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Abstract: In financial markets, investors will face not only portfolio risk but also background risk.
This paper proposes a credibilistic multi-objective mean-semi-entropy model with background
risk for multi-period portfolio selection. In addition, realistic constraints such as liquidity,
cardinality constraints, transaction costs, and buy-in thresholds are considered. For solving the
proposed multi-objective problem efficiently, a novel hybrid algorithm named Hybrid Dragonfly
Algorithm-Genetic Algorithm (HDA-GA) is designed by combining the advantages of the dragonfly
algorithm (DA) and non-dominated sorting genetic algorithm II (NSGA II). Moreover, in the hybrid
algorithm, parameter optimization, constraints handling, and external archive approaches are used
to improve the ability of finding accurate approximations of Pareto optimal solutions with high
diversity and coverage. Finally, we provide several empirical studies to show the validity of the
proposed approaches.

Keywords: background risk; fuzzy semi-entropy; multi-period portfolio selection; dragonfly algorithm;
credibility theory

1. Introduction

As a research field, portfolio selection is used to accomplish the investments in financial
markets by spreading investors’ capital among several different assets considering return and risk.
Since the pioneering work of Markowitz [1] in single-period investment problems, the mean–variance
portfolio selection problem has attracted much attention and has become a research hotspot.
By introducing different risk measures, a large variety of portfolio selection models have been
presented, such as the mean–variance–skewness model [2], the mean-conditional value at risk
(CVaR) model [3], the mean-value at risk (VaR) model [4], the mean-semi-variance model [5]
and the minimax risk model [6]. In addition, entropy can also be used as a risk measure
because it does not depend on symmetric membership functions and can be calculated from
non-metric data. Philippatos and Wilson [7] first replaced variance with entropy as a risk measure.
Later, Rödder et al. [8] provided a new and efficient method for determining the portfolio weights
on the basis of a rule inference mechanism with both maximum entropy and minimum relative
entropy. Nawrocki and Harding [9] provided two alternative weighted computations of entropy to
measure portfolio risk. Usta and Kantar [10] presented a multi-objective model founded on mean,
variance, skewness and entropy to adequately diversify the portfolio. Yu et al. [11] discussed the
performance of the models with diverse entropy measures by comparing the mean–variance efficiency,
portfolio values, and diversity.

Traditionally, researchers dealt with the uncertainty of portfolio selection problems by applying
probability theory. For example, Beraldi et al. [12] proposed a mean-CVaR model considering a complex
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transaction cost structure, and designed a specialized Branch and Bound method to solve the proposed
model. Huang [13] built a new type of model based on a risk curve. However, many non-probabilistic
elements, such as economics, politics and social circumstances, exist in real capital markets and
affect investment decisions. With the introduction of fuzzy set theory [14], an increasing number of
scholars began to investigate the portfolio selection problems in the fuzzy environment. Assuming that
the returns are fuzzy, there exist numerous papers employing possibility theory for fuzzy portfolio
selections; see, for example, Vercher et al. [15], Chen [16], Jana et al. [17], Chen and Tsaur [18],
Liu and Zhang [19], and Chen and Xu [20]. Although possibility theory is widely used, it has
limitations. For instance, it is not self-dual. To overcome this drawback, Liu [21] proposed credibility
theory. Under the framework of the credibility theory, Gupta et al. [22] presented a multi-objective
expected value model using risk, liquidity, short-term return, and long-term return. Gupta et al. [23]
proposed a multi-criteria credibilistic portfolio rebalancing model considering portfolio risk as a risk
curve. Liu et al. [24] built a class of credibilistic mean-CVaR portfolio optimization models. Huang [25]
provided two credibility-based portfolio selection models according to two types of chance criteria.
Li et al. [26] discussed a maximum likelihood estimation and a minimum entropy estimation for
expected value and variance of normal fuzzy numbers in fuzzy portfolio selection. Jalota et al. [27]
modeled return, illiquidity, and risk of different kinds of assets by using L-R fuzzy numbers in a
credibilistic framework. Deng et al. [28] built a mean-entropy model in the framework of credibility
theory. Xu et al. [29] proposed a credibilistic semi-variance project portfolio model with skewness
risk constraints.

In reality, except for portfolio risk, investors frequently face background risks such as losses of
human capital, pensions, unexpected health-related costs, labor incomes, and real estate investments.
Therefore, an increasing number of scholars have studied portfolio selection problems with background
risk. Alghalith [30] introduced a dynamic investment model to illustrate the impact of background risk
and found a negative correlation between the background risk and portfolio risk. Huang and Wang [31]
analyzed the characteristics of the portfolio with background risk under a mean–variance framework.
Jiang et al. [32] discussed the influence of background risk in the framework of the mean–variance
model. Biptista [33] proposed a mean–variance model considering background risk and analyzed the
circumstances under which investors can optimally entrust the portfolio managers to administer their
wealth. Biptista [34] introduced mental accounts as well as background risk into portfolio selection
and derived the efficient portfolio frontier. In addition to the above studies, few researchers considered
background risk in fuzzy portfolio selection problems. Thus, to the best of our knowledge, the only
exceptions are the following two studies. Xu et al. [35] provided a fuzzy portfolio selection model
taking the vagueness of the investors’ performances and background risk into account. Li et al. [36]
gave a possibility-based portfolio selection model considering background risk.

All of the previous literature is in the framework of single-period. However, investment is a
long-term process, and investors need to redistribute their funds over time. Numerous scholars have
studied portfolio selection problems from single-period to multi-period cases. Some representative
works on multi-period portfolio selections include Chen et al. [37], Zhang et al. [38],
Liagkouras and Metaxiotis [39], Li et al. [40], and Zhang et al. [41]. On the other hand,
several researchers have researched multi-period portfolio selection problems based on credibility
theory. Typically, Mehlawat [42] developed credibility-based multi-objective models taking
multi-choice aspiration levels into consideration for multi-period portfolio optimization problems.
Mohebei and Najafi [43] presented a multi-period mean-VaR model by combining the credibility theory
with a scenario tree. Liu et al. [44] designed a credibilistic multi-period mean-LAD-entropy model
considering bankruptcy control and bound constraints. Zhang and Liu [45] gave a credibility-based
model with a bankruptcy risk control constraint for solving multi-period portfolio selection problems.
Guo et al. [46] formulated a multi-period credibilistic mean–variance model with the terminal return
constraint and V-shaped transaction cost.
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In recent years, swarm intelligence-based optimization techniques have attracted increased
attention. A literature review reveals the effectiveness of swarm intelligence algorithms in solving
complex optimization problems, such as the salp swarm algorithm (SSA) [47], the artificial bee
colony algorithm (ABC) [48], the firefly algorithm (FA) [49], and the particle swarm optimization
(PSO) [50]. The dragonfly algorithm (DA) is a fairly novel swarm intelligence optimization technique
proposed by Mirjalili [51] and is based on the static and dynamic swarming behaviors of dragonflies
in nature. Compared with the non-dominated sorting genetic algorithm II (NSGA II) and PSO,
DA has advantages in dealing with optimization problems and has been applied in many fields.
Recently, Mirjalili [51] proposed a multi-objective dragonfly algorithm (MODA) and applied it to
submarine propeller optimization problems. Amroune et al. [52] used a hybrid dragonfly optimization
algorithm and support vector regression to solve a power system voltage stability assessment problem.
Suresh and Sreejith [53] used the dragonfly algorithm to solve static economic dispatch with solar
energy. Mafarja et al. [54] presented a variety of S-shaped and V-shaped transfer functions to balance
the exploration and exploitation in the binary dragonfly algorithm. Khadanga et al. [55] proposed
a hybrid dragonfly and pattern search algorithm approach and used it in tilt integral derivative
controller design. Ghanem and Jantan [56] combined ABC and DA to train a multi-layer perceptron.
Sree and Murugan [57] developed a memory-based hybrid dragonfly algorithm with the concept of
PSO gbest and pbest for solving three engineering design problems.

