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 is paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and
transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed
as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov
stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at �rst.  e synchronization
error is bounded with some parameters of the triggered function.  en, the completed synchronization can be guaranteed as
a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results.

1. Introduction

In the last few decades, models formed as coupled networks
have been applied to many �elds, such as biology neural
networks, ecological networks, Internet, WWW (World
Wide Web), and so on [1–3]. Consequently, the CDNs
(complex dynamical networks) have attracted much at-
tention from a large number of researchers.  ere were also
some topics in the investigations of CDNs. Among which,
synchronization behaviors is one of the most important
topics due to its applications in communication system,
consensus, distributed computing, formation control and
image processing, and so on [4–6]. Many results about
synchronization of CDNs have been published in recent
years, which could be seen in [7–14] and referenced there
in.

However, there are some networks that cannot be
synchronized by their own internal structure; thus, some
controllers have been designed to force them to synchronize.
Some works have investigated the synchronization of the
complex dynamical networks via control strategies in recent
years [15–18]. For example, in [19], the problem of

synchronization control of complex dynamical networks
subject to nonlinear couplings and uncertainties has been
investigated. In [20], the pinning impulsive synchronization
problem for a class of complex dynamical networks with
time-varying delay has been summarized.  e exponential
synchronization of Lur’e type complex dynamical networks
with uncertain coupling strength has been studied in [21].
Synchronization of CDNs under actuator saturation has
been investigated in [9, 22]. In the above results, signals were
transferred real-time among networks. However, it may not
�t for the real world systems. With the fast development of
digital signal technologies, the sampled-data control has
catered to people by its lower cost than continuous control
approaches. Some results about synchronization of CDNs
with sampled-data controllers were existed.  e �rst result
about the sampled-data synchronization control of CDNs
was investigated in [23]. In [24], the stochastic sampled-data
control method has been applied to the synchronization of
CDNs.  e synchronization problem for a class of complex
delayed dynamical networks by using the sampled-data
feedback control has been studied in [25], in which, re-
ciprocally convex technique and a novel class of integral
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inequalities have also been used. -e sampled-data syn-
chronization problem of chaotic Lur’e systems by using
sampled output of the systems with variable sampling rates
has been studied in [26], and so on.

Results in the aforementioned sampled-data feedback
control, data of controllers often update continuous or
period. Note that the signals of controllers were updated at
a fixed rate regardless, whether they are really necessary or
not. Naturally, there must be some unnecessary updates in
the sampled-data control strategy. Recently, a new effective
strategy has been presented, which was named as event-
triggered control or event-driven control. Under the event-
triggered mechanism, controllers will be updated as well as
the occurrence of a designed event. It is obviously that the
energy can be saved compared with the continuous updating
or period updating. -e analysis of the feedback control
system with event-triggered scheme has drawn much at-
tention in the last few years. For example, event-triggered
sliding mode control for uncertain stochastic systems has
been studied in [27]. In [28], the leader-following consensus
for multiagent systems with general linear dynamics by
means of event-triggered scheme has been investigated. -e
networked synchronization communication for nonlinear
uncertain fractional-order chaotic systems via the event-
triggered control method was investigated in [29]. Two
survey papers survey recent advances in event-triggered
communication and control has been published recently
[30, 31]. -ere were also a number of works concerning the
event-triggered control for the synchronization control
problem, which can be found in [32–39] and references there
in.

According to the above existing works on the event-
triggered consensus of multiagent systems, one can conclude
that the event-triggered conditions are designed to estimate
the change of system’s errors, which means that when errors
converge to zeros, the event would not be triggered. It is
a natural idea to design an event with a threshold about
system’s errors. In [40], a constant event threshold has been
designed, whenmeasure errors are larger than the threshold,
the event would be triggered. After that, a new exponentially
decreasing event threshold condition has been proposed in
[41]. Compared to some other designed events in above
results, this kind of event condition is easier to analyse
stability due to some fine properties of the exponential
function.

-is paper investigates the synchronization problem for
complex dynamical networks; both continuous feedback
control and sampled-data feedback control will be studied.
Inspired by the results of [41, 42], a nonincreasing event
threshold function is used as the condition to define an
event, quasi-synchronization can be reached. -e trajectory
of the error system exponentially converges to the bounded
region which is related to the parameters of the threshold
function. Furthermore, complete synchronization can be
guaranteed with appropriate parameters in the threshold
function.

Indeed, our recent work has been published in [43],
which has considered a simple CDN model without time
delay. However, time delays cannot be unavoidable in real-

world systems, which also could lead to some complex
dynamical behaviors such as chaos. In the CDNs, the time
delays also exist when information is transferring among
nodes. Consequently, this paper will consider the internal
delays of each node and transmission delays among nodes.
-e main contribution of this paper could be concluded as
follows: first, a general CDN model with hybrid time delay
has been considered in this paper, the model in [43] was
a special case of this paper. Second, the synchronization can
be reached under the event-triggered control method, in
which, a kind of monotone nonincreasing threshold func-
tion is applied for the triggered function. -ird, both
continuous feedback and sampled-data feedback method are
studied, and the Zeno behavior has been excluded in the
continuous case.

-e rest of the paper is organized as follows: in Section
2, we introduce some definitions and some lemmas
which are necessary for presenting our results in the
following. -e main results about the synchronization
control problem are presented in Section 3. -en, some
examples are given to demonstrate the effectiveness of
our results in Section 4. Conclusions are finally drawn in
Section 5.

Notations. Let R be the set of real numbers. Rn and Rn1×n2

refer to the n-dimensional real vector and n1 × n2 real
matrices. -e superscript “T” denotes matrix transposition.
In denotes the n-dimensional identify matrix. For a vector
x ∈ Rn, x is defined as ‖x‖ �

����
xTx

√
. For P ∈ Rn×n, λmax(P)

represents the maximum eigenvalue of P. ⊗ denotes Kro-
necker product. C([− τ, 0],Rn) denotes the set of all n-di-
mensional continuous functions defined on the interval
[− τ, 0].

