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In this paper, we propose robust power allocation strategies to improve the localization performance in cooperative wireless
sensor localization systems when suffering interference of jammer nodes. In wireless sensor localization systems, transmitting
power strategies will affect the localization accuracy and determine the lifetime of wireless sensor networks. At the same time, the
power allocation problem will be evolution to a new challenge when there are jammed nodes. So in this paper, we first present the
optimization framework in jammed cooperative localization systems. Moreover, the imperfect parameter estimations of agent and
jammer nodes are considered to develop robust power allocation strategies. In particular, this problem can be transformed into
second-order cone programs (SOCPs) to obtain the end solution. Numerical results show the proposed power allocation strategies
can achieve better performance than uniform power allocation and the robust schemes can ensure lower localization error than
nonrobust power control when systems are subject to uncertainty.

1. Introduction

HIGH precious localization information is essential in many
location-based applications and services, such as intelligent
robot, logistics tracking, equipment management, and so
on [1]. Traditional localization techniques, e.g., the global
positioning system (GPS), may not provide satisficed local-
ization accuracy in some harsh environments [2]. So the
wireless sensor localization systems are motivated to provide
necessary supplements.

In a wireless sensor localization system, there are always
three types of nodes, i.e., agent nodes which are devices
with unknown positions, anchor nodes which are infras-
tructures with known positions, and jammer nodes which
are designedly or unintentional distributed in some places.
Conventionally, the agent nodes can infer their positions by
rangemeasurements fromanchor to agent nodes. Besides, the
cooperation between agent nodes can improve localization
accuracy through information sharing and additional mea-
surements between agent nodes [3]. However, the jammer
nodes will bring interference to degrade the localization
performance of agent nodes. In other words, the localization
accuracy of agent nodes is depended on the network topology

and the measurement errors [4]. The measurement errors
are related to the transmit power, signal waveform, channel
condition, and interference condition. Consequently, power
allocation strategies are critical to reduce the localization
error and improve the lifetime of wireless sensor networks.

Existing studies have been worked on power allocation
problems. In study [5], the author established an optimization
framework to allocate robust power for anchor nodes and
designed a distributed power allocation algorithm via conic
programming. In [6], the power allocation strategies in both
active and passive localization networks were researched.
For network navigation, literature [7] developed efficient
navigation algorithms to obtain optimized energy allocation
strategies. Then for the cooperative localization, literature
[4] built a general framework for wide-band cooperative
localization networks and established the fundamental limits.
In [7], the author proposed a distributed robust power allo-
cation algorithm by infrastructure and cooperation phases.
In [8], the power management problem was solved by game
approach under the knowledge of local and global informa-
tion. In [9], a hierarchical gamewas developed to obtain opti-
mal power allocation strategies for different kinds of nodes
simultaneously. What is more, when the jammer nodes are

Hindawi
Wireless Communications and Mobile Computing
Volume 2019, Article ID 6904687, 9 pages
https://doi.org/10.1155/2019/6904687

http://orcid.org/0000-0002-3761-9152
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6904687


2 Wireless Communications and Mobile Computing

Anchor node
Agent node
Jammer node

Anchor 1

Anchor 3

Anchor 2

Anchor 4

Anchor 5

Jammer 1

Jammer 2

Agent 2

Agent 1
Agent 3

2 4 6 8 100
x (m)

0

2

4

6

8

10

y 
(m

)

Figure 1: Illustration of a jammed wireless sensor localization system.

considered, two schemes were proposed to optimize power
management for jammer nodes in [10, 11]. However, existing
works in [10, 11] focus on jamming techniques to degrade
the localization performance. So the author in [12] proposed
an optimal power allocation approach based on semidefinite
programs (SDP) to minimize the maximum Cramer-Rao
lower bound (CRLB) or average CRLB in jammed wireless
sensor localization systems.

While for above researches, there are some new chal-
lenges to be considered. First, the authors did not consider
the effect of jammer nodes in [5–9]. If there are jammer
nodes in localization systems, their positions and transmit
power will affect the power allocation strategies of different
nodes. Second, in [10, 11], the authors have investigated the
analogous power allocation problems, but they focused on
jamming techniques. The antijamming techniques through
optimizing the power allocation strategies of anchor and
agent nodes are still challenging tasks. Moreover, thought the
jammer nodes were introduced, the cooperative technique
and the parameter uncertainty did not consider in study [12].
For cooperative localization, it will be more complicated due
to additional measurements. At the same time, the parameter
uncertainty of different nodes should be tackled to guarantee
the localization requirement. So the main contributions of
this paper can be concluded as follows:

(i) We propose optimal power allocation strategies for
cooperation in jammed wireless sensor localization
system, aiming to guarantee the localization require-
ment.