Although numerous studies have been performed for multi-period fuzzy portfolio selections,
few studies have considered background risk under the framework of credibility theory.
Moreover, to date, the application of the DA algorithm in portfolio selection problems is relatively
rare. The purpose of this paper is to investigate the multi-period portfolio selection problem with
background risk in the framework of credibility theory. The main contributions of this paper are
as follows: (1) We formulate a credibility-based mean-semi-entropy multi-period portfolio model,
considering background risk and several constraints, namely cardinality, liquidity, and buy-in
thresholds; (2) We develop a new meta-heuristic approach, combining the strengths of DA and NSGA
II. In the proposed algorithm, parameter optimization, constraints handling, and external archive
approaches are proposed to improve the ability of finding accurate approximations of Pareto optimal
solutions with high diversity and coverage; (3) We run several experiments based on ZDT benchmark
functions and a real-world empirical application to verify the effectiveness of the proposed methods.

The rest of this paper is organized as follows: Section 2 describes the preliminaries. In Section 3,
we build a multi-period credibility-based mean-semi-entropy model considering background
risk. Section 4 discusses the solution method and proposes a hybrid algorithm. In Section 5,
numerical experiments are examined to verify the validity of the proposed model and the hybrid
algorithm. In Section 6, we submit our conclusions.

2. Preliminaries

Let Θ be a nonempty set. Assume that P is the power set of Θ. Each element in P is called an
event. In order to present an axiomatic definition of credibility, it is necessary to assign a number
Cr{A} to each event A. Cr{A} indicates the credibility that the event will happen. Θ has the following
mathematical axioms:

Axiom 1 (Normality). Cr{Θ}=1,

Axiom 2 (Monotonicity). Cr{A} ≤ Cr{B} wherever A ⊂ B,

Axiom 3 (Self-Duality). Cr{A}+ Cr{Ac} = 1 for any event A,

Axiom 4 (Maximality). Cr{Ui Ai} = supiCr{Ai} for any event {Ai} with supiCr{A} < 0.5.
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If the set function Cr satisfies the aforementioned four axioms, the {Θ, P, Cr} will be
credibility space.

Definition 1. Let ξ be a fuzzy variable defined on the credibility space {Θ, P, Cr} with membership function
µ{x}. For any set A of real numbers, the credibility is defined as

Cr {ξ ∈ A} = 1
2

(
sup
x∈A

µ(x) + 1− sup
x∈Ac

µ(x)

)
. (1)

Credibility measure is an increasing function of set A. It is obvious that the credibility measure
is self-dual.

Definition 2. Let ξ be a fuzzy variable; the expected value of ξ is defined as

E [ξ] =
∫ ∞

0
Cr {ξ ≥ r} dr−

∫ 0

−∞
Cr {ξ ≤ r} dr. (2)

Theorem 1. Let ξ be a fuzzy variable with a finite expected value; let µ and ν be any given two real
numbers. Then,

E[µξ + ν] = µE[ξ] + ν. (3)

Theorem 2. Suppose that ξ and η are two independent fuzzy variables. The expected value of these variables
are finite. Then, for any numbers µ and ν,

E[µξ + νη] = µE[ξ] + νE[η]. (4)

Example 1. The expected value for the trapezoidal fuzzy variable ξ = (ξa, ξb, ξc, ξd) is given by

E [ξ] =
ξa + ξb + ξc + ξd

4
. (5)

For the sake of determining the credibility of a fuzzy event, the trapezoidal fuzzy variable ξ has a
membership function illustrated below:

µ(r) =



r− ξa

ξb − ξa
, if ξa ≤ r ≤ ξb,

1, if ξb ≤ r ≤ ξc,
ξd − r
ξd − ξc

, if ξc ≤ r ≤ ξd,

0, otherwise.

(6)

Then, the credibility of fuzzy event {ξ ≤ r} is given as below:

Cr{ξ ≤ r} =



0, if r ≤ ξa,
r− ξa

2(ξb − ξa)
, if ξa ≤ r ≤ ξb,

1
2

, if ξb ≤ r ≤ ξc,
ξd − 2ξc + r
2(ξd − ξc)

, if ξc ≤ r ≤ ξd,

1, otherwise.

(7)
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3. Mean-Semi-Entropy Model for Credibilistic Multi-Period Portfolio Selection

3.1. Notation

At the beginning of the investment, we assume that the investor’s initial wealth is W1. The investor
allocates W1 among n risky assets and a risk-free asset at the start of T − 1 period and acquires the
ultimate wealth at the final period T. As a matter of convenience, we list all the symbols used below:

i: the exponents for the n risky assets, i = 1, 2, ...n.
t: the exponents for the T investment period, t = 1, 2, ...T.
Wt: the wealth accumulated at the start of the t-th investment period.
xit: the proportion of the whole wealth that investor spreads to the i-th risky asset during the t-th
investment period.
rit: fuzzy variables that represent the return rate on the i-th risky asset during the t-th investment
period, rit = (αa

it, αb
it, αc

it, αd
it).

r f : the variable that represents the return rate on the risk-free asset.
rb: the fuzzy variable that represents the return rate on background asset, rb = (ξa, ξb, ξc, ξd).
ubit: the upper limit that can be assigned to the i-th risky asset during the t-th investment period.
lbit: the lower limit that can be assigned to the i-th risky asset during the t-th investment period.
fit: the cost on transaction of the i-th risky asset during the t-th investment period.
Lit: the fuzzy variables that represent the turnover rates on the i-th risky asset during the t-th
investment period, Lit = (βa

it, βb
it, βc

it, βd
it).

Lt: the acceptable minimum expected liquidity during the t-th investment period.
mit: the 0–1 variables expressing whether the i-th risky asset is chosen for the portfolio during the
t-th investment period or not:

mit =

{
1, if the i-th risky asset is chosen to the portfolio during the t-th period,

0, otherwise,

Zt: the desired number of risky assets that can be chosen for each investment interval.

3.2. Objective Functions

3.2.1. Maximize Ultimate Wealth

According to Equations (3) and (5), the expected value of the portfolio xt during the t-th investment
period is

E

(
n

∑
i=1

xitrit

)
=

n

∑
i=1

αa
it + αb

it + αc
it + αd

it
4

xit. (8)

Moreover, from Equation (5), the expected value of the background asset is

E(rb) =
ξa + ξb + ξc + ξd

4
. (9)

Additionally, we apply a V-shaped function that expresses the differences between the two diverse
portfolios of the two adjacent periods. Then, the expense on transaction of the i-th risky asset during
the t-th investment period is fit|xit − xit−1|. Furthermore, from Equations (8) and (9), the net return
rate at period t can be denoted as



Entropy 2019, 21, 944 6 of 25

Rt = E

(
n

∑
i=1

xitrit − ft

)
+ (1−

n

∑
i=1

xit)r f + E(rb)

=
n

∑
i=1

αa
it + αb

it + αc
it + αd

it
4

xit −
n

∑
i=1

fit|xit − xit−1|

+
ξa + ξb + ξc + ξd

4
+ (1−

n

∑
i=1

xit)r f .

(10)

Then, the expected value of the wealth at the beginning of the period t + 1 is expressed as
Wt+1 = Wt(1 + Rt). Thus, after accomplishing the investment through the entirety of investment
periods, from Equation (10), the ultimate wealth at the end of the period T is denoted as

WT+1 = W1

T

∏
t=1

(1 + Rt)

= W1

T

∏
t=1

(
1 +

n

∑
i=1

αa
it + αb

it + αc
it + αd

it
4

xit −
n

∑
i=1

fit|xit − xit−1|

+
ξa + ξb + ξc + ξd

4
+ (1−

n

∑
i=1

xit)r f

)
.