2. Preliminaries

Consider a complex dynamical network with N nodes, and
the dynamics of the ith node is described by

_xi(t) � f t, xi(t), xi t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1 xj(t) − xi(t)􏼐 􏼑

+ c2 􏽘

N

j�1
bijΓ2 xj t − τ2(t)( 􏼁 − xi t − τ2(t)( 􏼁􏼐 􏼑 + ui(t),

(1)

where xi(t) � (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn(i � 1, 2, . . . ,

N) is the state variables of the ith node. f: R × Rn

×Rn⟶ Rn is a continuously vector value function. τ1(t)

∈ [0, τ1] represents the internal delay occurring inside the
node; τ2(t) ∈ [0, τ2] denotes the transmission delay for the
signal sent from jth node to ith node, where τ1, τ2 are known
constants. ui(t) is the control input which will be given later.
Γ1, Γ2 ∈ Rn×n are diagonal matrices with positive diagonal
elements. A � (aij) ∈ RN×N and B � (bij) ∈ RN×N are the
weight configuration matrices. If there is a connection from
node i to node j, then aij � aji > 0, bij � bji > 0; otherwise,
aij � aji � bij � bji � 0. -e diagonal elements of matrix A

and B are defined by
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aii � − 􏽘
N

j�1,j≠i
aij,

bii � − 􏽘

N

j�1,j≠i
bij.

(2)

-e initial values associated with system (1) are
xi(t) � ϕi(t) ∈ C([− τ, 0];Rn)(i � 1, 2, . . . , N), where τ �

max τ1, τ2􏼈 􏼉. Let s(t) be a solution of the isolated dynamic
system:

_s(t) � f t, s(t), s t − τ1(t)( 􏼁( 􏼁. (3)

-e initial values of the isolated dynamic system is
defined as s(t) � ϕs(t) ∈ C([− τ, 0];Rn). Here, s(t) may be
an equilibrium point, a periodic orbit, or even a chaotic
orbit. In this paper, the objective trajectory that the non-
linear dynamical network (1) will be forced to s(t).

Let ei(t) � xi(t) − s(t), for i � 1, 2, . . . , N. According to
(2), one has

􏽘

N

j�1
aijΓ1s(t) � 􏽘

N

j�1
bijΓ2s t − τ2(t)( 􏼁 � 0,

􏽘

N

j�1
bijΓ2xi t − τ2(t)( 􏼁 � 0.

(4)

-en,
_ei(t) � _xi(t) − _s(t)

� 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1 xj(t) − s(t)􏼐

− xi(t) − s(t)( 􏼁􏼁 + c2 􏽘

N

j�1
bijΓ2 xj t − τ2(t)( 􏼁􏼐

− xi t − τ3(t)( 􏼁􏼁 + c2 􏽘

N

j�1
bijΓ1 s t − τ2(t)( 􏼁(

− s t − τ2(t)( 􏼁􏼁 + ui(t)

� 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1 ej(t) − ei(t)􏼐 􏼑

+ c2 􏽘

N

j�1
bijΓ2 ej t − τ2(t)( 􏼁 − ei t − τ2(t)( 􏼁􏼐 􏼑 + ui(t),

(5)

where 􏽥f(t, ei(t), ei(t − τ1(t))) � f(t, xi(t), xi(t − τ1(t))) −

f(t, s(t), s(t − τ1(t))). -en, the error dynamics could be
described by

_ei(t) � 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1ej(t)

+ c2 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 + ui(t).

(6)

-e initial conditions associated with the error systems
are ei(t) � ψi(t) � ϕi(t) − ϕs(t) ∈ C([− τ, 0];Rn). It is easy
to see that the globally exponential synchronization of the

controlled delayed dynamical network (1) is achieved if the
zero solution of the error dynamical system is globally ex-
ponentially stable. To proceed with the following definition,
assumptions and lemmas are given.

Definition 1 (see [13]). -e dynamic network (1) is said to
achieve quasi-synchronization with an error bound ∈> 0, if
there exists a compact set Ω such that, for any
ϕi(t), ϕs(t) ∈ C([− τ, 0];Rn), the error signal ei(t) � xi(t) −

s(t) converges into the set Ω � e(t) ∣ ‖e(t)‖≤∈{ } as
t⟶ +∞.

Assumption 1 (see [20]). For the vector-valued function
f(t, x(t), x(t − τ1(t))), suppose for any x(t) ∈ Rn,
y(t) ∈ Rn, there exists positive constants L1 > 0 and L2 > 0
such that

(x(t) − y(t))
T

f t, x(t), x t − τ1(t)( 􏼁( 􏼁 − f t, y(t), y t − τ1(t)( 􏼁( 􏼁( 􏼁

≤ L1‖(x(t) − y(t))‖
2

+ L2 x t − τ1(t)( 􏼁 − y t − τ1(t)( 􏼁( 􏼁
����

����
2
.

(7)

Assumption 2 (see [44]). For the vector-valued function
f(t, x(t), x(t − τ1(t))), suppose for any x(t) ∈ Rn,
y(t) ∈ Rn, there exists positive constants Lf1 > 0 and Lf20
such that

f t, x(t), x t − τ1(t)( 􏼁( 􏼁 − f t, y(t), y t − τ1(t)( 􏼁( 􏼁( 􏼁
����

����

≤Lf1‖(x(t) − y(t))‖ + Lf2 x t − τ1(t)( 􏼁 − y t − τ1(t)( 􏼁( 􏼁
����

����.

(8)

Lemma 1 (see [45]). For matrices A, B, C, and D with ap-
propriate dimensions, the Kronecker product ⊗ satisfies

(A + B)⊗C � A⊗C + B⊗C;

(A⊗B)(C⊗D) � (AC)⊗ (B D);

A
T ⊗B

T
􏼐 􏼑 � (A⊗B)

T
;

λmax(A⊗B) � λmax(A)λmax(B).

(9)

Lemma 2 (generalized Halanay’s inequality) (see [46]). If
u(t)≥ 0, t ∈ (− ∞ +∞), and

_u(t)≤ c(t) + α(t)u(t) + β(t) sup
t− τ(t)≤ξ≤t

u(ξ) t≥ t0( 􏼁, u(t)

� |Ψ(t)| t≤ t0( 􏼁,

(10)

where Ψ(t) is bounded and continuous for t≤ t0, continuous
functions c(t)≥ 0, β(t)≥ 0, and α(t)≤ 0 for t ∈ [t0, +∞),
τ(t)≥ 0, and if there exists σ > 0 such that

α(t) + β(t)≤ − σ < 0 for t≥ t0, (11)

then we have

u(t)≤
c∗

σ
+ Ge

− μ∗ t− t0( ), t≥ t0, (12)
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where G, c∗, and μ∗ are defined as the following: G �

sup− ∞<ξ≤t0|Ψ(t)|, c∗ � supt0 ≤ t<+∞c(t), and μ∗ � inf
t≥t0

μ(t) :􏼈

μ(t) + α(t) + β(t)eμ(t)τ(t) � 0}.

3. Main Results

In this paper, both continuous feedback controllers and
sampled-data feedback controllers are adopted; meanwhile,
the controller considered in this paper is event-triggered.

