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The rhesus macaque is an important model species in several
branches of science, including neuroscience, psychology, ethol-
ogy, and several fields of medicine. The utility of the macaque
model would be greatly enhanced by the ability to precisely
measure its behavior, specifically, its pose (position of multiple
major body landmarks) in freely moving conditions. Existing
approaches do not provide sufficient tracking. Here, we de-
scribe OpenMonkeyStudio, a novel deep learning-based marker-
less motion capture system for estimating 3D pose in freely mov-
ing macaques in large unconstrained environments. Our system
makes use of 62 precisely calibrated and synchronized machine
vision cameras that encircle an open 2.45m×2.45m×2.75m en-
closure. The resulting multiview image streams allow for novel
data augmentation via 3D reconstruction of hand-annotated im-
ages that in turn train a robust view-invariant deep neural net-
work model. This view invariance represents an important ad-
vance over previous markerless 2D tracking approaches, and
allows fully automatic pose inference on unconstrained natural
motion. We show that OpenMonkeyStudio can be used to ac-
curately recognize actions and track two monkey social inter-
actions without human intervention. We also make the train-
ing data (195,228 images) and trained detection model publicly
available.
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Introduction

Rhesus macaques are one of the most important model or-
ganisms in the life sciences, e.g. (1–3). They are invaluable
stand-ins for humans in neuroscience and psychology. They
are a standard comparison species in comparative psychol-
ogy. They are a well studied group in ethology, behavioral
ecology, and animal psychology. They are crucial disease
models for infection, stroke, heart disease, AIDS, and sev-
eral others. In all of these domains of research, characteriza-
tion of macaque behavior provides an indispensable source of
data for hypothesis testing. Macaques evolved to move grace-
fully through large three-dimensional spaces (3D) using four
limbs coordinated with head, body, and tail movement. The
details of this 3D movement provide a rich stream of infor-
mation about the macaque’s behavioral state, allowing us to
draw inferences about the interaction between the animal and
its world (4–9).

Fig. 1. A multi-stage convolutional pose machine (10) is used to detect body
landmarks of macaque from an image. It takes as an input a 368×368×3 image
(368×368 resolution with three color channels) and outputs 46×46×14 response
maps (13 landmarks and one background) where the location of maximum re-
sponse corresponds to the landmark location. The detected landmarks from multi-
view images are triangulated in 3D given the camera calibration (11). To train the
generalizable view-invariant pose detector, multiview geometry is used to substan-
tially augment the data via 3D reconstruction, which allows learning a view-invariant
pose detector.

We typically measure only a fraction of available informa-
tion about body movement generated by our research sub-
jects. For example, joystick, button press, and gaze tracking
measure a very limited range of motion from a single modal-
ity. One could potentially incorporate more such measure-
ment devices, but there are practical limits in training and
use. More broadly, it is possible to divide movement into ac-
tions that take account of the entire body by delineating an
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Fig. 2. A markerless motion capture system called OpenMonkeyStudio is designed to reconstruct 13 body landmarks in 3D. The system with 62 cameras that encircle a
large open space synchronously captures a macaque’s movement from diverse vantage points. The multiview images and four arbitrary cropped images superimposed with
the projection of the reconstruction are shown.

ethogram, which expressly characterizes and interprets full
body positions and actions (see, for example, Sade, 1973).
However, ethograms can generally only be done by highly
trained human observers, are labor intensive, costly, impre-
cise, and susceptible to human judgment errors (12). These
limitations greatly constrain the types of science that can be
done and therefore the potential value of that research.

For these reasons, the automated measurements of 3D
macaque pose is an important goal (13). Pose, here, refers
to a precise description of the position of all major body
parts (landmarks) in relation to each other and to the phys-
ical environment. Pose estimation can currently be done
with a high degree of accuracy by commercial marker-based
motion capture systems (e.g., Vicon, OptiTrack, and Phas-
eSpace). Macaques, however, are particularly ill-suited for
these marker-based systems. Their long, dense, and fast-
growing fur makes most machine-detectable markers diffi-
cult to attach and creates a great deal of occlusion. Their
highly flexible skin makes markers shift position relative to
bone structure during vigorous movement, which is common.
Their agile hands and natural curiosity make them likely to
remove most markers. The thickness and speed of growth of
their fur makes skin marking impractical. They often show
discomfort, and consequently unnatural movement regimes,
with jackets and bodysuits.