(11)

3.2.2. Minimize Risk

Fuzzy entropy has been extensively applied to characterize uncertainty since Luca and Termini [58]
first defined a non-probabilistic entropy in the framework of fuzzy set entropy. Since then,
various definitions for fuzzy entropy have been proposed; see, for example, Li and Liu [59],
Zhou et al. [60], Qin et al. [61], and Xu et al. [62]. Fuzzy entropy is more convenient than fuzzy
variance because it does not depend on symmetric membership functions and can be calculated
from non-metric data. It is used to express the uncertainty of both low and high extreme returns.
However, what investors really dislike is the downside uncertainty. Therefore, fuzzy semi-entropy
introduced by Zhou et al. [60] matches reality more exactly as the downside risk measure. In this
section, we used the semi-entropy to quantify the portfolio downside risk.

Definition 3. Assume that there is a continuous fuzzy variable δ whose expected value E[δ] is finite.
The function o(x) is equal to Cr{δ = x}. Then, the semi-entropy of δ is defined as [60]

Se [δ] =
∫ +∞

−∞
S
(

o(x)−
)

dx, (12)

where S (t) = −t ln t− (1− t) ln (1− t) and

o(xi)
− =

{
o (xi) , if xi ≤ e,

0, otherwise.
(13)

Because of Se (0) = 0, the semi-entropy of δ can be transformed into

Se[δ] =
∫ E[ξ]

−∞
S (o (x)) dx. (14)
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Theorem 3. Suppose there is a continuous fuzzy variable δ whose expected value E[δ] is finite. Then, for these
two real numbers λ and ω with λ > 0,

Se[λδ + ω] = λSe[δ]. (15)

Example 2. Suppose δ is a fuzzy trapezoidal variable with δ = (δa, δb, δc, δd) whose expected value
E[δ] = (δa + δb + δc + δd)/4. Then, the semi-entropy

Se[δ] =


(δb − δa) ρ− ζ (ρ) , if E[δ] ≤ δb,

δb − δa

2
+

(δa + δc + δd − 3δb) ln 2
4

, if δb < E[δ] ≤ δc,

(δb − δa)

2
+ (δc − δb) ln 2 + ζ (τ) , otherwise,

(16)

where ρ = (δb + δc + δd − 3δa)/8(δb − δa), τ = (3δd − δa − δb − δc)/8(δd − δc), and ζ (χ) = χ2 ln χ−
(1− χ)2 ln (1− χ).

Furthermore, according to Equation (16), we obtain the cumulative portfolio risk with background
risk as follows:

Se =
T

∑
t=1

[
se

(
n

∑
i=1

xitrit

)
+ se(rb)

]
(17)

In Equation (17), according to the definition of semi-entropy and Equation (16),

se(rit) =


(bit − ait)ρit − ζ(ρit), if E(rit) ≤ bit,

bit − ait
2

+
(ait + cit + dit − 3bit) ln 2

4
, if bit < E(rit) ≤ cit,

bit − ait
2

+ (cit − bit) ln 2 + ζ(τit), otherwise,

(18)

where ρit = (bit + cit + dit − 3ait)/8(bit − ait) , τit = (3dit − ait − bit − cit)/8(dit − cit), and ζ (χ) =

χ2 ln χ− (1− χ)2 ln (1− χ) .
Similarly, the semi-entropy of background asset

se(rb) =



(ξb − ξa)ρ− ζ(ρb), if E(rb) ≤ ξb,

ξb − ξa

2
+

(ξa + ξc + ξd − 3ξb) ln 2
4

, if ξb < E(rb) ≤ ξc,

ξb − ξa

2
+ (ξc − ξb) ln 2 + ζ(τb), otherwise,

(19)

where ρb = (ξb + ξc + ξd − 3ξa)/8(ξb − ξa) , τb = (3ξd − ξa − ξb − ξc)/8(ξd − ξc), and ζ (χ) =

χ2 ln χ− (1− χ)2 ln (1− χ).

3.3. Constraints

• Liquidity

In the process of making a portfolio decision, one of the key elements that should be considered is
liquidity for investors. It measures the degree of probability that investors will convert an asset
into income. Investors prefer assets with higher liquidity because their returns tend to rise over
time. Generally, liquidity is measured by the turnover rate of assets. Because turnover rates cannot
be precisely predicted, we suppose that the turnover rates of risky assets are fuzzy variables
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characterized by trapezoidal numbers. On account of the former discussion, by Equation (5),
the constraint of the portfolio liquidity is expressed as

E

(
n

∑
i=1

xitLit

)
=

n

∑
i=1

xit

(
βa

it + βb
it + βc

it + βd
it

4

)
≥ Lt, t = 1, ...T. (20)

• The desired number of risky assets that are selected into the portfolio during the t-th investment
period is expressed as

n

∑
i=1

mit = Z, i = 1, 2, ...n, t = 1, 2, ...T. (21)

• The risk-free asset constrained in each period is

n

∑
i=1

xit < 1, i = 1, 2, ...n, t = 1, 2, ...T. (22)

• The lower and upper limits that can be assigned to the i-th risky asset during the t-th investment
period are given as

lbit ≤ xit ≤ ubit, i = 1, 2, ...n, t = 1, 2, ...T. (23)

• Whether the i-th risky asset is selected into the portfolio during the t-th investment period is
shown as

mit ∈ {0, 1}, i = 1, 2, ...n, t = 1, 2, ...T. (24)

• No short selling of assets during any investment period

xit ≥ 0, i = 1, 2, ...n, t = 1, 2, ...T. (25)

3.4. The Proposed Model

Over the entire investment horizons, investor intends to obtain the greatest final wealth and
minimize the risk at the same time to find a first-rank invest strategy. Then, we supply the
multi-objective model for multi-period portfolio selection problems in the following:

Max W1

T

∏
t=1

(
1 +

n

∑
i=1

(
αa

it + αb
it + αc

it + αd
it

4

)
xit −

n

∑
i=1

fit|xit − xit−1|

+
ξa + ξb + ξc + ξd

4
+ (1−

n

∑
i=1

xit)r f

)
,

Min
T

∑
t=1

[
se

(
n

∑
i=1

xitrit

)
+ se(rb)

]
subject to

Constraints (20)− (25)

(26)

se(rit) and se(rb) in the proposed model are defined by Equations (18) and (19), respectively.

4. The Proposed Hybrid Algorithm

4.1. Standard Dragonfly Algorithm (DA)

The static and dynamic swarming behaviors of dragonflies inspire the DA algorithm. These two
behaviors represent the exploration phase and the exploitation phase, which are two major phases of
the meta-heuristic algorithm. Five diverse operators determine the movement of swarm dragonflies:

• Separation
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For the individual i, its separation is calculated as Si = −
N

∑
k=1

(P− Pnk). Pnk denotes the k-th

adjacent individual’s position. P denotes the current individual’s position. N is the number of
neighboring individuals.

• Alignment

For the individual i, its alignment is given as Ai =
N

∑
k=1

Vk/N, where Vk is the velocity of the

neighboring individual k.

• Cohesion

For the individual i, the cohesion is calculated as Ci =
N
∑

k=1
Pnk/N − P.

• Attraction and Distraction

For the individual i, the index for an individual being attracted by a food source is evaluated
as Fi = P+ − P, where P+ is the food source’s position. In addition, the index for an individual
fleeing an enemy is calculated as Ei = P− + P, where P− is the enemy’s position.

