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This paper focuses on the problem of event-triggered control for a class of uncertain nonlinear strict-feedback systems with zero
dynamics via backstepping technique. In the design procedure, the adaptive controller and the triggering event are designed at the
same time to remove the assumption of the input-to-state stability with respect to the measurement errors. Besides, we propose
an assumption to deal with the problem of zero dynamics. Three different event-triggered control strategies are designed, which
guarantees that all the closed-loop signals are globally bounded. The effectiveness of the proposed methods is illustrated and
compared using simulation examples.

1. Introduction

Nowadays, the control problem of uncertain systems draws
more and more attention because of the extensive existence
in the practical engineering. Due to the fact that vehicles,
robots, or UAVs (Unmanned Aerial Vehicles) are required
to work more precisely, there have been plenty of researches
towards the control problem. For example, Zhou et al. in [1]
proposed two adaptive controllers for uncertain nonlinear
systems in the presence of input quantization. An event-
triggered output-feedback controller is discussed in [2], for
output feedback in switched linear systems. A constrained
optimization issue for a class of strict-feedback nonlinear
systems is proposed in [3].

Among these researches, adaptive control strategy [4]
has been proved to be an effective and efficient method
for handling uncertainties and nonlinearities. It introduces
a parameter estimator to eliminate the influence caused by
unknown parameters. Therefore, over the past few years,
there have been many adaptive control strategies for uncer-
tain nonlinear systems. For instance, an adaptive controller
is proposed for switched nonlinear systems with coupled
input nonlinearities and state constraints in [5]. Sun et al.
study a class of state-constrained uncertain nonlinear systems

which have steady-state behavior and prescribed transient
and design a robust adaptive strategy in [6]. In [7], the
authors discuss the problems of adaptive output-feedback
tracking control for a class of uncertain nonlinear systems
with output constraints, unmodeled dynamics, and quantized
input. An extremum seeking controller is proposed based
on a fractional-order sliding mode in [8], which has a faster
convergence speed. Further, Li et al. propose two adaptive
control approaches to synchronize the neural networks in
finite time in [9]. A fractional-order sliding mode controller
is proposed in [10] for robust stabilization of uncertain
fractional-order nonlinear systems. For more applications,
see [11–18].

In the practical systems, input energy is obviously lim-
ited. Therefore, energy-saving should also be considered in
order to extend the systems’ lifespan. In the past, the time-
triggered scheme is widely used, which means the actuation
is executed at every periodic instant even the systems do
not need any actuations, and it requires abundant times of
experiments to find the most suitable parameters. Therefore,
it is impractical for many resource-limited systems. The
event-triggered control scheme, which is first proposed in
[19], can greatly reduce the control execution times and save
the computation costs. In event-triggered systems, actuations
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are not executed periodically, but only when triggering
conditions are satisfied. Furthermore, once using the event-
triggered control scheme, the Zeno behavior must be taken
into consideration. It is also of great importance to find a
way to avoid the Zeno behavior to ensure that the system
will not make any mistakes while running. Recently, some
event-triggered schemes are proposed to handle different
problems. For example, an event-triggered control method
is proposed in [20] for parametric strict-feedback nonlinear
systems involving backstepping and Lyapunov theory. Xing
et al. consider the problems of event-triggered based adaptive
control for uncertain nonlinear systems in [21] and propose
three event-triggered strategies, while Su et al. design an
event-triggered controller by using fuzzy logic method in
[22]. In [23], by using input-to-state stable (ISS) condition, a
state-feedback event-triggered scheme was proposed and the
closed-loop system is guaranteed to be asymptotically stable.
Wang et al. design a decentralized event-triggered scheme in
[24] for both linear and nonlinear subsystems considering
transmission delays. While in networked-control systems,
an event-triggered scheme for robust set stabilization is
proposed in [25]. What is more, event-triggered schemes
also show advantages in consensus and synchronization of
multiagent systems in [26–29]. Besides, some results on
event-triggered control have also been applied on real systems
(see in [30–37]). They extend the range of applications of the
event-triggered control scheme.

The zero dynamics, which are well understood and
extended to nonlinear finite-dimension systems in [38], are
the dynamics of the system when choosing a certain input𝑢 that makes output 𝑦 be identically 0. It is an expansion of
the zero-point concept in linear systems and it is an intrinsic
character of nonlinear systems which describes how internal
states act when the output is 0.The stability of zero dynamics
in sampled-data nonlinear systems is widely discussed in
[39, 40], while a funnel controller is proposed in [41] for linear
systems considering zero dynamics. For stochastic systems,
a controller is designed in [42, 43] using event-triggered
scheme and backsteppingmethod based on Lyapunov theory.
In continuous nonlinear systems, since the zero dynamics
are related to the systems dynamics and the minimum
interexecution time which is also influenced by the systems
dynamics, has to be considered, it increases the complexity
to design a controller for such systems. However, to the
best of our knowledge, all of the existing event-triggered
control strategies were designed without considering zero
dynamics in nonstochastic systems.The existence of unstable
zero dynamics may restrict the control performance, such as
sensitivity, robustness, and stabilization. And the stabilization
of zero dynamics in continuous systems is harder to keep
than in discrete-time systems [44]. Therefore, it is of great
significance to study the stability of zero dynamics for
analyzing the internal states of nonstochastic and consensus
nonlinear systems.

Inspired by above discussions, an event-triggered based
adaptive control is proposed for strict-feedback nonlinear
systems with unknown parameters and zero dynamics. Com-
pared with the existing results, the main contributions are
given as follows:

(1)Theproblemof event-triggered adaptive control is first
considered for a class of continuous nonlinear systems with
zero dynamics. The nonlinearity part in the system does not
have to be globally Lipschitz.(2)Threedifferent triggering conditions are designed, and
it is proved that the proposed controllers canmake the system
asymptotically stable. Then, we prove that every actuation is
triggered in finite time, which means the Zeno behavior is
successfully avoided.

The rest of the paper is organized as follows. Section 2
proposes the problem formulation and gives the objective
of this note. Then, three different design schemes and main
theoretical results are described in Section 3. Section 4 gives
the simulation results. The conclusion is summarized in
Section 5.