(ii) We develop a robust optimization method to combat
the uncertainty parameters of agent nodes and jam-
mer nodes.

(iii) We exploit that the problem can be transformed
into second-order cone programs (SOCPs) due to
the functional properties of squared position error

bound (SPEB) when considering the cooperative
agent nodes as pseudo anchor nodes.

The rest of this paper is organized as follows. In Section 2,
the system model is described, and the problem to optimize
is formulated. Section 3 studies the uncertainty model and
robust formulation.The robust power allocation strategies are
presented in Section 4. The simulation results are presented
in Section 5. Conclusions are given in Section 6.

Notation. 1n denotes a column vector with all 1’s. The
operation⊗ denotes theKronecker product. ek denotes a unit
vector and the 𝑘-th element is 1 while the others are 0’s. ‖ ⋅ ‖
represents the Euclidean norm of its argument.

2. System Models and Problem Formulation

2.1. System Model. For a two-dimensional jammed wireless
sensor localization system, there are three types of nodes
illustrated in Figure 1.This network includes𝑁𝑎 agent nodes,𝑁𝑏 anchor nodes, and 𝑁𝑗 jammer nodes (the jammer nodes
may designedly or unintentionally distribute in some inter-
ested areas and they will degrade the localization accuracy
of agent nodes in this network. If the jammer nodes are
unintentional introduced into localization systems, they may
be caused by different equipment. Then if the jammer nodes
are designed, they may be employed by enemies), denoted
by N𝑎 = {1, 2, . . . ,𝑁𝑎}, N𝑏 = {1, 2, . . . , 𝑁𝑏}, and N𝑗 ={1, 2, . . . , 𝑁𝑗}, respectively. The position of node 𝑘 is denoted
by p𝑘 for 𝑘 ∈ N𝑎 ∪N𝑏 ∪N𝑗. For arbitrary nodes 𝑘 and 𝑗,
the distance and angel from 𝑘 to 𝑗 are denoted by 𝜑𝑘𝑗 and𝑑𝑘𝑗, respectively. In addition, it is assumed that jammer nodes
transmit zero-mean Gaussian noise [10].

In this paper, each agent node can cooperate with its
neighbors to increase localization accuracy. So each agent
node not only receives signals from anchor nodes but
also from neighbor agent nodes. The connectivity sets can
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be denoted as A𝑘 = {{𝑗 ∈ N𝑎 ∪ N𝑏} | 𝑛𝑜𝑑𝑒
𝑗 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑎𝑔𝑒𝑛𝑡 𝑘} for 𝑘 ∈ N𝑎. Then the received
waveform at agent node 𝑘 from node 𝑗 can be represented
as [10]

𝑟𝑘𝑗 (𝑡) =
𝐿𝑘𝑗

∑
𝑖=1

√𝑥𝑗𝛼𝑖𝑘𝑗𝑠 (𝑡 − 𝜏𝑖𝑘𝑗)

+
𝑁𝑗

∑
ℓ=1

𝛾𝑘ℓ√𝑃𝐽ℓ ]𝑘ℓ (𝑡) + 𝑛𝑘𝑗 (𝑡) ,
(1)

where 𝑡 ∈ [0, 𝑇𝑜𝑏𝑠] and 𝑇𝑜𝑏𝑠 represents the observation
interval, 𝑥𝑗 denotes the transmit power of node 𝑗, 𝑠(𝑡)
represents known transmit signal waveform with Fourier
transform 𝑆(𝑓), 𝛼𝑖𝑘𝑗 and 𝜏𝑖𝑘𝑗 denote the amplitude and time
delay of the 𝑘-th path, and 𝐿𝑘𝑗 denotes the number of
multipath between agent node 𝑖 and agent node 𝑗. Here the
influence of jammer nodes is considered as jamming noise
with a transmit power𝑃𝐽ℓ ,𝑃𝐽ℓ ]𝑘ℓ(𝑡) is assumed as independent
zero-mean white Gaussian random Process, and 𝛾𝑘ℓ denotes
the channel coefficient between agent node 𝑘 and the ℓ-th
jammer node. Moreover, the different noises are modeled as
independent zero-mean white Gaussian processes with the
spectral density level𝑁0/2 and that of ]𝑘ℓ(𝑡) are equal to one.
Then the time delay 𝜏𝑖𝑘𝑗 can be expressed by

𝜏𝑖𝑘𝑗 =
󵄩󵄩󵄩󵄩󵄩p𝑗 − p𝑘

󵄩󵄩󵄩󵄩󵄩 + 𝑏𝑖𝑘𝑗
𝑐 , (2)

where p𝑗 and p𝑘 represent the different positions of nodes,
𝑐 is the propagation speed of signal, and 𝑏𝑖𝑘𝑗 is a range bias
for non-line-of-sight (NLOS), denoting those NLOS anchor
nodes as setA𝑁𝐿

𝑘 . If the 𝑖-th path is line-of-sight (LOS), such
that 𝑏𝑖𝑘𝑗 = 0, denote those nodes as setA𝐿

𝑘 . Here we consider
the cooperative agent node 𝑗 as a pseudo anchor node when
it provides localization information to agent node 𝑘.

