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Abstract: We show that the concept of entropy and the dynamics of gravitation provide the linchpin
in a unified scheme to understand the physics of black hole computers, spacetime foam, dark energy,
dark matter and the phenomenon of turbulence. We use three different methods to estimate the
foaminess of spacetime, which, in turn, provides a back-door way to derive the Bekenstein-Hawking
formula for black hole entropy and the holographic principle. Generalizing the discussion for a static
spacetime region to the cosmos, we find a component of dark energy (resembling an effective positive
cosmological constant of the correct magnitude) in the current epoch of the universe. The conjunction
of entropy and gravitation is shown to give rise to a phenomenological model of dark matter, revealing
the natural emergence, in galactic and cluster dynamics, of a critical acceleration parameter related
to the cosmological constant; the resulting mass profiles are consistent with observations. Unlike
ordinary matter, the quanta of the dark sector are shown to obey infinite statistics. This property
of dark matter may lead to some non-particle phenomenology and may explain why dark matter
particles have not been detected in dark matter search experiments. We also show that there are deep
similarities between the problem of “quantum gravity” (more specifically, the holographic spacetime
foam) and turbulence.

Keywords: entropy; gravitation; spacetime foam; quantum foam; holography; dark energy;
dark matter; infinite statistics; turbulence

1. Introduction

What is the difference between a computer and a black hole? This question is not a joke, but is
an intriguing problem in modern physics [1]. The reason can be traced to the fact that all physical
systems are computers. Every elementary particle stores bits of data, and every time two such particles
interact, those bits are transformed. Black holes are merely the most exotic example of the general
principle that the universe registers and processes information.

The principle is not new. In the 19th century, the founders of statistical mechanics developed
what would later be called information theory to explain the laws of thermodynamics. The key player
in information theory is entropy S, the macroscopic thermodynamic quantity characterizing disorder.
The second law of thermodynamics stipulates that disorder as embodied by entropy always increases.
Entropy S can be written in terms of a microscopic probabilistic quantity W as S = klogW, where k is
the Boltzmann constant. Deeply ingrained in probabilities, S finds its true home in quantum mechanics.
And the confluence of physics and information theory flows from the central maxim of quantum
mechanics: at bottom, nature is discrete. It is the quantum-mechanical nature of information that is
responsible for the computational ability of black holes; without quantum effects, a black hole would
destroy, rather than process, information.

Black holes, though exotic, are, in a way, the simplest gravitational systems. To examine the
properties of black hole computers, we can start with a more general discussion of aspects of quantum
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gravity, the synthesis of quantum mechanics and general relativity. If space-time, like every thing else,
undergoes quantum mechanical fluctuations, then space is composed of an ever-changing arrangement
of bubbles which John Wheeler called spacetime foam, also known as quantum foam [2–4]. As we
will show, quantum fluctuations of spacetime determine the precision with which the geometry of
spacetime can be measured and they limit the power of computers in general, black hole computers
in particular. Applied to cosmology, spacetime foam physics leads to the prediction of a dark energy
component in the current Universe (of the correct magnitude). Combined with ideas from gravitational
thermodynamics and entropic gravity, we are led to a phenomenological model of dark matter in
which a critical acceleration parameter, related to the (effective) cosmological constant, emerges.

This review article on entropy and gravitation is organized as follows: In Section 2.1, we discuss
a gedanken experiment to measure the foaminess of spacetime, more specifically the induced
uncertainties in distance (and time) measurements. In Section 2.2 we rederive these results by the
method of mapping the geometry of spacetime, which also provides a way to derive the holographic
principle. The results for spacetime fluctuations are then applied to the discussion of black holes in
Section 3 to deduce black-hole entropy, lifetime and power as a computer. The discussion for a static
spacetime region with low spatial curvature in Section 2 is generalized, in Section 4, to the case of
an expanding universe, uncovering the constituents of dark energy (of the correct magnitude in the
present era of the universe) in the form of (extremely) long-wavelength quanta which, thus, act like
a positive cosmological constant. In this section we also argue how the results found for spacetime
fluctuations indicate why the universe necessarily contains more than ordinary matter. (One may even
suggest that quantum gravity, in combination with thermodynamics, naturally demands the existence
of a dark sector.) Section 4.2 is used to show that the quanta of dark energy, unlike ordinary matter,
obey an exotic statistics known as infinite statistics (also known as quantum Boltzmann statistics).
Another method to infer (and to check the consistency of the results for) spacetime fluctuations and the
magnitude of dark energy is given in Section 6 by applying causal set theory and unimodular gravity.
Section 7 is devoted to the construction of a phenomenological dark matter model (called Modified
Dark Matter (MDM)) by generalizing gravitational thermodynamics and entropic gravity arguments
to a spacetime with positive cosmological constant (like ours). Then we show that dark matter quanta
(like dark energy) obey infinite statistics and briefly enumerate some of MDM’s quantitative and
qualitative successes (so far). In Section 8, we show some deep similarities between the physics of
spacetime foam and turbulence. We give a short conclusion in Section 8. There are two appendices:
In Appendix A, we discuss energy-momentum fluctuations and some possible tests of spacetime foam.
For completeness we give a short introduction to the subject of infinite statistics in Appendix B.

