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Abstract: In this paper, we present a low-complexity coding strategy to encode (compress)
finite-length data blocks of Gaussian vector sources. We show that for large enough data blocks of a
Gaussian asymptotically wide sense stationary (AWSS) vector source, the rate of the coding strategy
tends to the lowest possible rate. Besides being a low-complexity strategy it does not require the
knowledge of the correlation matrix of such data blocks. We also show that this coding strategy
is appropriate to encode the most relevant Gaussian vector sources, namely, wide sense stationary
(WSS), moving average (MA), autoregressive (AR), and ARMA vector sources.

Keywords: source coding; rate distortion function (RDF); Gaussian vector; asymptotically wide sense
stationary (AWSS) vector source; block discrete Fourier transform (DFT)

1. Introduction

The rate distortion function (RDF) of a source provides the minimum rate at which data can be
encoded in order to be able to recover them with a mean squared error (MSE) per dimension not larger
than a given distortion.

In this paper, we present a low-complexity coding strategy to encode (compress) finite-length
data blocks of Gaussian N-dimensional vector sources. Moreover, we show that for large enough data
blocks of a Gaussian asymptotically wide sense stationary (AWSS) vector source, the rate of our coding
strategy tends to the RDF of the source. The definition of AWSS vector process can be found in ([1]
(Definition 7.1)). This definition was first introduced for the scalar case N = 1 (see ([2] (Section 6))
or [3]), and it is based on the Gray concept of asymptotically equivalent sequences of matrices [4].

A low-complexity coding strategy can be found in [5] for finite-length data blocks of Gaussian
wide sense stationary (WSS) sources and in [6] for finite-length data blocks of Gaussian AWSS
autoregressive (AR) sources. Both precedents deal with scalar processes. The low-complexity
coding strategy presented in this paper generalizes the aforementioned strategies to Gaussian AWSS
vector sources.

Our coding strategy is based on the block discrete Fourier transform (DFT), and therefore, it turns
out to be a low-complexity coding strategy when the fast Fourier transform (FFT) algorithm is used.
Specifically, the computational complexity of our coding strategy is O(nN log n), where n is the length
of the data blocks. Besides being a low-complexity strategy, it does not require the knowledge of the
correlation matrix of such data blocks.

We show that this coding strategy is appropriate to encode the most relevant Gaussian vector
sources, namely, WSS, moving average (MA), autoregressive (AR), and ARMA vector sources. Observe
that our coding strategy is then appropriate to encode Gaussian vector sources found in the literature,
such as the corrupted WSS vector sources considered in [7,8] for the quadratic Gaussian CEO problem.
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The paper is organized as follows. In Section 2, we obtain several new mathematical results on
the block DFT, and we present an upper bound for the RDF of a complex Gaussian vector. In Section 3,
using the results given in Section 2, we present a new coding strategy based on the block DFT to encode
finite-length data blocks of Gaussian vector sources. In Section 4, we show that for large enough data
blocks of a Gaussian AWSS vector source, the rate of our coding strategy tends to the RDF of the source.
In Section 5, we show that our coding strategy is appropriate to encode WSS, MA, AR, and ARMA
vector sources. In Section 6, conclusions and numerical examples are presented.

2. Preliminaries

2.1. Notation

In this paper N, Z, R, and C are the set of positive integers, the set of integers, the set of real
numbers, and the set of complex numbers, respectively. The symbol > denotes transpose and the
symbol ∗ denotes conjugate transpose. ‖ · ‖2 and ‖ · ‖F are the spectral and the Frobenius norm,
respectively. dxe denotes the smallest integer higher than or equal to x. E stands for expectation, ⊗ is
the Kronecker product, and λj(A), j ∈ {1, . . . , n}, denote the eigenvalues of an n× n Hermitian matrix
A arranged in decreasing order. Rn×1 is the set of real n-dimensional (column) vectors, Cm×n denotes
the set of m× n complex matrices, 0m×n is the m× n zero matrix, In denotes the n× n identity matrix,
and Vn is the n× n Fourier unitary matrix, i.e.,

[Vn]j,k =
1√
n

e−
2π(j−1)(k−1)

n i, j, k ∈ {1, . . . , n},

where i is the imaginary unit.
If Aj ∈ CN×N for all j ∈ {1, . . . , n}, then diag1≤j≤n(Aj) denotes the n× n block diagonal matrix

with N × N blocks given by diag1≤j≤n(Aj) = (Ajδj,k)
n
j,k=1, where δ is the Kronecker delta.

Re and Im denote the real part and the imaginary part of a complex number, respectively.
If A ∈ Cm×n, then Re(A) and Im(A) are the m × n real matrices given by [Re(A)]j,k = Re([A]j,k)

and [Im(A)]j,k = Im([A]j,k) with j ∈ {1, . . . , m} and k ∈ {1, . . . , n}, respectively.
If z ∈ CN×1, then ẑ denotes the real 2N-dimensional vector given by

ẑ =

(
Re(z)
Im(z)

)
.

If zk ∈ CN×1 for all k ∈ {1, . . . , n}, then zn:1 is the nN-dimensional vector given by

zn:1 =


zn

zn−1
...

z1

 .

Finally, if zk is a (complex) random N-dimensional vector for all k ∈ N, {zk} denotes the
corresponding (complex) random N-dimensional vector process.

2.2. New Mathematical Results on the Block DFT

We first give a simple result on the block DFT of real vectors.

Lemma 1. Let n, N ∈ N. Consider xk ∈ CN×1 for all k ∈ {1, . . . , n}. Suppose that yn:1 is the block DFT of
xn:1, i.e.,

yn:1 = (V∗n ⊗ IN) xn:1 = (Vn ⊗ IN)
∗ xn:1. (1)

Then the two following assertions are equivalent:
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1. xn:1 ∈ RnN×1.
2. yk = yn−k for all k ∈ {1, . . . , n− 1} and yn ∈ RN×1.

Proof. See Appendix A.

We now give three new mathematical results on the block DFT of random vectors that are used in
Section 3.

Theorem 1. Consider n, N ∈ N. Let xk be a random N-dimensional vector for all k ∈ {1, . . . , n}. Suppose
that yn:1 is given by Equation (1). If k ∈ {1, . . . , n}, then

λnN(E (xn:1x∗n:1)) ≤ λN (E(xkx∗k )) ≤ λ1 (E(xkx∗k )) ≤ λ1 (E (xn:1x∗n:1)) (2)

and
λnN(E (xn:1x∗n:1)) ≤ λN (E(yky∗k )) ≤ λ1 (E(yky∗k )) ≤ λ1 (E (xn:1x∗n:1)) . (3)

Proof. See Appendix B.

Theorem 2. Let xn:1 and yn:1 be as in Theorem 1. Suppose that xn:1 is real. If k ∈ {1, . . . , n− 1} \ { n
2 }, then

λnN(E
(

xn:1x>n:1
)
)

2
≤ λ2N

(
E
(

ŷk ŷk
>
))
≤ λ1

(
E
(

ŷk ŷk
>
))
≤

λ1(E
(
xn:1x>n:1

)
)

2
.

Proof. See Appendix C.

Lemma 2. Let xn:1 and yn:1 be as in Theorem 1. If k ∈ {1, . . . , n}, then

1. E
(
yky∗k

)
=
[
(Vn ⊗ IN)

∗ E
(

xn:1x∗n:1
)
(Vn ⊗ IN)

]
n−k+1,n−k+1.

2. E
(
yky>k

)
=
[
(Vn ⊗ IN)

∗ E
(

xn:1x>n:1
) (

Vn ⊗ IN
)]

n−k+1,n−k+1.

3. E
(

ŷk ŷk
>
)
= 1

2

(
Re
(
E
(
yky∗k

))
+ Re

(
E
(
yky>k

))
Im
(
E
(
yky>k

))
− Im

(
E
(
yky∗k

))
Im
(
E
(
yky∗k

))
+ Im

(
E
(
yky>k

))
Re
(
E
(
yky∗k

))
− Re

(
E
(
yky>k

))).

Proof. See Appendix D.

2.3. Upper Bound for the RDF of a Complex Gaussian Vector

In [9], Kolmogorov gave a formula for the RDF of a real zero-mean Gaussian N-dimensional
vector x with positive definite correlation matrix E

(
xx>

)
, namely,

Rx(D) =
1
N

N

∑
k=1

max

{
0,

1
2

ln
λk
(
E
(
xx>

))
θ

}
∀D ∈

(
0,

tr
(
E
(
xx>

))
N

]
, (4)

where tr denotes trace and θ is a real number satisfying

D =
1
N

N

∑
k=1

min
{

θ, λk

(
E
(

xx>
))}

.

If D ∈
(
0, λN

(
E
(
xx>

))]
, an optimal coding strategy to achieve Rx(D) is to encode [z]1,1, . . . , [z]N,1

separately, where z = U>x with U being a real orthogonal eigenvector matrix of E
(
xx>

)
(see ([6]

(Corollary 1))). Observe that in order to obtain U, we need to know the correlation matrix E
(
xx>

)
.