2.2. Performance Metric. For agent node 𝑘, the unknown
parameters can be introduced as

𝜃𝑘 ≜ [p𝑇𝑘𝜅𝑇𝑘1 ⋅ ⋅ ⋅ 𝜅𝑇𝑘|A𝑘|] , (3)

where A𝑖 = A𝑁𝐿 ∪ A𝐿 and |A𝑖| is the number of elements
inA𝑖; the vector of multipath parameters 𝜅 can be associated
with 𝑟𝑘𝑗(𝑡) [4], expressed as

𝜅𝑘𝑗

=
{{
{{
{

[𝛼1𝑘𝑗 𝛼2𝑘𝑗 𝑏2𝑘𝑗 ⋅ ⋅ ⋅ 𝛼𝐿𝑘𝑗𝑘𝑗
𝑏𝐿𝑘𝑗
𝑘𝑗
]𝑇 , 𝑗 ∈ A𝐿,

[𝛼1𝑘𝑗 𝑏1𝑘𝑗 𝛼2𝑘𝑗 𝑏2𝑘𝑗 ⋅ ⋅ ⋅ 𝛼𝐿𝑘𝑗𝑘𝑗
𝑏𝐿𝑘𝑗
𝑘𝑗
]𝑇 , 𝑗 ∈ A𝑁𝐿.

(4)

Then let 𝜃 denote the estimation of unknown parameter
vector 𝜃; the mean squared error (MSE) matrix for 𝜃 will
satisfy the following inequality [4]:

E {(𝜃 − 𝜃) (𝜃 − 𝜃)𝑇} ⪰ J−1𝜃 , (5)

where J𝜃 is the Fisher information matrix (FIM). Let p̃𝑘 be the
unbiased position estimation of individual agent node 𝑖, then
(4) implies that

E {(p̃𝑘 − p𝑘) (p̃𝑘 − p𝑘)𝑇} ⪰ [J−1𝜃 ]2×2,𝑘 , (6)

For cooperative localization in jammed wireless sensor sys-
tems, the mean squared error (MSE) of position estimation
for agent k is satisfied the following inequality [4]:

𝐸 {󵄩󵄩󵄩󵄩p̂𝑘 − p𝑘󵄩󵄩󵄩󵄩2} ≥ tr {J−1𝑘 (p𝑘)} , (7)

where J𝑘(p𝑘) denotes the Fisher information matrix (FIM).
tr[⋅] denotes the trace operator and P(p𝑘) = tr{J−1𝑘 (p𝑘)}
is the individual squared position error bound (SPEB) for
agent node 𝑘, which provides a lower bounded for unbiased
estimate.

In addition, the network EFIM J(p) is given in [7]

J (p) = ∑
𝑘∈N𝑎

∑
𝑗∈N𝑎∪N𝑏\{𝑘}

𝑥𝑗𝜉𝑘𝑗u𝑘𝑗u𝑇𝑘𝑗, (8)

with

𝑥𝑗𝜉𝑘𝑗 = 4𝜋
2𝑊2

𝑐2 (1 − 𝜒𝑘𝑗) 𝑆𝐼𝑁𝑅1
𝑘𝑗, (9)

u𝑘𝑗 =
{
{
{
e𝑘 ⊗ [cos𝜑𝑘𝑗 sin 𝜑𝑘𝑗]𝑇 𝑖𝑓 𝑗 ∈N𝑏,
(e𝑘 − e𝑗) ⊗ [cos𝜑𝑘𝑗 sin 𝜑𝑘𝑗]𝑇 𝑖𝑓 𝑗 ∈N𝑎,

(10)

where 𝑥𝑗 is the transmit power of node 𝑗 and 𝜉𝑘𝑗 is called
equivalent ranging coefficient (ERC),𝑊 denotes the effective
bandwidth of node 𝑗, 𝜒𝑘𝑗 ∈ [0, 1] is the path-overlap
coefficient characterizing the effect of multipath propagation
for localization, and e𝑘 and e𝑗 are𝑁𝑎-dimensional vectors [7].
Moreover, the 𝑆𝐼𝑁𝑅𝑙

𝑘𝑗 denotes the energy ratio between the 𝑙-
th component and the noise (here we only consider the line-
of-sight connection between nodes, so 𝑙 = 1.), given by