Markerless motion capture offers the best possibility for a

widely usable tracking system for macaques. Recent success
in deep learning based 2D human pose estimation from RGB
images opens a new opportunity for animal markerless mo-
tion capture (14–16). For instance, DeepLabCut leverages
a pre-trained deep learning model (based on ImageNet) to
accurately localize body landmarks. These methods work
for various organisms like flies, worms, and mice by learn-
ing from a larger number of images collected from a single
view (17–22). However, macaques present several problems
that make current best markerless motion capture unwork-
able. First, they have a much greater range of possible body
movements than other model organisms. Each body joint has
multiple degrees of freedom, which generates a large num-
ber of distinctive poses associated with common activities
such as bipedal/quadrupedal locomotion, grooming, and so-
cial interactions in even modestly sized environments. Sec-
ond, they interact with the world in a fundamentally three
dimensional way, and so they must be tracked in 3D. Exist-
ing 2D motion tracking learned from the visual data recorded
by a single-view camera can only produce a view-dependent
2D representation. Thus, application to novel vantage points
introduces substantial performance degradation. In princi-
ple, these problems could all be greatly mitigated by use of
a sufficiently large database of annotated images. For exam-
ple, state of the art approaches to human tracking are trained
on 2.5 million annotated images (23–25). Such a database
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does not exist for macaques and would be prohibitively ex-
pensive to generate. Specifically, we estimate that to gener-
ate a macaque database similar to the one used for humans, it
would take over hundreds of thousand distinct annotated im-
ages for each joint, and cost roughly $10M. Thus, successful
tracking requires a larger pipeline that includes generating a
large annotated pose database. This annotation problem sim-
ply cannot be overcome by better AI, and requires a qualita-
tively new approach.
Here, we present a description of OpenMonkeyStudio, a
novel deep learning-based markerless motion capture system
for rhesus macaques (Fig. 1). It solves the annotation prob-
lem through innovations in image acquisition, annotation and
label generation, and augmentation through multiview 3D
reconstruction. It then implements pose estimation using a
deep neural network. Our system uses 62 cameras, which
provides multiview image streams that can augment anno-
tated data to a remarkable extent by leveraging 3D multiview
geometry. However, while this large number of cameras is
critical for training the pose detector, the resulting model can
be used in other systems with fewer cameras without train-
ing. Our system generalizes readily across subjects and can
simultaneously track two individuals. It is complemented by
the OpenMonkeyPose dataset, a large database of annotated
images (195,228 images) which we will make publicly avail-
able.

Results
OpenMonkeyStudio: automated markerless motion
capture for macaques. We developed a multiview mark-
erless motion capture system called OpenMonkeyStudio that
reconstructs a full set of three-dimensional (3D) body land-
marks (13 joints) in freely moving macaques (Fig. 2) without
manual intervention. The system is composed of 62 synchro-
nized high definition cameras that encircle a large open space
(2.45m×2.45m×2.75m) and observe a macaque’s full body
motion from all possible vantage points. For each image, a
pose detector made of a deep neural network predicts a set of
2D locations of body landmarks that are triangulated to form
the 3D pose given the camera calibration parameters (focal
length, lens distortion, rotation and translation) as shown in
Fig. 1.
We built the pose detector using a Convolutional Pose Ma-
chine (CPM, (10)), which learns the appearance of body land-
marks (e.g., head, neck, and elbow) and their spatial relation-
ship from a large number of annotated pose instances. Note
that our framework is agnostic to the design of the under-
lying network, and therefore, other landmark detectors such
as Stacked Hourglass (15) or DeeperCut ((16) also used in
DeepLabCut (17)) can be complementary to the CPM.

Quantitative evaluation of OpenMonkeyStudio. Here
we describe validations of the OpenMonkeyStudio system
including its accuracy, effectiveness, and precision.