This coding strategy also requires an optimal coding method for real Gaussian random variables.
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Moreover, as 0 < D ≤ λN
(
E
(
xx>

))
≤ 1

N ∑N
k=1 λk

(
E
(
xx>

))
=

tr(E(xx>))
N , if D ∈

(
0, λN

(
E
(
xx>

))]
,

then from Equation (4) we obtain

Rx(D) =
1
N

N

∑
k=1

1
2

ln
λk
(
E
(
xx>
))

D
=

1
2N

ln
∏N

k=1 λk
(
E
(
xx>
))

DN =
1

2N
ln

det
(
E
(
xx>

))
DN . (5)

We recall that Rx(D) can be thought of as the minimum rate (measured in nats) at which x can be
encoded (compressed) in order to be able to recover it with an MSE per dimension not larger than D,
that is:

E
(
‖x− x̃‖2

2

)
N

≤ D,

where x̃ denotes the estimation of x.
The following result gives an upper bound for the RDF of a complex zero-mean Gaussian

N-dimensional vector (i.e., a real zero-mean Gaussian 2N-dimensional vector).

Lemma 3. Consider N ∈ N. Let z be a complex zero-mean Gaussian N-dimensional vector. If E
(
ẑ ẑ >

)
is a

positive definite matrix, then

Rẑ(D) ≤ 1
2N

ln
det (E (zz∗))

(2D)N ∀D ∈
(

0, λ2N

(
E
(

ẑ ẑ >
))]

. (6)

Proof. We divide the proof into three steps:
Step 1: We prove that E (zz∗) is a positive definite matrix. We have

E
(

ẑ ẑ >
)
=

E
(

Re(z) (Re(z))>
)

E
(

Re(z) (Im(z))>
)

E
(

Im(z) (Re(z))>
)

E
(

Im(z) (Im(z))>
)

and

E (zz∗) = E
(
(Re(z) + iIm(z))

(
(Re(z))>− i (Im(z))>

))
= E

(
Re(z) (Re(z))>

)
+ E

(
Im(z) (Im(z))>

)
+ iE

(
Im(z) (Re(z))>

)
− iE

(
Re(z) (Im(z))>

)
.

Consider u ∈ CN×1, and suppose that u∗E (zz∗) u = 0. We only need to show that u = 0N×1.
As E

(
ẑ ẑ >

)
is a positive definite matrix and

(
u
−iu

)∗
E
(

ẑ ẑ >
)( u
−iu

)
=

(
u
−iu

)∗E
(

Re(z) (Re(z))>
)

u− iE
(

Re(z) (Im(z))>
)

u

E
(

Im(z) (Re(z))>
)

u− iE
(

Im(z) (Im(z))>
)

u


= u∗E

(
Re(z) (Re(z))>

)
u− iu∗E

(
Re(z) (Im(z))>

)
u

+iu∗E
(

Im(z) (Re(z))>
)

u + u∗E
(

Im(z) (Im(z))>
)

u

= u∗E (zz∗) u = 0,

we obtain

(
u
−iu

)
= 02N×1, or equivalently u = 0N×1.

Step 2: We show that det
(
E
(
ẑ ẑ >

))
≤ (det(E(zz∗)))2

22N . We have E(zz∗) = Λc + iΛs, where
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Λc = E
(
Re(z)(Re(z))>

)
+ E

(
Im(z)(Im(z))>

)
and Λs = E

(
Im(z)(Re(z))>

)
−
(
E
(
Im(z)(Re(z))>

))>.
Applying ([10] (Corollary 1)), we obtain

det
(

E
(

ẑ ẑ >
))
≤

det
(
Λc + ΛsΛ−1

c Λs
)

det (Λc)

22N =
det

(
IN + ΛsΛ−1

c ΛsΛ−1
c
)
(det (Λc))

2

22N

=
det

((
IN + iΛsΛ−1

c
) (

IN − iΛsΛ−1
c
))

(det (Λc))
2

22N =
det (Λc + iΛs)det (Λc − iΛs)

22N

=
det (E (zz∗))det

(
E (zz∗)

)
22N =

det (E (zz∗))det (E (zz∗))
22N =

(det (E (zz∗)))2

22N .

Step 3: We now prove Equation (6). From Equation (5), we conclude that

Rẑ(D) =
1

4N
ln

det
(
E
(
ẑ ẑ >

))
D2N ≤ 1

4N
ln

(det (E (zz∗)))2

(2D)2N =
1

2N
ln

det (E (zz∗))
(2D)N .

3. Low-Complexity Coding Strategy for Gaussian Vector Sources

In this section (see Theorem 3), we present our coding strategy for Gaussian vector sources.
To encode a finite-length data block xn:1 of a Gaussian N-dimensional vector source {xk}, we compute

the block DFT of xn:1 (yn:1) and we encode yd n
2 e, . . . , yn separately with

E(‖yk−ỹk‖2
2)

N ≤ D for all k ∈{⌈ n
2
⌉

, . . . , n
}

(see Figure 1).

V
∗

n
⊗ IN

yn:1

Encodern

yn

yn−1

ydn

2
exn:1

fyn

gyn−1

gydn

2
e gxn:1gyn:1

ydn

2
e+1 gydn

2
e+1

gyn−1

gydn

2
e+1

.

.

.

.

.

.

Vn ⊗ IN

Decodern: : :

Encodern−1 Decodern−1: : :

Encoderdn

2
e+1 Decoderdn

2
e+1: : :

Encoderdn

2
e Decoderdn

2
e: : :

Figure 1. Proposed coding strategy for Gaussian vector sources. In this figure, Encoderk (Decoderk)
denotes the optimal encoder (decoder) for the Gaussian N-dimensional vector yk with k ∈{⌈ n

2
⌉

, . . . , n
}

.

We denote by R̃xn:1(D) the rate of our strategy. Theorem 3 also provides an upper bound of
R̃xn:1(D). This upper bound is used in Section 4 to prove that our coding strategy is asymptotically
optimal whenever the Gaussian vector source is AWSS.

In Theorem 3 CAn denotes the matrix (Vn⊗ IN)diag1≤k≤n

(
[(Vn⊗ IN)

∗An(Vn⊗ IN)]k,k

)
(Vn⊗ IN)

∗,

where An ∈ CnN×nN .

Theorem 3. Consider n, N ∈ N. Let xk be a random N-dimensional vector for all k ∈ {1, . . . , n}. Suppose
that xn:1 is a real zero-mean Gaussian vector with a positive definite correlation matrix (or equivalently,
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λnN
(
E
(

xn:1x>n:1
))

> 0). Let yn:1 be the random vector given by Equation (1). If D ∈
(
0, λnN

(
E
(

xn:1x>n:1
))]

,
then

Rxn:1(D) ≤ R̃xn:1(D)≤ 1
2nN

ln
det

(
CE(xn:1x>n:1)

)
DnN , (7)

where

R̃xn:1(D) =


Ry n

2
(D)+2 ∑n−1

k= n
2 +1

Rŷk (
D
2 )+Ryn (D)

n if n is even,

2 ∑n−1
k= n+1

2
Rŷk (

D
2 )+Ryn (D)

n if n is odd.

Moreover,

0 ≤ 1
2nN

ln
det

(
CE(xn:1x>n:1)

)
DnN − Rxn:1(D) ≤ 1

2
ln

1 +

∥∥∥E
(
xn:1x>n:1

)
− CE(xn:1x>n:1)

∥∥∥
F√

nNλnN
(
E
(

xn:1x>n:1
))

 . (8)

Proof. We divide the proof into three steps:
Step 1: We show that Rxn:1(D) ≤ R̃xn:1(D). From Lemma 1, yk = yn−k for all k ∈ {1, . . . , d n

2 e − 1},
and yk ∈ RN×1 with k ∈ { n

2 , n} ∩N. We encode yd n
2 e, . . . , yn separately (i.e., if n is even, we encode

y n
2
, ŷ n

2 +1, . . . , ŷn−1, yn separately, and if n is odd, we encode ŷ n+1
2

, . . . , ŷn−1, yn separately) with

E
(∥∥∥ŷk − ˜̂yk

∥∥∥2

2

)
2N

≤ D
2

, k ∈
{⌈n

2

⌉
. . . , n− 1

}
\
{n

2

}
and

E
(
‖yk − ỹk‖2

2

)
N

≤ D, k ∈
{n

2
, n
}
∩N.

Let x̃n:1 = (Vn ⊗ IN) ỹn:1 with

ỹn:1 =

ỹn
...