𝑆𝐼𝑁𝑅𝑙
𝑘𝑗 =

󵄨󵄨󵄨󵄨󵄨𝛼𝑙𝑘𝑗
󵄨󵄨󵄨󵄨󵄨
2 ∫+∞

−∞

󵄨󵄨󵄨󵄨𝑆 (𝑓)󵄨󵄨󵄨󵄨2 𝑑𝑓
𝑁0/2 + ∑𝑁𝑗

𝑛=1
󵄨󵄨󵄨󵄨𝛾𝑘𝑛󵄨󵄨󵄨󵄨2 𝑃𝐽𝑛

, (11)

in which 𝛼𝑙𝑘𝑗 is the amplitude of the 𝑙-th path, 𝑆(𝑓) is the
Fourier transform of transmit signal waveform 𝑠(𝑡), 𝛾𝑘𝑛 is the
channel coefficient between agent node 𝑘 and jammer node
𝑛, and 𝑃𝐽𝑛 is the transmit power of jammer node 𝑛. Without
loss of generality, the ERC can be transformed as [10]

𝜉𝑘𝑗 =
𝜁𝑘𝑗/𝑑𝜌𝑘𝑗

(𝑁0/2 + ∑𝑁𝑗
𝑛=1 𝜁𝑘𝑛 (𝑃𝐽𝑛/𝑑𝜌𝑘𝑛))

, (12)

where 𝜁𝑘𝑗 is a positive coefficient determined by the channel
properties and effective bandwidth; 𝜌 is the pathloss coef-
ficient during transmission. Here we simply recognize the
cooperative agent nodes as pseudo anchor nodes. So the
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Figure 2: An example of uncertainty model for cooperation in a jammed wireless sensor localization system.

individual SPEB can be also obtained by (2). If the agent
nodes 𝑘 and 𝑗 are not connected, the parameter can be set
as 𝜉𝑘𝑗 = 𝜉𝑗𝑘 = 0.

In this paper, it is assumed that jammer nodes transmit
zero-mean Gaussian noise. In practice, this assumption
may be inappropriate for some situations. However, this
assumption is used in our work for following purposes:
First, to best of our knowledge, it is the first time to
develop an antijamming approach through optimizing power
allocation strategies for anchor and agent nodes.Those initial
results can provide a fundamental feasibility for further
studies on this problem. Second, the prior information of
jammer nodes may not be reached for some situations,
so we simplify the transmission of each jammer node as
zero-mean Gaussian noise, which is commonly employed in
[10, 11].

2.3. Power Allocation Formulation. The SPEB is adopted to
be the performance matrix, so it is reasonable to minimize
the total transmit power when each agent node requires the
localization accuracy [6]. Thus, we can formulate the power
allocation problem as

𝑃𝐴 : min
{xa,xb}

1𝑇x𝑎 + 1𝑇x𝑏
𝑠.𝑡. P (𝑝𝑘; x𝑎, x𝑏) ≤ 𝜏𝑘, ∀𝑘 ∈N𝑎

𝑐𝑞 (x𝑎, x𝑏) ≤ 0, 𝑞 = 1, 2, . . . , 𝑄
(13)

where xa and xb are transmit power strategies of agent nodes
and anchor nodes, 𝜏𝑘 is the localization accuracy requirement
for agent node 𝑘, and {𝑐𝑞(⋅)} represents the linear constraints
of each power allocation strategy, such as the individual
power constraints 0 ≤ 𝑥𝑘 ≤ 𝑥max

𝑘 ,∀𝑘 ∈N𝑎∪N𝑏. Note that the
optimization objective and the optimization variables in our
paper are different from the references [10, 11]. Moreover, it is

impracticable to obtain the solution for the proposed problem
through the approaches in [10, 11].

3. Uncertainty Model and Robust Formulation

Due to the imperfect estimates of network parameters, the
robust formulation is necessary for the proposed power
allocation problem. Figure 2 shows an example of uncertainty
model. For any agent node 𝑘, its position can be defined in
an area with center p𝑘 and radius 𝑑𝑘. Let 𝜑𝑘𝑗, 𝜉𝑘𝑗, and 𝑑𝑘𝑗
be the nominal value of angle 𝜑𝑘𝑗, channel coefficient 𝜉𝑘𝑗,
and distance 𝑑𝑘𝑗. For any agent node 𝑘, the actual network
parameters with anchor nodes 𝑗 can be represented by

𝜑𝑘𝑗 ∈ [𝜑𝑘𝑗 − 𝜑𝑘𝑗, 𝜑𝑘𝑗 + 𝜑𝑘𝑗] š F𝑘𝑗, (14)

𝑑𝑘𝑗 ∈ [𝑑𝑘𝑗 − 𝑑𝑘, 𝑑𝑘𝑗 + 𝑑𝑘] š D𝑘𝑗, (15)

