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Route selection in metropolises based on specific desires is a major problem for city travelers as well as a challenging demand of
car navigation systems. This paper introduces a multiparameter route selection system which employs fuzzy logic (FL) for local
pheromone updating of an ant colony system (ACS) in detection of optimum multiparameter direction between two desired
points, origin and destination (O/D). The importance rates of parameters such as path length and traffic are adjustable by the
user. In this system, online traffic data are supplied directly by a traffic control center (TCC) and further minutes traffic data
are predicted by employing artificial neural networks (ANNs). The proposed system is simulated on a region of London, United

Kingdom, and the results are evaluated.

1. Introduction

In route selection problems, typically a pair of origin and
destination (O/D) is given, while there are many possible
routes for selection. The objective is to find a route with the
least cost, based on the costs calculated for different possible
directions.

During the past years, many researchers have proposed
methods for optimum route selection by considering some
important parameters for city travelers. Some recent navi-
gation systems have embedded algorithms that attempt to
minimize journey distance and/or travel time. However,
many drivers are now becoming increasingly concerned with
rising fuel costs, waste of time in traffic congestions, and
pollutant emissions.

Finding the shortest route between a pair of points is an
NP-hard problem that requires enumerating all the possible
routes. In addition, most users nowadays not only need
routes with the shortest distance, but also require routes
which can satisty their other desires. Such users mostly need
safe, low-traffic, and scenic routes with the fewest number
of junctions to avoid traffic lights. The published research

papers in the literature have not addressed a fast, dynamic,
low-complicated, and practical system that can be available
almost anywhere and satisfy all these desires by comprising
all important parameters.

The proposed fuzzy logic-ant colony system (FLACS)
in this paper introduces a new dynamic multiparameter
vehicle navigation system that satisfies the above claims.
This system uses a combination of fuzzy logic (FL) and ant
colony system (ACS) algorithm in order to find an optimum
multiparameter route between a pair of O/D. An optimum
route refers to a route that attempts to satisfy all desired
parameters of a user. These parameters are “Distance,”
“Traffic,” and “Incident Risk” The set of parameters can
also be extended by adding “Width” (number of lanes),
“Quality” (medical treatment facilities, entertainments, and
etc.), and number of “Traffic Lights” parameters. In this
system, current traffic data are supplied by a traffic control
center (TCC) and artificial neural networks (ANNs) are
employed for traffic data estimation of coming minutes. As
user might not like the first selected route, the proposed
system is capable of considering previously selected routes
by user and providing a ranking set of feasible routes.



The remainder of this paper is organized as follows. The
next section reviews some route selection-related works. A
brief review on basic principles of ACS as well as FL and ANN
is presented in Section 3. Section 4 demonstrates details of
the proposed system and simulation results are discussed in
Section 5. Finally, the paper is concluded in Section 6.

2. Related Route Selection Works

Barth et al. in [1] have developed some environmentally
friendly navigation techniques that focus on minimiz-
ing energy consumption and pollutant emissions. These
methods combine sophisticated mobile source energy and
emission models with route minimization algorithms that
are used for navigational purposes. These methods have
been applied on several case studies in southern California,
USA. Authors of [2] have emphasized on more important
parameters such as number of traffic lights, right turns,
and stop signs for route selection. Although route planning
has been widely studied, most of the available applications
are primarily targeted at finding the shortest travel time or
the shortest path routes, which is insufficient for dynamic
route planning in real life scenario [3]. The approach in
[4] provides an optimal route planning by making efficient
use of underlying geometrical structure. It combines clas-
sical artificial intelligence exploration with computational
geometry. Given a set of global positioning system (GPS)
trajectories, the input is refined by geometric filtering and
rounding algorithms. This method has some computational
complexities as well as being depended on the GPS to
maintain optimal route planning.