ỹ1

 ,

where ̂̃yk = ˜̂yk for all k ∈ {d n
2 e . . . , n− 1} \ { n

2 }, and ỹk = ỹn−k for all k ∈ {1, . . . , d n
2 e − 1}. Applying

Lemma 1 yields x̃n:1 ∈ RnN×1. As (Vn ⊗ IN)
∗ is unitary and ‖ · ‖2 is unitarily invariant, we have

E
(
‖xn:1 − x̃n:1‖2

2

)
nN

=
E
(∥∥(Vn ⊗ IN)

∗ xn:1 − (Vn ⊗ IN)
∗ x̃n:1

∥∥2
2

)
nN

=
E
(
‖yn:1 − ỹn:1‖2

2

)
nN

=
1

nN

n

∑
k=1

E
(
‖yk − ỹk‖2

2

)

=
1

nN

2 ∑
k1∈{d n

2 e...,n−1}\{ n
2 }

E
(∥∥yk1 − ỹk1

∥∥2
2

)
+ ∑

k2∈{ n
2 ,n}∩N

E
(∥∥yk2 − ỹk2

∥∥2
2

)
=

1
nN

2 ∑
k1∈{d n

2 e...,n−1}\{ n
2 }

E
(∥∥∥ŷk1 − ˜̂yk1

∥∥∥2

2

)
+ ∑

k2∈{ n
2 ,n}∩N

E
(∥∥yk2 − ỹk2

∥∥2
2

)
≤
{ 1

nN
(
2
( n

2 − 1
)

ND + 2ND
)

if n is even,
1

nN

(
2
(

n− n+1
2

)
ND + ND

)
if n is odd,

}
= D.
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Consequently,

Rxn:1(D) ≤


NRy n

2
(D)+2N ∑n−1

k= n
2 +1

Rŷk (
D
2 )+NRyn (D)

nN if n is even,

2N ∑n−1
k= n+1

2
Rŷk (

D
2 )+NRyn (D)

nN if n is odd,

 = R̃xn:1(D).

Step 2: We prove that R̃xn:1(D) ≤ 1
2nN ln

det
(

C
E(xn:1x>n:1)

)
DnN . From Equations (3) and (5), we obtain

Ryk (D) =
1

2N
ln

det
(
E
(
yky>k

))
DN , k ∈

{n
2

, n
}
∩N, (9)

and applying Theorem 2 and Equation (5) yields

Rŷk

(
D
2

)
=

1
4N

ln
det

(
E
(

ŷk ŷk
>
))

(
D
2

)2N , k ∈ {1, . . . , n− 1} \
{n

2

}
. (10)

From Lemma 3, we have

R̃xn:1(D)

≤ 1
n

2 ∑
k1∈{d n

2 e,...,n−1}\{ n
2 }

1
2N

ln
det

(
E
(

yk1 y∗k1

))
DN + ∑

k2∈{ n
2 ,n}∩N

1
2N

ln
det

(
E
(

yk2 y∗k2

))
DN


=

1
2nN

 ∑
k1∈{d n

2 e,...,n−1}\{ n
2 }

ln
det

(
E
(

yk1 y∗k1

))
DN + ln

det
(
E
(

yk1 y∗k1

))
DN

+ ∑
k2∈{ n

2 ,n}∩N
ln

det
(
E
(

yk2 y∗k2

))
DN


=

1
2nN

 ∑
k1∈{d n

2 e,...,n−1}\{ n
2 }

ln
det

(
E
(

yk1 y∗k1

))
DN + ln

det
(
E
(

yn−k1 y∗n−k1

))
DN


+ ∑

k2∈{ n
2 ,n}∩N

ln
det

(
E
(

yk2 y∗k2

))
DN


=

1
2nN

n

∑
k=1

ln
det

(
E
(
yky∗k

))
DN =

1
2nN

ln
∏n

k=1 det
(
E
(
yky∗k

))
DnN .

As{
λj(E (yky∗k )) : j ∈ {1, . . . , N}, k ∈ {1, . . . , n}

}
=
{

λj([E (yn:1y∗n:1)]k,k) : j ∈ {1, . . . , N}, k ∈ {1, . . . , n}
}

=

{
λj

([
(Vn⊗ IN)

∗E
(

xn:1x>n:1

)
(Vn⊗ IN)

]
k,k

)
: j ∈ {1, . . . , N}, k ∈ {1, . . . , n}

}
=

{
λj

(
diag1≤k≤n

([
(Vn⊗ IN)

∗E
(

xn:1x>n:1

)
(Vn⊗ IN)

]
k,k

))
: j ∈ {1, . . . , nN}

}
=

{
λj

(
(Vn⊗ IN)diag1≤k≤n

([
(Vn⊗ IN)

∗E
(

xn:1x>n:1

)
(Vn⊗ IN)

]
k,k

)
(Vn⊗ IN)

−1
)

: j ∈ {1, . . . , nN}
}

=
{

λj

(
CE(xn:1x>n:1)

)
: j ∈ {1, . . . , nN}

}
, (11)

we obtain

n

∏
k=1

det (E (yky∗k )) =
n

∏
k=1

N

∏
j=1

λj (E (yky∗k )) =
nN

∏
j=1

λj

(
CE(xn:1x>n:1)

)
= det

(
CE(xn:1x>n:1)

)
.
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Step 3: We show Equation (8).
As E

(
xn:1x>n:1

)
is a positive definite matrix (or equivalently, E

(
xn:1x>n:1

)
is Hermitian

and λj(E
(

xn:1x>n:1
)
) > 0 for all j ∈ {1, . . . , nN}), (Vn⊗ IN)

∗ E
(

xn:1x>n:1
)
(Vn⊗ IN) is

Hermitian. Hence, [(Vn⊗ IN)
∗ E
(

xn:1x>n:1
)
(Vn⊗ IN)]k,k is Hermitian for all k ∈ {1, . . . , n},

and therefore, diag1≤k≤n
(
[(Vn⊗ IN)

∗ E
(
xn:1x>n:1

)
(Vn⊗ IN)]k,k

)
is also Hermitian. Consequently,

(Vn⊗ IN)diag1≤k≤n
(
[(Vn⊗ IN)

∗ E
(

xn:1x>n:1
)
(Vn⊗ IN)]k,k

)
(Vn⊗ IN)

∗ is Hermitian, and applying
Equations (3) and (11), we have that CE(xn:1x>n:1)

is a positive definite matrix.

Let E
(
xn:1x>n:1

)
= Udiag1≤j≤nN

(
λj
(
E
(
xn:1x>n:1

)))
U−1 be an eigenvalue decomposition (EVD)

of E
(

xn:1x>n:1
)
, where U is unitary. Thus,

√
E
(
xn:1x>n:1

)
= Udiag1≤j≤nN

(√
λj
(
E
(
xn:1x>n:1

)))
U∗ and(√

E
(

xn:1x>n:1
))−1

= Udiag1≤j≤nN

(
1√

λj(E(xn:1x>n:1))

)
U∗.

Since
(√

E
(

xn:1x>n:1
))−1

is Hermitian and CE(xn:1x>n:1)
is a positive definite matrix,(√

E
(

xn:1x>n:1
))−1

CE(xn:1x>n:1)

(√
E
(

xn:1x>n:1
))−1

is also a positive definite matrix.

From Equation (5), we have

Rxn:1(D) =
1

2nN
ln

det
(
E
(
xn:1x>n:1

))
DnN , (12)

and applying the arithmetic mean-geometric mean inequality yields

0 ≤ 1
2nN

ln
det

(
CE(xn:1x>n:1)

)
DnN − Rxn:1(D)

=
1

2nN
ln

det
(

CE(xn:1x>n:1)

)
det

(
E(xn:1x>n:1)

) =
1

2nN
ln

det
(

CE(xn:1x>n:1)

)
det

(√
E
(
xn:1x>n:1

))
det

(√
E
(
xn:1x>n:1

))
=

1
2nN

ln

(
det

((√
E
(

xn:1x>n:1
))−1

)
det

(
CE(xn:1x>n:1)

)
det

((√
E
(
xn:1x>n:1

))−1
))

=
1

2nN
ln det

((√
E
(

xn:1x>n:1
))−1

CE(xn:1x>n:1)

(√
E
(
xn:1x>n:1

))−1
)

=
1

2nN
ln

nN

∏
j=1

λj

((√
E
(

xn:1x>n:1
))−1

CE(xn:1x>n:1)

(√
E
(

xn:1x>n:1
))−1

)

≤ 1
2nN

ln

( 1
nN

nN

∑
j=1

λj

((√
E
(

xn:1x>n:1
))−1

CE(xn:1x>n:1)

(√
E
(

xn:1x>n:1
))−1

))nN


=
1
2

ln

(
1

nN
tr

((√
E
(

xn:1x>n:1
))−1

CE(xn:1x>n:1)

(√
E
(
xn:1x>n:1

))−1
))

=
1
2

ln

(
1

nN
tr

(
CE(xn:1x>n:1)

(√
E
(

xn:1x>n:1
))−1 (√

E
(
xn:1x>n:1

))−1
))

=
1
2

ln
(

1
nN

tr
(

CE(xn:1x>n:1)

(
E
(

xn:1x>n:1

))−1
))

≤ 1
2

ln

(√
nN

nN

∥∥∥∥CE(xn:1x>n:1)

(
E
(

xn:1x>n:1

))−1
∥∥∥∥

F

)
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=
1
2

ln
(

1√
nN

∥∥∥∥(CE(xn:1x>n:1)
− E

(
xn:1x>n:1

)) (
E
(

xn:1x>n:1

))−1
+ InN

∥∥∥∥
F

)
≤ 1

2
ln
(

1√
nN

(∥∥∥∥(CE(xn:1x>n:1)
− E

(
xn:1x>n:1

)) (
E
(

xn:1x>n:1

))−1
∥∥∥∥

F
+
√

nN
))

≤ 1
2

ln
(

1√
nN

(∥∥∥CE(xn:1x>n:1)
− E

(
xn:1x>n:1

)∥∥∥
F

∥∥∥∥(E
(

xn:1x>n:1

))−1
∥∥∥∥

2
+
√

nN
))

=
1
2

ln

1 +

∥∥∥E
(

xn:1x>n:1
)
− CE(xn:1x>n:1)

∥∥∥
F√

nNλnN(E
(

xn:1x>n:1
)
)

 .