2. Problem Formulation

Consider a class of strict-feedback nonlinear systems with
unknown parameter and zero dynamics:

̇𝜂 = 𝑓0 (𝜂) + 𝑔0 (𝜂) 𝑥1
𝑥̇𝑖 = 𝑥𝑖+1 + 𝑓𝑖 (𝑥𝑖) + 𝜑𝑇𝑖 (𝑥𝑖) 𝜃, 𝑖 = 1, . . . , 𝑛 − 1
𝑥̇𝑛 = 𝑢 (𝑡) + 𝑓𝑛 (𝑥𝑛) + 𝜑𝑇𝑛 (𝑥𝑛) 𝜃
𝑦 = 𝑥1

(1)

where 𝜂 denotes the zero dynamics of the system. 𝑓0(𝜂) and𝑔0(𝜂) are known nonlinear functions with respect to 𝜂. And,𝑥 = [𝑥1, . . . , 𝑥𝑛]𝑇 ∈ R𝑛𝑥𝑖 = [𝑥1, . . . , 𝑥𝑖]𝑇 ∈ R𝑖 are the states of
the system, while 𝑢(𝑡) : R1 󳨀→ R1 is the system input. 𝜃 ∈ R𝑟

is a vector which contains all the unknown parameters in the
system. 𝑓𝑖(⋅) : R𝑖 󳨀→ R1 and 𝜑𝑖(⋅) : R𝑛 󳨀→ R𝑟, (𝑖 = 1, . . . , 𝑛)
are known nonlinear functions with 𝛾-th order (𝛾 ⩾ 𝑛+1− 𝑖)
smooth with respect to 𝑥1, . . . , 𝑥𝑖. For convenience, we define𝑓𝑖(⋅) and 𝜑𝑖(⋅) as 𝑓𝑖 and 𝜑𝑖, respectively.
Assumption 1 (see [45]). For the zero dynamics ̇𝜂 = 𝑓0(𝜂) +𝑔0(𝜂)𝑥1 in (1), there exists a smooth and definite positive
function 𝑉𝜂 and a smooth state-feedback control law 𝑥1 =𝜙0(𝜂), with 𝜙0(0) = 0, such that

𝜕𝑉𝜂𝜕𝜂 [𝑓0 (𝜂) + 𝑔0 (𝜂) 𝜙0 (𝜂)] ≤ −𝑐𝜂𝑉𝜂 (2)

Since system (1) contains the zero dynamics and
unknown parameters, the existing control approaches are not
suitable. Therefore, the control objective of this work is to
design an adaptive law ̇̂𝜃 and control signal 𝑢(𝑡) for the system
(1), whichmake the output𝑦 asymptotically stable, and all the
states in the systems are required to be globally bounded.

3. Event-Triggered Control Scheme

Similar to [21], three different adaptive controller design
strategies are proposed based on different event-triggered
conditions, that is, fixed threshold strategy, relative threshold
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strategy, and switching threshold strategy. In this research,
the considered control system is affected by the zero dynamics
which exists widely in many practical applications. For each
strategy, we start with system (1) using the backstepping
technique which is carried out with the help of coordinates
transformation:

𝑧𝑖 = 𝑥𝑖 − 𝛼𝑖−1 (3)

where 𝛼𝑖−1 (𝑖 = 1, 2, 3, . . . , 𝑛) denote the virtual control
laws and 𝑧𝑖 (𝑖 = 1, 2, . . . , 𝑛) are the dynamics of the new
coordinates. The design process is started as follows.

Step 1. From the coordinate transformation 𝑧1 = 𝑥1 − 𝛼0, the
time derivative of 𝑧1 is

𝑧̇1 = 𝑥2 + 𝑓1 + 𝜑𝑇1 𝜃 − 𝛼̇0
= 𝑧2 + 𝛼1 + 𝑓1 + 𝜑𝑇1 𝜃 − 𝛼̇0, (4)

where 𝑧2 = 𝑥2 − 𝛼1.
Then, choose a Lyapunov function as

𝑉1 = 𝑉𝜂 + 12𝑧21 + 12𝜃𝑇Γ−1𝜃 (5)

where 𝜃 = 𝜃 − 𝜃 is the estimation error, 𝜃 denotes the
estimation of the uncertain constant vector 𝜃, and Γ denotes
a positive definite matrix. Therefore, the derivative of 𝑉1 is

𝑉̇1 ≤ 𝜕𝑉𝜂𝜕𝜂 [𝑓0 (𝜂) + 𝑔0 (𝜂) 𝑥1]
+ 𝑧1 (𝑧2 + 𝛼1 + 𝑓1 + 𝜑𝑇1 𝜃 − 𝛼̇0) − 𝜃𝑇Γ−1 ̇̂𝜃

≤ 𝜕𝑉𝜂𝜕𝜂 [𝑓0 (𝜂) + 𝑔0 (𝜂) 𝜙0 (𝜂)]
+ 𝜕𝑉𝜂𝜕𝜂 𝑔0 [𝑥1 − 𝜙0 (𝜂)]
+ 𝑧1 (𝑧2 + 𝛼1 + 𝑓1 + 𝜑𝑇1 𝜃 − 𝛼̇0) − 𝜃𝑇Γ−1 ̇̂𝜃

≤ 𝜕𝑉𝜂𝜕𝜂 [𝑓0 (𝜂) + 𝑔0 (𝜂) 𝜙0 (𝜂)]
+ 𝑧1 (𝑧2 + 𝜕𝑉𝜂𝜕𝜂 𝑔0 + 𝛼1 + 𝑓1 + 𝜑𝑇1 𝜃 − 𝛼̇0)
− 𝜃𝑇Γ−1 ̇̂𝜃

(6)

where 𝛼0 = 𝜙0(𝜂). Next, choose a virtual law as

𝛼1 = −𝑐1𝑧1 − 𝜕𝑉𝜂𝜕𝜂 𝑔0 − 𝑓1 − 𝜑𝑇1 𝜃 + 𝛼̇0 (7)

where 𝑐1 is a positive constant. Further, substituting (7) into
(6) results in

𝑉̇1 ≤ −𝑐𝜂𝑉𝜂 − 𝑐1𝑧21 + 𝑧1𝑧2 + 𝜃𝑇 (𝜏1 − Γ−1 ̇̂𝜃) (8)

where 𝜏1 = 𝜑𝑇1 𝑧1 is a tuning function.

Step 2. The derivative of 𝑧2 is given as

𝑧̇2 = 𝑥̇2 − 𝛼̇1
= 𝑧3 + 𝛼2 + 𝑓2 + 𝜑𝑇2 𝜃 − 𝜕𝛼1𝜕𝜂 ̇𝜂

− 𝜕𝛼1𝜕𝑥1 (𝑥2 + 𝑓1 + 𝜑𝑇1 𝜃) − 𝜕𝛼1𝜕𝜃 ̇̂𝜃
(9)

where 𝑧3 = 𝑥3 − 𝛼2.
Then, the Lyapunov function is chosen as 𝑉2 = 𝑉1 +(1/2)𝑧22 . The derivative of 𝑉2 is
𝑉̇2 = 𝑉̇1 + 𝑧2𝑧̇2 ≤ 𝑉̇1 + 𝑧2 (𝑥3 + 𝑓2 + 𝜑𝑇2 𝜃 − 𝛼̇1)