On notations, the subscript “P” denotes Planck units; thus lP ≡ (h̄G/c3)1/2 ∼ 10−33 cm is the
Planck length and so forth. On units, kB (the Boltzmann constant) and h̄ and c are often put equal to 1
for simplicity.

2. Quantum Fluctuations of Spacetime

At small scales, spacetime is fuzzy and foamy due to quantum fluctuations. One manifestation
of the fluctuations is in the induced uncertainties in any distance measurement. We will derive the
uncertainties or fluctuations by two independent methods [1,5,6] in the following two subsections.

2.1. Gedanken Experiment

Consider the following experiment to measure the distance l between two points. Following
Wigner [7], we put a clock at one of the points and a mirror at the other. By sending a light signal from
the clock to the mirror in a timing experiment, we can determine the distance. However, the quantum
uncertainty in the positions of the clock and the mirror introduces an inaccuracy δl in the distance
measurement. Let us concentrate on the clock (of mass m). If it has a linear spread δl when the light
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signal leaves the clock, then its position spread grows to δl + h̄l(mcδl)−1 when the light signal returns
to the clock, with the minimum at δl = (h̄l/mc)1/2. Hence one concludes that

δl2 &
h̄l
mc

. (1)

One can supplement this requirement with a limit from general relativity [5,6]. To wit, let the
clock be a light-clock consisting of two mirrors (each of mass m/2), a distance d apart, between which
bounces a beam of light. For the uncertainty in distance measurement not to be greater than δl,
the clock must tick off time fast enough so that d/c . δl/c. But d, the size of the clock, must be larger
than the Schwarzschild radius Gm/c2 of the clock, for otherwise one cannot read the registered time.
From these two conditions, it follows that

δl &
Gm
c2 , (2)

the product of which with Equation (1) yields [5,6,8,9]

δl & (ll2
P)

1/3 = lP

(
l

lP

)1/3
. (3)

A gedanken experiment to measure a time interval T gives an analogous expression:
δT & (Tt2

P)
1/3.

2.2. Mapping the Geometry of Spacetime

Since quantum fluctuations of spacetime manifest themselves in the form of uncertainties in the
geometry of spacetime, the structure of spacetime foam can be inferred from the accuracy with which
we can measure that geometry [1]. Let us consider a spherical volume of radius l over the amount of
time T = 2l/c it takes light to cross the volume. One way to map out the geometry of this spacetime
region is to fill the space with clocks, exchanging signals with other clocks and measuring the signals’
times of arrival. This process of mapping the geometry is a sort of computation, in which distances are
gauged by transmitting and processing information; hence the total number of operations is bounded
by the Margolus-Levitin theorem [10] in quantum computation, which stipulates that the rate of
operations for any computer cannot exceed the amount of energy E that is available for computation
divided by πh̄/2. A total mass M of clocks then yields, via the Margolus-Levitin theorem, the bound
on the total number of operations given by (2Mc2/πh̄)× 2l/c. But to prevent black hole formation, M
must be less than lc2/2G. Together, these two limits imply that the total number of operations that
can occur in a spatial volume of radius l for a time period 2l/c is no greater than ∼ (l/lP)

2. (Here
and henceforth we neglect multiplicative constants of order unity and set c = 1 = h̄.) To maximize
spatial resolution, each clock must tick only once during the entire time period. And if we regard
the operations partitioning the spacetime volume into “cells”, then on the average each cell occupies
a spatial volume no less than ∼ l3/(l2/l2

P) = ll2
P, yielding an average separation between neighboring

cells no less than l1/3l2/3
P . This spatial separation is interpreted as the average minimum uncertainty

in the measurement of a distance l, that is, δl & l1/3l2/3
P , in agreement with the result obtained in the

previous subsection. (We will use yet another argument to check this result in Section 5).
As an application, we can now heuristically derive the holographic principle. Since, on the

average, each cell occupies a spatial volume of ll2
P, a spatial region of size l can contain no more

than l3/(ll2
P) = (l/lP)

2 cells. Thus this spacetime foam model corresponds to the case of maximum
number of bits of information l2/l2

P in a spatial region of size l, that is allowed by the holographic
principle [11–14], according to which, the maximum amount of information stored in a region of space
scales as the area of its two-dimensional surface, like a hologram. Accordingly, we will refer to this
spacetime foam model (corresponding to δl & l1/3l2/3

P ) as the holographic spacetime foam model.



Entropy 2019, 21, 1035 4 of 15

3. Clocks, Computers and Black Holes

In this section we will show that the properties of black holes are inextricably intertwined with
those of spacetime. For example, the strange scaling of space fluctuations with the cube root of distances
provide a back-door way to derive the Bekenstein-Hawking formula for black hole memory [15,16].