In [5], an approach combining offline precomputation
of optimal candidate paths with online path retrieval and
dynamic adaptation is proposed. Based on a static traffic
data file, a partially disjoint candidate path set is constructed
prior to the trip using a heuristic link weight increment
method. This method satisfies reasonable path constraints
that meet the driver preferences as well as alternative
path constraints that limit the joint failure probability for
candidate paths. This algorithm is tested on randomly
generated road networks [5]. Routing vehicles based on real-
time traffic conditions has presented significant reduction of
travel time and, hence, cost in high volume traffic situations.
The authors in [6] model the dynamic route determination
problem as a Markov Decision Process (MDP) and present
procedures for identifying traffic data that have no decision
making value. These methods are examined based on actual
data collected on a route network in southeast Michigan,
USA [6]. In [7], historical data and experiences are used to
decide an optimum route based on the analysis of unblocked
reliability and the circuitous length. This can provide reason-
able route guidance to the traveler, even without real-time
traffic information. In [8], a novel concept of an intelligent
navigator that can give a driver timely advice on safe and
efficient driving is presented. From both the current traffic
conditions obtained from visual data and the driver goals
and preferences in driving, it autonomously generates advice
and presents it to the driver. Two main components of this
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intelligent navigator are the advice generation system and the
road scene recognition system.

The FL system is a popular and powerful tool imple-
mented by researchers for optimum route selection [9-11].
Teodorovic and Kikuchi have applied FL methodology for
the first time in route selection [11]. Their proposed method
only considers the travel time parameter and cannot be
easily generalized to multiple routes [9, 10]. The proposed
hybrid evolutionary algorithm for solving the dynamic route
planning problem (HEADRPP) in [3] comprises a fuzzy logic
implementation (FLI) and a graph partitioning algorithm
(GPA) incorporated into a genetic algorithm (GA) core, and
offers both optimized shortest path and shortest time routes
to the user [3]. Kambayashi et al. have also employed a GA
to find a quasioptimal route for the driver. They attempted
to integrate uncomfortable turns into the conditions of their
proposed GA based route selection algorithm [12].

By considering the route selection problem as a multi-
criteria problem, an approach of ant colony optimization
(ACO) is presented in [13] to solve a spatial reconfiguration
problem of multimodal transport network. This work is
consisted of real-time route planning with three criteria to
be optimized: travel time, travel distance, and number of
vehicles. However in this work, as an application of recon-
figuration, the execution time is very important. Another
ants algorithm-based approach is presented in [14], which
is capable of processing a digital image and detecting tracks
left by preceding vehicles on ice and snow. Salehinejad et
al. have proposed a series of route selection systems based
on ACS in [15-17]. In [17], a combination of A-Star (A*)
algorithm and ACS is employed where the A* algorithm
invigorates some paths pheromones in ants algorithm. In this
work, A* algorithm is a prologue of the ants algorithm. It
invigorates some produced directions by itself in order to
help ants algorithm to recognize best direction with higher
reliability and lower cost than pure ants algorithm. This
is done by updating (increasing) pheromone amount of
directions found in the A* algorithm. In [15, 16], the ACS
employs ANNSs to predict traffic data of further minutes in
offline and online modes, respectively. Most data prediction
techniques rely on accuracy of a plant model or knowledge
of the stochastic processes [18—20]. This is while the ANNs
have suggested an alternative approach in the literature.
Some benefits of ANNG are relatively insensitive to erroneous
or missing data and handling nonlinear systems, which is
an important issue for treating highly dynamic traffic data
(21, 22].

3. A Survey on Ant Colony System, Fuzzy Logic,
and Artificial Neural Networks

3.1. Ant Colony System. The ACO is a class of algorithms
whose first member called ant system (AS) was initially
proposed by Dorigo et al. [23]. Although real ants are
blind, they are capable of finding shortest path from food
source to their nest by exploiting a liquid substance, called
pheromone, which they release on the transit route. The
developed AS strategy attempts to simulate behavior of real
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ants with the addition of several artificial characteristics:
visibility, memory, and discrete time to resolve many com-
plex problems successfully such as the traveling salesman
problem (TSP) [24], vehicle routing problem (VRP) [25],
and best path planning [26]. Even though many changes
have been applied to the ACO algorithms during the past
years, their fundamental ant behavioral mechanism that is
positive feedback process demonstrated by a colony of ants is
still the same. Ants algorithm has also plenty of networking
applications such as in communication networks [27] and
electrical distribution networks [28]. Different steps of a
simple ant colony system algorithm are as follows.