Form Figure 2, we can find the angular uncertainty 𝜑𝑘𝑗 fits
sin 𝜑𝑘𝑗 = 𝑑𝑘/𝑑𝑘𝑗 (it is assumed that the radius is larger than
the minimum distance between nodes.). Similarly, the actual
network parameters for anchor nodes 𝑘with agent node 𝑖 can
be also represented by

𝜑𝑘𝑖 ∈ [𝜑𝑘𝑖 − 𝜑𝑘𝑖, 𝜑𝑘𝑖 + 𝜑𝑘𝑖] š F𝑘𝑖, (16)

𝑑𝑘𝑖 ∈ [𝑑𝑘𝑖 − 𝑑𝑘 − 𝑑𝑖, 𝑑𝑘𝑖 + 𝑑𝑘 + 𝑑𝑖] š D𝑘𝑖. (17)

Here we can find from Figure 3 that the angular uncertainty
𝜑𝑘𝑖 fits sin 𝜑𝑘𝑖 = (𝑑𝑘+𝑑𝑖)/𝑑𝑘𝑖.Then for the jammer node 𝑛, the
angular uncertainty will not affect the result, so the network
parameters are given by

𝑑𝑘𝑛 ∈ [𝑑𝑘𝑛 − 𝑑𝑘 − 𝑑𝑛, 𝑑𝑘𝑛 + 𝑑𝑘 + 𝑑𝑛] š D𝑘𝑛. (18)



Wireless Communications and Mobile Computing 5

Agent k

Agent j

kj

dj

kj

kj

kj

dkj

2

dk

Figure 3: A detailed example of uncertainty model for two cooperative nodes.

From (6), we can find that the channel coefficient 𝜉𝑘𝑗 is a
monotonically nonincreasing function of 𝑑𝑘𝑗, 𝑗 ∈ A𝑘 and a
monotonically increasing function of 𝑑𝑘𝑛, 𝑛 ∈ N𝑗. Thus, the
ERC 𝜉𝑘𝑗 is bounded by

𝜉
𝑘𝑗
= 𝜁𝑘𝑗/𝑑𝜌𝑘𝑗
𝑁0/2 + ∑𝑁𝑗

𝑛=1 𝜁𝑘𝑛 (𝑃𝐽𝑛/𝑑𝜌𝑘𝑛)
, (19)

𝜉𝑘𝑗 =
𝜁𝑘𝑗/𝑑𝜌𝑘𝑗

𝑁0/2 + ∑𝑁j
𝑛=1 𝜁𝑘𝑛 (𝑃𝐽𝑛/𝑑

𝜌

𝑘𝑛)
, (20)

𝜉𝑘𝑗 ∈ [𝜉𝑘𝑗, 𝜉𝑘𝑗] š C𝑘𝑗. (21)

In summary, we have the set of actual network parameters as

{𝜑𝑘𝑗, 𝜉𝑘𝑗}𝑘∈N𝑎,𝑗∈A𝑘 ∈ ∏
𝑘∈N𝑎,𝑗∈A𝑘

F𝑘𝑗 ×C𝑘𝑗. (22)

To ensure the localization accuracy, the worst-case should be
considered with parameter uncertainty. Then the worst-case
SPBE is given by

P𝑅 (p𝑘) = max
{{𝜑𝑘𝑗,𝜉𝑘𝑗}∈F𝑘𝑗×C𝑘𝑗}

tr {J−1𝑘 (p𝑘)} . (23)

4. Robust Power Allocation Strategies

To solve the proposed problem, we introduce following
proposition.

Proposition 1. �e SPEB of each agent node is convex about
x = [𝑥1, 𝑥2, . . . , 𝑥𝑁𝑎+𝑁𝑏]. At the same time, it can be formulated
as

P (p𝑘; x) = 4 ⋅ 1𝑇R𝑘x
x𝑇R𝑇

𝑘
Λ𝑘R𝑘x

, (24)

where R𝑘 = diag{𝜉𝑘1, 𝜉𝑘2, . . . , 𝜉𝑘(𝑁𝑎+𝑁𝑏)} and Λ𝑘 is the
symmetric matrix to reflect the topology, given by

Λ𝑘 = 11𝑇 − c (2𝜑𝑘) c (2𝜑𝑘) − s (2𝜑𝑘) s (2𝜑𝑘) , (25)

where

𝜑𝑘 = [𝜑𝑘1 𝜑𝑘2 ⋅ ⋅ ⋅ 𝜑𝑘(𝑁𝑎+𝑁𝑏)]𝑇 , (26)

c (2𝜑𝑘)
= [cos (2𝜑𝑘1) cos (2𝜑𝑘2) ⋅ ⋅ ⋅ cos (2𝜑𝑘(𝑁𝑎+𝑁𝑏))]