In Equation (12), Rxn:1(D) is written in terms of E
(
xn:1x>n:1

)
. R̃xn:1(D) can be written in terms of

E
(

xn:1x>n:1
)

and Vn by using Lemma 2 and Equations (9) and (10).
As our coding strategy requires the computation of the block DFT, its computational complexity

is O(nN log n) whenever the FFT algorithm is used. We recall that the computational complexity of
the optimal coding strategy for xn:1 is O(n2N2) since it requires the computation of U>n xn:1, where
Un is a real orthogonal eigenvector matrix of E

(
xn:1x>n:1

)
. Observe that such eigenvector matrix Un

also needs to be computed, which further increases the complexity. Hence, the main advantage of
our coding strategy is that it notably reduces the computational complexity of coding xn:1. Moreover,
our coding strategy does not require the knowledge of E

(
xn:1x>n:1

)
. It only requires the knowledge of

E
(

ŷk ŷk
>
)

, with k ∈ {d n
2 e . . . , n}.

It should be mentioned that Equation (7) provides two upper bounds for the RDF of finite-length
data blocks of a real zero-mean Gaussian N-dimensional vector source {xk}. The greatest upper
bound in Equation (7) was given in [11] for the case in which the random vector source {xk} is WSS,
and therefore, the correlation matrix of the Gaussian vector, E

(
xn:1x>n:1

)
, is a block Toeplitz matrix.

Such upper bound was first presented by Pearl in [12] for the case in which the source is WSS and
N = 1. However, neither [11] nor [12] propose a coding strategy for {xk}.

4. Optimality of the Proposed Coding Strategy for Gaussian AWSS Vector Sources

In this section (see Theorem 4), we show that our coding strategy is asymptotically optimal,
i.e., we show that for large enough data blocks of a Gaussian AWSS vector source {xk}, the rate of our
coding strategy, presented in Section 3, tends to the RDF of the source.

We begin by introducing some notation. If X : R → CN×N is a continuous and 2π-periodic
matrix-valued function of a real variable, we denote by Tn(X) the n× n block Toeplitz matrix with
N × N blocks given by

Tn(X) = (Xj−k)
n
j,k=1,

where {Xk}k∈Z is the sequence of Fourier coefficients of X:

Xk =
1

2π

∫ 2π

0
e−kωiX(ω)dω ∀k ∈ Z.

If An and Bn are nN × nN matrices for all n ∈ N, we write {An} ∼ {Bn} when the sequences
{An} and {Bn} are asymptotically equivalent (see ([13] (p. 5673))), that is, {‖An‖2} and {‖Bn‖2} are
bounded and

lim
n→∞

‖An − Bn‖F√
n

= 0.

The original definition of asymptotically equivalent sequences of matrices was given by Gray (see ([2]
(Section 2.3)) or [4]) for N = 1.
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We now review the definition of the AWSS vector process given in ([1] (Definition 7.1)).
This definition was first introduced for the scalar case N = 1 (see ([2] (Section 6)) or [3]).

Definition 1. Let X : R → CN×N , and suppose that it is continuous and 2π-periodic. A random
N-dimensional vector process {xk} is said to be AWSS with asymptotic power spectral density (APSD) X if it
has constant mean (i.e., E(xk1) = E(xk2) for all k1, k2 ∈ N) and {E

(
xn:1x∗n:1

)
} ∼ {Tn(X)}.

We recall that the RDF of {xk} is defined as limn→∞ Rxn:1(D).

Theorem 4. Let {xk} be a real zero-mean Gaussian AWSS N-dimensional vector process with APSD X.
Suppose that infn∈N λnN

(
E
(

xn:1x>n:1
))

> 0. If D ∈
(
0, infn∈N λnN

(
E
(
xn:1x>n:1

))]
, then

lim
n→∞

Rxn:1(D) = lim
n→∞

R̃xn:1(D) =
1

4πN

∫ 2π

0
ln

det(X(ω))

DN dω. (13)

Proof. We divide the proof into two steps:
Step 1: We show that limn→∞ Rxn:1(D) = 1

4πN
∫ 2π

0 ln det(X(ω))
DN dω. From Equation (12), ([1] (Theorem

6.6)), and ([14] (Proposition 2)) yields

lim
n→∞

Rxn:1(D) = lim
n→∞

1
2nN

ln
∏nN

k=1 λk
(
E
(
xn:1x>n:1

))
DnN = lim

n→∞

1
2nN

nN

∑
k=1

ln
λk
(
E
(
xn:1x>n:1

))
D

=
1

4π

∫ 2π

0

1
N

N

∑
k=1

ln
λk(X(ω))

D
dω =

1
4πN

∫ 2π

0
ln

det(X(ω))

DN dω.

Step 2: We prove that limn→∞ Rxn:1(D) = limn→∞ R̃xn:1(D). Applying Equations (7) and (8), we obtain

0≤ R̃xn:1(D)− Rxn:1(D)≤ 1
2nN

ln
det

(
CE(xn:1x>n:1)

)
DnN − Rxn:1(D)

≤ 1
2

ln

1 +

∥∥∥E
(

xn:1x>n:1
)
− CE(xn:1x>n:1)

∥∥∥
F√

nNλnN
(
E
(
xn:1x>n:1

))


≤ 1
2

ln

1 +

∥∥∥E
(

xn:1x>n:1
)
− CE(xn:1x>n:1)

∥∥∥
F√

nN infm∈N λmN
(
E
(

xm:1x>m:1
))
 ∀n ∈ N. (14)

To finish the proof, we only need to show that

lim
n→∞

∥∥∥E
(

xn:1x>n:1
)
− CE(xn:1x>n:1)

∥∥∥
F√

n
= 0. (15)

Let Cn(X) be the n× n block circulant matrix with N × N blocks defined in ([13] (p. 5674)), i.e.,

Cn(X) = (Vn ⊗ IN)diag1≤k≤n

(
X
(

2π(k− 1)
n

))
(Vn ⊗ IN)

∗ ∀n ∈ N.

Observe that

CCn(X) =(Vn ⊗ IN)diag1≤k≤n

(
[(Vn ⊗ IN)

∗Cn(X)(Vn ⊗ IN)]k,k

)
(Vn ⊗ IN)

∗

=(Vn ⊗ IN)diag1≤k≤n

([
diag1≤j≤n

(
X
(

2π(j− 1)
n

))]
k,k

)
(Vn ⊗ IN)

∗



Entropy 2019, 21, 965 11 of 22

=(Vn ⊗ IN)diag1≤k≤n

(
X
(

2π(k− 1)
n

))
(Vn ⊗ IN)

∗ = Cn(X) ∀n ∈ N.

Consequently, as the Frobenius norm is unitarily invariant, we have∥∥∥Cn(X)− CE(xn:1x>n:1)

∥∥∥
F
=
∥∥∥CCn(X) − CE(xn:1x>n:1)

∥∥∥
F

=

∥∥∥∥(Vn ⊗ IN)diag1≤k≤n

([
(Vn ⊗ IN)

∗
(

Cn(X)− E
(

xn:1x>n:1

))
(Vn ⊗ IN)

]
k,k

)
(Vn ⊗ IN)

∗
∥∥∥∥

F

=
∥∥∥diag1≤k≤n

(
[(Vn ⊗ IN)

∗
(

Cn(X)− E
(

xn:1x>n:1

))
(Vn ⊗ IN)]k,k

)∥∥∥
F

≤
∥∥∥(Vn ⊗ IN)

∗
(

Cn(X)− E
(

xn:1x>n:1

))
(Vn ⊗ IN)

∥∥∥
F
=
∥∥∥Cn(X)− E

(
xn:1x>n:1

)∥∥∥
F

∀n ∈ N.