Problem Graph Depiction. Artificial ants move between
discrete states in discrete environments. Since the problems
solved by ACS algorithm are often discrete, they can be
represented by a graph with N nodes and R routes.

Ants Distribution Initializing. A number of ants are placed on
the origin nodes. The number of ants is often defined based
on trial and error and number of nodes in the region.

Ants Probability Distribution Rule. Ants probabilistic transi-
tion between nodes can also be specified as node transition
rule. The transition probability of ant k from node i to node
j is given by

k (Tif>a(’7if)ﬁ
pij = Dh ¢ tabug (Tih)a("]ih)ﬁ
0 otherwise,

where 7;; and #;; are the pheromone intensity and the
cost of route between nodes i and j, respectively. Relative
importance of 7;; and #;; are controlled by parameters o and
B, respectively. The tabuy is set of unavailable routes (visited
nodes) for ant k.

Update Global Trail. When every ant has assembled a
solution, at the end of each cycle, the intensity of pheromone
is updated by a pheromone trail updating rule. This rule for
ACS algorithm is given as

T = (1-p)7 + D AT, (2)

M=

k=1

where 0 < p < 1 is a constant parameter named pheromone
evaporation and m is number of ants. The amount of

pheromone laid on the route between nodes i and j by ant
kis
Q . Ly s
7 if route (i, j) is traversed by,
k

ATikj = the kth ant (at the current cycle), (3)

0 otherwise,

where Q is a constant parameter and fj is the cost value of
the found solution by ant k.

Stopping Procedure. This procedure is completed by arriving
to a predefined number of cycles, or the maximum number
of cycles between two improvements of the global best
solutions.

3.2. Fuzzy Logic. The fuzzy set theory was initially intro-
duced by Lotfi Zadeh in 1965. In this theory, the usual set
theory is generalized so that an object cannot only be seen as
an element of a set (membership value 1) or not an element
of this set (membership value 0), but it can also have a
membership value between 0 and 1. Therefore a fuzzy set
is defined by its membership functions which are allowed
to assume any value in the interval [0,1] instead of their
characteristic function, which is defined to assume the values
0 or 1 only [29].

Later in 1970, Assilian and Mamdani developed the fuzzy
control concept to control complex processes particularly
when no strict model of the processes exists [30, 31]. Fuzzy
control can be described as a means of control working
with conditional sentences called linguistic “IF-THEN”
rules rather than mathematical equations. The deduction
of the rule is called inference and requires definition of
a membership function characterizing this inference. This
function determines the degree of truth of each proposition
[31].

Different stages of a simple fuzzy logic controlling system
are as follows.

Fuzzification. Fach fuzzy system is realized in the form of
tuzzy rules such as

Rule I: IF M is p; & N is g THEN R is g,

(4)

Rule II: IF M is p, & N is g THEN R is g,

where M and N are variables of the condition part, R is vari-
able of the action part, and p;, g;, and g; are fuzzy parameters
characterized by membership functions. The condition parts
of control rules make use of measurements which are usually
real numbers [30]. Figure 1 presents Mamdani’s approach to
the fuzzy inference procedure for two rules and arbitrarily
membership functions. By considering D; and D, as value
domains, the real valued measurements m and #n are matched
to their corresponding fuzzy variables by determining their
membership values as uy,, (m), pq, (1), pp,(m), and pg, (n).

Fuzzy Inference Engine. By considering M = mand N = n
for all the control rules in the rule base, the truth value
of each rule in the premise is derived by building the
conjunctions of the matching membership values as

Rule I: y; = Mpl(m) A ‘Ltql(l’l),
(5)

Rule IT:  py = pp, (m) A pg, (1),

where the “A” conjunction represents one of the Mamdani’s
implication such as “min” function [30].

The truth degree of rules I and II is represented by u;
and y,, respectively. These also define the membership values
tg (R) and pg, (R) of the fuzzy subsets g1(R) and g(R) for
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FIGURE 1: Fuzzy inference procedure for two rules based on Mamdani’s type.

the measurement m and n, respectively. By considering D3 as
the value domain of the output variable, the fuzzy control
output g(R) is represented by the aggregation of all fuzzy
subsets gi(R). Its membership values y,,(R) are determined
by disjunction of all the membership values p, (R)as

,ug(R) = Ug (R) * Ue, (R)) (6)

where the “x” disjunction is the “max” function when used
with Mamdani’s implication [30, 31].