𝑇
(27)

s (2𝜑𝑘)
= [sin (2𝜑𝑘1) sin (2𝜑𝑘2) ⋅ ⋅ ⋅ sin (2𝜑𝑘(𝑁𝑎+𝑁𝑏))]

𝑇 .
(28)

Proposition 2. According to the result in Proposition 1, the
proposed power allocation problem can be transformed into the
SOCP, given as

𝑃𝑆𝑂𝐶𝑃
𝐴 : 1𝑇x𝑎 + 1𝑇x𝑏
𝑠.𝑡. 󵄩󵄩󵄩󵄩󵄩A𝑇R𝑘x + b𝑘

󵄩󵄩󵄩󵄩󵄩 ≤ 1𝑇R𝑘x − 2 ⋅ 𝜏−1𝑘 ,
∀𝑘 ∈N𝑎

𝑐𝑙 (x𝑎, x𝑏) ≤ 0, 𝑙 = 1, 2, . . . , 𝐿

(29)

whereA𝑘 = [c(2𝜑𝑘) s(2𝜑𝑘) 0]𝑇 and b𝑘 = [0 0 2𝜏−1𝑘 ]𝑇. Note
that the proofs of Propositions 1 and 2 are similar to Appendix B
and proposition 3 in [6], so here we omit the details for brevity.
�e next task is to address the uncertainty parameters about
angel and ERC.

Form Proposition 1, we can conclude that the SPEB is a
monotonically nonincreasing function of ERC. So it will be
the worst-case for SPEB when the ERC 𝜉𝑘𝑗 = 𝜉𝑘𝑗 for all 𝑗 ∈
A𝑘. In other words, when R𝑘 = diag{𝜉

𝑘1
, 𝜉

𝑘2
, . . . , 𝜉

𝑘(𝑁𝑎+𝑁𝑏)
},

the maximization of SPEB over ERC 𝜉 can be reached.
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Moreover, because the SPEB over angel 𝜑𝑘𝑗 is not an explicit
expression, it will bemore complicated to address the angular
uncertainty.

From (18), we canfind that only the denominator includes
the angel 𝜑𝑘𝑗. Then the angular uncertainty problem can be
transformed to find the lower bound of the denominator.

Proposition 3. In the (18), the denominator can be expressed
by

x𝑇R𝑇
𝑘Λ𝑘R𝑘x = (1𝑇R𝑘x)2 −

󵄩󵄩󵄩󵄩󵄩󵄩[c𝑘 s𝑘]𝑇 R𝑘x
󵄩󵄩󵄩󵄩󵄩󵄩
2 . (30)

�en let

sin 𝜑̆𝑘𝑗 = max
|𝜀|≤𝜑𝑘𝑗

󵄨󵄨󵄨󵄨󵄨2 sin (2𝜑𝑘𝑗 + 𝜀) sin 𝜀
󵄨󵄨󵄨󵄨󵄨 , (31)

cos 𝜑̆𝑘𝑗 = max
|𝜀|≤𝜑𝑘𝑗

󵄨󵄨󵄨󵄨󵄨2 cos (2𝜑𝑘𝑗 + 𝜀) cos 𝜀
󵄨󵄨󵄨󵄨󵄨 , (32)

and
̆c (𝜑𝑘)
= [cos (𝜑̆𝑘1) cos (𝜑̆𝑘2) ⋅ ⋅ ⋅ cos (𝜑̆𝑘(𝑁𝑎+𝑁𝑏))]

𝑇 ,
(33)

̆s (𝜑𝑘) = [sin (𝜑̆𝑘1) sin (𝜑̆𝑘2) ⋅ ⋅ ⋅ sin (𝜑̆𝑘(𝑁𝑎+𝑁𝑏))]
𝑇 , (34)

We can get

P𝑅 (p𝑘, x) ≤ P𝑈 (p𝑘, x) , (35)

P𝑈 (p𝑘, x)

= max
𝑒1,𝑒2=±1

4 ⋅ 1𝑇R𝑘x

(1𝑇R𝑘x)2 −
󵄩󵄩󵄩󵄩󵄩󵄩([ĉ𝑘 ŝ𝑘 0]𝑇 + [𝑒1 ̆c𝑘 𝑒2 ̆s𝑘 0]𝑇)R𝑘x

󵄩󵄩󵄩󵄩󵄩󵄩
2
. (36)

