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Abstract

This paper presents a typical design of fault-tolerant control using 
two decentralized PI plus fuzzy controllers to control the level of the 
lower two tanks in a nonlinear quadruple tank level process (QTLP). 
We also present some basic aspects of decentralized control design 
concerning stability and performance and illustrate them on a case 
study: a virtual model of a quadruple tank process. Control structure 
selection based on performance relative gain array (PRGA) is used, 
and its ability to evaluate the achievable performance is discussed. 
The controllers are designed based on a conventional PI controller 
plus fuzzy inference system technique. The relation between inputs/
outputs was proved using relative gain array (RGA), and then, we 
divided the quadruple tank system into two subsystems and con-
trolled each of them separately, both in minimum and non-minimum 
phases. Both the controllers were designed to control the non-
linear QTLP at any operating points. The proposed approach was 
compared with a decentralized fuzzy controller subject to actuator/ 
sensor and system component faults. The simulation results show 
that the proposed decentralized fault-tolerant PI plus fuzzy controller 
has a more accurate tracking level and less computational time in 
both minimum and non-minimum phases.

Keywords
Actuator fault, Fuzzy control, PI controller, Sensor fault, System com-
ponent fault, Decentralized control, Robust stability, Robust perfor-
mance.

The stability of uncertain dynamic systems has ma-
jor importance when real-world system models are to 
be controlled and different faults occur in a system. 
Uncertainties due to inherent modeling/identification 
inaccuracies in any physical plant model specify a 
certain uncertainty domain, such as a set of linearized 
models obtained in different working points of the 
considered plant (Himanshukumar and Vipul, 2018a). 
Thus, the basic required property of a system is its 
stability within the whole uncertainty domain to be 
denoted as robust stability. The robust control theory 
provides analysis and synthesis approaches and tools 

applicable for various kinds of processes, including 
multi-input multi-output (MIMO) dynamic systems 
(Himanshukumar and Vipul, 2018b). To reduce the 
multivariable control problem complexity, MIMO sys-
tems are often considered as interconnections of a 
finite number of subsystems. This approach enables 
employing a decentralized control structure with sub-
systems having their local control loops. Compared 
with centralized MIMO controller systems, the decen-
tralized control structure yields certain performance 
deterioration, which is however outweighed by im-
portant benefits, such as design simplicity, hardware, 
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operation, and reliability improvement. Robustness is 
one of the attractive qualities of decentralized control 
schemes, since such a control structure can be in-
herently resistant to a wide range of uncertainties in 
subsystems, actuator/sensor faults, system compo-
nent faults, and interconnections.

Quadruple tank level process (QTLP) is broadly 
utilized as a part of a chemical and petroleum pro-
cess. The framework is extremely unpredictable to 
control because of its nonlinearity and the higher con-
nection between inputs/outputs. The levels of fluid  
in the two lower tanks should be controlled and man-
aged to achieve a specific reference level.

In this paper, we concentrate on the key aspects of 
decentralized fault-tolerant control design using a con-
ventional PI plus type-1 fuzzy logic controller. The main 
aim of the considered decentralized control design 
strategy is to keep the overall system robust stability and 
to achieve the required performance specifications. We 
study the basic steps of decentralized control design 
on a quadruple tank process case study with two in-
puts and two outputs (Johansson et al., 1999; Johans-
son, 2000), since it includes both minimum and non- 
minimum phase configurations and an attractive physical 
interpretation. The process model is built on the Matlab  
2015a platform. We begin with control structure selec-
tion, i.e., choice of appropriate input–output pairing for 
decentralized control. The further step is independent 
single loops design so that it guarantees stability as 
well as the required performance of the overall system, 
including interactions. Two alternatives of stability con-
dition for decentralized control structure are used: one 
based on the small gain theorem for complementary 
sensitivity function and one for systems with no RHP 
(right half plane) zeros. To evaluate the achievable per-
formance under decentralized control, the performance 
relative gain array (PRGA) (Hovd and Skogestad, 1992) 
is used. The application of these design tools is shown 
in a case study. The present paper provides a simple 
illustration of the stability and performance issues in de-
centralized control design and can be used in teaching 
complex systems control.

The main attributes of the considered decentral-
ized control design strategy are to keep the overall 
system robust stability and to achieve required per-
formance specifications in spite of all three possible 
faults occurring in the QTLP.