≤ −𝑐𝜂𝑉𝜂 − 𝑐1𝑧21 + 𝑧1𝑧2 + 𝜃𝑇 (𝜏1 − Γ−1 ̇̂𝜃) + 𝑧2 [𝑧3
+ 𝛼2 + 𝑓2 + 𝜑𝑇2 𝜃 − 𝜕𝛼1𝜕𝜂 ̇𝜂 − 𝜕𝛼1𝜕𝑥1 (𝑥2 + 𝑓1 + 𝜑𝑇1 𝜃)
− 𝜕𝛼1𝜕𝜃 ̇̂𝜃] ≤ −𝑐𝜂𝑉𝜂 − 𝑐1𝑧21 + 𝜃𝑇 (𝜏1 − Γ−1 ̇̂𝜃)
+ 𝑧2 [𝑧3 + 𝑧1 + 𝛼2 + 𝑓2 − 𝜕𝛼1𝜕𝜂 ̇𝜂 − 𝜕𝛼1𝜕𝑥1 (𝑥2 + 𝑓1)
+ (𝜑𝑇2 − 𝜑𝑇1 𝜕𝛼1𝜕𝑥1)𝜃 − 𝜕𝛼1𝜕𝜃 ̇̂𝜃] ≤ −𝑐𝜂𝑉𝜂 − 𝑐1𝑧21
+ 𝜃𝑇 [𝜏1 − Γ−1 ̇̂𝜃 + 𝑧2 (𝜑2 − 𝜑1 𝜕𝛼1𝜕𝑥1)] + 𝑧2 [𝑧3
+ 𝑧1 + 𝛼2 + 𝑓2 − 𝜕𝛼1𝜕𝜂 ̇𝜂 − 𝜕𝛼1𝜕𝑥1 (𝑥2 + 𝑓1)
+ (𝜑𝑇2 − 𝜑𝑇1 𝜕𝛼1𝜕𝑥1)𝜃 − 𝜕𝛼1𝜕𝜃 ̇̂𝜃]

(10)

Similar to Step 1, we choose the virtual law as

𝛼2 = −𝑧1 − 𝑐2𝑧2 − 𝑓2 + 𝜕𝛼1𝜕𝜂 ̇𝜂 + 𝜕𝛼1𝜕𝑥1 (𝑥2 + 𝑓1)
− (𝜑𝑇2 − 𝜑𝑇1 𝜕𝛼1𝜕𝑥1)𝜃 + 𝜕𝛼1𝜕𝜃 Γ (𝜏2 − 𝜍𝜃)

(11)

where 𝑐2 is a positive constant and 𝜍 is a positive constant.
Further, substituting (11) into (10) results in

𝑉̇2 ≤ −𝑐𝜂𝑉𝜂 − 𝑐1𝑧21 − 𝑐2𝑧22 + 𝑧2𝑧3
+ 𝑧2 𝜕𝛼1𝜕𝜃 (Γ𝜏2 − ̇̂𝜃 − Γ𝜍𝜃) + 𝜃𝑇 (𝜏2 − Γ−1 ̇̂𝜃) (12)

where 𝜏2 = 𝜏1 + (𝜑𝑇2 − (𝜕𝛼1/𝜕𝑥1)𝜑𝑇1 )𝑧2 is a tuning function.
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Step 𝑖 (𝑖 = 3, . . . , 𝑛). In this step, we repeat the procedure in a
recursive way. The derivative of 𝑧𝑖 is given as

𝑧̇𝑖 = 𝑥̇𝑖 − 𝛼̇𝑖−1
= 𝑥𝑖+1 + 𝑓𝑖 + 𝜑𝑇𝑖 𝜃 − 𝜕𝛼𝑖−1𝜕𝜂 ̇𝜂

− 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 (𝑥𝑗+1 + 𝑓𝑗 + 𝜑𝑇𝑗 𝜃) − 𝜕𝛼𝑖−1𝜕𝜃 ̇̂𝜃
(13)

Then, the Lyapunov function is chosen as 𝑉𝑖 = 𝑉𝑖−1 +(1/2)𝑧2𝑖 , and the derivative of 𝑉𝑖 is

𝑉̇𝑖 = 𝑉̇𝑖−1 + 𝑧𝑖𝑧̇𝑖 ≤ 𝑉̇𝑖−1 + 𝑧𝑖 [[𝑥𝑖+1 + 𝑓𝑖 + 𝜑𝑇𝑖 𝜃

− 𝜕𝛼𝑖−1𝜕𝜂 ̇𝜂 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 (𝑥𝑗+1 + 𝑓𝑗 + 𝜑𝑇𝑗 𝜃) − 𝜕𝛼𝑖−1𝜕𝜃 ̇̂𝜃]]
≤ −𝑐𝜂𝑉𝜂 − 𝑖−1∑

𝑗=1

𝑐𝑗𝑧2𝑗 + 𝑧𝑖−1𝑧𝑖 + 𝜃𝑇 (𝜏𝑖−1 − Γ−1 ̇̂𝜃)

+ (𝑖−1∑
𝑗=2

𝑧𝑗 𝜕𝛼𝑗−2𝜕𝜃 )(Γ𝜏𝑖−1 − ̇̂𝜃 − 𝜍Γ𝜃) + 𝑧𝑖 [[𝑥𝑖+1 + 𝑓𝑖
+ 𝜑𝑇𝑖 𝜃 − 𝜕𝛼𝑖−1𝜕𝜂 ̇𝜂 − 𝑖−1∑

𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 (𝑥𝑗+1 + 𝑓𝑗 + 𝜑𝑇𝑗 𝜃)

− 𝜕𝛼𝑖−1𝜕𝜃 ̇̂𝜃]] ≤ −𝑐𝜂𝑉𝜂 − 𝑖−1∑
𝑗=1

𝑐𝑗𝑧2𝑗 + 𝜃𝑇 (𝜏𝑖−1 − Γ−1 ̇̂𝜃)

+ (𝑖−1∑
𝑗=2

𝑧𝑗 𝜕𝛼𝑗−2𝜕𝜃 )(Γ𝜏𝑖−1 − ̇̂𝜃 − 𝜍Γ𝜃) + 𝑧𝑖 [[𝑥𝑖+1
+ 𝑧𝑖−1 + 𝑓𝑖 − 𝜕𝛼𝑖−1𝜕𝜂 ̇𝜂 − 𝑖−1∑

𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 (𝑥𝑗+1 + 𝑓𝑗)

+ (𝜑𝑇𝑖 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 𝜑𝑇𝑗)𝜃 − 𝜕𝛼𝑖−1𝜕𝜃 ̇̂𝜃]] ≤ −𝑐𝜂𝑉𝜂

− 𝑖−1∑
𝑗=1

𝑐𝑗𝑧2𝑗 + 𝜃𝑇[[𝜏𝑖−1 − Γ−1 ̇̂𝜃

+ (𝜑𝑖 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 𝜑𝑗)𝑧𝑖]] + 𝑧𝑖 [[𝑧𝑖+1 + 𝛼𝑖 + 𝑧𝑖−1