In order to find some new individuals in the search space, two vectors are employed. The step
vector ∆P is used to update the locations of individuals, and the position vector P is introduced for
simulating movements of the individuals. The movement directions of the individuals are given by
the ∆P. If an individual has at least one neighbor, then ∆P is evaluated as

∆Pt+1 = (sSi + aAi + cCi + f Fi + eEi + ω∆Pt) . (27)

In Equation (27), the separation weight is indicated by s, the alignment weight is shown by a,
the cohesion weight is represented by c, and the food element and the enemy element are denoted as
f and e, respectively. Furthermore, t is the iteration counter. According to ∆P in Equation (27), P is
given as

Pt+1 = Pt + ∆Pt+1. (28)

If an individual has no neighbors, the Lévy Flight equation will be applied to update P.
This equation can improve the randomness, global search capacity and chaotic behavior of individuals.
P is calculated as

Pt+1 = Pt + Lévy(d)Pt. (29)

In Equation (29), the equation of Lévy flight is

Lévy(χ) = 0.01× η1 × γ

|η2|
1
ϑ

. (30)

In Equation (30), η1 and η2 are two random numbers taking values in [0, 1], and ϑ is a constant, γ

is calculated as

γ=

 Γ (1+ϑ)× sin
(

πϑ
2

)
Γ
(

1+ϑ
2

)
× ϑ× 2(

ϑ−1
2 )


1
ϑ

, (31)

where Γ(χ) = (χ + 1)!.

4.2. The Hybrid DA-GA for the Proposed Model

A good metaheuristic algorithm should better balance exploration and exploitation processes.
The exploration process is used to investigate the new search space to find great global optima, while the
exploitation process is used to focus on the search of local areas. Excessive exploitation results in
premature convergence, while overmuch exploration leads to slow convergence. DA has advantages



Entropy 2019, 21, 944 10 of 25

in exploring the global search space by using the food source and enemy source. However, the use
of Lévy Flight results in a large movement that leads to local convergence and pushes the algorithm
apart from the global optimum [56]. In addition, NSGA II, developed by Deb et al. [63], is a
well-known meta-heuristic approach for solving multi-objective optimization problems. It has an
improved mechanism that depends on the non-domination rank and the crowding distance and
conducts constraints by using an adapted explanation of dominance instead of the penalty functions.
Thus, NSGA II has a good ability to attain diverse and uniformly distributed Pareto solutions. In this
paper, for the sake of solving the proposed model efficiently, a novel hybrid algorithm named HDA-GA
is developed by combining the strengths of DA and NSGA II.

4.2.1. Parameter Optimization

In the static swarm of DA, the probability of alignments is low, while the probability of cohesion
is high. In order to enhance the information exchange of the dragonflies from global exploration to
local exploitation, dragonflies are assigned with higher alignment weights and lower cohesion weights
when the global space is explored and designed on the contrary when the local area is exploited.
Therefore, the exponential function is introduced to adjust the swarming elements a and c. The factors
a and c are given as follows:

a = e−h, (32)

c = eh, (33)

where h is adaptively decreased as the iteration increases.
Moreover, in order to enhance the randomness, the standard DA selected the positions of food

source P+ and enemy P− by using a roulette-wheel mechanism. However, in the global search space,
it may lead to poor exploration ability. Inspired by the ideas in [51], we propose a new method for
choosing food sources and enemies. Pgbest and Pgworst are defined as the best and the worst solutions
in each iteration. The selections of P+ and P− are given as follows:

P+ = Pgbest, (34)

P− = Pgworst. (35)

4.2.2. Constraints Handling

Note that the standard DA only considered the non-constrained situation. However, there exist
constraints in the proposed model that cannot be ignored. In this paper, to handle the constraints,
we employ the constrained domination approach proposed by Deb et al. [63].

If any of the conditions below is true, a solution Sk is constrained-dominated by another solution
Sj. (1) Both solutions are feasible, and solution Sk is dominated by solution Sj; (2) The feasible solution
is Sj, but the infeasible one is Sk; (3) Both are infeasible, but comparing the constrained violations of
these two solutions, the violation solution Sj has is smaller.

For the t− th inequality constraint gt(s) ≤ 0 and equality constraint ht(s) = 0, the constrained
violation is estimated as

CVt =

{
max{0, gt(s)}, t = 1, 2, ...G,

max{ht(s)− ι, 0}, t = G + 1, ...G + H,
(36)

where ι is a tolerance coefficient that violates the equality constraints. After the normalization of cvt,
the constrained violation of solution Sj is given as

CVj =
G+H

∑
t=1

CVt. (37)
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For the purpose of drifting the solutions towards the Pareto front and making the Pareto-optimal
set as diverse as possible, a joint strategy combining the constrained non-dominated sorting and
crowding distance assignment is implemented. In the strategy, how close a solution is to its neighbors
is measured by crowding distance distancek. Diversity improves with larger distancek. In the proposed
algorithm, the crowding distance distancek measure introduced by Deb et al. [63] is employed and
calculated as follows:

distancek =
F1(k + 1)− F1(k− 1)

F1max − F1min
+

F2(k + 1)− F2(k− 1)
F2max − F2min

. (38)

In Equation (38), the maximum and minimum of the first objective function is shown as F1max
and F1min, respectively. Similarly, the maximum and minimum of the second objective function are
illustrated as F2max and F2min, respectively. The constrained non-dominated sorting pseudo-code is
summarized as Algorithm 1.

Algorithm 1 Constrained non-dominated sorting.

1: Classify feasible and infeasible groups in the population by Equation (37)

2: For p = 1 to f easible_population do

3: Calculate Sp, a set of solutions that the p− th individual dominates

4: Calculate np, the number of individuals that dominate the p− th individual

5: End for

6: Create first front whose np = 0

7: While (np > 0)

8: Create subsequent fronts by traversing Sp

9: Crowding distance assignment by Equation (38)

10: End While

11: For q = 1 to in f easible_population do

12: Sort infeasible individual by Equations (36) and (37)

13: End for

14: Combine the feasible and infeasible solutions

4.2.3. External Archive

An external archive is widely used to solve multi-objective problems and to maintain the Pareto
optimal solutions during optimization. The standard MODA applies an archive to retain the best elite
solutions and updates the archive with respect to the non-dominated sorting. However, the updating
progress deletes the infeasible solutions directly. It did not consider the constrained situation either.
Based on constrained dominate rules and crowding distance, an external archive is used to improve
the speed of convergence and retain the diversity of the solution set. The archive is divided into
two subsets, Archive1 and Archive2. Archive1 saves solutions obtained by DA, while Archive2 saves
solutions solved by NSGA II. Finally, Archive1 and Archive2 make up a new set New_Archive for
the next generation. Initially, this archive is empty. As the iteration goes by, feasible and infeasible
solutions enter the archive, and the size of the archive may be huge. If the archive is full, one or more
than one solution may be deleted. The progress of this method is summarized as pseudo-code shown
in Algorithm 2.

Through the above discussions, Algorithm 3 describes the proposed hybrid algorithm. In the
hybrid algorithm, both DA and NSGA II start with the same initial population. The external archive is
divided into two parts, where one retains feasible solutions and the other saves infeasible solutions
during each iteration. Each of the two parts is evolved by a respective algorithm and then recombined
in the updating archive process.
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Algorithm 2 Update archive.

1: Classify the population by Equation (37)
2: Divide the archive to Archive1 whose CVt = 0 and Archive2 Whose CVt 6= 0
3: While (NArchive1

> 0)
4: estimate the rank of each solution according to the Equation (37)
5: Constrained non-dominated sorting by Algorithm 1
6: Calculate the crowding distance by Equation (38)
7: End While
8: While (NArchive2 > 0)

Sort by Equation (37)

Set the distance to in f
9: End While

Algorithm 3 The pseudo-codes of the HDA-GA.