But let us first consider a clock (technically, a simple and “elementary” clock, not composed of
smaller clocks that can be used to read time separately or sequentially, with a black hole clock being
the limiting example), capable of resolving time to an accuracy of t, for a period of T (the running
time or lifetime of the clock). Then bounds on the resolution time and the lifetime of the clock can be
derived by following an argument very similar to that used above in the analysis of the gedanken
experiment to measure distances. Actually, the two arguments are so similar that one can identify the
corresponding quantities:

δl/c↔ t; l/c↔ T. (4)

It follows that the following limits [7,17,18] hold:

t2 &
h̄T
mc2 , t &

Gm
c3 , T/t3 . t−2

P =
c5

h̄G
, (5)

which are, respectively, the analogues of Equations (1)–(3).
One can easily translate the relations for clocks given above into useful relations for a simple

computer (technically, it refers to a computer designed to perform highly serial computations, that is,
one that is not divided into subsystems computing in parallel—like a black hole computer which acts
as a single unit). Let ν denote the clock rate of the computer, that is, the number of operations per
bit per unit time and I the number of bits of information in the memory space of a simple computer.
Then one can identify the corresponding quantities for simple clocks and simple computers as

1
t
↔ ν;

T
t
↔ I. (6)

Now we can apply what we have learned about clocks and computers to black holes [17,18].
Let us consider using a black hole to measure time. It is reasonable to use the light travel time around
the black hole’s horizon as the resolution time of the clock, that is, t ∼ Gm

c3 ≡ tBH , then from the last of

Equation (5), one immediately finds that T ∼ G2m3

h̄c4 ≡ TBH , recovering Hawking’s result for the black
hole’s lifetime. (Note that the lifetime bound is saturated for black holes.)

Applying the results for TBH and tBH , we readily find the number of bits in the memory space

of a black hole computer as I = TBH
tBH
∼ m2

m2
P
∼ r2

S
l2
P

, where mP = h̄/(tPc2) is the Planck mass, m and

r2
S denote the mass and event horizon area of the black hole respectively. This gives the number of

bits I as the event horizon area in Planck units, in agreement with the identification of black hole
entropy [15,16]. (Recall that entropy S and the number of bits I are related by S = kB Iln2.)

All these results reinforce the conceptual interconnections of the physics underlying spacetime
foam, black holes and computation. It is interesting that all black hole computers obey the universal
relation (obtained by using the computer analogue of the last equation in Equation (5)): Iν2 ∼ c5/h̄G,
which mathematically demonstrates the linkage between information and the theories of special
relativity (where the defining parameter is c), general relativity (G) and quantum mechanics (h̄).

4. Dark Energy

We can now apply the insights we have learned from the fine-scale structure of spacetime to
cosmology and fundamental physics to learn the behavior of cosmic dark energy.
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4.1. Spacetime Foam and Dark Energy

As shown in Section 2.2 on mapping the geometry of space-time, maximum spatial resolution
(which leads to the holographic bound) requires maximum energy density (that is allowed to avoid
the collapse into a black hole) given by

ρ ∼ l/G
l3 = (llP)

−2. (7)

Let us now generalize this discussion for a static spacetime region with low spatial curvature to
the case of an expanding universe by substituting l by 1/H, where H is the Hubble parameter [19–21].

Equation (7) yields the cosmic energy density ρ ∼
(

H
lP

)2
∼ (RH lP)

−2. Next, recall that we have

also shown that the Universe contains I ∼ (RH/lP)
2 bits of information (∼ 10122 for the current

epoch) [19,20]. Hence the average energy carried by each of these bits or quanta is ρR3
H/I ∼ R−1

H .
These long-wavelength bits or “particles” carry negligible kinetic energy. (Note the quotations around
the word “particles”. Such long-wavelength quanta can hardly be called particles. We will simply call
them “particles”.) Since pressure (energy density) is given by kinetic energy minus (plus) potential
energy, a negligible kinetic energy means that the pressure of the unconventional energy is roughly
equal to minus its energy density, leading to accelerating cosmic expansion, in agreement with
observation [22,23]. This scenario is very similar to that of quintessence, but it has its origin in local
small scale physics—specifically, the holographic spacetime foam [24–26]. Thus intriguingly, the
large-scale (∼ RH) physics of dark energy is intimately connected to the small-scale (∼ R1/3

H l2/3
P )

physics of spacetime foam.
Alternatively one can interpret these long-wavelength quanta as constituents of dark energy,

contributing a more or less uniformly distributed cosmic energy density and hence acting as
a dynamical effective cosmological constant

Λ ∼ H2, (8)

a result for the magnitude of Λ that will be checked in the next section.
As a corollary to the above discussion, we can now give a heuristic argument [1,19–21] (based

on quantum gravity consideration) on why the Universe cannot contain ordinary matter only. Start
by assuming the Universe (of size l = RH) has only ordinary matter and hence all information is
stored in ordinary matter. According to the statistical mechanics for ordinary matter at temperature T,
energy scales as E ∼ l3T4 and entropy goes as S ∼ l3T3. Black hole physics can be invoked to require
E . l