Defuzzification. The fuzzy result, which is outcome of the
inferences, is transformed into a real value that can be used
as control input. Since the desired output is a nonfuzzy
outcome, a quantitative value of the control output is
determined by defuzzifying u,, (R). There are two common
methods for defuzzification which are the “center of gravity”
and “mean of maxima” methods. Interested readers are
referred to [30] for more descriptions.

3.3. Artificial Neural Networks. The brain is an extensive
structure consisted of many connected neural cells called
“neurons.” In ANN:Gs, it is claimed to imitate biological brain
neural networks into mathematical model. A model of the
brain connects many linear or nonlinear neuron models
and processes information in a parallel distributed manner.
Since neural networks have learning and self-organization

P2 .Wz\ N
fx)

F1GURE 2: An artificial neuron model.

capabilities, they can adapt to changes in data and learning
the characteristics of input signal. Such networks can learn
a mapping between an input and an output space and syn-
thesize an associative memory that retrieves the appropriate
output when presented with the input and generalizes when
presented with new inputs [32]. By considering the above
characteristics, neural networks are employed today in many
fields including pattern recognition, identification, speech,
vision, and control systems [33].

A neuron with a single n-element input vector is
shown in Figure 2 where py, p,,..., pn are individual ele-
ment inputs and wy, w,, ..., w, are weights of connections.
The ANNs can be trained to perform a particular function
by adjusting the values of the weights [33]. The neuron unit
has a bias b, which is summed with the weighted inputs to
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Ficure 3: Employed hierarchical feed-forward ANN structure for
traffic estimation.

form the net input N. Output of the neuron is the weighted
sum of input signals as

yzf(ipi-w,»-i—b), (7)

i=1

The neuron activation function is often a continuous and
nonlinear function which is called sigmoid function and is
defined as

o
1+ eax’

fx) = (8)
where a is a constant and 0 < f(x) < 1.

One largely used category of the ANNSs is called feed-
forward net. This hierarchical structure is consisted of some
layers without interconnections between neurons in each
layer, and signals flow from input layer to output layer in one
direction as in Figure 3. Readers are encouraged to refer to
[32, 33] for more details.

4. Proposed Route Selection System

4.1. System Structure. The proposed system is executed
locally for every single vehicle. It finds directions with
minimum costs based on the importance rates of user
desired parameters. Architecture of the proposed system
is presented in Figure 4. In this system, the traffic signal
is provided by a TCC and contains current traffic data
which is updated regularly. Memory of the system comprises
statistical data, average speed of the vehicle, current saved
traffic data, current time, and so forth,. System information
like statistical data is available on smart cards for different
cities. Therefore, user can use the system in other regions
supported by a TCC just by purveying the appropriate smart
card.

In this system, ANNs are used for traffic estimation of
coming minutes. The manner depicted in [22] is followed
for employing ANNs as traffic predictor in this work. The
employed ANN is consisted of one hidden layer with m
hidden neurons, n inputs, and one output as in Figure 3.
By considering statistical traffic data of last n years in a
typical time period as input, the ANN structure is trained
for making traffic predictions. Then, it can estimate traffic

load of further minutes by considering current traffic data
available by TCC as inputs. For a detailed description of the
employed ANN, enthusiastic readers may refer to [22].

In Figure 4, time needed to move between two junctions,
before movement of the vehicle is estimated in the “time
delay estimation” block. This is due to having different
traffic loads in different hours of day and night. Therefore,
the system must have an estimate of arrival time to other
junctions to use the appropriate data of the arrival time to
that junction. This estimation is done by considering the
vehicle average speed, the distance between junctions, and
the current traffic flow. By taking into account the predicted
traffic data and estimated journey time delay, correspondent
predicted traffic data are used in the system.

