experiments in an open area of

1898m2 and also an office hall of 200m2, respectively (as
shown in Figures 7, 8, and 9).

Experiment area I is located in an indoor corridor area of
1898m2, with 176 locations. By taking 10 RSS samples at each
location in the construction phase and the localization phase,
respectively, we recorded RSS fingerprints of at most 9 APs,
for the purposes of fingerprint database establishment and
location estimation. For MoLoc, we recorded the directions
and steps of every adjacent location from the digital compass
and accelerometer readings for 4 times, three of which are
used for building the motion database and one for localiza-
tion. Experiment area II is located in a laboratory of 13.2m
and 15.6m with furniture including tables, chairs, server
racks, and electronic devices such as computers, servers, and
switches, where the electromagnetic environment is complex.
We also selected 9 APs of which signals are able to cover
the whole area, and 18 reference locations of which spacing
is 2–4m pairwise. The method of data collection and other
experimental settings are the same as experimental area I.

4.2. Performance Evaluation. We select MoLoc and TinyLoc
for a comparison.These two algorithms both use usermotion
to enhance accuracy. In this section, we compared the effec-
tiveness of MoLoc, TinyLoc, Smart-MoLoc (using SmartFix
to optimize MoLoc), Smart-TinyLoc (using SmartFix to
optimize TinyLoc), and basicWi-Fi fingerprintingmethod in
aspects of localization accuracy and energy efficiency both on
classic smart devices and on portable devices. In this section,
results and detailed analyses will be represented.

4.2.1. Locating Accuracy. We compared the localization accu-
racy of SmartFix, MoLoc, Smart-MoLoc (using SmartFix
to optimize MoLoc), Smart-TinyLoc (using SmartFix to
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optimize TinyLoc), and Wi-Fi fingerprinting method from
two perspectives: cumulative distribution function (CDF)
of average errors and locating accuracy. Then, we analyzed
the locating accuracy with different number of APs, trying
to explain the difference between SmartFix and MoLoc (or
TinyLoc) with respect to their utilization of user motion.

Figure 10: Moto 360.

𝐷loc = ∑step
𝑛=1Distance (locestimated

𝑛 , locreal𝑛 )
step

,
𝑝𝑥 = count (loc ∈ pathstep=1,2,3,...,𝑁 ∧ 𝐷loc ≤ 𝑥)∑ length (pathstep = 1, 2, 3, . . . , 𝑁) . (3)
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Figure 11: CDF of errors in area I.

We firstmade the cumulative distribution function of average
localization errors both on Moto 360 and on HTC One. The
calculationmethod for average error𝐷loc and the cumulative
probability 𝑝𝑥 are displayed by formula (3). The CDFs in
errors of the two experiments are shown as Figures 11 and 12.

Evidently, Smart-MoLoc and Smart-TinyLoc outperform
original indoor locating algorithm, and TinyLoc surpasses
MoLoc when compared in the same environment. When
using Smart-TinyLoc or Smart-MoLoc, the average probabil-
ities of localization error within 2m are over 80% in area II,
and those probabilities decreased to 75% and 80%, respec-
tively, in area I. Additionally, within 3.5m, the probability of
localization error for Smart-TinyLoc reached up to 90% in
area II, while, for Smart-MoLoc, the error range should be
released to 5m to acquire an equal probability. Comparing
the results in two different areas, those algorithms achieved
better locating accuracy in area II, and the improvement of
accuracy caused by SmartFix is little bigger in area II than
that in area I. In area II, the improvement is about 2% and
5% for TinyLoc and 3% and 4% for MoLoc. For example,
the probability of localization over 80% for Smart-TinyLoc
is about 3.5m and about 4m for original TinyLoc. In area
I, the average improvement caused by SmartFix decreased
to 2% and 3% for MoLoc and TinyLoc. That is because area
I is a large open space; there are much more changes for
each person and less obvious character values in history path.
According to this experiment, we find that SmartFix will
work better in an indoor area such as office room, home, or
restaurant.The experiment results indicate that SmartFix has
a 2% and 5% improvement compared to original MoLoc with
inner sensors and TinyLoc using certain principles to correct
locating results, especially within a small interval.

We then calculated locating accuracy (point-matching
probability) in two different areas with different number of
APs, of which results are shown in Figures 13 and 14. In this

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Cumulative probability distribution

MoLoc
Smart-MoLoc

TinyLoc
Smart-TinyLoc

Error distance (m)
0 1 2 3 4 5 6 7 8 9

Figure 12: CDF of errors in area II.