Therefore,

0 ≤

∥∥∥E
(

xn:1x>n:1

)
− CE(xn:1x>n:1)

∥∥∥
F√

n
≤

∥∥∥E
(

xn:1x>n:1

)
− Cn(X)

∥∥∥
F√

n
+

∥∥∥Cn(X)− CE(xn:1x>n:1)

∥∥∥
F√

n

≤2

∥∥∥E
(

xn:1x>n:1

)
− Cn(X)

∥∥∥
F√

n
≤ 2


∥∥∥E
(

xn:1x>n:1

)
− Tn(X)

∥∥∥
F√

n
+
‖Tn(X)− Cn(X)‖F√

n

 ∀n ∈ N. (16)

Since {E
(

xn:1x>n:1
)
} ∼ {Tn(X)}, Equation (16) and ([1] (Lemma 6.1)) yields Equation (15).

Observe that the integral formula in Equation (13) provides the value of the RDF of the Gaussian
AWSS vector source whenever D ∈

(
0, infn∈N λnN

(
E
(
xn:1x>n:1

))]
. An integral formula of such an RDF

for any D > 0 can be found in ([15] (Theorem 1)). It should be mentioned that ([15] (Theorem 1))
generalized the integral formulas previously given in the literature for the RDF of certain Gaussian
AWSS sources, namely, WSS scalar sources [9], AR AWSS scalar sources [16], and AR AWSS vector
sources of finite order [17].

5. Relevant AWSS Vector Sources

WSS, MA, AR, and ARMA vector processes are frequently used to model multivariate time series
(see, e.g., [18]) that arise in any domain that involves temporal measurements. In this section, we show
that our coding strategy is appropriate to encode the aforementioned vector sources whenever they
are Gaussian and AWSS.

It should be mentioned that Gaussian AWSS MA vector (VMA) processes, Gaussian AWSS AR
vector (VAR) processes, and Gaussian AWSS ARMA vector (VARMA) processes are frequently called
Gaussian stationary VMA processes, Gaussian stationary VAR processes, and Gaussian stationary
VARMA processes, respectively (see, e.g., [18]). However, they are asymptotically stationary but not
stationary, because their corresponding correlation matrices are not block Toeplitz.

5.1. WSS Vector Sources

In this subsection (see Theorem 5), we give conditions under which our coding strategy is
asymptotically optimal for WSS vector sources.

We first recall the well-known concept of WSS vector process.

Definition 2. Let X : R → CN×N , and suppose that it is continuous and 2π-periodic. A random
N-dimensional vector process {xk} is said to be WSS (or weakly stationary) with PSD X if it has constant mean
and {E

(
xn:1x∗n:1

)
} = {Tn(X)}.



Entropy 2019, 21, 965 12 of 22

Theorem 5. Let {xk} be a real zero-mean Gaussian WSS N-dimensional vector process with PSD X.
Suppose that minω∈[0,2π] λN (X(ω)) > 0 (or equivalently, det(X(ω)) 6= 0 for all ω ∈ R). If D ∈(

0, minω∈[0,2π] λN (X(ω))
]
, then

lim
n→∞

Rxn:1(D) = lim
n→∞

R̃xn:1(D) =
1

4πN

∫ 2π

0
ln

det (X(ω))

DN dω.

Proof. Applying ([1] (Lemma 3.3)) and ([1] (Theorem 4.3)) yields {E
(
xn:1x>n:1

)
} = {Tn(X)} ∼

{Tn(X)}. Theorem 5 now follows from ([14] (Proposition 3)) and Theorem 4.

Theorem 5 was presented in [5] for the case N = 1 (i.e., just for WSS sources but not for vector
WSS sources).

5.2. VMA Sources

In this subsection (see Theorem 6), we give conditions under which our coding strategy is
asymptotically optimal for VMA sources.

We start by reviewing the concept of VMA process.

Definition 3. A real zero-mean random N-dimensional vector process {xk} is said to be MA if

xk = wk +
k−1

∑
j=1

G−jwk−j ∀k ∈ N,

where G−j, j ∈ N, are real N × N matrices, {wk} is a real zero-mean random N-dimensional vector process,

and E
(

wk1 w>k2

)
= δk1,k2 Λ for all k1, k2 ∈ N with Λ being a real N× N positive definite matrix. If there exists

q ∈ N such that G−j = 0N×N for all j > q, then {xk} is called a VMA(q) process.

Theorem 6. Let {xk} be as in Definition 3. Assume that {Gk}∞
k=−∞, with G0 = IN and Gk = 0N×N for

all k ∈ N, is the sequence of Fourier coefficients of a function G : R → CN×N , which is continuous and
2π-periodic. Suppose that {Tn(G)} is stable (that is, {‖(Tn(G))−1‖2} is bounded). If {xk} is Gaussian and
D ∈

(
0, infn∈N λnN

(
E
(

xn:1x>n:1
))]

, then

lim
n→∞

Rxn:1(D) = lim
n→∞

R̃xn:1(D) =
1

2N
ln

det(Λ)

DN . (17)

Moreover, Rxn:1(D) = 1
2N ln det(Λ)

DN for all n ∈ N.

Proof. We divide the proof into three steps:
Step 1: We show that det

(
E
(
xn:1x>n:1

))
= (det(Λ))n for all n ∈ N. From ([15] (Equation (A3))) we have

that
{

E
(

xn:1x>n:1
)}

=
{

Tn(G)Tn(Λ) (Tn(G))∗
}

. Consequently,

det
(
E
(

xn:1x>n:1

))
=det (Tn(G))det (Tn(Λ))det (Tn(G))= |det (Tn(G))|2 (det(Λ))n = (det(Λ))n ∀n ∈ N.

Step 2: We prove the first equality in Equation (17). Applying ([15] (Theorem 2)), we obtain that {xk} is
AWSS. From Theorem 4, we only need to show that infn∈N λnN

(
E
(
xn:1x>n:1

))
> 0. We have

λnN

(
E
(

xn:1x>n:1

))
=

1

λ1

((
E
(

xn:1x>n:1
))−1

) =
1∥∥∥(E (xn:1x>n:1
))−1

∥∥∥
2

=
1∥∥∥(Tn(G)Tn(Λ) (Tn(G))∗

)−1
∥∥∥

2

=
1∥∥∥((Tn(G))−1

)∗
Tn(Λ−1) (Tn(G))−1

∥∥∥
2

≥ 1∥∥∥((Tn(G))−1
)∗∥∥∥

2
‖Tn(Λ−1)‖2

∥∥∥(Tn(G))−1
∥∥∥

2
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=
1∥∥∥(Tn(G))−1
∥∥∥2

2
λ1(Λ−1)

=
λN(Λ)∥∥∥(Tn(G))−1

∥∥∥2

2

≥ λN(Λ)(
supm∈N

∥∥∥(Tm(G))−1
∥∥∥

2

)2 > 0 ∀n ∈ N.

Step 3: We show that Rxn:1(D) = 1
2N ln det(Λ)

DN for all n ∈ N. Applying Equation (12) yields

Rxn:1(D) =
1

2nN
ln

(det(Λ))n

DnN =
1

2N
ln

det(Λ)

DN ∀n ∈ N.

5.3. VAR AWSS Sources

In this subsection (see Theorem 7), we give conditions under which our coding strategy is
asymptotically optimal for VAR sources.

We first recall the concept of VAR process.

Definition 4. A real zero-mean random N-dimensional vector process {xk} is said to be AR if

xk = wk −
k−1

∑
j=1

F−jxk−j ∀k ∈ N,

where F−j, j ∈ N, are real N × N matrices, {wk} is a real zero-mean random N-dimensional vector process,

and E
(

wk1 w>k2

)
= δk1,k2 Λ for all k1, k2 ∈ N with Λ being a real N× N positive definite matrix. If there exists

p ∈ N such that F−j = 0N×N for all j > p, then {xk} is called a VAR(p) process.

Theorem 7. Let {xk} be as in Definition 4. Assume that {Fk}∞
k=−∞, with F0 = IN and Fk = 0N×N for

all k ∈ N, is the sequence of Fourier coefficients of a function F : R → CN×N , which is continuous and
2π-periodic. Suppose that {Tn(F)} is stable and det (F(ω)) 6= 0 for all ω ∈ R. If {xk} is Gaussian and
D ∈

(
0, infn∈N λnN

(
E
(

xn:1x>n:1
))]

, then

lim
n→∞

Rxn:1(D) = lim
n→∞

R̃xn:1(D) =
1

2N
ln

det(Λ)

DN . (18)

Moreover, Rxn:1(D) = 1
2N ln det(Λ)

DN for all n ∈ N.