The advantages of the proposed decentralized 
FTC are as follows:

•	 the proposed FTC is robust and stable for both 
the cases minimum phase and non-minimum 
phase configuration;

•	 decomposition includes reduced modeling re-
quirements and ease of implementation;

•	 fuzzy logic controller (FLC) designed to take 
care of fault-tolerance capability;

•	 fault-tolerance capability for three faults in 
QTLP; and

•	 disturbances rejection capability is high.

The minor disadvantages of the proposed decen-
tralized FTC are as follows:

•	 due to decentralized FTC control, the main 
QTLP system is divided, and hence two sepa-
rate controllers are designed; and

•	 the controller structure is complex and restricted.

Literature review

Examining stability can be done by numerous anal-
yses for both minimum and non-minimum phases 
for QTLP. In the studies of Dai and Strm (1999), Jo-
hansson et al. (1999), Johansson (2000), Rosinov and 
Markech (2008), Suja and Thyagarajan (2008), Kaya-
can and Kaynak (2009), Rosinov and Kozkov (2009), 
Suja et al. (2009), Saeed et al. (2010), Alvarado et al. 
(2011), Mirakhorli and Farrokhi (2011), Sombra et al. 
(2012), Kirubakaran et al. (2014), Himanshukumar and 
Vipul (2019a), passive fault-tolerant controller was de-
signed using an artificial intelligence technique (i.e. 
fuzzy logic, neural network) with conventional PID 
controller for single or multi-tank level systems sub-
ject to various faults. The contrasts between min-
imum and non-minimum phases conduct for the 
quadruple tank system (QTS) have been considered 
and controlled by the decentralized PI controller by 
Suja and Thyagarajan (2008) and Sombra et al. 
(2012). Advanced control theory and techniques, for 
example, predictive control, genetic algorithm, sliding 
mode, and neuro-fuzzy controllers can be designed 
to control QTS with more exact outcomes than tra-
ditional control strategies. In the studies of Kayacan 
and Kaynak (2009) and Saeed et al. (2010), a multi-
variable predictive PID controller was executed on a 
four-tank system to modify the transmission zero to 
work in minimum and non-minimum phases. Kayacan 
and Kaynak (2009) proposed a gray prediction-based 
fuzzy PID controller, while Teng et al. (2003) present-
ed a basic genetic algorithm (GA) technique for on-
line auto tuning proportional integral derivative (PID) 
parameters to control the fluid level in QTS. In recent 
times, the advanced control approach has been de-
ployed on quadruple tank level systems like model 
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productive control, observer-based Back-stepping 
and type-1 and type-2 fuzzy logic-based controller; 
refer to the studies of Gouta et al. (2015a, 2015b) and 
Deepa et al. (2017).

In the studies of Mahfouf et al. (2001) and Mirakhorli  
and Farrokhi (2011), in view of the Takagi-Sug-
eno-Kang (TSK) piecewise direct fuzzy modeling 
approach, a long-range predictive control calculation 
for nonlinear QTS forms working over a wide range 
is proposed. Both the decentralized predictive and 
proportional integral (PI) controllers are planned by 
Kirubakaran et al. (2014) for the QTS framework. A de-
coupling-based agreeable conveyed multi-parametric 
model predictive controller (MPC) is proposed. The 
controllers are subjected to reference tracking and 
disturbance dismissal, and the execution measures 
are looked at. In the HD-MPC research, eight diverse 
MPC controllers were connected to the four-tank pro-
cess plant. These controllers depended on various 
models and suppositions and gave a wide perspec-
tive of the diverse distributed MPC plans (Alvarado  
et al., 2011; Mirakhorli and Farrokhi, 2011). Bristol (1966) 
displayed an adequacy controller planned in view of 
a mix of state feedback and a sliding mode control-
ler for a four-tank system utilizing fuzzy logic for the 
non-minimum phase mode. The sliding mode con-
trol (SMC) strategy is utilized to accomplish a quick 
transient reaction, while the state feedback controller 
(SFC) can give zero stationary state errors.

In addition, an advanced fault-tolerant control 
strategy designed for multivariate MIMO-level control 
process systems is presented in the study of Himan-
shukumar and Vipul (2018c). However, nonlinear dy-
namics is very crucial for controlling a variable, but 
some significant results have been presented in the 
studies of Himanshukumar and Vipul (2018b, 2018d, 
2018e); in this literature, a conical shaped tank is con-
sidered with different types of faults. In the studies 
of Himanshukumar and Vipul (2018c, 2018d, 2018e, 
2018f), the authors proposed a unique solution for 
modeling of a nonlinear system and control. A Tak-
agi-Sugeno-based fuzzy logic controller is applied 
to interacting level control (MIMO) process, which is 
highly nonlinear in nature. Also, three types of faults 
were considered: system component (leak), actuator, 
and sensor faults.