Proof. One has

c𝑘
𝑇R𝑘x = ĉ𝑇𝑘R𝑘x + (c𝑘 − ĉ𝑘)𝑇R𝑘x, (37)

and

max
𝜑𝑘𝑗∈F𝑘𝑗

󵄨󵄨󵄨󵄨󵄨󵄨(c𝑘 − ĉ𝑘)
𝑇R𝑘x

󵄨󵄨󵄨󵄨󵄨󵄨
= max

max |𝜀|≤𝜑𝑘𝑗

󵄨󵄨󵄨󵄨󵄨∑{{cos (2𝜑𝑘𝑗) − cos [2 (𝜑𝑘𝑗 + 𝜀)]}

⋅ 𝜉𝑘𝑗𝑥𝑗}󵄨󵄨󵄨󵄨󵄨
≤ ∑(𝜉𝑘𝑗𝑥𝑗) max

max |𝜀|≤𝜑𝑘𝑗

󵄨󵄨󵄨󵄨󵄨{cos (2𝜑𝑘𝑗) − cos [2 (𝜑𝑘𝑗 + 𝜀)]}
󵄨󵄨󵄨󵄨󵄨

= ∑(𝜉𝑘𝑗𝑥𝑗) sin 𝜑̆𝑘𝑗 = ̆s (𝜑𝑘)𝑇

⋅ R𝑘x.

(38)

So

max
𝜑𝑘𝑗∈F𝑘𝑗

󵄨󵄨󵄨󵄨󵄨c𝑘𝑇R𝑘x
󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨ĉT𝑘R𝑘x

󵄨󵄨󵄨󵄨󵄨 + max
𝜑𝑘𝑗∈F𝑘𝑗

󵄨󵄨󵄨󵄨󵄨󵄨(c𝑘 − ĉ𝑘)
T R𝑘x

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨ĉ𝑇𝑘R𝑘x

󵄨󵄨󵄨󵄨󵄨 + ̆s (𝜑𝑘)𝑇 R𝑘x

≤ max
𝑒1=±1

󵄨󵄨󵄨󵄨󵄨󵄨[ĉ𝑘 + 𝑒1 ̆s (𝜑𝑘)]
𝑇 R𝑘x

󵄨󵄨󵄨󵄨󵄨󵄨 .

(39)

Consequently, we have

max
𝜑𝑘𝑗∈F𝑘𝑗

󵄨󵄨󵄨󵄨󵄨s𝑘𝑇R𝑘x
󵄨󵄨󵄨󵄨󵄨 ≤ max

𝑒1=±1

󵄨󵄨󵄨󵄨󵄨󵄨[ĉ𝑘 + 𝑒1 ̆c (𝜑𝑘)]
𝑇R𝑘x

󵄨󵄨󵄨󵄨󵄨󵄨 . (40)

Thus,

max
𝜑𝑘𝑗∈F𝑘𝑗

{(c𝑘𝑇R𝑘x)2 + (s𝑘𝑇R𝑘x)2}

≤ max
𝑒1,𝑒2=±1

{{[ĉ𝑘 + 𝑒1 ̆c (𝜑𝑘)]𝑇 R𝑘x}
2

+ {[ŝ𝑘 + 𝑒2 ̆s (𝜑𝑘)]𝑇 R𝑘x}
2} .

(41)

Therefore, Proposition 3 is proved.

In summary, combining the uncertainty parameters
about angel and ERC, the upper bound for the worst-case
SPEB can be expressed by

P
󸀠
𝑈 (p𝑘, x)

= max
𝑒1,𝑒2=±1

4 ⋅ 1𝑇𝑘x
(1𝑇R𝑘x)2 −

󵄩󵄩󵄩󵄩󵄩󵄩([ĉ𝑘 ŝ𝑘 0]𝑇 + [𝑒1 ̆c𝑘 𝑒2 ̆s𝑘 0]𝑇)
𝑘
x
󵄩󵄩󵄩󵄩󵄩󵄩
2
. (42)

Then the constraint in (29) can be relaxed and the proposed
problem becomes

𝑃𝑆𝑂𝐶𝑃
𝑅−𝐴 : min

{𝑥𝑎,𝑥𝑏}
1𝑇x𝑎 + 1𝑇x𝑏

𝑠.𝑡. 󵄩󵄩󵄩󵄩󵄩A𝑘R𝑘x + b𝑘󵄩󵄩󵄩󵄩󵄩 ≤ 1𝑇𝑘x − 2 ⋅ 𝜏−1𝑘 ,
∀𝑘 ∈N𝑎

𝑐𝑙 (x𝑎, x𝑏) ≤ 0, 𝑙 = 1, 2, . . . , 𝐿

(43)

where

A𝑘 = [(ĉ (2𝜑𝑘) + 𝑒1 ̆s (𝜑𝑘) (ŝ (2𝜑𝑘) + 𝑒2 ̆c (𝜑𝑘)) 0]𝑇

𝑒1, 𝑒2 = ±1
(44)

and b𝑘 = [0 0 2𝜏−1𝑘 ]𝑇.
Successively, the power allocation strategies can be

described in Algorithm 1.