Proof. We divide the proof into three steps:
Step 1: We show that det

(
E
(
xn:1x>n:1

))
= (det(Λ))n for all n ∈ N. From ([19] (Equation (19))), we have

that
{

E
(

xn:1x>n:1
)}

=
{
(Tn(F))−1 Tn(Λ)

(
(Tn(F))∗

)−1
}

. Consequently,

det
(
E
(

xn:1x>n:1

))
=

det (Tn(Λ))

det (Tn(F))det
(
(Tn(F))∗

) = (det(Λ))n

|det (Tn(F)) |2 =(det(Λ))n ∀n ∈ N.

Step 2: We prove the first equality in Equation (18). Applying ([15] (Theorem 3)), we obtain that {xk}
is AWSS. From Theorem 4, we only need to show that infn∈N λnN

(
E
(

xn:1x>n:1
))

> 0. Applying ([1]
(Theorem 4.3)) yields

λnN

(
E
(

xn:1x>n:1

))
=

1∥∥∥(E (xn:1x>n:1
))−1

∥∥∥
2

=
1∥∥∥∥((Tn(F))−1 Tn(Λ)
(
(Tn(F))∗

)−1
)−1

∥∥∥∥
2

≥ λN(Λ)

‖Tn(F)‖2
2

≥ λN(Λ)(
supm∈N ‖Tm(F)‖2

)2 > 0 ∀n ∈ N.
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Step 3: We show that Rxn:1(D) = 1
2N ln det(Λ)

DN for all n ∈ N. This can be directly obtained from
Equation (12).

Theorem 7 was presented in [6] for the case of N = 1 (i.e., just for AR sources but not for
VAR sources).

5.4. VARMA AWSS Sources

In this subsection (see Theorem 8), we give conditions under which our coding strategy is
asymptotically optimal for VARMA sources.

We start by reviewing the concept of VARMA process.

Definition 5. A real zero-mean random N-dimensional vector process {xk} is said to be ARMA if

xk = wk +
k−1

∑
j=1

G−jwk−j −
k−1

∑
j=1

F−jxk−j ∀k ∈ N,

where G−j and F−j, j ∈ N, are real N × N matrices, {wk} is a real zero-mean random N-dimensional vector

process, and E
(

wk1 w>k2

)
= δk1,k2 Λ for all k1, k2 ∈ N with Λ being a real N × N positive definite matrix.

If there exists p, q ∈ N such that F−j = 0N×N for all j > p and G−j = 0N×N for all j > q, then {xk} is called
a VARMA(p,q) process (or a VARMA process of (finite) order (p,q)).

Theorem 8. Let {xk} be as in Definition 5. Assume that {Gk}∞
k=−∞, with G0 = IN and Gk = 0N×N for all

k ∈ N, is the sequence of Fourier coefficients of a function G : R→ CN×N which is continuous and 2π-periodic.
Suppose that {Fk}∞

k=−∞, with F0 = IN and Fk = 0N×N for all k ∈ N, is the sequence of Fourier coefficients
of a function F : R→ CN×N which is continuous and 2π-periodic. Assume that {Tn(G)} and {Tn(F)} are
stable, and det (F(ω)) 6= 0 for all ω ∈ R. If {xk} is Gaussian and D ∈

(
0, infn∈N λnN

(
E
(
xn:1x>n:1

))]
, then

lim
n→∞

Rxn:1(D) = lim
n→∞

R̃xn:1(D) =
1

2N
ln

det(Λ)

DN . (19)

Moreover, Rxn:1(D) = 1
2N ln det(Λ)

DN for all n ∈ N.

Proof. We divide the proof into three steps:
Step 1: We show that det

(
E
(
xn:1x>n:1

))
= (det(Λ))n for all n ∈ N. From ([15] (Appendix D))

and ([1] (Lemma 4.2)), we have that
{

E
(
xn:1x>n:1

)}
=
{
(Tn(F))−1Tn(G)Tn(Λ) (Tn(G))∗ ((Tn(F))∗)−1}.

Consequently,

det
(
E
(

xn:1x>n:1

))
=
|det (Tn(G)) |2 (det(Λ))n

|det (Tn(F)) |2 =(det(Λ))n ∀n ∈ N.

Step 2: We prove the first equality in Equation (19). Applying ([15] (Theorem 3)), we obtain that {xk}
is AWSS. From Theorem 4, we only need to show that infn∈N λnN

(
E
(

xn:1x>n:1
))

> 0. Applying ([1]
(Theorem 4.3)) yields

λnN

(
E
(

xn:1x>n:1

))
=

1∥∥∥(E (xn:1x>n:1
))−1

∥∥∥
2

=
1∥∥∥((Tn(F))−1Tn(G)Tn(Λ) (Tn(G))∗ ((Tn(F))∗)−1

)−1
∥∥∥

2

≥ λN(Λ)

‖Tn(F)‖2
2

∥∥∥(Tn(G))−1
∥∥∥2

2

≥ λN(Λ)(
supm∈N ‖Tm(F)‖2

)2
(

supm∈N

∥∥∥(Tm(G))−1
∥∥∥

2

)2 > 0 ∀n ∈ N.
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Step 3: We show that Rxn:1(D) = 1
2N ln det(Λ)

DN for all n ∈ N. This can be directly obtained from
Equation (12).

6. Numerical Examples

We first consider four AWSS vector processes, namely, we consider the zero-mean WSS vector
process in ([20] (Section 4)), the VMA(1) process in ([18] (Example 2.1)), the VAR(1) process in ([18]
(Example 2.3)), and the VARMA(1,1) process in ([18] (Example 3.2)). In ([20] (Section 4)), N = 2 and
the Fourier coefficients of its PSD X are

X0 =

(
2.0002 0.7058
0.7058 2.0000

)
, X−1 = X∗1 =

(
−0.3542 0.1016
0.1839 −0.2524

)
, X−2 = X∗2 =

(
−0.0923 0.0153
0.1490 0.0696

)
,

X−3 = X∗3 =

(
−0.1443 −0.0904
0.0602 0.0704

)
, X−4 = X∗4 =

(
−0.0516 −0.0603

0 0

)
,

and Xj = 02×2 with |j| > 4. In ([18] (Example 2.1)), N = 2, G−1 is given by(
−0.8 −0.7
0.4 −0.6

)
, (20)

G−j = 02×2 for all j ∈ N, and

Λ =

(
4 1
1 2

)
. (21)

In ([18] (Example 2.3)), N = 2, F−j = 02×2 for all j ∈ N, and F−1 and Λ are given by
Equations (20) and (21), respectively. In ([18] (Example 3.2)), N = 2,

G−1 =

(
0.6 −0.3
−0.3 −0.6

)
, F−1 =

(
−1.2 0.5
−0.6 −0.3

)
, Λ =

(
1 0.5

0.5 1.25

)
,

G−j = 02×2 for all j ∈ N, and F−j = 02×2 for all j ∈ N.
Figures 2–5 show Rxn:1(D) and R̃xn:1(D) with n ≤ 100 and D = 0.001 for the four vector processes

considered, by assuming that they are Gaussian. The figures bear evidence of the fact that the rate of
our coding strategy tends to the RDF of the source.

10 20 30 40 50 60 70 80 90 100
3.68

3.7

3.72

3.74

3.76

Figure 2. Considered rates for the wide sense stationary (WSS) vector process in ([20] (Section 4)).
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10 20 30 40 50 60 70 80 90 100
3.9

3.95

4

4.05

4.1

Figure 3. Considered rates for the VMA(1) process in ([18] (Example 2.1)).

10 20 30 40 50 60 70 80 90 100
3.9

3.95

4

4.05

4.1

Figure 4. Considered rates for the VAR(1) process in ([18] (Example 2.3)).

10 20 30 40 50 60 70 80 90 100
3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

Figure 5. Considered rates for the VARMA(1,1) process in ([18] (Example 3.2)).

We finish with a numerical example to explore how our method performs in the presence of
a perturbation. Specifically, we consider a perturbed version of the WSS vector process in ([20]
(Section 4)) (Figure 6). The correlation matrices of the perturbed process are

Tn(X) +

(
02n−2×2n−2 02n−2×2

02×2n−2 I2

)
, n ∈ N.
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10 20 30 40 50 60 70 80 90 100
3.65

3.7

3.75

3.8

3.85

3.9

Figure 6. Considered rates for the perturbed WSS vector process with D = 0.001.

7. Conclusions

The computational complexity of coding finite-length data blocks of Gaussian N-dimensional
vector sources can be reduced by using the low-complexity coding strategy presented here instead of
the optimal coding strategy. Specifically, the computational complexity is reduced from O(n2N2) to
O(nN log n), where n is the length of the data blocks. Moreover, our coding strategy is asymptotically
optimal (i.e., the rate of our coding strategy tends to the RDF of the source) whenever the Gaussian
vector source is AWSS and the considered data blocks are large enough. Besides being a low-complexity
strategy, it does not require the knowledge of the correlation matrix of such data blocks. Furthermore,
our coding strategy is appropriate to encode the most relevant Gaussian vector sources, namely, WSS,
MA, AR, and ARMA vector sources.