G = l
l2
P

. Then it follows that the entropy S and hence also the number of bits I (or the number

of degrees of freedom on ordinary matter) are bounded by . (l/lP)
3/2. We can repeat verbatim

the argument given in Section 2 on the relationship between the bound on the number of degrees
of freedom in a region with volume l3 and δl, the quantum fluctuation of distance l, to conclude

that, if only ordinary matter exists, δl &
(

l3

(l/lP)3/2

)1/3
= l1/2l1/2

P which is much greater than l1/3l2/3
P ,

the result found above from our analysis of the Salecker-Wigner type of gedanken experiments and
implied by the holographic principle. It is now apparent that ordinary matter contains only an
amount of information dense enough to map out spacetime at a level with much coarser spatial
resolution. Thus, there must be other kinds of matter/energy with which the Universe can map out its
spacetime geometry to a finer spatial accuracy than is possible with the use of conventional ordinary
matter. We conclude that a dark sector indeed exists in the Universe! One can draw this conclusion,
independent of recent observations of dark energy and dark matter. We also note that the (∼ (RH/lP)

2)
bits/“particles” of dark energy vastly outnumber the (∼ (RH/lP)

3/2) particles of ordinary matter by
an enormously huge factor of (RH/lP)

1/2 ∼ 1031 for the present observable universe.
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4.2. Dark Energy as Quanta of Infinite Statistics

According to the holographic spacetime foam model, the constituents of dark energy are
quanta/“particles” with very long wavelengths (of the order of Hubble radius RH). Consider
N ∼ (RH/lP)

2 such “particles” and let us assume that they obey Boltzmann statistics in volume
V ∼ R3

H at T ∼ R−1
H , the average energy carried by each “particle”. The partition function

ZN = (N!)−1(V/λ3)N gives the entropy of the system S = N[ln(V/Nλ3) + 5/2], with thermal
wavelength λ ∼ T−1 ∼ RH . But then V ∼ λ3, so S becomes negative unless N ∼ 1 which is equally
nonsensical. A simple solution is to stipulate that the N inside the log in S, i.e, the Gibbs factor (N!)−1

in ZN , must be absent. (This means that the N “particles” are distinguishable!) Then the entropy is
positive: S = N[ln(V/λ3) + 3/2] ∼ N. Now, the only known consistent statistics in greater than 2
space dimensions without the Gibbs factor is the quantum Boltzmann statistics, also known as infinite
statistics [27–29] (See Appendix B for a succinct description of this exotic statistics). Thus we conclude
(at least are led to speculate) that the “particles” constituting dark energy obey infinite statistics, rather
than the familiar Fermi or Bose statistics [21,30]. This is the over-riding difference between dark energy
and conventional matter. Note that here it is the physical non-negativity requirement of entropy for
a gravitational system that leads to this unexpected conclusion.

5. From Causal-Set Theory and Unimodular Gravity to Space-Time Foam

In this section we will rederive the magnitudes of δl (Equation (3)) and Λ (Equation (8)) by using
causal-set theory and (generalized) unimodular gravity. The causal-set theory [31] stipulates that
continuous geometries in classical gravity should be replaced by “causal-sets”, the discrete substratum
of spacetime. In the framework of the causal-set theory, the fluctuation in the number of elements N
making up the set is of the Poisson type, that is, δN ∼

√
N. For a causal set, the spacetime volume Vst

becomes l4
PN. It follows that

δVst ∼ G
√

Vst. (9)

As in Section 2.2, let us consider a spherical volume of radius l over the amount of time T = 2l/c
it takes light to cross the volume. We want to find the minimum of δl; so δVst ∼ T(δl)3 ∼ l(δl)3. With
the help of Equation (9) and

√
Vst ∼ l2, we recover δl & (ll2

P)
1/3.

As a check on Equation (8), we will make use of the theory of unimodular gravity [32–38],
more specifically its generalized action given by the Henneaux and Teitelboim action Sunimod =

−(16πG)−1
∫
[
√

g(R + 2Λ) − 2Λ∂µT µ](d3x)dt. In this theory, Λ/G plays the role of “momentum”
conjugate to the “coordinate”

∫
d3xT0 which can be identified as the spacetime volume Vst. Hence

the fluctuations of Λ/G and Vst obey a quantum uncertainty principle, δVstδΛ/G ∼ 1. This, together
with Equation (9), yields δΛ ∼ V−1/2

st ∼ R−2
H ∼ H2, where we have used ∼ R4

H for the whole
spacetime volume Vst with RH being the Hubble radius. Finally, following Baum [39] and Hawking [40],
we can argue [34–37] that, in the framework of unimodular gravity, Λ vanishes to the lowest order of
approximation (i.e., Λ = 0 dominates the path integral of the Euclidean vacuum functional) and that
its first order correction is positive (at least for the the cosmic epoch corresponding to redshift z <∼ 1.)
We conclude that Λ ∼ +H2, contributing a cosmic energy density ρ given by ρ∼ 1

l2
PR2

H
, as observed.

6. Dark Matter

The standard cosmological model, ΛCDM, has been very successful. But aside from the fact
that dark matter particles have not been (directly) detected, this model suffers some noticeable
shortcomings, such as missing satellite problem, core/cusp problem, too-big-to-fail problem, to name
just a few [41]. There are also two serious problems that CDM proponents have to face: CDM theories
fail to explain in a natural way [42] the baryonic Tully-Fisher relation (the asymptotic velocity-mass
v4 ∝ M relation) [43] for galaxies and the presence of a universal acceleration scale in galactic (and
cluster) dynamics [44,45]. These apparent shortcomings of ΛCDM motivated the author and his
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collaborators to construct the Modified Dark Matter (MDM) [46–48], a phenomenological dark matter
model inspired by the consideration of entropy and gravitation. Our approach can be traced to
the work of Jacobson on gravitational thermodynamics [49] and the work of Verlinde on entropic
gravity [50–52].