The proposed system has the privilege of evading
upcoming congestions. The system is aware of current
vehicle location by using GPS. Therefore, if a congestion
happens on the suggested direction, the system immediately
recommends nearest direction to the user parameters and
current direction based on the new conditions to evade
upcoming congestion. The system also has the capability
of considering the previously selected directions. This task
is performed by updating pheromone amount of these
directions in the ACS. In order to have a more user friendly
system, it can provide the user some candidate directions
to choose from. These attributes are optional for users and
more features can be developed in future works. The next
subsection discusses the proposed FLACS-based structure in
details.

4.2. Fuzzy Logic-Ant Colony System-Based Model. The pseu-
docode of the proposed FLACS-based system is presented in
Algorithm 1. Its different steps are described as follow.

Initialize. It is consisted of initial values of the algorithm
parameters such as number of ants, evaporation coefficient,
and average speed of the vehicle.

Locate Ants. Ants are located on the start point in this stage.
An active ant refers to the ant, which has not arrived to the
destination yet and is not blocked in a junction. Since each
ant can traverse each junction once in each iteration, an ant is
blocked in a junction when it has no chance of continuing its
transition toward the destination and has no possible route
to move backward. A blocked ant at a junction is depicted in
Figure 5.

Construct Probability. In this step, the probability of each
possible direct route is calculated based on its cost function
for each active ant. The probability of displacing from
junction i to junction j for ant k is as

o S
Tij HIEparametersg iji .
= ] & tabUk,

k _
pij - Zh ¢ tabuy, Tih Hleparametersf il
0 otherwise,

9)

where 7;; is the direct route pheromone intensity from
junction i to j. Parameter « controls the importance of 7;;
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F1GURE 4: Block diagram of the proposed FLACS route selection system.

Traversed junction by ant k

« »

FIGURE 5: An ant on a blocked junction. The junctions “a” and “b” have been traversed by ant k before. Therefore, it cannot pass these

« »

junctions once more and is blocked in the current junction “c” in the current iteration.

Procedure FLACS
Initialize
For each loop
Locate ants
For each iteration
For each ant
If ant is active
Construct probability
Select route
Update tabu list
End
Next ant
Next iteration
Update pheromone
Next loop
Select best direction
End FLACS

ArLgoriTHM 1: Proposed FLACS algorithm in pseudocode.

and is set to 2 [22-24, 27]. The tabuy list is the set of direct
blocked routes (visited nodes). Parameters set is a collection
of most important parameters for drivers taking journeys in
metropolises. For more simplicity, the “Distance,” “Traffic

Flow,” and “Incident Risk” parameters are considered in this
set. However, it can be developed by adding other parameters
such as “Width” of the road (number of lanes), number
of “Traffic Lights,” and “Road Quality” (medical treatment
facilities, number of gas stations, and entertainments), [15—
17]. Cost function of each parameter [ is fl-;lm, where &,
is normalized in 1 < &j < 10 and significance of each
I is adjustable by «; for all parameters. The considered
parameters are described as follows.

(i) Distance.

fijdistance = D(Z)JJ t)) (10)

where the D(j, j, t) is distance between junctions i and
j at time t. Since some routes are two-way or one-way
in specific hours, this parameter is a function of time.
Longer distance increases total cost and therefore,
decreases the probability of the longer route selection
in (9).

(ii) Traffic Flow.

gij traffic :F(I’J’t)r (11)

where F(i, j,t) is traffic load of the route between
junctions i and j at time t. Considering this parame-
ter in the route selection systems has many benefits
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FIGURE 6: Architecture of the fuzzy logic system for FLACS.
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FiGure 7: Membership function of “Distance” parameter.

such as less air pollution, less time wastage in the
traffic, and less gas usage. As traffic on a route grows,
total cost increases and consequently it decreases the
probability of selecting that route by the system in
9).

(iii) Incident Risk.
fijrisk = R(I’J’ t)’ (12)

where R(i, j, t) is risk of route between junctions i
and j at time f. This parameter is a measure of
incidents happening risk, which might occur on the
route based on the statistical data. This parameter has
direct relation with total cost, therefore risky routes
have less selection probability in (9).

Select Route. A random parameter 0 < g < 1 with uniform
probability is compared with the parameter Q, where 0 <
Q =< 1 and is usually fixed to 0.9 [34]. The comparison result
between Q and g picks up one of the two selection methods

Membership

Figure 8: Membership function of “Traffic” parameter.

for the active ant to continue its route to the next junction as

~ |arg max(pi-‘h> q>Q 13)
] =
Roulette Wheel ( pf‘h) otherwise.