3.1. Event-Triggered Control Method Based on Continuous
Feedback. A continuous feedback controller is defined as

ui(t) � − di xi(t) − s(t)( 􏼁. (13)

When we consider the event-triggered strategy, con-
trollers will be updated when an event has been triggered
instead of in a continuous time. More specifically, let us
denote the time instants for ith node when an event happens
by ti

0, ti
1, . . .􏼈 􏼉 with ti

k < ti
k+1. -e controller for ith can be

described as

ui(t) � − di xi t
i
k􏼐 􏼑 − s t

i
k􏼐 􏼑􏼐 􏼑, t ∈ t

i
k, t

i
k+1􏽨 􏼑, (14)

where di is the feedback gain to be determined. Without loss
generality, the first event is generated at time t0 for all nodes.
For ith node, the event-triggering time instants are defined as
follows:

t
i
k+1 � inf t> t

i
k ∣ δi(t)

����
����≥ θ(t)􏽮 􏽯, (15)

where δi(t) � ei(ti
k) − ei(t) and θ(t) �

��������

θ0 + αε− βt

􏽱

is the
exponentially decreasing event threshold with given param-
eters ε> 1, β≥ 0, α> 0, and θ0 ≥ 0. Under controller (14), the
synchronization error system can be rewritten as

_ei(t) � 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1ej(t)

+ c2 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 − diei t

i
k􏼐 􏼑, t ∈ t

i
k, t

i
k+1􏽨 􏼑.

(16)

Theorem 1. Suppose that Assumption 1 holds. If there exist
positive constants p, q, ω1, ω2, and di such that

(1) (a + L1 + p)IN − (2 − ω2)D< 0,

(2) p − q> 0,

where a � 2c1λmax(A⊗ Γ1) + c2ω1λmax((BBT)⊗ (Γ2ΓT
2 )),

D � diag(d1, d2, . . . , dN), and q � L2 + (c2/ω1). Hen, the
controlled delayed dynamical network (1) can achieve quasi-
synchronization, and the trajectory of the error system ex-
ponentially converges to the bounded region Ω(θ0) �

e(t) ∣ ‖e(t)‖≤
���������������
d∗Nθ0/ω2(p − q)

􏽰
􏼈 􏼉, where d∗ � max d1,􏼈

d2, . . . , dN}.

Proof. Considering the following Lyapunov function

V(t) � ‖e(t)‖
2

� 􏽘
N

i�1
ei(t)

����
����
2

� e
T
(t)e(t) � 􏽘

N

i�1
e

T
i (t)ei(t),

(17)

calculating the derivatives of V(t) along the solutions of
system (16), one has

_V(t) � 2􏽘
N

i�1
e

T
i (t) _ei(t)

� 2􏽘
N

i�1
e

T
i

􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1ej(t)⎛⎝

+ c2 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 − diei t

i
k􏼐 􏼑⎞⎠

� 2􏽘

N

i�1
e

T
i (t)􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁

+ 2c1 􏽘

N

i�1
e

T
i (t) 􏽘

N

j�1
aijΓ1ej(t) + 2c2 􏽘

N

i�1
e

T
i (t) 􏽘

N

j�1
bijΓ2ej

· t − τ2(t)( 􏼁 − 2􏽘
N

i�1
die

T
i (t)ei t

i
k􏼐 􏼑.

(18)

Based on Assumption 1, we have

2􏽘
N

i�1
e

T
i (t)􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁≤ L1 􏽘

N

i�1
ei(t)

����
����
2

+ L2 􏽘

N

i�1
ei t − τ1(t)( 􏼁

����
����
2

� L1e
T
(t)e(t) + L2e

T

· t − τ1(t)( 􏼁e t − τ1(t)( 􏼁.

(19)

By using the Kronecker product of the matrices, the
second term and the third term can be written in the fol-
lowing compact matrix form:

2c1 􏽘

N

i�1
e

T
i (t) 􏽘

N

j�1
aijΓ1ej(t) � 2c1e(t)

T
A⊗ Γ1( 􏼁e(t),

2c2 􏽘

N

i�1
e

T
i (t) 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 � 2c2e(t)

T
B⊗Γ2( 􏼁e

· t − τ2(t)( 􏼁.

(20)

According to xTy � yTx � (1/2)(xTy + yTx)≤ (ε/2)

xTx + (1/2ε)yTy, the following inequalities can be derived:
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2c2e(t)
T

B⊗Γ2( 􏼁e t − τ2(t)( 􏼁≤ c2ω1e
T

(t) B⊗ Γ2( 􏼁 B⊗ Γ2( 􏼁
T

􏼐 􏼑e

· (t) +
c2

ω1
e

T
t − τ2(t)( 􏼁e t − τ2(t)( 􏼁

� c2ω1e
T

(t) BB
T

􏼐 􏼑⊗ Γ2Γ
T
2􏼐 􏼑􏼐 􏼑e

· (t) +
c2

ω1
e

T
t − τ2(t)( 􏼁

· IN ⊗ In( 􏼁e t − τ2(t)( 􏼁.

(21)

-e last term will be handled as follows:

− 2􏽘

N

i�1
die

T
i (t)ei t

i
k􏼐 􏼑 � − 2􏽘

N

i�1
die

T
i (t) ei(t) + δi(t)( 􏼁

� − 2􏽘
N

i�1
die

T
i (t)ei(t) − 2􏽘

N

i�1
di e

T
i (t)δi(t)􏼐 􏼑

≤ − 2e
T
(t) D⊗ In( 􏼁e(t) + 􏽘

N

i�1
di

· ω2e
T
i (t)ei(t) +

1
ω2

δT
i (t)δi(t)􏼠 􏼡

� − 2 − ω2( 􏼁e
T
(t) D⊗ In( 􏼁e(t)

+
1
ω2

􏽘

N

i�1
di δi(t)

����
����
2

≤ − 2 − ω2( 􏼁e
T
(t) D⊗ In( 􏼁e(t) +

d∗N

ω2
αε− βt

+
d∗Nθ0
ω2

.