+ 𝑓𝑖 − 𝜕𝛼𝑖−1𝜕𝜂 ̇𝜂 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 (𝑥𝑗+1 + 𝑓𝑗)

+ (𝜑𝑇𝑖 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 𝜑𝑇𝑗)𝜃 − 𝜕𝛼𝑖−1𝜕𝜃 ̇̂𝜃]]
+ (𝑖−1∑
𝑗=2

𝑧𝑗 𝜕𝛼𝑗−1𝜕𝜃 )(Γ𝜏𝑖−1 − ̇̂𝜃 − 𝜍Γ𝜃)
(14)

The virtual law is chosen as

𝛼𝑖 = −𝑧𝑖−1 − 𝑐𝑖𝑧𝑖 − 𝑓𝑖 + 𝜕𝛼𝑖−1𝜕𝜂 ̇𝜂 + 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 (𝑥𝑗+1 + 𝑓𝑗)

+ 𝜕𝛼𝑖−1𝜕𝜃 Γ (𝜏𝑖 − 𝜍𝜃) − (𝜑𝑇𝑖 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 𝜑𝑇𝑗)𝜃

+ (𝑖−1∑
𝑗=2

𝑧𝑗 𝜕𝛼𝑗−1𝜕𝜃 )Γ(𝜑𝑖 − 𝑖−1∑
𝑗=1

𝜕𝛼𝑖−1𝜕𝑥𝑗 𝜑𝑗)

(15)

where 𝑐𝑖 is a positive constant. Next, substituting (15) into (14)
results in

𝑉̇𝑖 ≤ −𝑐𝜂𝑉𝜂 − 𝑖∑
𝑗=1

𝑐𝑗𝑧2𝑗 + 𝑧𝑖𝑧𝑖+1
+ ( 𝑖∑
𝑗=2

𝑧𝑗 𝜕𝛼𝑗−1𝜕𝜃 )(Γ𝜏𝑖 − ̇̂𝜃 − 𝜍Γ𝜃)
+ 𝜃𝑇 (𝜏𝑖 − Γ−1 ̇̂𝜃)

(16)

where 𝜏𝑖 = 𝜏𝑖−1 + (𝜑𝑇𝑖 − ∑𝑖−1𝑗=1(𝜕𝛼𝑖−1/𝜕𝑥𝑗)𝜑𝑇𝑗 )𝑧𝑖 is a tuning
function.

In the last step 𝑛, 𝛼𝑛 = 𝑢, which means the actual control
input 𝑢 appears and it is at our disposal. The objective is now
to design an appropriate controller and the triggering event.

3.1. FixedThreshold Strategy. Under this strategy, the adaptive
controller is proposed as

𝑤 (𝑡) = 𝛼𝑛 − 𝑑 tanh(𝑧𝑛𝑑𝜀 ) (17)

̇̂𝜃 = Γ𝜏𝑛 − Γ𝜍𝜃 (18)

and the triggering event is given as

𝑢 (𝑡) = 𝑤 (𝑡𝑘) , ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (19)

𝑡𝑘+1 = inf {𝑡 ∈ R | |𝑒 (𝑡)| ≥ 𝑑} , 𝑡1 = 0 (20)

where 𝑒(𝑡) = 𝑤(𝑡) − 𝑢(𝑡) denotes the error between the
current control signal and last control signal.𝑑, 𝑑, and 𝜀 are all
positive constants with 𝑑 ≥ 𝑑.𝑡𝑘, 𝑘 ∈ Z+ is the update time of
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the controller, which means when (20) is triggered, the time
will jump to 𝑡𝑘+1, and the control value 𝑢(𝑡𝑘+1)will be applied
to the system. In the period between 𝑡𝑘 and 𝑡𝑘+1, the control
value will keep being 𝑤(𝑡𝑘) and will not be changed.

Now we analyze the stability of the event-triggered
controller in system (1), and the design process to avoid the
Zeno behavior is also showed. The theorem and proof are
proposed as follows.

Theorem2. Consider a certain of nonlinear closed-loop system
(1) and adaptive controller based on the event-triggered scheme
(17)-(20) under Assumption 1.The system is globally stable; that
is, all the signals are bounded, and the system can be adjusted by
selecting proper parameters. In addition, there must be a time𝑡∗ > 0 such that 𝑡∗ is greater than or equal to the execution
period {𝑡𝑘+1 − 𝑡𝑘}, 𝑘 ∈ Z+, which means the Zeno behavior is
successfully avoided.

Proof. The Lyapunov function is chosen as

𝑉 = 𝑉𝜂 + 12
𝑛∑
𝑖=1

𝑧2𝑖 + 12𝜃𝑇Γ−1𝜃 (21)

where 𝜃 = 𝜃 − 𝜃. During the execution interval [𝑡𝑘, 𝑡𝑘+1), we
have |𝑤(𝑡)−𝑢(𝑡)| ≤ 𝑑. Assuming that there exists a continuous
time-varying parameter 𝜎(𝑡), which satisfies 𝜎(𝑡𝑘) = 0,𝜎(𝑡𝑘+1) = ±1, and |𝜎(𝑡)| ≤ 1, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), such that𝑤(𝑡) = 𝑢(𝑡)+𝜎(𝑡)𝑑. For convenience,𝜎(𝑡) and𝑤(𝑡) are defined
as 𝜎 and 𝑤. With this in mind, we have

𝑉̇ = 𝑧𝑛𝑧̇𝑛 + 𝑉̇𝑛−1
≤ 𝑧𝑛 [𝑢 (𝑡) + 𝑓𝑛 + 𝜑𝑇𝑛 𝜃 − 𝛼̇𝑛−1]

+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛−1∑
𝑖=1

𝑐𝑖𝑧2𝑖
+ 𝑧𝑛𝑧𝑛−1 + 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) − 𝑐𝜂𝑉𝜂

(22)

By recalling 𝑤(𝑡) = 𝑢(𝑡) + 𝜎(𝑡)𝑑, substituting (17) into (22)
gives

𝑉̇ ≤ 𝑧𝑛 [𝛼𝑛 − 𝑑 tanh(𝑧𝑛𝑑𝜀 ) − 𝜎𝑑 + 𝑓𝑛 + 𝜑𝑇𝑛 𝜃
− 𝛼̇𝑛−1] + 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) + (𝑛−1∑

𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )
⋅ (Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑐𝜂𝑉𝜂 − 𝑛−1∑

𝑖=1

𝑐𝑖𝑧2𝑖 + 𝑧𝑛𝑧𝑛−1
≤ 𝑧𝑛 [𝜃𝑇(𝜑𝑇𝑛 − 𝑛−1∑

𝑖=1

𝜕𝛼𝑛−1𝜕𝑥𝑖 𝜑𝑇𝑖 )