The novelty of this paper is using the data of the 
linear quadruple liquid-level tanks to create a type-1 
fuzzy logic control (FLC) for a quadruple tank system 
subject to three faults in the system. In addition, a 
fault-tolerant controller (fuzzy plus PI controller) has 
been designed as a linear controller and examined for 
different conditions for both minimum phases under 
actuator/sensor and system component faults. The 

proposed controllers improve the performance of a 
multivariable nonlinear liquid-level system.

This paper is constructed as follows: the second 
section presents the specification of quadruple tank 
process, nonlinear, and linear models. The third sec-
tion presents the decentralized relative gain array and 
the decentralized fault-tolerant PI plus type-1 fuzzy 
controller framework. The results and simulation are 
displayed in the fourth section. Finally, the fifth section 
presents the conclusion.

Quadruple tank processes and 
mathematical model

Process description

This is a new laboratory process, which was de-
signed to illustrate performance limitations due to 
zero location in multivariable control systems. The 
process is called the quadruple tank process (Jo-
hansson, 2000) and consists of four interconnected 
water tanks and two pumps. The system is shown 
in Figure 1. Its manipulated variables are voltages to 
the pumps and the controlled variables are the wa-
ter levels in the two lower tanks. The quadruple tank 
process can easily be built by using two double-tank 
processes. The output of each pump is split into two 
using a three-way valve. Thus, each pump output 
goes to two tanks, one lower and another upper, di-
agonally opposite, and the ratio of the split up is con-
trolled by the position of the valve. With change in the 
position of the two valves, the system can be appro-
priately placed either (Johansson, 2000) in the mini-
mum phase or in the non-minimum phase. The phys-
ical parameters of the process given by Johansson  

Figure 1: Quadruple tank level process 
(QTLP) scheme with fault.
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(2000) are shown in Table 1. The material balance for 
the quadruple tank process is given by Equations (1) 
to (4). Note that λ1 and λ2 are the ratios in which the 
outputs of the two pumps get divided. The sampling 
time of the process is assumed as 1 sec.

The quadruple tank level process (QTLP) is used 
to illustrate many concepts in MIMO systems. The 
quadruple tank laboratory equipment consists of four 
interacting tanks (1, 2, 3, and 4), two-way valves, two 
pumps, and a reservoir as shown in Figure 1. Tanks 1 
and 2 are in the lower, while tanks 3 and 4 in the up-
per. The flow is delivering to tanks 1 and 3 from a res-
ervoir by pump 1, while pump 2 sucks the flow and 
delivers it to the other tanks. The two-way valves after 
each pumping are used to divide the flow to lower 
and upper tanks by a factor λi and (1 − λi) which is fixed  
during the experiment. The input voltages U1 and U2 
to the pumps are varied during the experiment ac-
cording to the required controlled outputs (the liquid 
levels in the lower tanks 1 and 2). A reservoir is used 
to accumulate the outgoing water from tanks 1 and 2 
and is present in the bottom.

The operation of QTLP can be in two phases: 
minimum phase and non-minimum phase. The sys-
tem starts operating in non-minimum phase when the 
fraction of liquid entering the lower tanks is less than 
that of upper tanks. Otherwise, the system starts op-
erating in the minimum phase when the fraction of liq-
uid entering the upper tanks is less than that of lower 
tanks. The minimum phase and non-minimum phase 
can be achieved as:

Minimumphase :1 2,1 2< + <λ λ( )

Non-minimumphase : < 1.1 < +λ λ1 2( )

Nonlinear quadruple tank mathematical 
model

The nonlinear model of QTLP is based on the mass 
balances for each tank and the differential equations 
are formulated as:
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where Ai is the cross-section of tank i, i = (1, 2, 3, 4);  
ai the open cross-section of the outlet line valve; hi 
the water level; υi the voltage applied to pump; kivi the 
flow from the pump; λi the position of the valve; and g 
the gravitational constant.

QTLP mathematical model with three faults
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where α1 and α2 are the coefficients of actuator 
faults for CV1 and CV2, respectively. The value of co-
efficient α1, α2∈ [0, 100%]. f1 and f2 are a leak flow rate 

Table 1. Parameters of the quadruple 
tank level process.