Accuracy. We evaluated the accuracy of head pose recon-
struction by comparing to the best available marker-based

Fig. 3. The head location reconstructed by OpenMonkeyStudio is compared with
a marker-based motion capture system (OptiTrack) over time. The marker-based
system produces noisy measurements due to the marker confusion, which requires
an additional manual refinement. The median error is 6.76 cm. The images overlaid
with the projection of the 3D reconstruction show visual validity.

video motion capture system (OptiTrack, NaturalPoint, Inc,
Corvallis, OR). We chose the head because it is the only loca-
tion where a marker can be reliably attached without disturb-
ing free movement in macaques. Fig. 3 illustrates the head
trajectory in three dimensions as measured by both methods
over 13 minutes measured at 30 Hz. This illustrative se-
quence includes jumping and climbing (insets). Assuming
that the OptiTrack system represents the ground truth (i.e. 0
error), the reconstruction by OpenMonkeyStudio has a me-
dian error of 6.76 cm, a mean error of 7.14 cm and a standard
deviation: 2.34 cm. Note that there is a spatial bias due to
marker attachment (roughly 5 cm above the head) reducing
the actual error substantially. Note that these presumptive
ground truth data from OptiTrack include obvious and fre-
quent excursion errors as shown in Fig. 3. This is caused by
marker confusion and occlusion, which requires additional
manual post-processing to remove. Additionally infrared in-
terference is a significant hurdle in a large enclosure such
as ours. By contrast, OpenMonkeyStudio leverages visual
semantics (appearance and spatial pose configuration) from
images that can automatically associate the landmarks across
time. That in turn makes our system more robust to con-
fusion/occlusion errors, a common failure point in any mo-
tion capture system. It can even predict the occluded land-
marks based on the learned spatial configuration, e.g., know-
ing shoulder and elbow joints is highly indicative of the oc-
cluded hand’s location.

Effectiveness of Multiview Augmentation. We evaluated the
effectiveness of multiview augmentation that is used to gen-
erate the training data, i.e., how many cameras are needed
for training. We measured the relative accuracy of tracking
as a function of the number of cameras, each of which sup-
plements view augmentation (m=1,2,4,8,16,32,48 cameras)
compared to the model generated from the full system (m=62
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(a) Effectiveness of view augmentation (b) Inference precision

Fig. 4. (a) View augmentation improves the accuracy of reconstruction. A subset of cameras are used for view augmentation and the relative accuracy is measured by
comparing to the full model that is trained by 62 camera augmentation (m=62). While the landmarks that are relatively rigid shape such as nose, head, neck, and hip can
produce accurate reconstruction with small augmentation, the limb landmarks such as hands, knees, and feet require greater augmentation. The overall accuracy is improved
from 34% (m=1) to 76% (m=48), which justifies the multiview augmentation. (b) Once the detection model is trained with the full view augmentation (m=62), a subset of
cameras can be used to achieve comparable performance. The relative accuracy is measured by comparing to n=62. For instance, 8 cameras can achieve 80% overall
performance. However, the limbs with high degrees of freedom such as hands, knees, and feet require more cameras to reach comparable levels.

cameras). For each pose detector trained by the augmentation
with a factor of m, we reconstructed the 3D pose using n=62
cameras for a new testing sequence on different macaques.
(Here, m and n denote the number of cameras used for train-
ing and testing, respectively). Among 62 cameras, we se-
lect the views for augmentation uniformly over camera place-
ment. We compared the reconstructed poses with the pseudo
ground truth reconstructed by the full model. Note that m=1
camera and m=2 cameras are equivalent to the single view
approach (17) and stereo view approach (19). These are the
special instances of OpenMonkeyStudio with limited view
augmentation.
Fig. 4(a) illustrates the relative accuracy measured by the per-
centage of correct reconstruction for each landmark, i.e., how
many testing instances are correctly reconstructed given the
error tolerance (10 cm). For visually distinctive and relatively
rigid landmarks such as nose, neck and head, relatively ac-
curate reconstruction can be achieved by a small number of
augmentations, e.g., training with a single view camera can
produce approximately 65% of correct reconstruction. Note
that even for these ostensibly “easy” landmarks, augmenta-
tion still provides substantial benefits. However, for the limb
landmarks that have higher degrees of freedom (hands, knees,
and feet) and are frequently self-occluded, their reconstruc-
tions are in particular vulnerable to a viewpoint variation be-
cause the appearance of such landmarks varies significantly
across views. This leads to considerable performance degra-
dation (for example, 12% of correct reconstruction for the
single view). Overall performance (black line) is increased
from 34% (m=1) to 76% (m=48), justifying the multiview
augmentation.