+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )Γ(𝜑𝑇𝑛 − 𝑛−1∑
𝑖=1

𝜕𝛼𝑛−1𝜕𝑥𝑖 𝜑𝑇𝑖 )]
+ 𝑧𝑛 [−𝑑 tanh(𝑧𝑛𝑑𝜀 ) − 𝜎𝑑] − 𝑐𝜂𝑉𝜂
+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 ) (Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛∑
𝑖=1

𝑐𝑖𝑧2𝑖
+ 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) + 𝑧𝑛 𝜕𝛼𝑛−1𝜕𝜃 (Γ𝜏𝑛 − ̇̂𝜃 − Γ𝜍𝜃)

(23)

Notice that 𝜏𝑛 − 𝜏𝑛−1 = (𝜑𝑇𝑛 −∑𝑛−1𝑗=1 (𝜕𝛼𝑛−1/𝜕𝑥𝑗)𝜑𝑇𝑗 )𝑧𝑛. Then, 𝑉̇
satisfies

𝑉̇ ≤ 𝑧𝑛 [−𝑑 tanh(𝑧𝑛𝑑𝜀 ) − 𝜎𝑑] + 𝜃𝑇 (𝜏𝑛 − 𝜏𝑛−1)
+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )Γ (𝜏𝑛 − 𝜏𝑛−1)
+ 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃)
+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 ) (Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛∑
𝑖=1

𝑐𝑖𝑧2𝑖
− 𝑐𝜂𝑉𝜂 + 𝑧𝑛 𝜕𝛼𝑛−1𝜕𝜃 (Γ𝜏𝑛 − ̇̂𝜃 − Γ𝜍𝜃)

≤ 𝑧𝑛 [−𝑑 tanh(𝑧𝑛𝑑𝜀 ) − 𝜎𝑑] + 𝜃𝑇 (𝜏𝑛 − Γ−1 ̇̂𝜃)
+ ( 𝑛∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛∑
𝑖=1

𝑐𝑖𝑧2𝑖
− 𝑐𝜂𝑉𝜂

(24)

Based on the property [46], the hyperbolic tangent
function tanh(⋅) has

0 ≤ 󵄨󵄨󵄨󵄨𝜇󵄨󵄨󵄨󵄨 − 𝜇 tanh(𝜇𝜀 ) ≤ 0.2785𝜀 (25)

where 𝜀 > 0 and𝜇 ∈ R. As above, we design ̇̂𝜃 as ̇̂𝜃 = Γ𝜏𝑛−Γ𝜍𝜃.
Based on the Assumption 1, its derivative is given by

𝑉̇ ≤ − 𝑛∑
𝑖=1

𝑐𝑖𝑧2𝑖 − 𝑐𝜂𝑉𝜂 + 𝜍𝜃𝑇𝜃 + 0.2785𝜀 (26)

where 𝜍 is selected based on [47]. Let 𝜉 = min{2𝑐1,. . . , 2𝑐𝑛, 𝑐𝜂, 𝜍/𝜆max(Γ−1)}, where 𝜆max(Γ−1) is the maximum
eigenvalue of Γ−1. Andwith the help of Young’s inequalities in
[37], 𝜃𝑇𝜃 ≤ −(1/2)𝜃𝑇𝜃+ (1/2)𝜃𝑇𝜃. Finally, let Δ 1 = 0.2785𝜀 +(𝜍/2)𝜃𝑇𝜃.Then, we get

𝑉̇ ≤ −𝜉𝑉 + Δ 1 (27)
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Based on the LaSalle’s invariance principle in [48] and the
result in [46], 𝑧1, . . . , 𝑧𝑛, and 𝜃 are proved to be bounded.
Therefore, it can be concluded that the control signal 𝑢(𝑡) is
also bounded. That is, all the closed-loop signals are globally
bounded. Then, assuming that there exists a 𝑡∗ > 0 such that∀𝑘 ∈ Z+, {𝑡𝑘+1 − 𝑡𝑘} ≥ 𝑡∗, and noticing 𝑒(𝑡) = 𝑤(𝑡) − 𝑢(𝑡), the
following can be verified

𝑑𝑑𝑡 |𝑒| = 𝑑𝑑𝑡 (𝑒 ∗ 𝑒)1/2 = sign (𝑒) ̇𝑒 ≤ |𝑤̇| (28)

From (17), we get that 𝑤̇ = 𝛼̇𝑛 − 𝑑𝑧̇𝑛/cosh2(𝑧𝑛𝑑/𝜀). Since 𝑓𝑖(⋅)
and 𝜑𝑖(⋅) are at least (𝑛 + 1 − 𝑖)th order smooth functions,𝑤̇ is continuous. Next, since 𝑤̇ is a function of 𝑥 and 𝜃, and
all the closed-loop signals are globally bounded, there must
be a constant 𝜁 > 0 such that |𝑤̇| ≤ 𝜁. Noticing 𝑒(𝑡𝑘) = 0
and lim𝑡󳨀→𝑡𝑘+1𝑒(𝑡) = 𝑑, there exists a lower bound of 𝑡∗ which
satisfies 𝑡∗ ≥ 𝑑/𝜁; that is, the Zeno behavior is successfully
avoided.

3.2. Relative Threshold Strategy. In practical systems, when
considering a stabilization problem, the value of the control
signal always requires to be considered. In the fixed threshold
strategy, no matter how big the control magnitude is, the
error 𝑒(𝑡) is always bounded by a given constant, which
may not be applicable to all practical systems. Based on this
consideration, a varying threshold comes to mind.Therefore,
the following relative threshold control strategy is proposed:

𝑤 (𝑡)
= − (1 + 𝛿) [𝛼𝑛 tanh(𝑧𝑛𝛼𝑛𝜀 ) + 𝑑1 tanh(𝑧𝑛𝑑1𝜀 )] (29)

̇̂𝜃 = Γ𝜏𝑛 − Γ𝜍𝜃 (30)

and the triggering event is given as

𝑢 (𝑡) = 𝑤 (𝑡𝑘) , ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (31)

𝑡𝑘+1 = inf {𝑡 ∈ R | |𝑒 (𝑡)| ≥ 𝜌 |𝑢 (𝑡)| + 𝑑1} , 𝑡1 = 0 (32)

where 𝑡𝑘, 𝑘 ∈ Z+, 𝜀, 𝜌(0 < 𝜌 < 1), 𝛿(0 < 𝛿 < 1), 𝑑1 and 𝑑1 >𝑑1/(1 − 𝜌) are all positive parameters. 𝑑1 is added specially to
guarantee the Zeno behavior will not happen, which will be
elaborated in the following proof. Using the control strategy,
it reaches the following theorem.