6.1. From Gravitational Thermodynamics /Entropic Gravity to MDM

Entropy and gravitation come together in Jacobson’s idea of gravitational thermodynamics.
Essentially Jacobson proposes that gravity is simply a consequence of disorder as quantified by entropy.
Applying Bekenstein’s idea of black hole entropy [15] and Unruh’s formula [53,54] for the temperature
experienced by an accelerating body, Jacobson is able to derive Einstein’s equation. His work is
instrumental in inspiring Verlinde’s formulation of entropic gravity which is appropriately generalized
in the construction of Modified Dark Matter.

In order to appreciate how important a role entropy and gravitation play, let us first summarize
the crucial steps in Verlinde’s derivation of the canonical Newton’s laws.

(I) Newton’s 2nd law ~F = m~a:

(a) Verlinde uses the first law of thermodynamics to propose the concept of entropic force
Fentropic = T ∆S

∆x .
(b) Then he invokes Bekenstein’s original arguments concerning the entropy S of black holes:

∆S = 2πkB
mc
h̄ ∆x.

(c) Finally he applies the formula for the Unruh temperature, kBT = h̄a
2πc , associated with a

uniformly accelerating (Rindler) observer.

(II) Newton’s law of gravity a = GM/r2:

(a) Verlinde considers an imaginary quasi-local (spherical) holographic screen of area A =

4πr2 with temperature T.
(b) Then he uses equipartition of energy E = 1

2 NkBT with N = Ac3/(Gh̄) being the total
number of degrees of freedom (bits) on the screen.

(c) Finally he applies the Unruh temperature formula and E = Mc2.

We can now construct MDM by generalizing Verlinde’s proposal to de Sitter (dS) space
with positive cosmological constant Λ (like our accelerating universe). In such a dS space,
the Unruh-Hawking temperature, as measured by an inertial observer, is TdS = 1

2πkB
a0 where

a0 =
√

Λ/3 ∼ H. The net temperature as measured by the non-inertial observer [55,56] (due to

some matter sources that cause the acceleration a ) is T̃ ≡ TdS+a − TdS = 1
2πkB

[
√

a2 + a2
0 − a0].

Part (I) of Verlinde’s argument can now be generalized to yield the entropic force (in de Sitter space)

Fentropic = T̃∇xS = m[
√

a2 + a2
0 − a0]. For a� a0, we have Fentropic ≈ ma. For the small acceleration

a� a0 regime (where the galactic rotation curves are observed to be flat and the Tully-Fisher relation
holds): Fentropic ≈ m a2

2 a0
, which, after some algebra, can be shown to be equal to FMilgrom ≈ m

√
aN ac

the force law proposed by Milgrom in his theory of modified Newtonian dynamics (MOND) [42]
at the galactic scale. Here we have identified a0 ≈ 2πac, with the critical galactic acceleration ac ∼√

Λ/3 ∼ H ∼ 10−8cm/s2. Thus we have correctly predicted the magnitude of ac (which Milgrom puts
in by hand). From our perspective, MOND is a phenomenological consequence of quantum gravity.
But while MOND is successful in describing galactic dynamics, it is considerably less so at the cluster
and cosmic scales.

Part (II) of Verlinde’s argument is straightforwardly generalized to give 2πkBT̃ = G M̃
r2 , where

M̃ = M + M′ represents the total mass enclosed within the volume V = 4πr3/3, with M′ being some
unknown mass, that is, dark matter. It can be checked that consistency demands M′ = 1

π

( a0
a
)2 M.
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It is noteworthy that dark matter (M′) is related to dark energy (codified in a0) and baryonic

matter (M) in MDM. Succinctly the force law in MDM is given by Fentropic = m[
√

a2 + a2
0 − a0] =

m aN
[

1 + (a0/a)2/π
]
. Recall that, in the small acceleration a � a0 regime, MDM behaves like

MOND. Thus dark matter (M′) of the kind we have in MDM can behave as if there is no (dark)
matter but MOND (which denies the existence of dark matter); for this reason, initially [46–48,57] we
called our dark matter model “MONDian Dark Matter” with which Modified Dark Matter shares the
acronym MDM.

6.2. Quanta of MDM Obey Infinite Statistics

It has been known [58,59] that the MONDian force law can be formulated as being governed by
a nonlinear generalization of Poisson’s equation which describes the nonlinear electrostatics embodied
in the Born-Infeld theory. It is therefore useful to reformulate MDM, via an effective gravitational
dielectric medium, motivated by the analogy between Coulomb’s law in a dielectric medium and
Milgrom’s law for MOND. Starting from the Born-Infeld theory of electrostatics, we can write the

corresponding gravitational Hamiltonian density in the form Hg =
(√

A2 + A2
0 − A0

)
/(4π) in

terms of the local gravitational fields ~A and ~A0. As in the Verlinde approach, let us assume energy
equipartition. Then the effective gravitational Hamiltonian density is equal to Hg = 1

2 kB Teff .
The Unruh temperature formula Teff = h̄

2 π kB
aeff implies that the effective acceleration is given

by aeff =
√

A2 + A2
0 − A0 , which becomes aeff =

√
a2 + a2

0 − a0 upon the identification (with the help

of the equivalence principle) of the local accelerations~a and~a0 with the local gravitational fields ~A and
~A0 respectively. Thus the Born-Infeld inspired force law takes the form of the MDM force law!