If g is greater than Q, active ant selects the route with the
highest probability, otherwise, Roulette Wheel rule is selected
to choose the next junction through probabilities.

Update Tabu List. In this step, the route (selected node)
which ant k has been chosen is added to the tabu list in order
not to be selected again. Furthermore, its probability will not
be calculated anymore.

If ant k has arrived at the destination or is blocked in a
junction as in Figure 5, it is omitted from the active ant list.
In other words, this step deactivates the blocked or arrived
ant in the current iteration.

Update Pheromone. The ACS pheromone system is consisted
of two main rules: first is applied whilst constructing
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FIGURE 10: Membership function of local pheromone updating.

solutions (local pheromone update rule) and the other rule
is applied after all ants have finished constructing a solution
(global pheromone update rule). The pheromone amount of
the route between junctions i and j is updated for ant k as

T = 74+ (10 X A7), (14)

where At is the amount of local pheromone updating. The
value of At is the output of a FL system. By considering
the FL approach in Section 3.2, and Mamdani’s implication
as our approach, structure of the employed FL system is
illustrated in Figure 6. Inputs of the FL system are the total
amount of “Distance,” “Traffic Flow,” and “Incident Risk”
of the direction which ant k has selected. By considering
computing complexities, only two input fuzzy sets, “Low”
and “High”, are defined for each input. The corresponding
Trapezoidal-shaped membership functions of the input vari-
ables are presented in Figures 7, 8, and 9. In these functions,
it is assumed that if total distance of selected direction is
more than 80% of maximum total visited distance by ants
in the same loop, its membership function for “High” is
unity whereas when total distance of selected direction is less
than 20% of maximum total visited distance by ants in the
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FiGure 11: Surface-plot of the proposed FLACS system IF-THEN
rules.

same loop, its membership function for “Low” is unity. The
similar definitions are considered for the “Traffic Flow” and
“Incident Risk” parameters. Four fuzzy sets are considered
for the output variable as in Figure 10. Levels 1-4 represent
different levels of pheromone density, which are “Very Weak,”
“Weak,” “Strong,” and “Very Strong,” respectively. At the final
stage, with respect to the most defuzzification techniques
mentioned in Section 3.2, the “center of gravity” method is
employed in this FL system in order to resolve a single output
value from the fuzzy set.

Since important rates of parameters are different and are
defined by different users, various fuzzy rules are predefined
in the system. Therefore, according to the preferences of each
user, appropriate fuzzy rules are loaded into the FL system. A
surface-plot of the IF-THEN rules is presented in Figure 11.
In this figure, rates of the considered parameters versus
pheromone are presented. As an example, [F-THEN rules
set of a specific parameters importance rate set is presented
in Table 1. In this example, preferences of the user for the
“Distance,” “Traffic,” and “Incident Risk” parameters are
“High,” “Low,” and “Low;” respectively. Therefore, directions
with closer costs to the preferences achieve more local
pheromone update. This is while routes with the “Low,”
“High,” and “High” preferences are achieving the least local
pheromone update.

The traditional last step of each completed loop is global
pheromone updating defined as

e = pri, (15)

where 0 < p < 1 is the evaporation coefficient and is usually
set to 0.9 [15-17, 34].

Select Best Direction. After m loops, direction with the lowest
cost from origin to destination is recommended by the
system.

5. Simulation Results

Performance of the proposed FLACS route selection system
versus ACS based and A*-ACS systems presented in [15-17]
is evaluated and discussed in this section.

The proposed system is applied on a part of London,
United Kingdom, routes network. The selected region is
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FIGURE 12: Selected region of London, UK, for simulations consisted of 42 junctions.

TasLE 1: The IF-THEN rules set for FLACS system.