1: Define the max_iter, ArchiveMaxSize, ub, lb and r
2: Initialize Xi by Xi = random ∗ (ub− lb) + lb and ∆Xi by ∆Xi = random ∗ (ub− lb) + lb
3: Calculate the initialized objective function values
4: Initialized constrained non-dominated sorting by Algorithm 1
5: While (t ≤ max_iter)
6: Update neighboring radius and the factors w, s, a, c, f e
7: Calculate the objective function values
8: Update The Archive with respect to Algorithm 2
9: Select the Food source and Enemy from Archive1

10: If Archive ≤ ArchiveMaxSize
11: Select individuals from the particular front based on crowding distance by Equation (38)
12: end if
13: For i = 1 to Archive1 do
14: Find their neighbors with respect to the Euclidean distance
15: Calculate S, A, C, F and E
16: If an individual has one neighbor at least
17: Update ∆Xt by Equation (27) and Xt+1 by Equation (28)
18: end if
19: If an individual has no neighbor
20: Update Xt+1 by Equation (29)
21: end if
22: end for
23: For j = 1 to Archive2
24: Selected()
25: Crossover()
26: Mutation()
27: end for
28: End While

5. Numerical Experiments

For the sake of verifying the usefulness of the proposed methods, numerical empirical examples
introduced by Mehlawat [42] are presented. The fuzzy return rates of the 10 risky assets in each
period are presented in Table 1, and Table 2 shows the fuzzy turnover rates of these 10 risky assets.
The background asset returns are given by experts’ estimations.
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Table 1. The fuzzy returns of 10 risky assets at each period.

Asset t = 1 t = 2 t = 3

A1 (0.08026, 0.10069, 0.12130, 0.13173) (0.10026, 0.12207, 0.13013, 0.15017) (0.09026, 0.10691, 0.12513, 0.13452)
A2 (0.09829, 0.11543, 0.12143, 0.14589) (0.06258, 0.08535, 0.10541, 0.15459) (0.08829, 0.10525, 0.12520, 0.15259)
A3 (0.07615, 0.11306, 0.13807, 0.16765) (0.09124, 0.11256, 0.13251, 0.14215) (0.07159, 0.09031, 0.12945, 0.14255)
A4 (0.09381, 0.12810, 0.14143, 0.16572) (0.09371, 0.11810, 0.12714, 0.13257) (0.08381, 0.10810, 0.11271, 0.13157)
A5 (0.08967, 0.10913, 0.12837, 0.14783) (0.10260, 0.11569, 0.12564, 0.14625) (0.09130, 0.11234, 0.12645, 0.15978)
A6 (0.06357, 0.09286, 0.11786, 0.15772) (0.07357, 0.09265, 0.11246, 0.13976) (0.09584, 0.10563, 0.12622, 0.15561)
A7 (0.04961, 0.08562, 0.10804, 0.13464) (0.09961, 0.10562, 0.12880, 0.14841) (0.09961, 0.10562, 0.11380, 0.12541)
A8 (0.08464, 0.11570, 0.12319, 0.16425) (0.09464, 0.11206, 0.12232, 0.14425) (0.05464, 0.07014, 0.09319, 0.10643)
A9 (0.05946, 0.08855, 0.10729, 0.12638) (0.08240, 0.10974, 0.11322, 0.14494) (0.07240, 0.08597, 0.12202, 0.14936)
A10 (0.05311, 0.09298, 0.11933, 0.13920) (0.09036, 0.10410, 0.11179, 0.12239) (0.06311, 0.08298, 0.10259, 0.12892)

Table 2. The fuzzy turnover rates of 10 risky assets at each period.

Asset t = 1 t = 2 t = 3

A1 (0.00106, 0.00282, 0.00528, 0.00704) (0.00101, 0.00276, 0.00517, 0.00690) (0.00079, 0.00217, 0.00406, 0.00542)
A2 (0.00031, 0.00083, 0.00156, 0.00208) (0.00028, 0.00074, 0.00139, 0.00185) (0.00033, 0.00087, 0.00164, 0.00218)
A3 (0.00365, 0.00973, 0.01825, 0.02433) (0.00310, 0.00827, 0.01551, 0.02068) (0.00383, 0.01071, 0.02007, 0.02677)
A4 (0.00143, 0.00382, 0.00717, 0.00956) (0.00122, 0.00337, 0.00631, 0.00841) (0.00136, 0.00352, 0.00653, 0.00870)
A5 (0.00114, 0.00305, 0.00572, 0.00763) (0.00143, 0.00382, 0.00658, 0.00954) (0.00116, 0.00308, 0.00578, 0.00771)
A6 (0.00189, 0.00505, 0.00947, 0.01262) (0.00218, 0.00581, 0.01089, 0.01451) (0.00199, 0.00530, 0.00994, 0.01325)
A7 (0.00130, 0.00348, 0.00652, 0.00869) (0.00102, 0.00285, 0.00535, 0.00678) (0.00137, 0.00365, 0.00685, 0.00913)
A8 (0.00413, 0.01102, 0.02067, 0.02756) (0.00356, 0.00948, 0.01819, 0.02425) (0.00380, 0.01014, 0.01943, 0.01943)
A9 (0.00100, 0.00267, 0.00501, 0.00668) (0.00101, 0.00272, 0.00511, 0.00688) (0.00095, 0.00246, 0.00461, 0.00634)
A10 (0.00151, 0.00403, 0.00755, 0.01007) (0.00159, 0.00419, 0.00808, 0.01078) (0.00141, 0.00367, 0.00703, 0.00927)

In this empirical study, we hypothetically set the initial wealth as W1 = 1, the lower and upper
bounds are set as uit = 0.1 and lit = 0.5, respectively, the unit transaction cost is ft = 0.003, and the
desired number of risky assets chosen for the portfolio during the t-th investment period is Zt = 5.
In addition, we assume that n = 10 and T = 3. The fuzzy variable rb = (0.080, 0.090, 0.109, 0.121)
is the return rate on a background asset, the return rate on risk-free assets is r f = 0.01, and the
accepted minimum expected liquidities during each investment interval are designed as L1 = 0.0045,
L2 = 0.0035, and L3 = 0.0025.

5.1. Parameter Settings

Six algorithms, HDA-GA, NSGA II [63], the multi-objective dragonfly algorithm (MODA) [51],
the multi-objective particle swarm algorithm (MOPSO) [50], the multi-objective salp swarm algorithm
(MOSSA) [47], and the multi-objective artificial bee algorithm (MOABC) [48], are compared in these
experiments. The parameters of each algorithm are set as follows:

HDA-GA : population_size = 100, max_iter = 400, the probability of individual mutation
pm = 1/n, the crossover distribution exponent etac = 20, and the mutation distribution exponent
etam = 100.

The parameters in NSGA II and MODA are equal to those in HDA-GA.
MOPSO: The modulus of personal learning c1 is 1, the modulus of global learning c2 is 2, and the

initial weight w is 0.5.
MOSSA: The initial range r is 0.2, and the initial max velocity Vmax is 0.04.
MOABC: The f ood_Number is 200, and the limit is 50.
In addition, each algorithm independently runs 30 times, and the average results are obtained

after running.

5.2. Performance Measure Metrics

Five performance metrics, GD, Spacing, Diversity, CM and MPFE, are selected to compare the
performances of the algorithms.
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Generation Distance (GD): This convergence metric is employed to compute the distance between
the approximated Pareto frontier and the true Pareto frontier. It is calculated as [63]

GD =

√
N
∑

m=1
d2

m

N
, (39)

where N is the number of the obtained solutions, and dm is the minimum Euclidean distance between
each of the obtained solutions and the true Pareto frontier. A smaller value of GD means that the
obtained Pareto frontier is closer to the true Pareto frontier.