Next recall that the equipartition theorem in general states that the average of the Hamiltonian is
given by 〈H〉 = − ∂ log Z(β)

∂β , where β−1 = kBT and Z denotes the partition function. To obtain 〈H〉 =
1
2 kB T per degree of freedom, even for very low temperature, we require Z to be of the Boltzmann
form Z = exp(−β H ) . But this is precisely what is called the infinite statistics. (See Appendix B.)
Thus we have shown that the quanta of MDM (like those of dark energy as shown in Section 4) obey
infinite statistics [57].

6.3. Observational Tests of MDM

Tests at both the galactic and cluster scales [60–63].

Since such tests have been described in a long review article [63], here we do not have to go
into details. Let us just recall that we have found the emergence of a critical acceleration parameter
related to Λ in MDM and it is found in correlations between dark matter and baryonic matter in galaxy
rotation curves. The resulting MDM mass profiles are consistent with observational data at both the
galactic and cluster scales. (We can point out that MDM is more economical than CDM in fitting data
at the galactic scale and it is superior to MOND at the cluster scale.) Logically (and happily as it indeed
turns out to be the case), the same critical acceleration appears both in the galactic and cluster data fits
based on MDM.

There is one technical point that is worth mentioning. It is related to the fact that galaxies and
clusters have very different length scales. Recall that, in our construction of MDM, we re-interpret
acceleration in terms of temperature of the Unruh-Hawking kind. Thus, in principle, the mass profile
M′ = 1

π

( a0
a
)2 M, fixed by the ratio of the corresponding Unruh-Hawking temperatures, can be

altered due to some physical effects associated with a change of scale. For example, in the presence of
gravity, the temperature is not constant in space at equilibrium. As a result, it can be modified due to
the Tolman-Ehrenfest effect [64,65]. Such an effect must be incorporated in working out successfully
the dark matter density profiles [61–63].
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MDM and Cosmology

To apply MDM to cosmology, we must replace M̃ (a non-relativistic source) with the active

gravitational (Tolman-Komar) mass (a fully relativistic source). In that case, we have
√

a2 + a2
0 − a0 =

G ( M(t)+M′(t) )
r̃2 + 4πG p r̃− Λ

3 r̃, where p stands for pressure and r̃ is the physical radius. Then it can
be shown [46] that the Friedmann equations are recovered. Note that if we naively use MOND at the
cluster or cosmic scale, we would be missing the pressure and cosmological constant terms, which
could be significant. This may explain why MOND does not work well at the cluster and cosmic
scales, whereas MDM works at both the galactic and cluster scales and is expected to be completely
compatible with cosmology [46].

MDM and Strong Gravitational Lensing

Let us comment briefly on strong gravitational lensing in the context of MDM and MOND. It is
known that the critical surface density required for strong lensing is Σc =

1
4π

cH0
G F(zl , zs), with F ≈ 10

for typical clusters and background sources at cosmological distances. Sanders argued that, in the
deep MOND limit, ΣMOND ≈ ac/G [66]. Recalling that numerically ac ≈ cH0/6, Sanders concluded
that MOND cannot produce strong lensing on its own: Σc ≈ 5ΣMOND. On the other hand, MDM
mass distribution is expected to be sufficient for strong lensing since the natural scale for the critical
acceleration for MDM is a0 = cH0 = 2πac ≈ 6ac, five to six times that for MOND [67].

MDM as Puffy Dark Matter

As shown above, MDM quanta obey infinite statistics. Hence they are extended (see Appendix B)
and the well-known tools of effective field theory are inadequate. How they interact with ordinary
matter and how they self-interact remain to be investigated. On the other hand, we can heuristically
argue that MDM may enjoy similar properties as DM that are known to have finite size (and hence,
in a way, extended). One such type of DM is the Puffy DM [68].

Collision-less CDM predictions are known to be in tension with small scale structure observations.
Self-interacting dark matter (SIDM) models [41] have been proposed to address these problems of
ΛCDM; and observations seem to require DM self-scatter with a cross-section decreasing with velocity.
Puffy DM naturally satisfies this observational constraint by having a finite size that is larger than its
Compton wavelength. It has been shown to be successful [68] in explaining observations across a wide
range of mass scales spanning dwarf galaxies of the THINGS sample, low-surface-brightness spiral
galaxies and clusters of galaxies including the Bullet Cluster. It remains to be seen if MDM enjoys
similar successes but the prospects look promising.