Number of access points
5 5.5 6 6.5 7 7.5 8 8.5 9

M
at

ch
 ra

te
E�ect of di�erent AP number

Wi-Fi
SmartLoc
MoLoc

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 13: AP Number Change in area I.

experiment, we compared three locating algorithms: Smart-
Los (Smart-TinyLoc), MoLoc, and basicWi-Fi fingerprinting
method. With the increase of APs amount, all three methods
obtained better locating accuracy, and when the number
of APs overpassed a fixed value, locating accuracy nearly
remained the same, which is compliant with [17]. SmartFix
and MoLoc outperform basic Wi-Fi fingerprinting method
in every amount of APs. In particular, in area I, for the sake
of being an open space, when the number of APs is set to 5,
SmartFix achieved the highest accuracy, about 78%, followed
by MoLoc, approximately 60%, and Wi-Fi fingerprinting
method had only about 12% locating accuracy. When the
number of APs rose to the maximum 9, SmartFix andMoLoc
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obtained 94% and 92% locating accuracy, respectively, and
Wi-Fi fingerprintingmethod also had as approximately twice
improvement as before. This results indicate that the number
of APs has a significant effect on locating accuracy. The
rising tendency of locating accuracy in area II is similar to
that in area I. Because of area II’s smaller space and lower
density of reference positions, much more influences are
exerted upon point-matching probability rather than locating
errors. Therefore, in area II, despite the same AP number 5,
except Wi-Fi fingerprinting method, the other two methods
obtained lower locating accuracy than that obtained in area I,
and their maximum locating accuracy is also lower than that
in area I.

By studying the CDF of average errors and locating accu-
racy, we learned that SmartFix and MoLoc can significantly
improve the locating accuracy of the Wi-Fi fingerprinting
method. As for SmartFix which uses trace property, and
MoLoc which uses motion property, they reached almost the
same level of locating accuracy,while SmartFix is a little better
in most cases.

4.2.2. Energy Efficiency. We implemented the localization
algorithms both on theMoto 360 2nd-generation Smartwatch
and on HTC One Smartphone to compute the average
energy consumption on algorithm calculating and repeatedly
scanned the Wi-Fi signal to compute the average energy
consumption on the data collecting. The results showed that
SmartFix can significantly reduce the energy consumption of
MoLoc andWi-Fi fingerprinting method. Endurance time of
locating for Smartwatch using Wi-Fi fingerprinting method
with SmartFix is about 1.96 times of that using original
method.

For MoLoc, we repeatedly carried out the pedometer
program to calculate the average energy consumption of
built-in motion sensors. Figure 15 shows the total energy
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consumption of Smart-TinyLoc, Smart-MoLoc, Smart Wi-
Fi fingerprinting method, and original methods for per-
forming one-time locating at the same accuracy level. The
power consumption for one-time locating is Wi-Fi method:
0.042%; SmartFix Wi-Fi method: 0.011%; TinyLoc: 0.008%;
Smart-TinyLoc: 0.008%; MoLoc: 0.022%; and Smart-MoLoc:
0.016%, respectively. And on Moto 360, the power consump-
tion of those methods is Wi-Fi method: 0.013%; SmartFix
Wi-Fi method: 0.013%; TinyLoc: 0.002%; Smart-TinyLoc:
0.002%; MoLoc: 0.007%; and Smart-MoLoc: 0.005%. The
total energy consumption of SmartFix and the Wi-Fi finger-
printing method is produced from data collection and calcu-
lation,whileMoLochas extra energy consumption by built-in
motion sensors. Since the energy consumption of calculation
is negligible compared with that of data collection, the built-
in sensors are themain cause of the extra energy consumption
of MoLoc, and SmartFix can reduce work frequency of built-
in sensors to achieve lower energy consumption. And forWi-
Fi method, SmartFix can significantly reduce the amount of
real-time RSS data and save almost 70% energy. In fact, the
locating accuracy and energy efficiency are the two related
aspects. It will produce extra energy consumption if the
localization algorithm takes measure to improve locating
accuracy in most occasions. Locating algorithms suitable for
wearable devices must consider the balance between locating
accuracy and energy efficiency. Through the estimation,
implementing the localization algorithms to the Moto 360
and scanning RSS signal once every 3 seconds, the time
that it can perform localization with different localization
algorithms is shown in Figure 16. It indicates that the stand-
by times to localization are remarkably different by using
different localization algorithm and the stand-by times of
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SmartFix methods are almost longer than the original ones.
The stand-by time of Moto 360 is almost 24 hours. Working
time of locating using Smart-TinyLoc for Moto 360 is the
longest and can achieve 13.21 hours which is 13% longer
than that using Smart-MoLoc (11.56 hours) and 3.11 times
of that using original Wi-Fi fingerprinting method (4.25
hours) when it collects RSS data four times per location and
achieves the acceptable accuracy. Working time of locating
using SmartFix Wi-Fi fingerprinting method also extends
almost 2 times than the original method.