Rule no. - THEN
Distance Traffic Incident Risk Local Pheromone Update
1 High Low Low Very Strong
2 High High Low Strong
3 High Low High Strong
4 Low Low Low Strong
5 Low Low High Weak
6 Low High Low Weak
7 High High High Weak
8 Low High High Very Weak

consisted of 42 junctions as in Figure 12. The statistical traffic
data used in these simulations are provided by London traffic
control center (LTCC). In all simulations, start time is 4:00
PM and average speed of vehicle is considered 40 km/h as
default. The system is run in 30 loops with 15 initial ants
as default. Number of running cycles, iterations, and ants
are defined based on the number of junctions in the search
area and therefore complexity of the region. In this system,
the evaporation coefficient p is considered 0.9, Q = 0.9, and
a = 2. A desktop computer with Intel Core2Quad Q8300
2.5GHz CPU and 3 MB of RAM is employed for simulations
in MATLAB 2009b environment.

In the first simulation, 100/D pairs are randomly
selected. Average of their cost averages for different number
of cycles and a set of user preferences (Distance = High;
Traffic = Low; Incident Risk = Low) is evaluated. As presented

in Figure 13, the considered systems have the most cost
averages in the first cycles. By following an alternative
descending manner, cost averages of ACS and A*-ACS
systems almost arrive to a stable value by the 14th cycle. This
is while the FLACS system has arrived to a stable cost average
point, which is totally less than other two systems, by the 10th
cycle. Since the FLACS system converges faster with a less cost
average than the other two systems, this fact shows enhanced
performance of the proposed system versus A*-ACS and ACS
systems.

In general, the comparison between ACS and A*-ACS
systems in Figure 13 illustrates that the A*-ACS algorithm
has less costs average than ACS algorithm. This difference
is due to local pheromone updating of the ACS by A*
algorithm. In addition, comparison between A*-ACS and
FLACS algorithms illustrates that the FLACS algorithm has
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FIGURE 13: Average of 10 randomly selected O/D pairs cost averages
for different number of cycles. A comparison between performance
of ACS, A*-ACS, and FLACS algorithms is presented for user
preference: Distance = High; Traffic = Low; Incident Risk = Low.
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FIGURE 14: Average of 10 randomly selected O/D pairs cost averages
for different “Distance” parameter importance rates. A comparison
between performance of ACS, A*-ACS, and FLACS algorithms is
presented.

the least costs averages. This fact, demonstrates performance
of FL in ACS local pheromone updating versus A* algo-
rithm.

In another simulation, performance of the ACS, A*-
ACS, and FLACS systems are compared for each “Distance,”
“Traffic,’ and “Incident Risk” parameters separately. For
each parameter, average of 10 randomly selected O/D pairs
cost averages is compared for different values of parameters
importance rates, rated between 0 and 1. As it is illustrated
in Figure 14, cost averages of all the three systems increase
by increasing the importance rate of “Distance” parameter.
Although the systems have almost similar behavior versus
different “Traffic” parameter importance rates, but the ACS
and FLACS algorithms have totally the most and the least
average of costs, respectively. This is while it has been
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FIGURE 15: Average of 10 randomly selected O/D pairs cost averages
for different “Traffic” parameter importance rates. A comparison
between performance of ACS, A*-ACS, and FLACS algorithms is
presented.
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FIGURE 16: Average of 10 randomly selected O/D pairs cost
averages for different “Incident Risk” parameter importance rates.
A comparison between performance of ACS, A*-ACS, and FLACS
algorithms is presented.

demonstrated in [17] and also the previous simulation that
the A*-ACS system has less average of costs than ACS system.

As analysis of cost averages for different importance rates
of “Traffic” parameter demonstrates in Figure 15, the systems
have different behavior for various values of this parameter.
In fact, the alternations are less smoother than the “Distance”
parameter. This is due to estimation of further traffic data
by ANNs. Therefore, traffic data used in each system is
not exactly same as the other system. By considering this
fact, generally the FLACS algorithm has the least average
of costs than the other algorithms. In a similar simulation,
performance of the systems is studied for different values
of “Incident Risk” parameter as in Figure 16. Similar to the
“Distance” parameter, the systems behavior is smooth in a
descending manner.
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TaBLE 2: Comparison between performance of ACS, A*-ACS, and FLACS algorithms for three different O/D pairs and user preference:

Distance = High; Traffic = Low; Incident Risk = Low.