7. Turbulence and Spacetime Foam

In fully developed turbulence in three spatial dimensions, Kolmogorov scaling specifies the
behavior of n-point correlation functions of the fluid velocity. The scaling [69,70] follows from the
assumption of constant energy flux, v2

t ∼ ε, where v stands for the velocity field of the flow, and
the single length scale ` is given as ` ∼ v · t. This implies that v ∼ (ε `)1/3 , consistent with the
experimentally observed two-point function 〈vi(`)vj(0)〉 ∼ (ε `)2/3δij.

In this section we will show that there are deep similarities between the problem of quantum
gravity and turbulence [71]. The connection between these seemingly disparate fields is provided by
the role of diffeomorphism symmetry in classical gravity and the volume preserving diffeomorphisms
of classical fluid dynamics. Furthermore, in the case of irrotational fluids in three spatial dimensions,
the equation for the fluctuations of the velocity potential can be written in a geometric form [72] of
a harmonic Laplace–Beltrami equation: 1√−g ∂a(

√−ggab∂b ϕ) = 0 . Here, apart from a conformal factor,

the effective space time metric has the canonical ADM form ds2 = ρ0
c [c

2dt2− δij(dxi− vidt)(dxj− vjdt)],
where c is the sound velocity. We observe that in this expression for the metric, the velocity of the fluid
vi plays the role of the shift vector Ni which is the Lagrange multiplier for the spatial diffeomorphism
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constraint (the momentum constraint) in the canonical Dirac/ADM treatment of Einstein gravity:
ds2 = N2dt2 − hij(dxi + Nidt)(dxj + N jdt). Hence in the fluid dynamics context, Ni → vi and
a fluctuation of vi would imply a fluctuation of the shift vector. This is possible provided the metric of
spacetime fluctuates, which is a very loose, intuitive, semi-classical definition of the quantum foam.

Next recall length fluctuations δ` ∼ `1/3`2/3
P . If one defines the velocity as v ∼ δ`

tc
, where the

natural characteristic time scale is tc ∼ `P
c , then it follows that v ∼ c

(
`
`P

)1/3. It is now obvious
that a Kolmogorov-like scaling [69,70] in turbulence has been obtained, that is, the velocity scales as
v ∼ `1/3 and the two-point function has the needed two-thirds power law. Since the velocities play
the role of the shifts, they describe how the metric fluctuates at the Planck scale. The implication is
that at short distances, spacetime is a chaotic and stochastic fluid in a turbulent regime [73] with the
Kolmogorov length l. This interpretation of the Kolmogorov scaling in the quantum gravitational
setting implies that the physics of turbulence may help us understand the quantum fluctuation phase
of strong quantum gravity.

8. Summary and Discussion

We have argued that the laws of physics that determine the precision with which the geometry
of spacetime can be measured also limit the power of and the amount of information contained in
black hole computers. Furthermore, the physics of spacetime fluctuations also yields a(n arguably)
successful dark energy model in terms of an effective positive cosmological constant (related to the
Hubble parameter). Then we show that gravitational thermodynamics/ entropic gravity arguments,
generalized to a spacetime (like ours) with dark energy imitating a (positive) cosmological constant,
lead to a dark matter model which relates dark energy, dark matter, and ordinary (baryonic) matter
and is remarkably consistent with observations at both the galactic and cluster scales. Lastly we show
that turbulence is intimately related to properties of spacetime foam in the gravitational context. These
results spanning black holes, computers, space-time foam, dark energy, dark matter and turbulence are
testimony to the unity of nature. They demonstrate the conceptual interconnections of fundamental
physics which makes crucial (explicit or implicit) use of the concept of entropy and the dynamics
of gravitation.

The confluence of entropy and gravitation has produced some rather novel results. We would
argue that none is more intriguing than the manifestation that both dark energy and dark matter
have their origins in quantum gravity and that their quanta obey infinite statistics while ordinary
particles obey either the Fermi or Bose statistics. This may be the main difference between the dark
sector and ordinary matter. Furthermore, theories of “particles” obeying infinite statistics are non-local.
(See Appendix B). So it is quite conceivable that the non-locality encoded in the holographic principle,
a hallmark of quantum gravity, is related to this non-locality in infinite statistics. (We note that extremal
black holes, another gravitational system, also obey infinite statistics [74,75].)

We conclude this review paper with an observation (perhaps more like a speculation). As the
gravitational thermodynamics and entropic gravity ideas have hinted, gravitation may ultimately
be derived from thermodynamic/entropic arguments. And if we also take seriously the recent
proposal that spacetime geometry/gravitation may simply be an emergent phenomenon from quantum
entanglements, as implied by the conjecture ER = EPR [76] , we can certainly entertain the idea that even
quantum mechanics could be related to thermodynamics in a deep and unfathomable way [77,78]. If so,
then it follows that thermodynamics, Einstein’s “meta-theory”, may hold the key to formulating as well
as understanding the ultimate physical laws; and reigning supreme will be its protagonist—entropy.
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Appendix A. Energy-Momentum Fluctuations and Possible Tests of Spacetime Foam

Appendix A.1. Energy-Momentum Fluctuations

Just as there are uncertainties in spacetime measurements, there are also uncertainties in
energy-momentum measurements due to spacetime foam effects [5,6]. Imagine sending a particle
of momentum p to probe a certain structure of spatial extent l so that p ∼ h̄/l. It follows that