Spacing: This diversity metric is applied to measure the propagate of the obtained values. It is
evaluated as [64]

Spacing =

√√√√ 1
N − 1

N

∑
k=1

(dave − dk)2, (40)

where dk is the minimum distance between the k − th solution and its adjacent solutions,

dk = min
i

(
N

∑
s=1
|Fi

s − Fj
s |), and dave is the average distance of dk. A smaller value of Spacing indicates

that the obtained solutions are in a better distribution.
Diversity: This diversity metric measures the spread and distribution of the obtained solutions. It

is given as [63]

Diversity =

de + db +
N−1
∑

k=1
|dk − dave|

de + db + (N − 1)dave
, (41)

where de and db are the distance between the boundary of the obtained solutions and the extreme
values of the true Pareto frontier. A smaller value of Diversity means a better distribution and spread
of obtained solutions.

Convergence Metric (CM): This convergence metric measures the extent of convergence to the
true Pareto frontier. It is computed as [63]

CM =

N
∑

m=1
dm

N
, (42)

where dm is the Euclidean distance between the solution obtained with the algorithm and the nearest
solution on the Pareto frontier. The smaller the value of this metric is, the better the convergence
toward the true Pareto frontier.

Maximum Pareto front error (MPFE): This convergence-diversity metric is employed to measure
the quality of the obtained solutions in terms of diversity and convergence on a single scale. It is
expressed as [64]

MPFE = max
P

√√√√min
s

Q

∑
q=1

(Fs
q − Fp

q )2, (43)

where Q is the number of objective functions and P is the number of the Pareto solutions. MPFE aims
to find the maximum minimum distance between each solution obtained with the algorithm and
the corresponding nearest solution on the Pareto frontier. The convergence and the diversity of the
algorithm improve with smaller values of this metric.

5.3. Experimental Results Based on the Zdt Functions

In this section, we select four ZDT functions as benchmarks and present a comparison of these
functions to verify the validity of the proposed HDA-GA. The details of the four ZDT functions are in
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Appendix A. Tables 3 and 4 show the best (Best), mean (Mean) and standard deviation (SD) of the five
performance metrics. The bold fonts indicate better results. It can be easily observed that the proposed
HDA-GA is superior to the other five algorithms within the five performance metrics.

ZDT1 is a relatively easier problem than the other three ZDT problems. From Table 3, MOPSO and
MOSSA have better SD than HDA-GA. However, HDA-GA has the smallest Mean of the five metrics
among the six algorithms, which means that HDA-GA converges to the Pareto frontier with the best
distribution, spread, and diversity.

Table 3. Performance measure metrics of six algorithms on ZDT1 and ZDT2.

HAD-GA NSGA II MODA MOPSO MOSSA MOABC

ZDT1

GD

Best 0.004095 0.012602 0.023130 0.005491 0.008020 0.008363
Mean 0.010285 0.031497 0.011441 0.030793 0.011919 0.015718
SD 0.005617 0.015824 0.007683 0.015226 0.003069 0.009775

Spacing

Best 0.005900 0.008365 0.012568 0.004856 0.007206 0.011102
Mean 0.010355 0.071218 0.020328 0.052385 0.013950 0.016263
SD 0.003716 0.051334 0.072608 0.008272 0.003925 0.004636

Diversity

Best 0.689252 0.767096 1.056672 0.928113 0.998926 0.710941
Mean 0.777430 1.191056 0.952947 0.877077 1.061126 0.808524
SD 0.047591 0.095529 0.109909 0.016630 0.027691 0.085882

CM

Best 0.029047 0.044361 0.153425 0.044849 0.068340 0.066786
Mean 0.085282 0.122808 0.248206 0.099676 0.097692 0.096000
SD 0.052282 0.066176 0.048990 0.138730 0.023838 0.025184

MPFE

Best 0.00874 0.009992 0.011139 0.008925 0.009385 0.00959
Mean 0.013108 0.020181 0.133448 0.015529 0.015717 0.031373
SD 0.194764 0.013881 0.889816 0.003105 0.009057 0.04551

ZDT2

GD

Best 0.005093 0.020029 0.024264 0.005898 0.006069 0.006479
Mean 0.006309 0.051167 0.043403 0.007023 0.020066 0.023395
SD 0.002625 0.020365 0.018287 0.001099 0.017294 0.129870

Spacing

Best 0.006159 0.007313 0.014746 0.010294 0.009619 0.919671
Mean 0.008166 0.054016 0.117920 0.017602 0.013638 0.064095
SD 0.003014 0.077159 0.206688 0.006310 0.002957 0.078074

Diversity

Best 0.743251 0.756327 1.021222 0.887392 1.016217 0.784003
Mean 0.755997 0.923211 1.186858 0.947667 1.054720 0.919671
SD 0.010433 0.122369 0.115658 0.034393 0.029056 0.113666

CM

Best 0.040808 0.120144 0.186254 0.051457 0.042942 0.065679
Mean 0.043401 0.252616 0.331772 0.061296 0.103852 0.044393
SD 0.003348 0.092178 0.124765 0.010139 0.007846 0.053198

MPFE

Best 0.002547 0.019930 0.005916 0.008524 0.007652 0.010034
Mean 0.015176 0.031135 0.382625 0.017301 0.050612 0.526517
SD 0.007083 0.013584 0.507489 0.006949 0.075455 1.000795

Five disjoint curves make up the Pareto front of ZDT3. With respect to GD and Diversity,
although MOPSO can obtain the Best, HDA-GA performs better between Mean and SD. In addition,
HDA-GA has the smallest Best and Mean of two metrics, CM and MPFE. Moreover, HDA-GA owns a
better Spacing than others, which means solutions produced by HDA-GA have a better distribution
than others.

ZDT6 is another difficult problem for many multi-objective optimization algorithms to achieve a
set of solutions with good convergence and diversity. From Table 4, for GD and CM, although MOPSO
has smaller SD, HDA-GA performs better in Best and Mean than the others. For diversity metrics
Spacing and Diversity, solutions produced by HDA-GA spread out better over the Pareto frontier with
a better distribution. The results of MPFE demonstrate a superior convergence and diversity ability
of HDA-GA.
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Table 4. Performance measure metrics of six algorithms on ZDT3 and ZDT6.

HAD-GA NSGA II MODA MOPSO MOSSA MOABC

ZDT3

GD

Best 0.054976 0.053921 0.060290 0.048783 0.054016 0.076657
Mean 0.057206 0.057536 0.066687 0.059919 0.057373 0.140799
SD 0.001461 0.002703 0.004212 0.007767 0.001838 0.088669

Spacing

Best 0.003112 0.003233 0.007077 0.010165 0.004314 0.013413
Mean 0.003780 0.003812 0.014080 0.027349 0.009167 0.114245
SD 0.000384 0.000575 0.007398 0.011083 0.002770 0.096158

Diversity

Best 0.680960 0.701685 0.986596 0.419654 1.058633 0.697293
Mean 0.724077 0.799906 1.066269 0.727388 1.092402 0.985891
SD 0.019516 0.140285 0.051140 0.159316 0.030796 0.154812

CM

Best 0.040288 0.439192 0.489842 0.086613 0.437459 0.099388
Mean 0.319770 0.472352 0.545238 0.417218 0.462973 0.748504
SD 0.184590 0.022893 0.035011 0.146361 0.017012 0.413275

MPFE

Best 0.037182 0.346455 0.442562 0.040891 0.112903 0.046752
Mean 0.143945 0.441165 0.462649 0.179891 0.402855 0.368856
SD 0.018545 0.026356 0.010757 0.066136 0.096812 0.210216

ZDT6

GD

Best 0.002196 0.002822 0.033799 0.003517 0.016497 0.046591
Mean 0.004173 0.012294 0.047519 0.004530 0.032995 0.097141
SD 0.002653 0.013262 0.006311 0.000839 0.009279 0.035186

Spacing

Best 0.005124 0.003738 0.003984 0.007407 0.005688 0.041192
Mean 0.005871 0.005975 0.012857 0.008912 0.018166 0.234823
SD 0.000691 0.000773 0.011254 0.000868 0.009442 0.100987

Diversity

Best 0.332990 0.389267 0.943062 0.672322 0.962966 0.945702
Mean 0.415185 0.529628 1.053706 0.791466 1.170424 1.293588
SD 0.044368 0.145336 0.052485 0.052640 0.167927 0.231229

CM

Best 0.018328 0.088036 0.178823 0.028255 0.135687 0.350734
Mean 0.037211 0.173193 0.336264 0.037878 0.295232 0.652836
SD 0.025601 0.119773 0.087734 0.007565 0.088986 0.291829

MPFE

Best 0.044172 0.08062 0.382623 0.07309 0.160158 0.105027
Mean 0.073136 0.160931 0.49514 0.075184 0.291002 0.274393
SD 0.011518 0.120123 0.044012 0.002094 0.097323 0.114017

For ZDT2, although MOPSO and MOSSA perform more stably than HDA-GA with respect
to GD and Spacing, HDA-GA has the smallest Mean, Best and SD of Diversity, CM and MPFE,
which indicates that HDA-GA finds a better distribution and spread with a smaller convergence metric
than others.