Theorem3. Consider a certain of nonlinear closed-loop system
(1) and adaptive controller based on the event-triggered scheme
(29)–(32) under Assumption 1. The system is globally stable;
that is, all the signals are bounded, and the system can be
adjusted by selecting proper parameters. In addition, theremust
be a time 𝑡∗ > 0 such that 𝑡∗ is greater than or equal to the
execution period {𝑡𝑘+1 − 𝑡𝑘}, 𝑘 ∈ Z+, which means the Zeno
behavior is successfully avoided.

Proof. From (32), we can get that 𝑤(𝑡) = (1 + 𝜎1(𝑡)𝜌)𝑢(𝑡) +𝜎2(𝑡)𝑑1 during the interval [𝑡𝑘, 𝑡𝑘+1). Similar to the fixed

threshold strategy, 𝜎1(𝑡) and 𝜎2(𝑡) are time-varying param-
eters which satisfy |𝜎1(𝑡)| ≤ 1 and |𝜎2(𝑡)| ≤ 1. Therefore, it
reaches that 𝑢(𝑡) = 𝑤(𝑡)/(1 + 𝜎1(𝑡)𝜌) − 𝜎2(𝑡)𝑑1/(1 + 𝜎1(𝑡)𝜌).
For convenience, 𝜎1(𝑡), 𝜎2(𝑡), and 𝑤(𝑡) are defined as 𝜎1, 𝜎2,
and 𝑤. Then, we get

𝑉̇ = 𝑧𝑛𝑧̇𝑛 + 𝑉̇𝑛−1
≤ 𝑧𝑛 [𝑤 − 𝜎2𝑑11 + 𝜎1𝜌 + 𝑓𝑛 + 𝜑𝑇𝑛 𝜃 − 𝛼̇𝑛−1]

+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛−1∑
𝑖=1

𝑐𝑖𝑧2𝑖
+ 𝑧𝑛𝑧𝑛−1 + 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) − 𝑐𝜂𝑉𝜂

(33)

Since ∀𝑚 ∈ R and 𝜀 > 0, −𝑚 tanh(𝑚/𝜀) ≤ 0, it can be
obtained that 𝑧𝑛𝑤 ≤ 0. Notice that 𝑧𝑛𝑤/(1 + 𝜎1𝜌) ≤ 𝑧𝑛𝑤/(1 +𝜌) and |𝜎2𝑑1/(1 + 𝜎1𝜌)| ≤ 𝑑1/(1 − 𝜌). Therefore, similar to
(24), substituting (29) into (33) gives

𝑉̇ ≤ 𝑧𝑛𝑤1 + 𝜌 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑧𝑛𝑑11 − 𝜌
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑧𝑛 (𝑓𝑛 + 𝜑𝑇𝑛 𝜃 − 𝛼̇𝑛−1)

+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛−1∑
𝑖=1

𝑐𝑖𝑧2𝑖
+ 𝑧𝑛𝑧𝑛−1 + 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) − 𝑐𝜂𝑉𝜂

≤ 𝑧𝑛𝛼𝑛 − 𝑧𝑛𝛼𝑛 tanh(𝑧𝑛𝛼𝑛𝜀 ) + 󵄨󵄨󵄨󵄨󵄨𝑧𝑛𝑑1󵄨󵄨󵄨󵄨󵄨
− 𝑧𝑛𝑑1 tanh(𝑧𝑛𝑑1𝜀 ) + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑧𝑛𝑑11 − 𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑧𝑛 (𝑓𝑛 + 𝜑𝑇𝑛 𝜃 − 𝛼̇𝑛−1)
+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛−1∑
𝑖=1

𝑐𝑖𝑧2𝑖
+ 𝑧𝑛𝑧𝑛−1 + 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) − 𝑧𝑛𝛼𝑛 − 󵄨󵄨󵄨󵄨󵄨𝑧𝑛𝑑1󵄨󵄨󵄨󵄨󵄨
− 𝑐𝜂𝑉𝜂

≤ 𝑧𝑛 (𝛼𝑛 + 𝑓𝑛 + 𝜑𝑇𝑛 𝜃 − 𝛼̇𝑛−1) − 󵄨󵄨󵄨󵄨󵄨𝑧𝑛𝑑1󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑧𝑛𝑑11 − 𝜌
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ (𝑛−1∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛−1 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑛−1∑
𝑖=1

𝑐𝑖𝑧2𝑖
+ 𝑧𝑛𝑧𝑛−1 + 𝜃𝑇 (𝜏𝑛−1 − Γ−1 ̇̂𝜃) + 0.557𝜀 − 𝑐𝜂𝑉𝜂

(34)
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Then, substituting (15) with 𝑖 = 𝑛 into (34) gives
𝑉̇ ≤ − 𝑛∑

𝑖=1

𝑐𝑖𝑧2𝑖 − 󵄨󵄨󵄨󵄨󵄨𝑧𝑛𝑑1󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑧𝑛𝑑11 − 𝜌
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 0.557𝜀

+ 𝜃𝑇 (𝜏𝑛 − Γ−1 ̇̂𝜃)
+ ( 𝑛∑
𝑖=2

𝑧𝑖 𝜕𝛼𝑖−1𝜕𝜃 )(Γ𝜏𝑛 − ̇̂𝜃 − Γ𝜍𝜃) − 𝑐𝜂𝑉𝜂
≤ − 𝑛∑
𝑖=1

𝑐𝑖𝑧2𝑖 − 𝑐𝜂𝑉𝜂 + 𝜍𝜃𝑇𝜃 + 0.557𝜀

(35)

Similar to (27), it reaches

𝑉̇ ≤ −𝜉𝑉 + Δ 2 (36)

where Δ 2 = 0.557𝜀 + (𝜍/2)𝜃𝑇𝜃. As the proof in Theorem 2,
all the closed-loop signals are globally bounded, and the
interexecution time 𝑡∗ ≥ (𝜌|𝑢(𝑡)| + 𝑑1)/𝕜, which means the
Zeno behavior is successfully avoided.