Sr. no. Description Value

1 Area of the tanks A1, A3, A2,  
and A4

32 cm2

2 Area of outlet pipes a1 and a3 0.071 cm2

3 Area of outlet pipes a2 and a4 0.057 cm2

4 Constant k 0.50 V/cm

5 Gravitational constant g 981 cm/s2
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from the bottom of tanks 1 and 2. The leak flow rate 
varies from 0 to 50.3691 cm3/min. The third fault in-
troduced into QTLP is a sensor fault, which interprets 
the sensor bias fault because of sensor calibration or 
measurement noise. Due to sensor fault, erroneous 
measurement of tank height h1 and h2 is propagated 
to the controller and hence a wrong control action is 
taken from the controller (Himanshukumar and Vipul, 
2018g). The sensor fault introduced into the QTLP 
via software and the value is between 0 and 40% 
for both sensors 1 and 2. The fault is introduced into 
the system QTLP via the MATLAB R2015a software 
package.

Linear state-space model

The linearized state-space model about operating 
point is shown in Table 1 represented by the following 
equation:
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Quadruple tank process uncertainty  
domain

For quadruple tank system (12), we consider the un-
certainty to be a change of valve position, i.e. change 
of λ1 and λ2. The uncertainty domain is specified by 
three working points (Fig. 2):

1.	� in the minimum phase region: WP1: λ1 = 0.4, 
λ2 = 0.8; WP2:λ1 = 0.7, λ2 = 0.6; WP3: λ1 = 0.8, 
λ2 = 0.8; and

2.	� in the non-minimum phase region: WP1: 
λ1 = 0.1, λ2 = 0.3; WP2: λ1 = 0.43, λ2 = 0.34; WP3: 
λ1 = 0.1, λ2=0.1.

Open-loop response of minimum and non-mini-
mum phases for WP2 region is found and the pro-
posed approaches are implemented for the minimum 
phase and non-minimum phase region of WP2 for 
three faults into QTLP (Table 2).

The nominal model Gmp(s) and Gnmp(s), obtained as 
a model of mean parameter values, is used for con-
trol design (Figs. 3 and 4):
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Decentralized control strategy and 
preliminaries

The control design of the MIMO system (plant) 
comprises several steps and tasks (Skogestad and  
Postlethwaite, 2009):

1.	� study the plant and formulate the control 
objective;

2.	 find a plant model, simplify it if necessary;
3.	 analyze the model properties, scale the variables;
4.	� decide which variables are to be controlled and 

which variables are to be the manipulated ones;
5.	� select the control configuration: for the decen-

tralized control structure, it means to choose 
the input–output pairing;

6.	� specify the performance requirements respec-
tive to the control objective;

7.	� determine the type of controller and design its 
parameters;

8.	� examine the resulting control system, if the 
specified requirements are not met, redesign;

9.	� analyze the simulation results, and if necessary, 
repeat the whole procedure; and

10.	 realize the designed controller.

We assume that we have the MIMO system model 
linearized around the working point and we concen-
trate on points 5, 7, and 8, which are crucial for a suc-
cessful control design.

The important task in MIMO systems is to decide on 
control configuration, i.e. the decomposition of the con-
troller. One possible choice of appropriate control config-
uration, which substantially simplifies both control design 
and implementation issues, is decentralized control.

Figure 2: Uncertainty domain specified 
by working points.

Table 2. Operating parameters of minimum 
phase and non-minimum phase system.

Parameters
Operating 

point minimum 
phase

Operating 
point 

non-minimum 
phase

h1
0

, h2
0 12.76, 13.1 12.3, 12.7

h3
0

, h4
0 2.1, 1.8 5.1, 5.7

υ1
0
, υ2

0 3.33, 3.36 3.14, 3.31

k1, k2 3.33, 3.38 3.14, 3.33

λ1, λ2
0.7, 0.6 0.43, 0.34

Figure 3: Open-loop response of quadruple system with non-minimum phase configuration.
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Decentralized control problem  
formulation

Consider a MIMO plant described by the linear model:

y us G s s( ) ( ) ( )= ,
� (18)

where complex vectors y(s) and u(s) are the Laplace 
images of output and input signal of dimensions p 
and m, respectively; G(s) the transfer function matrix 
of dimensions ×m. In the following, we assume the 
square system, i.e. p = m and stable plant G. Argu-
ment s is often omitted for better readability.

Our aim is to design an appropriate decentralized 
control, so that the overall system stability is kept (in-
cluding possible uncertainties) and the required per-
formance is achieved.

We focus on two most important steps in decen-
tralized control design as follows:

1.	� the determining of appropriate input–output 
pairing; and

2.	� the respective single control loops design so 
that the overall requirements are kept.