(22)

-en, one can derive

_V(t)≤ L1e
T
(t) IN ⊗ In( 􏼁e(t) + L2e

T
t − τ1(t)( 􏼁 IN ⊗ In( 􏼁e

· t − τ1(t)( 􏼁 + 2c1e(t)
T

A⊗ Γ1( 􏼁e(t)

+ c2ω1e
T
(t) BB

T
􏼐 􏼑⊗ Γ2Γ

T
2􏼐 􏼑􏼐 􏼑e(t) +

c2

ω1
e

T
t − τ2(t)( 􏼁

· IN ⊗ In( 􏼁e t − τ2(t)( 􏼁 − 2 − ω2( 􏼁e
T

(t) D⊗ In( 􏼁e(t)

+
d∗N

ω2
αε− βt

+
d∗Nθ0
ω2

� e
T
(t) L1 IN ⊗ In( 􏼁 + 2c1 A⊗ Γ1( 􏼁 + c2ω1 BB

T
􏼐 􏼑⊗ Γ2Γ

T
2􏼐 􏼑􏼐 􏼑􏼐

− 2 − ω2( 􏼁 D⊗ In( 􏼁􏼁e(t)

+ e
T

t − τ2(t)( 􏼁 L2 IN ⊗ In( 􏼁 +
c2

ω1
IN ⊗ In( 􏼁􏼠 􏼡

· e t − τ2(t)( 􏼁 +
d∗N

ω2
αε− βt

+
d∗Nθ0
ω2

≤ − pV(t) + q sup
t− τ≤s≤t

V(s) + c(t),

(23)

where c(t) � (d∗N/ω2)αε− βt + (d∗Nθ0/ω2); it is easy to get
c∗ � supt0 ≤ t<+∞c(t) � (d∗Nθ0/ω2). By Lemma 2 and
condition (2) of -eorem 1, the following result can be
obtained:

V(t)≤
c∗

p − q
+ Ψe

− μ∗ t− t0( ), t≥ t0, (24)

where Ψ � sup− τ≤s≤t0V(s) and μ∗ is a root of the equation
μ − p + qeτμ � 0. It is obvious that μ∗ > 0; then, we can
conclude that the error system converges exponentially to
the set Ω(θ0) � e(t) ∣ ‖e(t)‖≤

���������������
d∗Nθ0/ω2(p − q)

􏽰
􏼈 􏼉 can be

guaranteed, and according to Definition 1, the controlled
delayed dynamical network (1) can achieve quasi-synchro-
nization. -e proof is thus completed.

In order to exclude Zeno behavior, the following the-
orem shows that the interevent times are lower-bounded by
a positive constant in the following theorem. □

Theorem 2. Suppose that Assumption 2 and all conditions of
Heorem 1 hold. With the triggered instants determined by
(15), the Zeno behavior can be excluded for all plants in the
network, which means that the minimum interevent interval
for all plants is lower-bounded by a positive scalar.

Proof. To prove this theorem, ‖ _ei(t)‖ is bounded which will
be derived at first, and then the Zeno behavior will be
excluded.

By using the triangular inequality, it is easy to get

_ei(t)
����

���� � 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1ej(t)

����������

+ c2 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 − diei t

i
k􏼐 􏼑

����������

≤ f t, xi(t), xi t − τ1(t)( 􏼁( 􏼁 − f t, s(t), s t − τ1(t)( 􏼁( 􏼁
����

����

+ c1 􏽘

N

j�1
aijc1 ej(t)

�����

����� + c2 􏽘

N

j�1
bijc2 ej t − τ2(t)( 􏼁

�����

�����

+ di ei(t)
����

���� + δi(t)
����

����􏼐 􏼑

≤ Lf1 + di􏼐 􏼑 ei(t)
����

���� + Lf2 ei t − τ1(t)( 􏼁
����

����

+ c1 􏽘

N

j�1
aijc1 ej(t)

�����

����� + c2 􏽘

N

j�1
bijc2 ej t − τ2(t)( 􏼁

�����

�����

+ di δi(t)
����

����,

(25)

where c1 � ‖Γ1‖ and c2 � ‖Γ2‖. According to the results in
-eorem 1, we have

ei(t)
����

����≤ ‖e(t)‖≤
����
V(t)

􏽰
≤

��������
c∗

p − q
+ Ψ

􏽳

, t ∈ [− τ, +∞),

(26)

where p, q, c∗, andΨ have been defined in-eorem 1.-en,
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_ei(t)
����

����≤ Lf1 + Lf2 + di − 2c1c1aii − 2c2c2bii􏼐 􏼑

·

��������
c∗

p − q
+ Ψ

􏽳

+ di δi(t)
����

����

≤M + diθ(t),

(27)

where M � (Lf1 + Lf2 + di − 2c1c1aii − 2c2c2bii)������������
c∗/(p − q) + Ψ

􏽰
is a bounded constant. For t ∈ [ti

k, ti
k+1),

noting that δi(t) � 􏽒
t

ti
k

_δi(s)ds � − 􏽒
t

ti
k

_ei(s)ds, one has

δi(t)
����

���� � 􏽚
t

ti
k

_ei(s)ds

��������

��������
≤ 􏽚

t

ti
k

_ei(s)
����

����ds

≤M t − t
i
k􏼐 􏼑 + di 􏽚

t

ti
k

θ(s)ds

≤ M + θ0 + α( 􏼁di( 􏼁 t − t
i
k􏼐 􏼑.

(28)

According to the triggered instants determined by (15),
the next event will not be generated before ‖δi(t∗)‖ � θ(t∗);
denote T � t∗ − ti

k, then,
������������

θ0 + αε− β T+ti
k( )

􏽱

≤ M + θ0 + α( 􏼁di( 􏼁T. (29)

Let q(T) �

������������

θ0 + αε− β(T+ti
k
)

􏽱

− (M + (θ0 + α)di)T, one
has q(0)> 0, and when T⟶ +∞, q(T)< 0; furthermore,
q(T) is monotonically decreasing. -us, to obtain the above
inequality, there must be T≥T∗ > 0. It can be concluded that
there exists a positive lower bound of the minimum
interevent interval. -is completes the proof. □

Remark 1. Note that ε, β, and α in the threshold function
θ(t) cannot affect the region of synchronization error.
However, from (29), one can find that those parameters may
affect the lower bound of the minimum interevent interval.
-e parameter M has included aii and bii, which are de-
termined by the topology of networks.

Remark 2. θ0 is not a parameter of controllers, and it can be
adjusted free. According to the result in -eorem 1, the

synchronization error will be bounded by a parameter re-
lated with θ0. In addition, the complete synchronization can
be guaranteed when θ0 � 0, which will be checked in the
simulation part. Furthermore, when θ0 � 0, the Zeno be-
havior still can be excluded.