5. Simulation Result

To evaluate the proposed robust power allocation method,
the simulation scenario is illustrated in Figure 1. Here we
compare the proposed algorithm with the uniform power
management scheme and the nonrobust power allocation
strategy. In this paper, the normalized power is considered
as 𝑥max

𝑘 = 10, 𝑘 ∈N𝑎 ∪N𝑏 and 𝑃𝐽𝑛 = 5, ∀𝑛∪N𝑗. The channel
parameter is given as 𝜍𝑘𝑗 = 100𝑁0/2 for different nodes and𝑁0 = 2. Moreover, the standard optimization solver CVX is
used to address the proposed problem [13].

Figure 4 illustrates the average and worst SPEBs respect
to different normalized total power. First, the cooperative
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Input {𝑑𝑘, 𝑥max
𝑘 }, 𝑘 ∈N𝑎 ∪N𝑏, {𝑑𝑛, 𝑃𝐽

𝑛 }, 𝑛 ∈N𝑗.
Output {𝑥𝑘}, 𝑘 ∈N𝑎 ∪N𝑏.
(Step 1) Estimate the positions of each agent nodes with

each anchor node power strategy 𝑥𝑗 = 𝑥max
𝑗 , 𝑗 ∈N𝑏.

(Step 2) For 𝑘 ∈N𝑎 ∪N𝑏 , solve the 𝑃𝑆𝑂𝐶𝑃
𝑅−𝐴 problem in (43).

(Step 3) Output {𝑥𝑘}, 𝑘 ∈N𝑎 ∪N𝑏.

Algorithm 1: Robust power allocation strategies via SOCP.

SOCP, noncoop, average 
Uniform, noncoop, average
SOCP, noncoop, worst
Uniform, noncoop, worst
SOCP, coop, average
Uniform, coop, average
SOCP, coop, worst
Uniform, coop, worst

 2  3  4  5  6  7  8  91
Total power PT
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12
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EB

 (m
2 )

Figure 4: Different SPEBs with respect to total power consumption.

localization can obtain lower SPEB than the noncooperative
localization in all cases. Second, when consuming the same
power, the proposed method via SOCP can reach a better
performance than the uniform allocation strategy in both
average SPEB and worst SPEB.

Figure 5 shows the average SPEB in different methods
with respect to the total power consumption. In both non-
cooperative and cooperative localization systems, the robust
power allocation strategies have better localization accuracy
than the nonrobust approaches. When the uncertainty size
𝑑 = 0, the problem𝑃𝑆𝑂𝐶𝑃

𝑅−𝐴 will be equal to𝑃𝑆𝑂𝐶𝑃
𝐴 and they have

the same performance for nonrobust and robust approach-
es.

For the same localization accuracy requirement 𝜏𝑘 =
4, ∀𝑘 ∈ N𝑎, the total power consumption and the
worst-case SPEB with respect to the uncertainty size are
demonstrated in Figures 6 and 7. It can be seen that the
cooperative localization consumes less power to achieve the
same localization of noncooperative localization. When the
parameter uncertainty size increases, the power consumption

2
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10

11

12
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er

ag
e S

PE
B 

(m
2 )

No-robust No-coop, r=0
Robust No-coop, r=0
No-robust No-coop, r=0.1
Robust No-coop, r=0.1
No-robust No-coop, r=0.2
Robust No-coop, r=0.2
No-robust coop, r=0
Robust coop, r=0
No-robust coop, r=0.1
Robust coop, r=0.1
No-robust coop, r=0.2
Robust coop, r=0.2

 2  3  4  5  6  71
Total power PT

Figure 5: Different average SPEBs with respect to total power
consumption.

will also increase to ensure the localization requirement in
robust cases. At the same time, the worst-case SPEB will
decrease due to the robust formulation. But in the nonrobust
cases, the worst-case SPEB increase with the uncertainty
size, significantly violating the localization accuracy require-
ment.

6. Conclusion

In this paper, we investigated the robust power allocation
strategies for cooperation in jammed wireless sensor localiza-
tion systems. First, the optimization framework is presented
in jammed cooperative localization systems. Then, the robust
power allocation strategies are developed to address the
parameter uncertainty problem. Moreover, the problem can
be transformed into SOCP and obtained the end solution
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Robust, noncoop
Nonrobust, noncoop
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Figure 6: The total power consumption with respect to the uncertainty size.
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Figure 7: The worst-case SPEB with respect to the uncertainty size.

via conic programming.The simulation results demonstrated
that the cooperative localization can reach better localization
accuracy than noncooperative localization, the power alloca-
tion scheme via SOCP outperforms the uniform scheme, and
the robust formulation approach outperforms the nonrobust
approach.
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