After completing step 1, the inputs or outputs can 
be reordered so that the respective transfer system 
matrix G with reordered columns or rows has the 
paired elements on the main diagonal. Then, the de-
centralized controller can be represented by the diag-
onal matrix C(s) = diag(Ci). To find C(s), the so-called 
independent design is considered, where individual 
loops are designed independently (simultaneously). 
Local controllers Ci(s) are designed so that they:

Figure 4: Open-loop response of quadruple system with minimum phase configuration.

Decentralized by relative gain array (RGA)

Decentralized control is an entrenched way to com-
pact the multi-input–multi-output MIMO plants with 
control. To outline a decentralized controller, match-
ing between input and output must be dictated by 
RGA. The method exchanges of open-loop and 
closed-loop control structures are assessed for all 
conceivable input/output pairings. The array will be a 
matrix with one row for each output variable and one 
column for each input variable in the MIMO frame-
work. A few principles for blending determination 
can be expressed: the variable pairings comparing 
to positive relative gains as near unity as conceiva-
ble ought to be favored. Negative relative gain much 
longer than unity ought to be evaded. The simplest 
case of control circuit of two input two output (TITO) 
system is shown in Figure 5.

Figure 5: Schema of simplest 
decentralized control of TITO system 
(Schmidt, 2002).
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1.	 stabilize individual loops;
2.	� satisfy the overall system stability condition; 

and
3.	� satisfy the bounds obtained from performance 

requirements.

Note that conditions 2 and 3 are often contra-
dictory. In the following, sensitivity is denoted as 
S(s) = (I + G(s)C(s))1 and closed-loop transfer func-
tion (complementary sensitivity) is denoted as 
T(s) = G(s)C(s)(I + G(s)C(s))1.

Control configuration (pairing) selection

To choose appropriate pairing, several interaction 
measures have been proposed in the literature (RGA, 
dRGA, PRGA, etc.); more details can be found, e.g., in 
the study of Schmidt (2002). Relative gain array (RGA), 
frequently used in practice, is defined as follows:

RGA G G
T

Λ( ) ( )× ( )( )−
= 0 0

1
,
� (19)

where (×) denotes the element-by-element product of 
the two matrices (Hadamard product).

Individual subsystems are then specified by 
the chosen pairing, and their transfer functions are 
placed in the diagonal of the transfer function matrix. 
The structural stabilizability for the chosen pairing can 
be checked by the Niederlinski index:

I
det G

diag G
=

0

0

( )( )
( ))( )( )∏

.

� (20)

If N I < 0, the system cannot be stabilized using the 
chosen pairing and the pairing must be modified. It 
must be noted that RGA index provides limited infor-
mation, e.g., for the system with one-way intercon-
nections (when the transfer function matrix is upper 
or lower triangular).

The RGA concept is employed to QTLP to de-
termine the input–output pairing for both minimum 
phase and non-minimum phase:

RGA Λ( )
−









 ←=

1.4 0.4

0.4 0.64
Minimum phase,

� (21)

RGA Λ( ) 







 ←=

0.64 1.6

1.6 1.4
Non-minimumphase.

�(22)

For the minimum phase system, λ11 is obtained 
as 1.4, so the pairing is determined as y1 − u1 and 
y2 − u2. But for the non-minimum phase system, λ11 is 
obtained as 0.64, so the suitable pairing is found as 
y1 − u2 and y2 − u1.

Stability condition for decentralized  
control

After the appropriate pairing has been determined, 
the decentralized control law is to be designed. There 
are various approaches to find the respective diag-
onal controller matrix C(s). We adopt independent 
design as a simple possibility to design single loops 
so that the overall stability and performance require-
ments are kept, i.e. that interactions do not intro-
duce instability and do not significantly deteriorate 
performance. Let us turn to stability condition for a 
system with decentralized control. Matrix G(s) can be 
split into its diagonal and off-diagonal parts: G(s) =  
GD(s) + GM (s).