3.2. Event-Triggered Control Method Based on Sampled-Data
Feedback. A sampled-data feedback controller is defined as

ui(t) � − di xi(mT) − s(mT)( 􏼁, (30)

where T is the sampling period, m � 0, 1, . . .. Under the
event-triggered strategy, the data will be updated when the
designed event was triggered, instead of in every sampled
time. -e controller for ith can be described as

ui(t) � − di xi t
i
k􏼐 􏼑 − s t

i
k􏼐 􏼑􏼐 􏼑, t ∈ t

i
k, t

i
k+1􏽨 􏼑, (31)

where ti
k � hi

kT means that kth trigger for ith node at hi
k
th

sample, hi
k � 0, 1, . . . and hi

0 � 0. For ith node, the event-
triggering time instants are defined as follows:

h
i
k+1 � min

j∈Z
j> h

i
k

􏼌􏼌􏼌􏼌 δi(jT)
����

����≥ θ((j + 1)T)􏽯,􏽮 (32)

where δs
i ((hi

k + j)T) � ei(ti
k) − ei((hi

k + j)T), j � 1, 2, . . ..
Let us define 􏽢τi(t) � t − (hi

k + j)T for ith node during
t ∈ [(hi

k + j)T, (hi
k + j + 1)T). Under controller (14), the

synchronization error system can be rewritten as

_ei(t) � 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁 + c1 􏽘

N

j�1
aijΓ1ej(t)

+ c2 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 − di ei t − 􏽢τi(t)( 􏼁(

+ δs
i t − 􏽢τi(t)( 􏼁􏼁.

(33)

-e following vector symbols will be used later:

e(t − 􏽢τ(t)) � e1 t − 􏽢τ1(t)( 􏼁, e2 t − 􏽢τ2(t)( 􏼁, . . . , eN t − 􏽢τN(t)( 􏼁( 􏼁
T

,

e t − τ2(t)( 􏼁 � e1 t − τ2(t)( 􏼁, e2 t − τ2(t)( 􏼁, . . . , eN t − τ2(t)( 􏼁( 􏼁,

􏽥F t, e(t), e t − τ1(t)( 􏼁( 􏼁 � 􏽥f t, e1(t), e1 t − τ1(t)( 􏼁( 􏼁, 􏽥f t, ei(t), e2 t − τ1(t)( 􏼁( 􏼁, . . . , 􏽥f t, eN(t), eN t − τ1(t)( 􏼁( 􏼁􏼐 􏼑
T
,

_e(t) � _e1(t), _e2(t), . . . , _eN(t)( 􏼁
T
.

(34)

Theorem 3. He controlled delayed dynamical network (1)
can achieve quasi-synchronization under controller (31),
and the trajectory of the error system exponentially

converges to the bounded region Ω(θ0) � e(t) |{

‖e(t)‖≤
������
Nθ0/2ξ

􏽰
} if there exist matrices P > 0, Q> 0,

R> 0, and S> 0 such that
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Ξ0 �

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15
∗ 0 0 0 Ξ25
∗ ∗ 0 0 Ξ35
∗ ∗ ∗ 0 Ξ45
∗ ∗ ∗ ∗ Ξ055

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (35)

ΞT �

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 0
∗ 0 0 0 Ξ25 0
∗ ∗ 0 0 Ξ35 0
∗ ∗ ∗ 0 Ξ45 0

∗ ∗ ∗ ∗ Ξ(T)
55 0

∗ ∗ ∗ ∗ ∗ Ξ(T)
66

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (36)

where ξ > 0 is a given decay rate,

Ξ11 � 2ξ IN ⊗P( 􏼁 + 2c1 A⊗RΓ1( 􏼁 + DD
T ⊗RR

T
,

Ξ12 � c2 B⊗RΓ2( 􏼁,

Ξ13 � − (D⊗R),

Ξ14 � IN ⊗R( 􏼁,

Ξ15 � − IN ⊗R( 􏼁 + c1 A⊗ SΓ1( 􏼁
T

+
IN ⊗P( 􏼁

2
,

Ξ25 � c2 B⊗ SΓ2( 􏼁
T

,

Ξ35 � − (D⊗ S),

Ξ45 � IN ⊗ S( 􏼁,

Ξ(0)
55 � T IN ⊗Q( 􏼁 − 2 IN ⊗ S( 􏼁 + DD

T ⊗ SS
T

􏼐 􏼑,

Ξ(T)
55 � − 2 IN ⊗ S( 􏼁 + DD

T ⊗ SS
T

􏼐 􏼑,

Ξ(T)
66 � Te

− 2ξT
IN ⊗Q( 􏼁.

(37)

Proof. Considering the following Lyapunov function

V(t) � 􏽘
N

i�1
e

T
i Pei(t) + 􏽘

N

i�1
T − 􏽢τi(t)( 􏼁 􏽚

t

t− 􏽢τi(t)
e
2ξ(s− t)

_e
T
i (s)Q _ei(s)ds,

(38)

calculating the derivatives of V(t) along the solutions of
system (33), one has

_V(t) � 􏽘
N

i�1
e

T
i P _ei(t) + 􏽘

N

i�1

T − 􏽢τi(t)

e2ξt
􏼠 􏼡

′
􏽚

t

t− 􏽢τi(t)
e
2ξs

_e
T
i (s)Q _ei

· (s)ds + 􏽘
N

i�1
T − 􏽢τi(t)( 􏼁 􏽚

t

t− 􏽢τi(t)
e
2ξ(s− t)

_e
T
i (s)Q _ei(s)ds􏼠 􏼡

′
.

(39)

Noting that 􏽢τi

·

(t) � 1 and (dei(t − 􏽢τi(t))/dt) � _ei(t−
􏽢τi(t))(t − 􏽢τi(t))′ � 0, then we have

_V(t) � 􏽘
N

i�1
e

T
i P _ei(t) − 2ξ 􏽘

N

i�1
T − 􏽢τi(t)( 􏼁 􏽚

t

t− 􏽢τi(t)
e
2ξ(s− t)

_e
T
i (s)Q _ei

· (s)ds − 􏽘
N

i�1
􏽚

t

t− 􏽢τi(t)
e
2ξ(s− t)

_e
T
i (s)Q _ei(s)ds + 􏽘

N

i�1
T − 􏽢τi(

· t)( ) _e
T
i (s)Q _ei(s)

≤ 􏽘
N

i�1
e

T
i P _ei(t) − 2ξ 􏽘

N

i�1
T − 􏽢τi(t)( 􏼁 􏽚

t

t− 􏽢τi
(t)

e
2ξ(s− t)

_e
T
i (s)Q _ei

· (s)ds − e
− 2ξT

􏽘

N

i�1
􏽚

t

t− 􏽢τi(t)
_e
T
i (s)Q _ei(s)ds + 􏽘

N

i�1

· T − 􏽢τi(t)( 􏼁 _e
T
i (s)Q _ei(s).

(40)

-us, by using Kronecker product, we have

_V(t) + 2ξV(t) ≤ e
T
(t) IN ⊗P( 􏼁 _e(t) + _e

T
(t) TIN − 􏽢τ(t)( 􏼁⊗Q( 􏼁 _e

· (t) − e
− 2ξT

􏽘

N

i�1
􏽚

t

t− 􏽢τi
(t)

_e
T
i (s)Q _ei(s)ds

+ 2ξe
T
(t) IN ⊗P( 􏼁e(t).