Route selection system O/D Pair Recommended direction Cost (unitless) Time (sec.)
6/13 6—-5—-18—-17—-42—-37-38—-13 24.257 3.211
ACS 22/37 22-20—17—-39— 40— 37 21.025 1.901
20/36 20—-17—-42—-40—-15—-9—- 36 27.241 3.320
6/13 6—-19-20—-41-16—-13 21.634 3.980
A*-ACS 22/37 22—-23—-16—-37 19.452 2.412
20/36 20—-41—-42-37-15-9-36 23.952 3.872
6/13 6—-19-20—-41—-16—13 16.548 3.412
FLACS 22/37 22-20—-41—-16—-37 15.012 2.122
20/36 20—-41—-42-40-33-9-36 19.856 3.490
2000 all systems. However, due to its FL system component, its
running time is more than the ACS. In a specific case, the
1500 FLACS and A*-ACS have recommended similar direction

1000

Average of costs

500

0 5 10 15 20 25 30 35 40

Number of ants
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FIGURE 17: Average of 10 randomly selected O/D pairs cost averages
for different number of ants. A comparison between performance
of ACS, A*-ACS, and FLACS algorithms is presented.

In Figure 17, average of 10 randomly selected O/D pairs
cost averages versus different number of ants is studied. As
this figure illustrates, by considering one ant in the systems as
the worker, averages of costs are so high. By activating more
ants, the systems averages of costs decrease while converging
to a specific value of costs average. The convergence point
for the FLACS, A*-ACS, and ACS systems is at 17, 17, and
18 number of ants, respectively. However, after this point,
behavior of the FLACS system costs average is static, while the
ACS system has more alternations than A*-ACS system. This
figure clearly demonstrates performance of the proposed
FLACS system versus other two systems.

In another study, performances of the systems are
compared for three specific O/D pairs in Table 2. As it
is indicated, the ACS has the most cost but less running
time among other systems. This is while the A*-ACS, due
to computational load of its A* search engine, has more
running time but less cost than ACS. Even though the
FLACS also has the extra FL system component respect to
ACS, the simulation results demonstrate that the FLACS has
less running time than A*-ACS and the least cost among

for the O/D pair 6/13. However, the FLACS method has
recommended this direction with less running time as well
as less cost than the ACS method, which demonstrates
performance of the FLACS system.

Totally, the systems have demonstrated almost the same
growth pattern by parameters increment which is due to
the common ACS core of these methods. However, the
performance analyze of the proposed FLACS system for
different values of “Distance,” “Traffic,” and “Incident Risk”
parameters demonstrates its less cost average versus A*-ACS
and pure ACS systems. This also means that employment
of the FL technique in local pheromone updating has not
forced or converged the FLACS to a specific result, but could
help it to achieve optimum results with fewer costs than pure
ACS and A*-ACS algorithms. The privilege of FLACS versus
other methods is its dynamic behavior in different regions
with different complexities due to existence of the FL part.
Therefore, the system performs with fewer total costs as well
as better performance.

6. Conclusion and Future Works

The proposed system in this paper introduces a dynamic
route selection system which employs fuzzy logic (FL)
and ant colony system (ACS) for multiparameter route
selection in urban areas. This system considers a set of
important parameter for city travelers: “Distance,” “Traffic,”
and “Incident Risk.” However, this set can be developed
by considering other parameters such as “Width” (number
of lanes), “Quality” (medical treatment facilities, entertain-
ments, etc.), and number of “Traffic Lights.”

In this work, costs of possible routes are calculated
based on the adjusted desired parameters of the user. Then
direction with the optimum cost is selected by using the
proposed fuzzy logic-ant colony system (FLACS) algorithm.
For real-time applications, fuzzy logic is considered as a man-
agement mechanism for the proposed ACS local pheromone
updating. This technique improves ACS performance and
prepares a real applicable dynamic system for different
regions. This work can also be developed for daily life
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usages by employing some advanced technologies such as
vehicle-to-vehicle (V2V) communication and networking
technologies. Another version of this work can also be
developed for passengers, being available on their mobile cell
phones or personal digital assistances (PDAs).

The proposed system can have lots of real-time applica-
tions for emergency services, tourist guides, and generally for
anyone who wants to have a low-cost, safe, and comfortable
journey in urban areas.
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