δp ∼ (h̄/l2)δl. Spacetime fluctuations δl & l(lP/l)2/3 can now be used to give δp & p
(

p
mPc

)2/3
and

δE & E
(

E
EP

)2/3
, where EP = mPc2 ∼ 1019 GeV is the Planck energy. Consequently the dispersion

relation is now modified [26] to read E2− p2c2− εp2c2
(

pc
EP

)2/3
= m2c4, for high energies with E� mc2,

with ε ∼ 1. This modified dispersion relation, in turn, leads to a fluctuating speed of light [26,79]:

v = ∂E
∂p ' c

(
1 + 5

6 ε E2/3

E2/3
P

)
, which is energy-dependent and fluctuates around c.

Appendix A.2. Possible Ways to Test Spacetime Foam

There have been numerous proposals to detect spacetime foam, involving astronomical
high-energy gamma ray observations of distant gamma-ray bursts and distant quasars, gravity-wave
interferometers and atom interferometers and so forth. But when the proper averaging is carried
out (even if there is such a formalism), now it appears (at least to this author) that the fluctuations
are perhaps too small to be detectable with the currently available experimental and observational
techniques. Nevertheless, let us briefly discuss several of the proposals to detect spacetime foam.

I. Observing gamma rays from extragalactic sources:
For photons emitted simultaneously from a distant source, we expect an energy-dependent

spread in their arrival times. So one idea is to look for a noticeable spread in arrival times for
high energy gamma rays from distant gamma ray bursts (GRB). This proposal was first made by G.
Amelino-Camelia et al. [79] in another context. But the time-of-flight differences δt increase only with
the cube root of the average overall time t of travel (δt ∼ t1/3t2/3

P ) from the gamma ray bursts to our
detector, leading to a time spread too small to be detectable [26].

Another way is to find out if spacetime foam-induced phase incoherence of light from a distant
galaxy or GRB can make the light wave front noticeably distorted so as to lose the sharp ring-like
interference pattern around the galaxy or GRB; [80,81] or to look for halo structures in the
interferometric fringes induced by fluctuations in the directions of the wave vector of light from
extragalactic sources [82].

More recently, my collaborators and I [83] showed explicitly how wavefront distortions on small
scales cause the image intensity to decay to the point where distant objects become undetectable when
the path-length fluctuations become comparable to the wavelength of the radiation. We noted that
detections of quasars at TeV energies with ground-based Cherenkov telescopes seem to have ruled out
the holographic spacetime foam model (with δl scaling as l1/3l2/3

P ). But this claim is subject to some
caveats. For example, my collaborators and I considered only the instantaneous fluctuations in the
distance between the location of the emission and a given point on the telescope aperture. Perhaps
one should average over both the huge number of Planck timescales during the time it takes light to
propagate through the telescope system and over the equally large number of Planck squares across
the detector aperture. It is then possible that the net fluctuations are exceedingly small; but at the
moment, to the best of my knowledge, there is no formalism for carrying out such averages [84].

II. Measuring the foaminess of spacetime with laser-based interferometers:
For an interferometer with bandwidth centered at frequency f , the relevant length scale

characteristic of the noise due to space-time foam is given by l2/3
P (c/ f )1/3. This uncertainty manifests

itself as a displacement noise (in addition to noises from other sources) that infests the interferometers.
The hope is that modern gravitational-wave interferometers, through future refinements, may reach
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displacement noise level low enough to test a subset of the space-time foam models [85–87]. But this
hope is based on the assumption that spacetime in between the mirrors in the interferometer fluctuates
coherently for all the photons in the beam. However the large beam size in LIGO (compared to the
Planck scale) makes such coherence unlikely.

Appendix B. Infinite Statistics

For completeness, here we list some of the properties of infinite statistics [27–29]. A Fock
realization of infinite statistics is given by aka†

l = δk,l . This algebra, known as Cuntz algebra,
is described by the average of the bosonic and fermionic algebras. Any two states obtained by acting on
|0 > with creation operators in different order are orthogonal to each other: < 0|ai1...aiN a†

jN ...a†
j1|0 >=

δi1,j1...δiN,jN , implying that particles obeying infinite statistics are distinguishable. Accordingly,
the partition function is given by Z = Σe−βH , without the Gibbs factor. It is known that, in infinite
statistics, all representations of the particle permutation group can occur. Theories of particles obeying
infinite statistics are non-local [29,88]. (To be more precise, the fields associated with infinite statistics
are not local, neither in the sense that their observables commute at spacelike separation nor in the
sense that their observables are pointlike functionals of the fields.) In fact, the number operator ni
(which, we recall, satisfies the condition niaj − ajni = −δi,jaj)

ni = a†
i ai + ∑

k
a†

k a†
i aiak + ∑

l
∑
k

a†
l a†

k a†
i aiakal + ..., (A1)

and Hamiltonian and so forth, are both nonlocal and nonpolynomial in the field operators. It is also
known that TCP theorem and cluster decomposition still hold; and quantum field theories with infinite
statistics remain unitary [29].
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