(41)

Let ωi(t) � (1/􏽢τi(t)) 􏽒
t

t− 􏽢τi(t)
_ei(s)ds; according to Jen-

sen’s inequality, one has

􏽚
t

t− 􏽢τi
(t)

_e
T
i (s)Q _ei(s)ds≥ 􏽢τi(t)ωT

i (t)Qωi(t). (42)

-us,

− e
− 2ξT

􏽘

N

i�1
􏽚

t

t− 􏽢τi
(t)

_e
T
i (s)Q _ei(s)ds≤ − e

− 2ξT
􏽘

N

i�1
􏽢τi(t)ωT

i (t)Qωi

· (t) � − e
− 2ξTωT

(t)

· (􏽢τ(t)⊗Q)ω(t),

(43)

where ωT(t) � [ωT
i (t),ωT

2 (t), . . . ,ωT
N(t)]. From (33), the

following equality can be derived:

0 � 􏽘

N

i�1
2 e

T
i (t)R + _e

T
i (t)S􏽨 􏽩 􏽥f t, ei(t), ei t − τ1(t)( 􏼁( 􏼁􏽨

+ c1 􏽘

N

j�1
aijΓ1ej(t) + c2 􏽘

N

j�1
bijΓ2ej t − τ2(t)( 􏼁 − di ei(

· t − 􏽢τi(t)( 􏼁 + δs
i t − 􏽢τi(t)( 􏼁􏼁 − _ei(t)􏼃.

(44)

By using Kronecker product again, we have
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0 � 2e
T
(t) IN ⊗R( 􏼁􏽥F + 2c1e

T
(t) A⊗RΓ1( 􏼁e(t) + 2c2e

T
(t) B⊗RΓ2( 􏼁e t − τ2(t)( 􏼁

− 2e
T

(t)(D⊗R)δs
(t − 􏽢τ(t)) − 2e

T
(t)(D⊗R)e(t − 􏽢τ(t)) − 2e

T
(t) IN ⊗R( 􏼁 _e(t)

+ 2 _e
T

(t) IN ⊗ S( 􏼁􏽥F + 2c1 _e
T
(t) A⊗ SΓ1( 􏼁e(t) + 2c2 _e

T
(t) B⊗ SΓ2( 􏼁e t − τ2(t)( 􏼁

− 2 _e
T

(t)(D⊗ S)δs
(t − 􏽢τ(t)) − 2 _e

T
(t)(D⊗ S)e(t − 􏽢τ(t)) − 2 _e

T
(t) IN ⊗ S( 􏼁 _e(t).

(45)

Among the aforementioned equation, note that

− 2e
T

(t)(D⊗R)δs
(t − 􏽢τ(t))≤ e

T
(t)(D⊗R)(D⊗R)

T
e(t) + δs

(t − 􏽢τ(t))
����

����
2
, (46)

− 2 _e
T
(t)(D⊗ S)δs

(t − 􏽢τ(t))≤ _e
T
(t)(D ⊗R)(D⊗ S)

T
_e(t) + δs

(t − 􏽢τ(t))
����

����
2
. (47)

We can find from (41), (43), and (45)–(47) that

_V(t) + 2ξV(t)≤ e
T

(t) IN ⊗P( 􏼁 _e(t) + _e
T
(t) TIN − 􏽢τ(t)( 􏼁⊗Q( 􏼁 _e(t) + 2ξe

T
IN ⊗P( 􏼁(t)e(t)

− e
− 2ξTωT

(t)(􏽢τ(t)⊗Q)ω(t) + 2e
T
(t) IN ⊗R( 􏼁􏽥F + 2c1e

T
(t) A⊗RΓ1( 􏼁e(t)

+ 2c2e
T
(t) B⊗RΓ2( 􏼁e t − τ2(t)( 􏼁 − 2e

T
(t)(D⊗R)e(t − 􏽢τ(t))

− 2e
T
(t) IN ⊗R( 􏼁 _e(t) − 2 _e

T
(t)(D⊗ S)e(t − 􏽢τ(t)) − 2 _e

T
(t) IN ⊗ S( 􏼁 _e(t)

+ 2 _e
T
(t) IN ⊗ S( 􏼁􏽥F + 2c1 _e

T
(t) A⊗ SΓ1( 􏼁e(t) + 2c2 _e

T
(t) B⊗ SΓ2( 􏼁e t − τ2(t)( 􏼁

+ e
T
(t)(D ⊗R)(D⊗R)

T
e(t) + _e

T
(t)(D ⊗R)(D⊗ S)

T
_e(t) + 2 δs

(t − 􏽢τ(t))
����

����
2
.

(48)

-en, one has
_V(t) + 2ξV(t)≤ ηT

(t)Ξη(t) + 2 δs
(t − 􏽢τ(t))

����
����
2
, (49)

where η(t) � [eT(t), eT(t − τ2(t)), eT(t − 􏽢τ(t)), 􏽥F, _eT (t),ωT

(t)].

Ξ �

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 0

∗ 0 0 0 Ξ25 0

∗ ∗ 0 0 Ξ35 0

∗ ∗ ∗ 0 Ξ45 0

∗ ∗ ∗ ∗ Ξ55 0

∗ ∗ ∗ ∗ ∗ Ξ66

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)

where Ξ55 � (TIN − 􏽢τ(t))⊗Q − 2(IN ⊗ S) + (DDT ⊗ SST),
Ξ66 � e− 2ξT(􏽢τ(t)⊗Q), and Ξij has been given in -eorem 3.
Let η0(t) � [eT(t), eT(t − τ2(t)), eT(t − 􏽢τ(t)), 􏽥F, _eT(t)], and
based on the definition of Ξ0 and ΞT, we have

TIN − 􏽢τ(t)

T
ηT
0 (t)Ξ0η0(t) +

􏽢τ(t)

T
ηT

(t)ΞTη(t) � ηT
(t)Ξη(t).

(51)

-us, (35) and (36) imply that Ξ< 0; based on the
definition of event-triggered instants, we have

_V(t)≤ − 2ξV(t) + Nαε− βt
+ Nθ0. (52)

According to Lemma 2, we have

V(t)≤
Nθ0
2ξ

+ Ψe
− 2ξ t− t0( ), (53)

where Ψ � sup
− τ≤s≤t0

V(s). -is completes our proof. □

Remark 3. Note that the event-triggered instants ti
k will be

updated in some sampled instants; thus, it is easy to see the
Zeno behavior will be excluded.Meanwhile, there were some
published results which had investigated the synchroniza-
tion problem about complex dynamical networks under the
sampled control [23–25]. Compared with those results, the
event-triggered strategy can reduce transmission frequency.