3.3. Switching Threshold Strategy. In the above, the relative
threshold strategy shows its advantages. For example, when
the value of control signal𝑢 is large, the triggering threshold is
large too, which ensures that the system can get longer update
intervals, while when the 𝑢 is close to zero, the system can
get precise control. Nevertheless, once the value of control
signal 𝑢 is excessively big, the system will get excessively
large errors of control signal. Therefore, the control signal
will jump suddenly when an event is triggered, which will
give the system a large impulse and affect the performance
of the system. Hence, with these considerations, we give the
switching threshold strategy as follows:

𝑢 (𝑡) = 𝑤 (𝑡𝑘) , ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (37)

𝑡𝑘+1
= {{{

inf {𝑡 ∈ R | |𝑒 (𝑡)| ≥ 𝜌 |𝑢 (𝑡)| + 𝑑1} , |𝑢 (𝑡)| < D

inf {𝑡 ∈ R | |𝑒 (𝑡)| ≥ 𝑑} , |𝑢 (𝑡)| ≥ 𝐷,
(38)

where 𝐷 is a positive constant parameter designed by users
and 𝜌, 𝑑, and 𝑑1 are same parameters which are designed
before. This strategy is a combination of first two strategies.
From (38), it can be seen that when the value of control signal|𝑢(𝑡)| is less than 𝐷, the relative strategy is applied; therefore
the system will obtain a more accurate control. While when
the value of |𝑢(𝑡)| is high, the control method switches to the
fixed threshold strategy so that the error 𝑒(𝑡) will ensure the
system performance. Apparently, the advantages of the fixed
threshold strategy and the relative strategy are brought to this
strategy.

In this strategy, it can be obtained that

𝑒 = sup |𝑒 (𝑡)| ≤ max {𝜌𝐷 + 𝑑1, 𝑑} ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (39)

Combining the switching threshold strategy above and
(39), the following results are stated.

Theorem 4. Consider a certain of nonlinear closed-loop sys-
tem (1) under Assumption 1 and a switching adaptive controller
between the fixed threshold and relative threshold with a user-
designed parameter𝐷with 𝑑 ≥ 𝑒. The system is globally stable;
that is, all the signals are bounded. And the system can be
adjusted by selecting proper parameters. In addition, theremust
be a time 𝑡∗ > 0 such that 𝑡∗ is greater than or equal to the
execution period {𝑡𝑘+1 − 𝑡𝑘}, 𝑘 ∈ Z+, which means the Zeno
behavior is successfully avoided.

Proof. Since the same control law of the first two strategies
are adopted by the switching threshold strategy, the system is
also globally stable, which means all the signals are bounded.
And by letting |𝑤̇| ≤, the interexecution 𝑡∗ satisfies 𝑡∗ ≥(max{𝑑1, 𝑑})/𝕜. That completes the proof.

4. Simulation Results

Example 1. In this section, based on the system given in [49],
we combine zero dynamics with it. A stabilization case is
illustrated with three proposed event-triggered strategies and
time-triggered strategy, and each strategy’s performance is
compared. Consider the following systems:

̇𝜂 = 𝑓0 (𝜂) + 𝑔0 (𝜂) 𝑥1
𝑥̇1 = 𝑥2 + 𝜃𝑥21
𝑥̇2 = 𝑢
𝑦 = 𝑥1

(40)

where 𝜃 denotes an unknown parameter. Our control goal
is now to make the system output 𝑦 = 𝑥1(𝑡) asymptotically
back to zero. We use the above four strategies to balance
the performance of the system and the times of triggering
events. The design constants are chosen as follows: (1) Fixed
threshold strategy: 𝑑 = 3, 𝑑 = 4. (2) Relative threshold
strategy: 𝜌 = 0.15, 𝑑1 = 0.3, 𝑑1 = 2. (3) Switching threshold
strategy: 𝐷 = 30. (4) Time-triggered strategy: interexecution
time: 0.05𝑠. The other parameters are chosen as 𝑥1(0) =0, 𝑥2(0) = 0, 𝜃(0) = 0, 𝜃 = 5, 𝑐1 = 7, 𝑐2 = 10, Γ = 1, 𝜀 =10. And since 𝑓0(𝜂) and 𝑔0(𝜂) are known, we define that𝑓0(𝜂) = −𝜂, 𝑔0(𝜂) = 1. The Lyapunov function is chosen as𝑉𝜂 = (1/2)𝜂2; therefore we get

𝑉̇𝜂 = 𝜂 ̇𝜂 ≤ 𝜂 (−𝜂 + 𝑥1) ≤ 𝜂 (−𝜂 + 𝑧1 + 𝛼0) (41)

Let 𝛼0 = −𝑐0𝜂.Therefore

𝑉̇𝜂 = − (1 + 𝑐0) 𝜂2 + 𝜂𝑧1 (42)

and 𝑐0 is chosen as 𝑐0 = 50.
Figure 1 shows the stabilization performance of the output

signal 𝑦(𝑡) in three event-triggered strategies and time-
triggered strategy, and the control signals 𝑢(𝑡) and 𝑤(𝑡)
are shown in Figure 2. The times of triggering events is
shown in Table 1, while state signal 𝑥2 and the parameter
estimate 𝜃 are, respectively, shown in Figures 3 and 4. It
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Figure 1: Output 𝑦(𝑡).

Table 1: Times of triggering events.

Fixed strategy Relative strategy Switching strategy Time-triggering strategy
81 46 70 200
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Figure 2: Control signal.
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Figure 3: State signal 𝑥2(𝑡).
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Figure 4: Parameter estimate 𝜃.

can be seen that the fixed threshold strategy has the best
stabilization performance due to its relatively small threshold,
but it has the most triggering events. On the contrary, the
relative threshold strategy’s performance is not relatively
good, while it has the fewest triggering events. And the
switching threshold strategy gives a flexibility between the
performance of system and times of triggering events. For
time-triggered strategy, though it has the best performance
at last, it also has the most triggering times, which may result
in unnecessary high workloads in practical systems. Besides,
the system does not perform well at the beginning.

Example 2. Consider a higher order networked-control sys-
tem based on [45] with zero dynamics

̇𝜂 = 𝑓0 (𝜂) + 𝑔0 (𝜂) 𝑥1

𝑥̇1 = 𝑥2 + 𝑥21
𝑥̇2 = 𝜃𝑥3
𝑥̇3 = 𝑥1 + 𝑥2 + 𝑢
𝑦 = 𝑥1

(43)

where 𝜃 denotes an unknown parameter. The above three
event-triggered strategies are applied to the system. The
design constants are chosen as follows: (1) Fixed threshold
strategy: 𝑑 = 10, 𝑑 = 11. (2) Relative threshold strategy: 𝜌 =0.15, 𝑑1 = 5, 𝑑1 = 8. (3) Switching threshold strategy: 𝐷 =60. The other parameters are chosen as 𝑥1(0) = 0, 𝑥2(0) =−1, 𝑥3(0) = 5, 𝜃(0) = 0, 𝜃 = 1, 𝑐0 = 50, 𝑐1 = 10, 𝑐2 =
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Figure 5: Output 𝑦(𝑡).
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Figure 6: Control signal.