The uncertainties can be included into GM (s). For 
stable open-loop system G(s)C(s), the closed-loop 
system stability condition based on small gain theo-
rem is given in the next Lemma (Vesel and Harsnyi, 
2008):

Lemma 1. (Vesel and Harsnyi, 2008) Consider sta-
ble system G(s) with a decentralized controller C(s). 
The respective closed-loop system T (s) is stable if:

G W Gd M
−1 1< ,

� (23)

G
Gd

M

−1 1
< ,

� (24)

where matrix W is given by C−1 + GD = GDW−1.
Inequality (24) can be reformulated into:

G T M
GD D

M

−1
0

1
< = ,

� (25)

where TD = GDC(I + GDC)−1.
Condition (25) can be used for stable system with-

out or with RHP zeros (both for minimum and non-min-
imum phases case). However, the above condition can 
be rather limiting in low frequencies, where ||TD||≈1; for 
a stable system with no RHP zeros, this may be too 
restrictive. The alternative condition for this case is in 
Lemma 2 (Skogestad and Postlethwaite, 2009):

Lemma 2. (Skogestad and Postlethwaite, 2009) 
Consider a stable system G(s) with a decentralized 
controller C(s). Assuming that neither G nor GD has 
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RHP zeros, the overall closed-loop system is stable if 
and only if (I − ESD)−1 is stable, where:

E G G G G G S I G CD M D D= − = = +−( ) ( )1 1 1
, .

The above condition can be reformulated as fol-
lows: (I + ESD)−1 stable means det(I + ESD)−1 ≠ 0. The 
sufficient stability condition is then ||ESD|| < 1 or

G S M
GD

M

−1
0

1
< = .

� (26)

Either of alternatives (25) or (26) must be satisfied 
for all frequencies.

Performance margins for decentralized 
control system

The performance relative gain array (PRGA) has been 
introduced (Hovd and Skogestad, 1992) and shown 
to provide information for appropriate pairing, but 
also performance limits for system with decentralized 
control. PRGA is defined as:

PRGA G G s G sD( ) ( ) ( )−= =
1

Γ .
� (27)

There is a close relationship between PRGA 
and closed-loop system performance specified by 
bounds on control error (offset) and disturbance pre-
sented as follows:

e jw r jw S jw w jw w i ji j i ri( ) ( ) ( ) ( )= < ∀1 , , ,
� (28)

e jw z jw SG jw w jw w i ki j z ik zi( ) ( ) ( ) ( )= < ∀1 , , ,
� (29)

where rj denotes the jth set-point change; Sij is the 
respective element of sensitivity function S; zk is the 
expected disturbance; Gz is the transfer function; wri, 
wzi are the performance weights for control error and 
disturbance, respectively.

For frequencies where a feedback is effective 
(w ¡ wB, wB denotes bandwidth), it is assumed that 
S = (I + GC)1 ≈ (GC)1 yield the following bounds for indi-
vidual loop:

g jw C jw w jw w w i jii i ij ri B( ) ( ) ( )> , ,η ∀ < ∀ ,
� (30)

where ηij are elements of the PRGA index Γ.

g jw C jw w jw w w i kii i ik zi B( ) ( ) ( )> ∀ < ∀δ , , ,
� (31)

where δik are the elements of Γ Gz.
Inequalities (30) and (31) determine performance 

limits lower bounds on single-loop modules to 
achieve the required control error and disturbance at-
tenuation, and the former is discussed in the control 
design stage.

Proposed decentralized fault-tolerant 
fuzzy plus PI controller design

Fuzzy logic control is derived from the fuzzy set theo-
ry introduced by Zadeh (1965). In the fuzzy set theory, 
the transition between membership and non-mem-
bership can be gradual. Therefore, boundaries of 
fuzzy sets can be vague and ambiguous, making it 
useful for an approximate system. Combining multi- 
valued logic, probability theory, and knowledge base, 
FLC is a digital methodology that simulates human 
thinking by incorporating the imprecision inherent in 
all physical systems. Fuzzy logic controller is an at-
tractive choice when precise mathematical formula-
tions are not possible (Buckley and Ying, 1989; Dri-
ankov et al., 1993). The decentralized fault-tolerant 
fuzzy plus PI control structure includes two fuzzy 
MISO controllers and two PI controllers. In the pro-
posed control method for the quadruple tank pro-
cess, two fuzzy logic controllers are used separately 
for controlling the level outputs. The structure of the 
proposed decentralized fault-tolerant fuzzy plus PI 
controller is shown in Figure 6.

Figure 6: Decentralized control 
structure for minimum phase system 
with two fuzzy and two PI controllers. 
fsys, fa, and fs denotes system 
component (leak), actuator, and sensor 
faults, respectively.
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Fuzzification

Fuzzy logic uses linguistic variables instead of numer-
ical variables. The process of converting a numerical 
variable into a linguistic variable is called fuzzification. 
In the present work, the error and change in error 
of level outputs (h1 and h2) are taken as inputs and 
the pump voltages (υ1, υ2) are the controller outputs. 
The error and change in error is converted into seven 
linguistic values, namely, NB, NM, NS, ZR, PS, PM, 
and PB. Similarly, controller output is converted into 
seven linguistic values, namely, NB, NM, NS, ZR, PS, 
PM, and PB. Triangular membership function is se-
lected and the elements of each of the term sets are 
mapped on to the domain of the corresponding lin-
guistic variables.