Remark 4. Some conditions formed as LMI have been
obtained to guarantee the quasi-synchronization of CDNs
under event-triggered with sampled data in -eorem 3. In
which, the conditions can be checked by LMI toolbox of
Matlab software directly and easily. However, the sampled
period T needs to be given in the conditions; otherwise, the
conditions cannot be regarded as LMI. It is obviously that
the sampled-data period T cannot be chosen arbitrarily.
-us, it would be a significant problem that how to de-
termine the maximum and minimum of sampled period T.
-is will be our future work.
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Remark 5. -is paper has investigated a CDN model with
time-varying delays. However, it is not evident that how the
time delays effect the synchronization behavior. Indeed, in the
case of continuous data, we have used the generalized Hala-
nay’s inequality; this powerful tool just requires time delays to
be bounded and the time delays can effect the rate of con-
vergence μ∗. In the case of sampled data, to deal with the time
delay, we have applied the well-known free-weighting matrix
method, and one can see (41) and (43) in the proof of-eorem
3, then, the time delay has not appeared on the conditions.
However, the conditions formed as LMIs in -eorem 3 are
conservative. It is an interesting problem to analyse how can
the time delays affect the synchronization in the sampled-data
case and how to reduce the conservatism of the conditions in
-eorem 3. -ey would be our future works.

4. Numerical Simulations

In this section, some examples will be given to check our
theoretical result. An isolated dynamic behavior is described
by a chaotic-delayed neural network at first. -en, quasi-
synchronization for a coupled network under event-trig-
gered controllers will be displayed. Finally, complete syn-
chronization of the network under event-triggered
controllers will be shown. Both continuous and sampled-
data methods have been considered in the following ex-
amples. All the simulation results are based on the well-
known fourth order Runge–Kutta method. -e step in the
simulation is set as 0.01. As for the sampled data, we used the

input-delay method in the simulation, which means that
τ(t) � t − tk, then tk � t − τ(t); consequently, the sampled-
data system becomes to a time-delayed system, which also
could be simulated by the Runge–Kutta method.

4.1. He Isolated Dynamic Behaviors. Suppose that the iso-
lated dynamic behaviors can be described by the following
delayed neural network:

_s(t) � f t, s(t), s t − τ1(t)( 􏼁( 􏼁 � Cs(t) + B1g1(s(t)) + B2g1

· s t − τ1(t)( 􏼁( 􏼁,

(54)

where s(t) � (s1(t), s2(t))T ∈ R2, g1(s(t)) � g2(s(t)) �

(tanh(s1(t)), tanh(s2(t)))T, τ1 � 1, and

C �
− 1 0

0 − 1
􏼠 􏼡,

B1 �
2 − 0.1

− 5 4.5
􏼠 􏼡,

B2 �
− 1.5 − 0.1

− 0.2 − 4
􏼠 􏼡.

(55)

-e delayed neural network’s state has a chaotic attractor
as shown in Figure 1 with initial condition
ϕs(t) � [0.1, 0.1]T for t ∈ [− 1, 0].

Let us prove f(t, x(t), x(t − τ1(t))) conforms with
Assumption 1. In fact, for any x(t) ∈ Rn, y(t) ∈ Rn,

(x(t) − y(t))
T

f t, x(t), x t − τ1(t)( 􏼁( 􏼁 − f t, y(t), y t − τ1(t)( 􏼁( 􏼁( 􏼁

� (x(t) − y(t))
T

C(x(t) − y(t)) + B1 g1(x(t)) − g1(y(t))( 􏼁 + B2 g2 x t − τ1( 􏼁( 􏼁 − g2 y t − τ1( 􏼁( 􏼁( 􏼁( 􏼁

� (x(t) − y(t))
T C + CT

2
􏼠 􏼡(x(t) − y(t)) +(x(t) − y(t))

T
B1 g1(x(t)) − g1(y(t))( 􏼁 +(x(t) − y(t))

T
B2 g2 x t − τ1( 􏼁( 􏼁(

− g2 y t − τ1( 􏼁( 􏼁􏼁

≤ λmax
C + CT

2
+ B1

����
���� +
∈ B2

����
����

2
􏼠 􏼡I2􏼠 􏼡(x(t) − y(t))

T
(x(t) − y(t)) +

B1
����

����

2
g1(x(t)) − g1(y(t))( 􏼁

T
g1(x(t)) − g1(y(t))( 􏼁

+
B2

����
����

2∈
g2 x t − τ1( 􏼁( 􏼁 − g2 y t − τ1( 􏼁( 􏼁( 􏼁

T
g2(x(t)) − g2(y(t))( 􏼁

≤ λmax
C + CT

2
+ B1

����
���� +
∈ B2

����
����

2
􏼠 􏼡I2􏼠 􏼡(x(t) − y(t))

T
(x(t) − y(t)) +

B2
����

����

2∈
x t − τ1( 􏼁 − y t − τ1( 􏼁( 􏼁

T
x t − τ1( 􏼁 − y t − τ1( 􏼁( 􏼁.

(56)

Let ∈� 5, L1 � λmax(((C + CT)/2) + (‖B1‖ + (∈‖B2‖/2))

I2) � 15.9335, and L2 � (‖B2‖/2∈) � 0.4009; then, As-
sumption 1 can be guaranteed. Time delay can affect the
dynamics of the node, and Figure 2 shows the different
behaviors with different time delays.

4.2. Quasi-Synchronization for a Coupled Network under
Event-Triggered Controllers. Consider the information
interactive network with a communication graph given in
Figure 3, and the corresponding adjacent matrix G is given
by
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Figure 2: Different behaviors of s(t) with different time delays.
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G �

0 1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (57)

where the weight configuration matrices A and B are A �

15G and B � 0.01G, respectively. We also defined the inner
coupling matrix Γ1 � 0.02Γ and Γ2 � 0.05Γ, where

Γ �
0.2 0

0 0.2
􏼠 􏼡. (58)

A constant coupled-delay τ2 � 0.1 has been considered
in this example, and c1 � 1.8, c2 � 1. Without the control,
the network cannot be synchronized to s(t) by itself, and the
state of its nodes and s(t) can be seen in Figure 3.

Now, let us consider the event-triggered control. Let
θ0 � 0.5, α � 0.1, β � 0.5, and ε � e for the threshold
function θ(t). Also, given D � 20I20. -e following two
examples are shown quasi-synchronized for a coupled
network under event-triggered controllers with continuous
feedback and sampled-data feedback, respectively (Figure 4).