20, Γ = 1, 𝜀 = 1. And 𝑓0(𝜂) and 𝑔0(𝜂) are defined as 𝑓0(𝜂) =𝜂2, 𝑔0(𝜂) = 𝜂.
Figure 5 shows the stabilization performance of the

output signal 𝑦(𝑡) in three event-triggered strategies, and the
control signals 𝑢(𝑡) and 𝑤(𝑡) are shown in Figure 6. The time
of triggering events is shown in Table 2, while state signals𝑥2 and 𝑥3 and the parameter estimate 𝜃 are, respectively,
shown in Figures 7, 8, and 9. In this simulation example, the

switching threshold strategy provides the smallest triggering
times, but its performance is not better than the other
strategies, while the fixed threshold strategy provides the
best performance with the most triggering events. And
the relative threshold strategy balances the performance
and times of triggering events. It can be seen that the
parameters can be designed by users to find the most suit-
able strategy for different practical systems under different
situations.
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Figure 9: Parameter estimate 𝜃.
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Table 2: Times of triggering events.

Fixed strategy Relative strategy Switching strategy
133 128 82

5. Conclusion

This paper has considered an event-triggered adaptive back-
stepping control for strict-feedback nonlinear systems with
zero dynamics. An adaptive control method is utilized to
overcome the unknown system parameters, by which all the
closed-loop signals are guaranteed to be uniformly bounded.
Besides, to overcome the need of ISS assumption, an adaptive
controller and event-triggered technique are designed at
the same time. And three different event-triggered control
strategies are also given. It is shown from the simulation
results that all the strategies guarantee that the stability error
approaches to a small neighborhood of the origin.
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[19] K. Johan Åström and B. Bernhardsson, “Comparison of peri-
odic and event based sampling for first-order stochastic sys-
tems,” IFAC Proceedings Volumes, vol. 32, no. 2, pp. 5006–5011,
1999.

[20] Y.-X. Li and G.-H. Yang, “Event-triggered adaptive backstep-
ping control for parametric strict-feedback nonlinear systems,”
International Journal of Robust and Nonlinear Control, vol. 28,
no. 3, pp. 976–1000, 2018.

[21] L. Xing, C. Wen, Z. Liu, H. Su, and J. Cai, “Event-triggered
adaptive control for a class of uncertain nonlinear systems,”
Institute of Electrical and Electronics Engineers Transactions on
Automatic Control, vol. 62, no. 4, pp. 2071–2076, 2017.

[22] X. Su, F. Xia, J. Liu, and L. Wu, “Event-triggered fuzzy control
of nonlinear systems with its application to inverted pendulum
systems,” Automatica, vol. 94, pp. 236–248, 2018.



Complexity 13

[23] P. Tabuada, “Event-triggered real-time scheduling of stabilizing
control tasks,” IEEE Transactions on Automatic Control, vol. 52,
no. 9, pp. 1680–1685, 2007.

[24] X. Wang and M. D. Lemmon, “Event-triggering in distributed
networked control systems,” Institute of Electrical and Electron-
ics Engineers Transactions on Automatic Control, vol. 56, no. 3,
pp. 586–601, 2011.

[25] Y. Li, H. Li, and W. Sun, “Event-triggered control for robust set
stabilization of logical control networks,” Automatica, vol. 95,
pp. 556–560, 2018.

[26] Z.-G. Wu, Y. Xu, Y.-J. Pan, H. Su, and Y. Tang, “Event-triggered
control for consensus problem in multi-agent systems with
quantized relative statemeasurement and external disturbance,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
65, no. 7, pp. 2232–2242, 2018.

[27] Z.-G. Wu, Y. Xu, Y.-J. Pan, P. Shi, and Q. Wang, “Event-
triggered pinning control for consensus of multiagent systems
with quantized information,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 48, no. 11, pp. 1929–1938,
2018.

[28] Z.-G. Wu, Y. Xu, R. Lu, Y. Wu, and T. Huang, “Event-
Triggered Control for Consensus of Multiagent Systems with
Fixed/Switching Topologies,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 48, no. 10, pp. 1736–1746,
2018.

[29] S. Liu and L. Zhou, “Network synchronization and application
of chaotic Lur’e systems based on event-triggered mechanism,”
Nonlinear Dynamics, vol. 83, no. 4, pp. 2497–2507, 2016.

[30] M. Li, J. Zhao, J. Xia, G. Zhuang, and W. Zhang, “Extended
dissipative analysis and synthesis for network control systems
with an event-triggered scheme,” Neurocomputing, vol. 312, pp.
34–40, 2018.

[31] Y. Zhu, X. Guan, X. Luo, and S. Li, “Finite-time consensus
of multi-agent system via nonlinear event-triggered control
strategy,” IET Control Theory & Applications, vol. 9, no. 17, pp.
2548–2552, 2015.

[32] A. Fu and J. Mazo, “Decentralized periodic event-triggered
control with quantization and asynchronous communication,”
Automatica, vol. 94, pp. 294–299, 2018.

[33] X. Xiao, J. H. Park, and L. Zhou, “Event-triggered control
of discrete-time switched linear systems with packet losses,”
Applied Mathematics and Computation, vol. 333, pp. 344–352,
2018.

[34] Y.-X. Li andG.-H. Yang, “Model-based adaptive event-triggered
control of strict-feedback nonlinear systems,” IEEETransactions
on Neural Networks and Learning Systems, vol. 29, no. 4, pp.
1033–1045, 2018.

[35] R. Postoyan, P. Tabuada, D. Nesic, and A. Anta, “A framework
for the event-triggered stabilization of nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 60, no. 4, pp. 982–996,
2015.

[36] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in Proceedings of
the 51st IEEE Conference on Decision and Control, 2012.

[37] A. Adaldo, F. Alderisio, D. Liuzza et al., “Event-triggered
pinning control of switching networks,” IEEE Transactions on
Control of Network Systems, vol. 2, no. 2, pp. 204–213, 2015.

[38] A. Isidori, Nonlinear Control Systems, Springer, 1999.
[39] M. Ishitobi, M. Nishi, and S. Kunimatsu, “Stability of zero

dynamics of sampled-data nonlinear systems,” IFAC Proceed-
ings Volumes, vol. 41, no. 2, pp. 5969–5973, 2008.

[40] D. S. Laila, D. Nesic, and A. Astolfi, “Sampled-data control
of nonlinear systems,” in Advanced Topics in Control Systems
Theory, vol. 328 of Lect. Notes Control Inf. Sci., pp. 91–137,
Springer, 2006.

[41] T. Berger and T. Reis, “Zero dynamics and funnel control for
linear electrical circuits,” Journal of The Franklin Institute, vol.
351, no. 11, pp. 5099–5132, 2014.

[42] D. Hernandez, F. Castanos, and L. Fridman, “Zero-dynamics
design and its application to the stabilization of implicit sys-
tems,” Systems Control Letters, vol. 98, pp. 74–78, 2016.

[43] C.Hua, K. Li, andX. Guan, “Decentralized event-triggered con-
trol for interconnected time-delay stochastic nonlinear systems
using neural networks,” Neurocomputing, vol. 272, pp. 270–278,
2018.
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