Based on the above discussion, HDA-GA has a superior convergence and diversity ability with a
better distribution and spread. It indicates that HDA-GA outperforms the other algorithms in most of
the performance metrics.

5.4. Experimental Results Based on the Proposed Model

This section presents three cases with different cardinality constraints. For the proposed model,
the minimum (Min), maximum (Max), mean (Mean), standard deviation (SD) and range (Range) of the
results found by six different algorithms are revealed in Table 5. The bold fonts indicate better results.
Given the comparisons among the six algorithms, HDA-GA can own the smallest mean value in all the
cases. In addition, according to the comparison of min and max index, we can see that HDA-GA can
acquire a set of non-dominated solutions with better distribution. Finally, the comparison of Range
index illustrates that HDA-GA can search space reliably and extensively. Although the MODA is more
stable than the HDA-GA in terms of SD index, it is easier for MODA to fall into local optimization.
These results indicated that HDA-GA performs better than the other algorithms.
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Table 5. Performance comparison among six different algorithms with different Z.

HDA-GA NSGAII MODA MOPSO MOSSA MOABC

Z=3

Wealth

Min 1.633495 1.632514 1.550407 1.614602 1.530761 1.585684
Max 1.794225 1.793599 1.621601 1.770328 1.771538 1.766484
Mean 1.720748 1.720665 1.576514 1.692621 1.662877 1.687489
SD 0.047306 0.048121 0.010112 0.043021 0.063723 0.050568
Range 0.160729 0.161085 0.071193 0.155726 0.240776 0.180800

Risk

Min 0.044604 0.046545 0.049435 0.049348 0.045243 0.047369
Max 0.062959 0.063011 0.063454 0.064255 0.063346 0.06455
Mean 0.053731 0.054231 0.054022 0.055233 0.054041 0.055383
SD 0.004756 0.004895 0.001089 0.004442 0.006054 0.005441
Range 0.018355 0.016467 0.014019 0.014907 0.018103 0.017181

Z=5

Wealth

Min 1.678783 1.680510 1.749434 1.685986 1.695941 1.698884
Max 1.781419 1.774321 1.756440 1.771944 1.757159 1.772371
Mean 1.735028 1.731273 1.729111 1.728345 1.725990 1.733189
SD 0.029946 0.027653 0.001888 0.026805 0.019354 0.021908
Range 0.102636 0.093811 0.007006 0.085959 0.061218 0.073487

Risk

Min 0.050942 0.053551 0.062524 0.053970 0.052848 0.056144
Max 0.061726 0.063195 0.063153 0.062456 0.061050 0.063553
Mean 0.055967 0.057751 0.062916 0.057906 0.056094 0.058972
SD 0.003032 0.002664 0.000175 0.002585 0.002350 0.002017
Range 0.010784 0.009643 0.000629 0.008486 0.008203 0.007409

Z=7

Wealth

Min 1.660493 1.65951 1.671354 1.681038 1.73473 1.720436
Max 1.781933 1.779803 1.717909 1.775401 1.779598 1.769565
Mean 1.73206 1.72557 1.692663 1.726556 1.72578 1.73148
SD 0.036646 0.036571 0.011338 0.028086 0.012798 0.014475
Range 0.121440 0.120293 0.046555 0.094363 0.044868 0.049128

Risk

Min 0.052277 0.052344 0.053272 0.053989 0.059038 0.058292
Max 0.063028 0.062911 0.058448 0.063655 0.064246 0.063573
Mean 0.056600 0.057057 0.056864 0.058096 0.061412 0.060949
SD 0.003083 0.00295 0.001212 0.002772 0.001409 0.001512
Range 0.010750 0.010567 0.005176 0.009666 0.005208 0.005281

Moreover, for a fair comparison of the performances among the algorithms, GD, Spacing, Diversity,
CM, and MPFE are employed as the performance measurement metrics. Table 6 presents some results
in terms of the five metrics above. For GD and CM, the index values indicate results obtained by
the proposed HDA-GA are closer to the Pareto front than the other algorithms in the three cases.
Meanwhile, for Spacing and Diversity, HDA-GA performs better than the other algorithms, which
means that it finds a better spread and distribution metric than others. Moreover, for MPFE, HDA-GA
has a superior convergence and diversity ability.

Figures 1–3 display the Pareto front and the efficient frontiers of the six algorithms under the three
cases above. It can be seen that the proposed HDA-GA can obtain a set of non-dominated solutions
that approach the Pareto front properly. Moreover, we can see that the proposed HDA-GA performs
better with accurate convergence, preferable coverage, and better diversity.
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Table 6. Performance metrics of the six algorithms on the mean-semi entropy model with different Z.

HDA-GA NSGAII MODA MOPSO MOSSA MOABC

Z=3

GD

Best 0.001138 0.007173 0.008757 0.015083 0.009175 0.002060
Mean 0.006258 0.009465 0.014247 0.020071 0.012466 0.007076
SD 0.002285 0.001191 0.002916 0.002469 0.002299 0.003275

Spacing

Best 0.000296 0.002106 0.000891 0.000205 0.001016 0.000189
Mean 0.000888 0.005012 0.002801 0.005205 0.002556 0.001058
SD 0.000323 0.002922 0.001977 0.003797 0.001802 0.001812

Diversity

Best 0.435084 0.497652 0.639821 0.915870 0.997345 0.447954
Mean 0.613686 0.653083 0.831236 1.104390 1.193895 0.691140
SD 0.099787 0.117187 0.112371 0.136544 0.084715 0.155494

CM

Best 0.009877 0.012099 0.065545 0.010396 0.010839 0.010649
Mean 0.017581 0.038297 0.099294 0.034960 0.028905 0.018102
SD 0.003206 0.019315 0.015591 0.012629 0.014536 0.005368

MPFE

Best 0.000863 0.003766 0.012149 0.013759 0.023523 0.015990
Mean 0.007591 0.008785 0.037146 0.068917 0.041119 0.028185
SD 0.003098 0.002667 0.043248 0.048373 0.015846 0.008006

Z=5

GD

Best 0.001086 0.002811 0.001848 0.002688 0.002466 0.001113
Mean 0.002115 0.003583 0.004479 0.003567 0.002778 0.002491
SD 0.000820 0.000523 0.003193 0.000380 0.000199 0.001141

Spacing

Best 0.000205 0.001218 0.000238 0.000222 0.000110 0.000238
Mean 0.000259 0.003500 0.000517 0.000344 0.000347 0.000300
SD 0.000045 0.001966 0.000223 0.000539 0.011592 0.000052

Diversity

Best 0.459979 0.525712 0.828962 0.999147 1.007670 0.557988
Mean 0.664117 0.714527 0.960198 1.022843 1.029092 0.778562
SD 0.089468 0.146712 0.061647 0.041030 0.011592 0.129619