Author Contributions: Authors are listed in order of their degree of involvement in the work, with the most
active contributors listed first. J.G.-G. conceived the research question. All authors proved the main results and
wrote the paper. All authors have read and approved the final manuscript.

Funding: This work was supported in part by the Spanish Ministry of Economy and Competitiveness through
the CARMEN project (TEC2016-75067-C4-3-R).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Lemma 1

Proof. (1)⇒(2) We have

yk = [yn:1]n−k+1,1 =
n

∑
j=1

[V∗n⊗ IN ]n−k+1,j [xn:1]j,1 =
n

∑
j=1

[V∗n ]n−k+1,j IN [xn:1]j,1 =
n

∑
j=1

[Vn]j,n−k+1 [xn:1]j,1

=
1√
n

n

∑
j=1

e
2π(j−1)(n−k)

n i [xn:1]j,1 =
1√
n

n

∑
j=1

e2π(j−1)ie−
2π(j−1)k

n i [xn:1]j,1 =
1√
n

n

∑
j=1

e−
2π(j−1)k

n i [xn:1]j,1

=
1√
n

n

∑
j=1

e
2π(j−1)k

n i [xn:1]j,1 = yn−k

for all k ∈ {1, . . . , n− 1} and yn = 1√
n ∑n

j=1 [xn:1]j,1 ∈ RN×1.

(2)⇒(1) Since Vn ⊗ IN is a unitary matrix and

[Vn]k,n−j+1 =
1√
n

e−
2π(k−1)(n−j)

n i =
1√
n

e−2π(k−1)ie
2π(k−1)j

n i = [Vn]k,j+1

for all k ∈ {1, . . . , n} and j ∈ {1, . . . , n− 1}, we conclude that

xk = [xn:1]n−k+1,1 = [(Vn ⊗ IN) yn:1]n−k+1,1 =
n

∑
j=1

[Vn]n−k+1,j [yn:1]j,1 =
n

∑
j=1

[Vn]n−k+1,j yn−j+1
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= [Vn]n−k+1,1 yn +
n−1

∑
h=1

[Vn]n−k+1,n−h+1 yh

=
1√
n

yn +
d n

2 e−1

∑
h=1

(
[Vn]n−k+1,n−h+1 yh + [Vn]n−k+1,n−h+1yh

)
+

1+(−1)n

2
[Vn]n−k+1,d n

2 e+1 yd n
2 e

=
1√
n

yn +
d n

2 e−1

∑
h=1

(
[Vn]n−k+1,n−h+1 yh + [Vn]n−k+1,n−h+1 yh

)
+

1+(−1)n

2
1√
n

e−π(n−k)iyd n
2 e

=
1√
n

yn + 2
d n

2 e−1

∑
h=1

Re
(
[Vn]n−k+1,n−h+1 yh

)
+

1+(−1)n

2
(−1)n−k
√

n
yd n

2 e ∈ R
N×1

for all k ∈ {1, . . . , n}.

Appendix B. Proof of Theorem 1

Proof. Fix k ∈ {1, . . . , n}. Let E
(

xn:1x∗n:1
)
= Udiag1≤j≤nN

(
λj
(
E
(
xn:1x∗n:1

)))
U−1 and E(xkx∗k ) =

Wdiag1≤j≤N
(
λj
(
E(xkx∗k

))
W−1 be an eigenvalue decomposition (EVD) of E

(
xn:1x∗n:1

)
and E(xkx∗k ),

respectively. We can assume that the eigenvector matrices U and W are unitary. We have

λj (E(xkx∗k )) = [W∗E(xkx∗k )W]j,j =
N

∑
h=1

[W∗]j,h
N

∑
l=1

[E(xkx∗k )]h,l [W]l,j

=
N

∑
h=1

[W∗]j,h
N

∑
l=1

[E (xn:1x∗n:1)](n−k)N+h,(n−k)N+l [W]l,j

=
N

∑
h=1

[W∗]j,h
N

∑
l=1

[
Udiag1≤p≤nN

(
λp (E (xn:1x∗n:1))

)
U∗
]
(n−k)N+h,(n−k)N+l

[W]l,j

=
N

∑
h=1

[W∗]j,h
N

∑
l=1

(
nN

∑
p=1

[U](n−k)N+h,p λp (E (xn:1x∗n:1)) [U
∗]p,(n−k)N+l

)
[W]l,j

=
nN

∑
p=1

λp (E (xn:1x∗n:1))
N

∑
h=1

[W]h,j [U](n−k)N+h,p

N

∑
l=1

[U](n−k)N+l,p [W]l,j

=
nN

∑
p=1

λp (E (xn:1x∗n:1))

(
N

∑
h=1

[W]h,j [U](n−k)N+h,p

)(
N

∑
l=1

[W]l,j [U](n−k)N+l,p

)

=
nN

∑
p=1

λp (E (xn:1x∗n:1))

∣∣∣∣∣ N

∑
h=1

[W]h,j [U](n−k)N+h,p

∣∣∣∣∣
2

,

and consequently,

λnN (E (xn:1x∗n:1))
nN

∑
p=1

∣∣∣∣∣ N

∑
h=1

[W]h,j [U](n−k)N+h,p

∣∣∣∣∣
2

≤ λj (E(xkx∗k )) ≤

λ1 (E (xn:1x∗n:1))
nN

∑
p=1

∣∣∣∣∣ N

∑
h=1

[W]h,j [U](n−k)N+h,p

∣∣∣∣∣
2

for all j ∈ {1, . . . , N}. Therefore, since

nN

∑
p=1

∣∣∣∣∣ N

∑
h=1

[W]h,j [U](n−k)N+h,p

∣∣∣∣∣
2

=
nN

∑
p=1

N

∑
h=1

[W]h,j [U](n−k)N+h,p

N

∑
l=1

[U](n−k)N+l,p [W]l,j
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=
N

∑
h=1

[W∗]j,h
N

∑
l=1

nN

∑
p=1

[U](n−k)N+h,p [U
∗]p,(n−k)N+l [W]l,j =

N

∑
h=1

[W∗]j,h
N

∑
l=1

[UU∗](n−k)N+h,(n−k)N+l [W]l,j

=
N

∑
h=1

[W∗]j,h
N

∑
l=1

[InN ](n−k)N+h,(n−k)N+l [W]l,j =
N

∑
h=1

[W∗]j,h [W]h,j =[W∗W]j,j =[IN ]j,j = 1,

Equation (2) holds. We now prove Equation (3). Let E(yky∗k ) = Mdiag1≤j≤N
(
λj
(
E(yky∗k

))
M−1

be an EVD of E(yky∗k ), where M is unitary. We have

λj (E(yky∗k )) =
N

∑
h=1

[M∗]j,h
N

∑
l=1

[E (yn:1y∗n:1)](n−k)N+h,(n−k)N+l [M]l,j

=
N

∑
h=1

[M∗]j,h
N

∑
l=1

[
E
(
(Vn⊗ IN)

∗ xn:1x∗n:1 (Vn⊗ IN)
)]

(n−k)N+h,(n−k)N+l [M]l,j

=
N

∑
h=1

[M∗]j,h
N

∑
l=1

[
(Vn⊗ IN)

∗E(xn:1x∗n:1)(Vn⊗ IN)
]
(n−k)N+h,(n−k)N+l [M]l,j

=
N

∑
h=1

[M∗]j,h
N

∑
l=1

[
(Vn⊗ IN)

∗Udiag1≤p≤nN
(
λp(E (xn:1x∗n:1))

)(
(Vn⊗ IN)

∗U
)∗]

(n−k)N+h,(n−k)N+l
[M]l,j

=
nN

∑
p=1

λp (E(xn:1x∗n:1))

∣∣∣∣∣ N

∑
h=1

[M]h,j
[
(Vn⊗ IN)

∗U
]
(n−k)N+h,p

∣∣∣∣∣
2

,

and thus,

λnN (E (xn:1x∗n:1))
nN

∑
p=1

∣∣∣∣∣ N

∑
h=1

[M]h,j
[
(Vn ⊗ IN)

∗U
]
(n−k)N+h,p

∣∣∣∣∣
2

≤ λj (E(yky∗k )) ≤ λ1 (E (xn:1x∗n:1))
nN

∑
p=1

∣∣∣∣∣ N

∑
h=1

[M]h,j
[
(Vn ⊗ IN)

∗U
]
(n−k)N+h,p

∣∣∣∣∣
2

for all j ∈ {1, . . . , N}. Hence, as

nN

∑
p=1

∣∣∣∣∣ N

∑
h=1

[M]h,j
[
(Vn⊗ IN)

∗U
]
(n−k)N+h,p

∣∣∣∣∣
2

=
N

∑
h=1

[M∗]j,h
N

∑
l=1

[
(Vn⊗ IN)

∗U
(
(Vn⊗ IN)

∗U
)∗]

(n−k)N+h,(n−k)N+l
[M]l,j

=
N

∑
h=1

[M∗]j,h
N

∑
l=1

[
(Vn⊗ IN)

∗ InN(Vn⊗ IN)
]
(n−k)N+h,(n−k)N+l [M]l,j =

N

∑
h=1

[M∗]j,h
N

∑
l=1

[InN](n−k)N+h,(n−k)N+l [M]l,j =1,

Equation (3) holds.