Decision logic stage

Basically, the decision logic stage is similar to a rule 
base consisting of fuzzy control rules to decide how 
FLC works. This stage is constructed by expert 
knowledge and experiences. The rules are generat-
ed heuristically from the response of the conventional 
controller: 49 rules are derived for each fuzzy control-
ler from careful analysis of the trend obtained from the 
simulation of conventional controller and known pro-
cess knowledge. The rules are enumerated in Tables  
3 and 4 for type-1 FLC 1 and 2. The decision stage 
processes the input data and computes the control-
ler outputs:

Total possible if then rule = (No. of linguistic variable ffor I/P1)

(No. of linguistic variable for I/P 2) (No. of × × llinguistic variable for O/P)

= 7 7 7 = 343 (Out of 343 49 f× × uuzzy rules are used to design FLC) �(32)

Defuzzification

The output of the rule base is converted into a crisp 
value—this is done by a defuzzification module. The 
centroid method of defuzzification is considered for 
this application. The parameters of FLC designed are 
presented in Table 5.

PI controller design

The decentralized controller structure is shown in  
Figure 6 and the decentralized control law (Johans-
son, 2000) u = diag{GC1, GC2} (υ−h). The QTLP is 
considered as minimum phase process (the process 
does not have RHP zeros or time delays).

PI controllers have the form (Bequette, 2004):

G s K
T s

lPI l
il

( ) ( ) 







= =1

1
, 1, 2+ .

� (33)

Table 3. Rule base for type-1 FLC 1 loop 1.

f1, e1  

and ė1 
NB NM NS ZR PS PM PB

NB NB NB NB NM NS NS ZR

NM NB NB NM NS NS ZR PM

NS NB NM NS ZR PS PM PB

ZR NM NM NS ZR PS PM PB

PS NM NS ZR PS PS PM PB

PM NS ZR PS PS PM PB PB

PB ZR PS PS PM PB PB PB

Table 4. Rule base for type-1 FLC 2 loop 2.

f2, e2 
and ė2 

NB NM NS ZR PS PM PB

NB NB NB NB NM NS NS ZR

NM NB NB NM NS NS ZR PM

NS NB NM NS ZR PS PM PB

ZR NM NM NS ZR PS PM PB

PS NM NS ZR PS PM PB PB

PM NS ZR PS PM PM PB PB

PB ZR PS PM PB PB PB PB

Table 5. Parameters for FLC.

Parameter Parameter value

No. of input variables 2

No. of output variables 1

No. of linguistic variables 
per MF

7

No. of rules 49

Membership function (MF) Triangular

Defuzzification methods Center of gravity method
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condition (28 and 29), which is satisfied since the blue 
line is below the red one for all frequencies.

Performance bounds: upper bounds on weights 

w jwri ( )  obtained from (30) are depicted in Figure 8.
The simulation results of proposed controller com-

pared with those of controllers in four different cases. 
The PI controller parameters designed for individual 
loops are: P1 = 1.30, I1 = 0.053; P2 = 1.38, I2 = 0.049. 
The characteristics of the designed decentralized 
control system are shown in Figures 7 to 11. Figure 
7A shows that stability condition (25) is not satisfied; 
in this case, the blue line is for low frequencies above 
the red one, however, the overall stability is guaran-
teed by (for this case) the less restrictive condition 
(26), which is satisfied since green line is below the 
red one for all frequencies:

•	 Case i: QTLP with process disturbances.
•	 Case ii: QTLP with system component (leak) 

fault.
•	 Case iii: QTLP with actuator fault.
•	 Case iv: QTLP with sensor fault.

The proposed controller is tested on a QTLP 
nonlinear system subject to three different faults (i.e. 
actuator, sensor, and system component fault) with  
minimum phase configuration. All three faults are 
given to QTLP one after the other at the same time, 
t = 600 sec. The simulation results of the proposed 
decentralized controller compared with decentralized 
fuzzy control are proposed in the study of Suja and 
Thyagarajan (2008), which is depicted in Figures 9 to 
12. The simulation results clearly show that the pro-
posed controller gives guaranteed stability with supe-
rior steady-state and transient response as compared 
to decentralize fuzzy control. The proposed controller 
is capable enough to accommodate all three possible 
faults into QTLP efficiently. A comparison of the inte-
gral error indices for non-minimum phase configura-
tion is depicted in Figure 13.