From above parameters, one can calculate
λmax((2c1λmax(A⊗Γ1) + c2ω1λmax((BBT)⊗ (Γ2ΓT2 )) + L1 + p)

− (2 − ω2)D) � − 0.8687< 0 with ω1 � ω2 � 1, p � 2. Let
q � 1.4, then, all conditions in -eorem 1 can be satisfied.
Noting that, under these parameters, the quasi-synchroni-
zation can be derived, the errors are bounded. -e syn-
chronized states and synchronization errors are shown in
Figures 5 and 6, respectively. Figure 7 shows the events of
each node in time interval [0, 1]. -e evolution of mea-
surement errors under the event-triggeredmethods has been
displayed in Figure 8.

Let sampled data period T � 0.09; based on LMI toolbox
of Matlab, there exists P,Q, R, and S can satisfy conditions in

1

2

34

5

6

7

8 9

10

Figure 3: Interaction graph of 10 nodes.
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Figure 5: Time evolution of nodes’ states xi1(t), xi2(t), and s(t)

with θ0 � 0.5 under continuous feedback, i � 1, 2, . . . , 10.
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Figure 6: Time evolution of synchronization errors ei1(t), ei2(t)

with θ0 � 0.5 under continuous feedback, i � 1, 2, . . . , 10.
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-eorem 2.-en, quasi-synchronization can be derived, and
the errors are bounded. -e synchronized states and syn-
chronization errors are shown in Figures 9 and 10, re-
spectively. Figure 11 shows the events of each node in time
interval [5, 10]. -e evolution of measurement errors under
the event-triggered methods has been displayed in Figure 12.

In the following, we will compare the event-triggered
method that has been used in this paper with some existed
results. We will consider three cases: the sampled-data
control method, event-triggered method with constant event
threshold and based on sampled data, and event-triggered
method with exponentially decreasing event threshold
function and based on sampled data. -e number of triggers
with corresponding parameters has been listed in Table 1, in
which we set the maximum of time as 10, and other pa-
rameters which are not mentioned in the table are the same
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Figure 7: -e events of each node with θ0 � 0.5 under continuous feedback, i � 1, 2, . . . , 10.
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Figure 8: Evolution of measurement error and threshold with θ0 �

0.5 under continuous feedback, i � 1, 2, . . . , 10.
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Figure 10: Time evolution of synchronization errors ei1(t), ei2(t)

with θ0 � 0.5 under sampled-data feedback, i � 1, 2, . . . , 10.
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as above.-e synchronization errors are shown in Figure 13,
respectively.

Remark 6. According to above table, one has the number of
trigger under the event-triggered method that has been used
in this paper which is less than some other methods. It is
obvious that less trigger times can provide a less update of
information, which could reduce channel blockage. In

addition, from Figure 13, one can conclude that there is
a better synchronization performance which can be obtained
under our method.

4.3. Complete Synchronization of a Small-World Network
under Event-Triggered Controllers. A small-world network
with N � 200 nodes will be considered in this simulation.
-e small-world network is generated by taking initial
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Figure 12: Evolution of measurement error and threshold with θ0 � 0.5 under sampled-data feedback, i � 1, 2, . . . , 10.

Table 1

T θ0 α β -e number of trigger (sum of all nodes)

0.05 0 0 0 2000
0.05 0 1 0 1134
0.05 0 0.01 0 1277
0.05 0 0.5 0.5 1076
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Figure 11: -e events of each node with θ0 � 0.5 under sampled-data feedback, i � 1, 2, . . . , 10.
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neighboring nodes k � 8 and the edge adding probability
p � 0.1. Suppose that the adjacent matrix of the small-world
network is G, which is defined as follows: if there is a con-
nection between nodes i and j, then gij � gji � 1; otherwise
gij � gji � 0. In this example, the weight configuration
matrices A and B are A � 15G and B � 0.01G, respectively.
We also defined the inner coupling matrix Γ1 � 0.02Γ and
Γ2 � 0.05Γ, where

Γ �
0.01 0

0 0.02
􏼠 􏼡. (59)

A constant coupled-delay τ2 � 0.1 has been considered
in this example, and c1 � 1.8, c2 � 1. Without the control,
the network cannot be synchronized to s(t) by itself, and the
state of its nodes and s(t) can be seen in Figure 14.

Now, let us consider the event-triggered control. Let
θ0 � 0, α � 0.1, β � 0.5, and ε � e for the threshold function
θ(t). Also, given D � 25I200. -en, one can calculate
λmax((2c1λmax(A⊗ Γ1) + c2ω1λmax((BBT)⊗ (Γ2ΓT2 )) + L1 + p)

− (2 − ω2)D) � − 0.4< 0 with ω1 � ω2 � 0, p � 2. Let q � 1.4,
then, all conditions in -eorem 1 can be satisfied. Noting
that, under these parameters, the completed synchronization
can be derived due to θ0 � 0. -e synchronized states and

synchronization errors under continuous feedback and
sampled-data feedback with T � 0.09 are shown in
Figures 15–18, respectively.
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T = 0.05; θ0 = 0; α = 0; β = 0.5.
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Figure 13: Time evolution of synchronization errors ei1(t), ei2(t) with different parameters in the above table, i � 1, 2, . . . , 10.
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Figure 14: Time evolution of nodes’ states xi1(t), xi2(t), and s(t)

without the control, i � 1, 2, . . . , 200.
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5. Conclusion

In this paper, the event-triggered synchronization problem
of the complex dynamical network has been studied. Both
continuous feedback and sampled-data feedback control
methods have been studied. In the case of continuous
feedback control approach, the Zeno behavior has been
excluded. -e main theoretical results are derived based on
Lyapunov stability and generalized Halanay’s inequality. In
addition, both internal delay and coupling delay have been
considered in the complex dynamical model. -e given
numerical examples illustrate the corresponding theoret-
ical analysis. Extending the proposed approach to the
consensus of multiagent systems will be our future works.
In addition, in the sampled-data case, this paper just has
considered the periodic situation. However, it would be
more challenging and interesting to study the event-trig-
gered method based on aperiodic sampled data. Some
external disturbances also could be taken into account,
such as impulsive and stochastic noise. All of them will be
our future works.
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Figure 16: Time evolution of synchronization errors ei1(t), ei2(t)

under continuous feedback, i � 1, 2, . . . , 200.
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Figure 17: Time evolution of nodes’ states xi1(t), xi2(t), and s(t)

under sampled-data feedback, i � 1, 2, . . . , 200.
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Figure 18: Time evolution of synchronization errors ei1(t), ei2(t)

under sampled-data feedback, i � 1, 2, . . . , 200.
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