Appendix C. Proof of Theorem 2

Proof. Fix k ∈ {1, . . . , n− 1} \ { n
2 }. Since

yk =
1√
n

n

∑
j=1

e−
2π(j−1)k

n i [xn:1]j,1 =
1√
n

n

∑
j=1

(
cos

2π(1− j)k
n

+ i sin
2π(1− j)k

n

)
xn−j+1,

we obtain

E
(

ŷk ŷk
>
)
= E

((
Re(yk)

Im(yk)

)(
(Re(yk))

> (Im(yk))
>
))

=

E
(

Re(yk) (Re(yk))
>
)

E
(

Re(yk) (Im(yk))
>
)

E
(

Im(yk) (Re(yk))
>
)

E
(

Im(yk) (Im(yk))
>
)
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=
1
n

n

∑
j1,j2=1

cos 2π(1−j1)k
n cos 2π(1−j2)k

n E
(

xn−j1+1x>n−j2+1

)
cos 2π(1−j1)k

n sin 2π(1−j2)k
n E

(
xn−j1+1x>n−j2+1

)
sin 2π(1−j1)k

n cos 2π(1−j2)k
n E

(
xn−j1+1x>n−j2+1

)
sin 2π(1−j1)k

n sin 2π(1−j2)k
n E

(
xn−j1+1x>n−j2+1

)


=
1
n

n

∑
j1,j2=1

A>j1 E
(

xn−j1+1x>n−j2+1

)
Aj2 ,

where Aj =
(
cos 2π(1−j)k

n IN sin 2π(1−j)k
n IN

)
with j ∈ {1, . . . , n}. Fix r ∈ {1, . . . , 2N}, and consider

a real eigenvector v corresponding to λr

(
E
(

ŷk ŷk
>
))

with v>v = 1. Let E
(
xn:1x>n:1

)
=

Udiag1≤j≤nN
(
λj
(
E
(

xn:1x>n:1
)))

U−1 be an EVD of E
(
xn:1x>n:1

)
, where U is real and orthogonal. Then

λr

(
E
(

ŷk ŷk
>
))

= λr

(
E
(

ŷk ŷk
>
))

v>v = v>λr

(
E
(

ŷk ŷk
>
))

v = v>E
(

ŷk ŷk
>
)

v

=
1
n

n

∑
j1,j2=1

v>A>j1 E
(

xn−j1+1x>n−j2+1

)
Aj2v =

1
n

n

∑
j1,j2=1

v>A>j1
[

E
(

xn:1x>n:1

)]
j1,j2

Aj2 v

=
1
n

n

∑
j1,j2=1

v>A>j1 e>j1 E
(

xn:1x>n:1

)
ej2 Aj2v

=
1
n

n

∑
j1,j2=1

v>A>j1 e>j1 Udiag1≤p≤nN

(
λp

(
E
(

xn:1x>n:1

)))
U>ej2 Aj2v

=
1
n

n

∑
j1=1

v>A>j1 e>j1 Udiag1≤p≤nN

(
λp

(
E
(

xn:1x>n:1

))) n

∑
j2=1

U>ej2 Aj2v

=
1
n

[
B>diag1≤p≤nN

(
λp

(
E
(

xn:1x>n:1

)))
B
]

1,1
=

1
n

nN

∑
p=1

[
B>
]

1,p
λp

(
E
(

xn:1x>n:1

))
[B]p,1

=
1
n

nN

∑
p=1

λp

(
E
(

xn:1x>n:1

))
[B]2p,1 ,

where el ∈ CnN×N with [el ]j,1 = δj,l IN for all j, l ∈ {1, . . . , n} and B = ∑n
j=1 U>ej Ajv. Consequently,

λnN

(
E
(

xn:1x>n:1

)) 1
n

nN

∑
p=1

[B]2p,1 ≤ λr

(
E
(

ŷk ŷk
>
))
≤ λ1

(
E
(

xn:1x>n:1

)) 1
n

nN

∑
p=1

[B]2p,1 .

Therefore, to finish the proof we only need to show that 1
n ∑nN

p=1 [B]
2
p,1 = 1

2 . Applying ([5]
(Equations (14) and (15))) yields

1
n

nN

∑
p=1

[B]2p,1 =
1
n

nN

∑
p=1

[
B>
]

1,p
[B]p,1 =

1
n

B>B =
1
n

(
n

∑
j1=1

U>ej1 Aj1v

)> ( n

∑
j2=1

U>ej2 Aj2v

)

=
1
n

n

∑
j1,j2=1

v>A>j1 e>j1 ej2 Aj2v =
1
n

n

∑
j=1

v>A>j Ajv =
1
n

n

∑
j=1

(Ajv)>(Ajv) =
1
n

n

∑
j=1

N

∑
s=1

[
Ajv

]2
s,1

=
1
n

n

∑
j=1

N

∑
s=1

(
cos

2π(1− j)k
n

[v]s,1 + sin
2π(1− j)k

n
[v]N+s,1

)2

=
1
n

N

∑
s=1

n

∑
j=1

((
cos

2π(1− j)k
n

)2

[v]2s,1 +

(
sin

2π(1− j)k
n

)2

[v]2N+s,1

+2 cos
2π(1− j)k

n
sin

2π(1− j)k
n

[v]s,1[v]N+s,1

)
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=
N

∑
s=1

(
[v]2s,1

1
n

n

∑
j=1

(
cos

2π(1− j)k
n

)2

+ [v]2N+s,1
1
n

n

∑
j=1

(
sin

2π(1− j)k
n

)2

+[v]s,1[v]N+s,1
1
n

n

∑
j=1

2 sin
2π(1− j)k

n
cos

2π(1− j)k
n

)

=
N

∑
s=1

(
[v]2s,1

1
n

n

∑
j=1

(
1−
(

sin
2π(1− j)k

n

)2
)
+
[v]2N+s,1

2
+[v]s,1[v]N+s,1

1
n

n

∑
j=1

sin
4π(1− j)k

n

)

=
N

∑
s=1

(
[v]2s,1

(
1− 1

n

n

∑
j=1

(
sin

2π(1− j)k
n

)2
)
+
[v]2N+s,1

2
−[v]s,1[v]N+s,1

1
n

n

∑
j=1

sin
4π(j− 1)k

n

)

=
N

∑
s=1

(
[v]2s,1

2
+
[v]2N+s,1

2
−[v]s,1[v]N+s,1

1
n

n

∑
j=1

Im
(

e
4π(j−1)k

n i
))

=
N

∑
s=1

(
[v]2s,1

2
+
[v]2N+s,1

2
−[v]s,1[v]N+s,1

1
n

Im

(
n

∑
j=1

e
4π(j−1)k

n i

))

=
N

∑
s=1

(
[v]2s,1

2
+
[v]2N+s,1

2

)
=

1
2

2N

∑
h=1

[v]2h,1 =
1
2

v>v =
1
2

.

Appendix D. Proof of Lemma 2

Proof. (1) E
(
yky∗k

)
=
[
E
(
yn:1y∗n:1

)]
n−k+1,n−k+1 =

[
(Vn⊗ IN)

∗ E
(

xn:1x∗n:1
)
(Vn⊗ IN)

]
n−k+1,n−k+1.

(2) E
(
yky>k

)
=
[
E
(
yn:1y>n:1

)]
n−k+1,n−k+1 =

[
(Vn⊗ IN)

∗ E
(

xn:1x>n:1
) (

(Vn⊗ IN)
∗)>]

n−k+1,n−k+1
.

(3) We have

E (yky∗k ) = E
(
(Re(yk)+iIm(yk))

(
(Re(yk))

>−i (Im(yk))
>
))

=E
(
Re(yk)(Re(yk))

>
)
+E
(
Im(yk)(Im(yk))

>
)
+i
(

E
(
Im(yk)(Re(yk))

>
)
−E
(
Re(yk) (Im(yk))

>
))

, (A1)

and

E
(

yky>k
)
= E

(
(Re(yk)+iIm(yk))

(
(Re(yk))

>+i (Im(yk))
>
))

=E
(
Re(yk)(Re(yk))

>
)
−E
(
Im(yk)(Im(yk))

>
)
+i
(

E
(
Im(yk)(Re(yk))

>
)
+E
(
Re(yk) (Im(yk))

>
))

. (A2)

As

E
(

ŷk ŷk
>
)
=

E
(

Re(yk) (Re(yk))
>
)

E
(

Re(yk) (Im(yk))
>
)

E
(

Im(yk) (Re(yk))
>
)

E
(

Im(yk) (Im(yk))
>
) ,

assertion (3) follows directly from Equations (A1) and (A2).
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