Non-minimum phase configuration

This configuration is characterized by the existence 
of transient RHP zeros (while individual transfer func-
tions have no RHP zeros), which complicates the de-
centralized controller design. We illustrate the impact 
of interactions on two different designs of control 
loops.

In the first case, taking the same decentralized 
controller as in minimum phase case, the overall sta-
bility condition is not satisfied, though the individual 
loops indicate stable performance. Step responses 

Figure 7: Stability analysis for minimum 
phase configuration.

The direct synthesis controller for a first-order pro-
cess gives:

K
T

K Tl
il

p c

= ,
� (34)

T Tc il= 0.5 . � (35)

Simulation results

Minimum phase configuration

The characteristics of the designed decentralized 
fault-tolerant fuzzy plus PI control system are shown 
in Figures 7 to 12 for minimum phase configuration of 
QTLP. Figure 7 shows that stability condition (27) is not 
satisfied; in this case, the black line is for low frequen-
cies above the red one; however, the overall stability  
is guaranteed by (for this case) the less restrictive 
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Figure 8: Step responses: minimum phase stable system subject to process disturbances.

Figure 9: Step responses: minimum phase stable system subject to system component (leak) fault.
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Figure 11: Step responses: minimum phase stable system subject to sensor fault.

Figure 10: Step responses: minimum phase stable system subject to actuator fault.
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Figure 12: Error comparison for minimum phase configuration.

Figure 13: Step responses: non-minimum phase, unstable system.
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Figure 14: Stability analysis for non-minimum phase configuration.

in Figure 13 show significant differences between 
individual loops (both are stable and damped) and 
the overall system, which is unstable.

The next (detuned) case: P1 = 0.208, I1 = 0.0039; 
P2 = 0.238, I2 = 0.0030 show that as soon as condi-
tion (25) is satisfied (Fig. 14A: blue line below the red 
one), the overall system responses are similar to sin-
gle-loop ones Figures 16 to 19; performance indica-
tors are still satisfactory for low frequencies (Fig. 14B).

Now the proposed decentralized fault-tolerant 
control is applied on QTLP with three faults and pro-
cess disturbances (Fig. 15):

Case i: QTLP with process disturbances.
Case ii: QTLP with system component fault.
Case iii: QTLP with actuator fault.
Case iv: QTLP with sensor fault.

The proposed controller is tested on a QTLP non-
linear system subject to three different faults (i.e. ac-
tuator, sensor, and system component fault) with a 
non-minimum phase configuration. All three faults are 
given to the QTLP one after the other at the same 
time t=650 sec. The simulation results of the pro-
posed decentralized controller are compared with 
the decentralized fuzzy control proposed in the study 
of Suja and Thyagarajan (2008), which is depicted in 
Figures 16 to 19. The simulation results clearly show 
that the proposed controller gives guaranteed stabil-
ity with superior steady-state and transient response 
as compared to decentralize fuzzy control. The pro-
posed controller is capable enough to accommo-
date all three possible faults into QTLP efficiently. The 
comparison of integral error indices for non-minimum 
phase configuration is depicted in Figure 19.
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Figure 15: Step responses: non-minimum phase stable system subject to process disturbances.

Figure 16: Step responses: non-minimum phase stable system subject to system component fault.
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Figure 17: Step responses: non-minimum phase stable system subject to actuator fault.

Figure 18: Step responses: non-minimum phase stable system subject to sensor fault.
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Figure 19: Error comparison for non-minimum phase configuration.

Conclusion

The decentralized stable and robust fault-tolerant 
fuzzy control design strategy is illustrated on the 
quadruple tank case study with minimum phase 
and non-minimum phase configuration. Pairing and 
performance under decentralized stable and robust 
fault-tolerant control are studied subject to actuator/
sensor, system component faults, and process dis-
turbances. This is approved by regulatory responses 
in Figures 8 to 11 for minimum phase and Figures 15 
to 18 for non-minimum phase configuration of QTLP 
system. In this paper, the QTLP system model is de-
rived with and without fault conditions; the system 
with fault is shown in Figure 1, and the decentralized 
controller is designed for linearized model and verified 
in Matlab Simulink platform. The proposed controller 
performance is verified with four integral error indi-
ces IAE, ISE, ITAE, and ITSE. The error results clearly 
present the effectiveness of the controller.
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