CM

Best 0.015200 0.019372 0.035838 0.018379 0.025984 0.018212
Mean 0.034833 0.035417 0.057672 0.062308 0.035036 0.047096
SD 0.011454 0.011889 0.008579 0.025695 0.010552 0.014139

MPFE

Best 0.003708 0.004325 0.004665 0.002945 0.005110 0.004495
Mean 0.008469 0.013077 0.010545 0.017373 0.009836 0.024503
SD 0.003230 0.004618 0.004218 0.014576 0.003471 0.003540

Z=7

GD

Best 0.001366 0.00162 0.005371 0.003709 0.001774 0.001997
Mean 0.002464 0.002878 0.009859 0.007105 0.003042 0.002565
SD 0.000655 0.000736 0.004902 0.002403 0.001323 0.000356

Spacing

Best 0.00037 0.000543 0.000161 0.000263 0.000153 0.000662
Mean 0.000539 0.000652 0.005097 0.001205 0.000549 0.004011
SD 9.65E-05 8.19E-05 0.014545 0.001014 0.0006 0.002734

Diversity

Best 0.397332 0.421402 0.820168 0.712305 0.820168 0.43828
Mean 0.569211 0.656652 0.972133 0.919616 1.042666 0.777421
SD 0.111023 0.082987 0.079158 0.178901 0.058429 0.178272

CM

Best 0.012427 0.01507 0.046793 0.027399 0.017704 0.016771
Mean 0.023786 0.027721 0.100074 0.048298 0.02411 0.024321
SD 0.009023 0.007349 0.113323 0.012733 0.005012 0.002925

MPFE

Best 0.002981 0.003287 0.00347 0.005616 0.00447 0.005449
Mean 0.006561 0.006854 0.007169 0.009235 0.007457 0.007862
SD 0.003014 0.002752 0.002962 0.005304 0.001864 0.001628
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Figure 1. The approximate Pareto front and six algorithm efficient front when Z = 3.
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Figure 3. The approximate Pareto front and six algorithm efficient front when Z = 7.

5.5. Experimental Results with and without Background Risk

We present four cases to analyze the impact of background risk in the proposed model. Case 1:
Without background risk asset (BR); Case 2: With background risk asset BR1 whose fuzzy return
is rb1 = (0, 024, 0.027, 0.0327, 0.0363); Case 3: With background asset BR2 whose fuzzy return is
rb2 = (0, 040, 0.045, 0.0545, 0.0605); Case 4: With background asset BR3 whose fuzzy return is
rb3 = (0, 080, 0.090, 0.109, 0.121). The experimental results indicate that the background risk has a
significant impact on the portfolio selection.

From Table 7, it can be observed that cases considering background risk have higher returns and
risk than that without background risk. Ignoring background risk will cause the underestimation of
risk and the reduction of return in the actual investment.

Table 7. Comparison of the proposed models with and without background assets.

Without BR With BR1 With BR2 With BR3

Wealth

Min 1.185022 1.380577 1.460292 1.678783
Max 1.241051 1.493539 1.568064 1.781419
Mean 1.215920 1.442530 1.520426 1.735028
SD 0.015381 0.034563 0.031954 0.029946

Risk

Min 0.025120 0.039675 0.043203 0.050942
Max 0.032879 0.051987 0.054544 0.061726
Mean 0.028855 0.044879 0.048188 0.055967
SD 0.002052 0.003497 0.003279 0.003032
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In addition, Figure 4 shows the Pareto frontiers of the above four cases. The shapes of the Pareto
frontiers are approximately the same, and the Pareto frontier moves right as the background risk
is concerned. It can be observed that there is a positive correlation between the background asset
return and portfolio return. When the risk is the same, a portfolio with background risk can obtain
a higher return than that without background risk. It indicates that considering background risk
avoids the reduction of return in the actual investment and the ignorance of the potential income in the
actual investment. Moreover, the risk of background assets is positively correlated with portfolio risk.
When the return is the same, a portfolio with background risk is riskier than one without background
risk. Considering background risk can prevent investors from underestimating the investment risk
and ignoring the potential risk.
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Figure 4. The Pareto frontier of the mean-semi entropy model with and without background risk.

6. Conclusions

In the real world, investors usually need to optimize the portfolio strategies from time to time.
In this paper, we proposed a mean-semi-entropy model based on the credibility theory by taking
buy-in thresholds, cardinality, liquidity, and transaction costs into account. In particular, background
risk is also considered in the proposed model. To solve the proposed multi-objective model, a hybrid
algorithm, HDA-GA, combining the advantages of dragonfly algorithm (DA) and non-dominated
sorting genetic algorithm II (NSGA II), is developed. Finally, we conducted a series of experiments to
demonstrate the effectiveness of the proposed model and the hybrid algorithm. The numerical results
showed that (1) the proposed algorithm HDA-GA is superior to the other five algorithms, namely,
NSGA II, MODA, MOPSO, MOSSA, and MOABC, with accurate convergence, preferable coverage,
and better diversity; (2) the mean-semi-entropy model can lead to more distributive investments;
and (3) considering background risk will prevent investors from the underestimation of risk in the
actual investment.

Future research directions include but are not limited to the following: (1) considering a more
general transaction cost structure as in Beraldi et al. [12]; (2) extending the proposed model by adding
other constraints of real markets such as minimum transaction lots, skewness, and class constraints;
and (3) applying other metaheuristic algorithms such as the estimation of distribution algorithm
(EDA), the krill herd (KH) algorithm, and bacterial foraging optimization (BFO) for solving the
proposed model.
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Abbreviations

The following abbreviations are used in this manuscript:

HDA-GA Hybrid Dragonfly Algorithm-Genetic Algorithm
NSGA II Non-Dominated Sorting Genetic Algorithm II
DA Dragonfly algorithm
MODA Multi-objective dragonfly algorithm
PSO Particle swarm optimization
MOPSO Multi-objective particle swarm optimization
SSA Salp swarm algorithm
MOSSA Multi-objective salp swarm algorithm
ABC Artificial bee colony algorithm
MOABC Multi-objective artificial bee colony algorithm
FA Firefly algorithm
ED Estimation of distribution algorithm
KH Krill herd algorithm
BFO Bacterial foraging optimization
VaR Value at risk
CVaR Conditional value at risk
LAD Lower absolute deviation
BR Background risk asset
GD Generation distance
CM Convergence Metric
MPFE Maximum Pareto front error
SD Standard deviation

Appendix A. Multi-Objective Test Functions Utilized in This Paper

• ZDT1
Min f1(x) = x1

Min f2(x) = g(x) ∗ (1−
√

x1

g(x)
)

g(x) = 1 +
9

n− 1

n

∑
i=2

xi,

where: 0 ≤ x ≤ 1, n = 30.

(A1)

• ZDT2
Min f1(x) = x1

Min f2(x) = g(x) ∗ [1− (
x1

g(x)
)2]

g(x) = 1 +
9

n− 1

n

∑
i=2

xi,

where: 0 ≤ x ≤ 1, n = 30.

(A2)
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• ZDT3
Min f1(x) = x1

Min f2(x) = g(x) ∗ [1−
√

x1

g(x)
− x1

g(x)
∗ sin(10πxi)]

g(x) = 1 +
9

n− 1

n

∑
i=2

xi,

where: 0 ≤ x ≤ 1, n = 30.

(A3)

• ZDT6
Min f1(x) = 1− exp(−4x1) sin6(6πx1)

Min f2(x) = g(x)[1− (
f1(x)
g(x)

)2]

g(x) = 1 + 9[(
n

∑
i=2

xi)(n− 1)]0.25,

where: 0 ≤ x ≤ 1, n = 10.

(A4)
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