4.2.3. Compatibility. We conducted experiments to attest
whether the motion features retrieved from a certain envi-
ronment can be applied to other environments. To analyze
the compatibility of such motion features, we exchanged the
feature acquired in areas I and II, of which results are shown
in Figures 17 and 18. By studying the experiment results, when
applying area II features to area I, we got about 15% fall-off in
accuracy. Meanwhile, the results of applying area I features to
area II also show about 10% accuracy decrease.Therefore, the
calculation of features should be conducted within specific
environment. Such features have little compatibility among
different areas.

4.2.4. Running Cost. As a history based indoor locating
algorithm, the activating speed of SmartFix is shown in
Figure 19.

The figure indicates that, with the enlargement of training
data, SmartFix acquired better locating accuracy, and when
the number of history data reached up to 1000, locating
accuracy achieved the maximum. Nevertheless, different
environment results in different amount of data required.
In area II, SmartFix needs more data to achieve the same
locating accuracywith that in area I, whichmay results in area
II’s small in space but complication in motion.
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5. Related Work

Many indoor localization techniques have been proposed
over the past decade and many researches study the applica-
tion of indoor localization [18]. Wi-Fi-based indoor localiza-
tion is always one of themost attractive techniques because of
its ubiquitous deployment in indoor environment. Our work
focuses on designing a low-power locating technology which
can be deployed on the wearable devices and deals with the
accuracy problems caused by reducing the amount of real-
time data.
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Early indoor locating technology using GSM signal,
RFID, Infrared, ultrasound pulses, or UWB required special-
ized hardware to determine the devices location [1]. RF signal
intensity was first used in RADAR for indoor localization in
2000 [2]. In recent years, more indoor localization technolo-
gies have paid increasing attention to Wi-Fi RSS data, such
as accuracy [3, 5], reducingmeasurement area [7], training of
system [8], or using high-quality audio sensing system [19] as
assistant locating method. However, as we know, the signal
strength always fluctuates, so it requires a certain amount
of real-time data to ensure proper locating accuracy. How
to compensate the influence of measurement errors is an
important research subject. FreeLoc [6] abandons methods
that use RSS value directly but uses AP’s RSS relative order to
locate a position and solve the problems caused by irregular
changes of RSS. However, environment with less APs or
adjacent regions RSS without significant change will cause
some troubles in locating accuracy. MoLoc [14] is a motion-
assisted locating scheme implemented on mobile phones
which leverages user motion against fingerprint ambiguity.
MoLoc can easily be integrated in existing locating systems by
simply adding a motion database. However, the user motion
detected by built-in sensors costs extra energy consumption
which needs to be improved when implemented on the
energy-constrained wearable devices. Another idea is to put
aside the RSS and measure other stable physical data in
Wi-Fi environment, such as FILA [9] proposed measure
CSI (channel state information), in order to achieve higher
accuracy. But it is not suitable for the wearable devices
because of the low capability of detection.

Energy efficiency is always a popular research topic in
indoor localization [20] and also a key issue for wearable
devices. Perceiving environment information to dynamically
adjust the rate of data collection is the main idea of the
current energy-saving mechanism, such as using velocity of
the nodes to dynamically adjust the frequency of acquiring

the signal strength [10, 21–24], reducing the rate of use
channel responses frommultipleOFDMsubcarriers [25], and
using the environment information [26, 27]. There are other
methods to reduce the total energy consumption in a system,
like GreenLoc [28]. GreenLoc considers that people generally
have similar mobility patterns, so it selects a few people from
the group as samples instead of detecting every person in
order to lower the average energy cost for the whole system.
But GreenLoc is not good at locating each of the individuals,
which exactly needs to be done in smart home scenes.

6. Conclusion and Future Work

The rapid development of smart home and wearable devices
provides a good foundation for the high availability of indoor
LBS in home setting scenario. However, energy efficiency is
the essential issue that needs to be significantly improved
for the existing locating technology before they can be
implemented on energy-constrainedwearable devices. In this
paper, we propose a novel indoor localization technology
called SmartFix with its focus on energy efficiency, the first
one that can fit in wearable computing in smart home scenes.

SmartFix only needs single real-time RSS signal in the
locating phase to guarantee excellent energy-saving per-
formance. In another aspect, by referring to user motion
features, SmartFix modifies locating results to achieve sat-
isfying locating accuracy. According to the experiment, the
probability of error within 2 meters can reach more than
80%. Meanwhile, energy consumption is 35% lower than that
of MoLoc when achieves the same accuracy, and SmartFix
obtains best accuracy with minimal energy cost. In the
experiment, we applied the core idea of SmartFix to other
location technology, achieved good results, and proved that
SmartFix have good portability and technical compatibility.

In addition to using the motion features, we will focus
more on optimizing strategies for SmartFix, so that SmartFix
can be applied to more diverse indoor application scenarios.
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