Inference Precision. We next evaluated the inference pre-
cision, i.e., how many cameras are needed for inference
(testing data) to produce comparable reconstruction with 62
cameras. We measured the precision of 3D reconstruc-
tion of the full model (m=62) while varying the number of

views (n=2,4,8,16,32,48) for a testing sequence with differ-
ent macaques. n=1 is impossible as 3D reconstruction re-
quires at least two views. The error measure (the percentage
of correct reconstruction for each landmark) is identical to
the relative accuracy analysis above (Fig. 4(b)). The infer-
ence precision quickly approaches 80% average performance
of 13 landmarks with as few as 8 cameras. However, as with
view augmentation for training, hands, knees, and feet re-
quire more cameras (n=32). In other words, to fully capture
the position of the extremities, there is a strong benefit to us-
ing dozens of cameras.
Although the trained pose detector was designed to be view-
invariant, in practice, it can still be view-variant. That is, the
inference precision can still depend on viewpoint. We char-
acterize the view-dependency in Fig. 5. Specifically, we il-
lustrate the accuracy of the 2D pose inference by comparing
decimated reconstructions to the presumed ground truth of
full reconstruction. The views are organized with respect to
the macaque’s facing direction (detected automatically using
the detected head pose). Specifically, the relative camera an-
gle is negative if the cameras are located on the left side, and
positive otherwise. We find that for the landmarks that are
visible in most views (such as head and pelvis), the 2D lo-
calization is highly view-invariant, meaning that there is uni-
form accuracy across views (less than 2 pixel error). How-
ever, for the hands and feet, which are frequently occluded
(often, by the torso), localization is often highly view-variant.
For example, right hand side views are typically less suitable
to localize the left hand. This view-variance can be allevi-
ated by leveraging multiple views. Nonetheless, to ensure
the minimal view-variance in 3D reconstruction, the cameras
need to be distributed uniformly across the enclosed space.

Automated identification of semantically meaningful
actions based on 3D pose estimation. The central goal
of tracking, of course, is to identify actions (12). The ability

4 | bioRχiv Bala et al. |

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.31.928861doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.928861
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 5. The inference precision of landmark detection is view dependent. For the head that is visible from most views, the precision is nearly uniform across views under the
valid inference range (2 pixel error). In contrast, the right hand is often occluded by the torso when seen from the cameras on the left-hand side of the macaque. This results
in non-uniform precision, i.e., the inference from the views on the right-hand side is more reliable than the other side.

Fig. 6. We use the 3D pose representation to recognize semantic actions (standing, walking, climbing, climbing supine, sitting, and jumping). A. The poses are clustered
by using UMAP. Each cluster that is represented by 3D poses (side and top views) is highly correlated with the semantic actions. B. With the clusters, we recognize actions
in a new testing sequence using the k nearest neighbor search and visualize the transitions among the semantic actions. C. In contrast, the 2D representation provides the
clusters that are driven by the pose and viewpoint. For instance, while the 3D representation of walking is one continuous cluster, the 2D representation is broken apart into
discrete groupings of repeated poses at different spatial locations.
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Fig. 7. A. OpenMonkeyStudio extends to tracking social interactions in non human primates. Here we demonstrate the feasibility of tracking two rhesus macaque while
they individually move inside the enclosure, crossing paths fully. Colors indicate two individuals. Top frames depict the scene of two individuals in the cage during different
timepoints. B. Actions of two macaques are correlated, e.g., a macaque follows the other. We used 3D poses to classify their actions to illustrate the co-occurrence of actions
of two macaques in log scale. C. Proxemics characterizes the social space, e.g., how the location of a macaque is distributed with respect to the other. We transformed
the 3D coordinate of the second macaque to the first macaque’s body centric coordinate system, i.e., 0◦ represents the first macaque’s facing direction. We use the polar
histogram of the transformed coordinate to visualize the proxemics of macaques.

to infer actions from our data, is therefore a crucial measure
of the effectiveness of our system. We call this expressibility.
We therefore next assessed expressibility for our 3D repre-
sentations and, for comparison, our 2D representations.

For processing 3D representations, we transformed each
one-frame pose into a canonical coordinate system. Specif-
ically, we defined the neck as the origin and the y-axis
as the gravity direction. The z-axis is defined as aligned
with the spine (specifically, the axis connecting the neck
and hip), and the representation is then normalized so
that the length of the spine is one. This coordinate trans-
form standardizes the location, orientation, and size of all
macaques. We then vectorize the 3D transformed land-
mark coordinates to form the 3D representation. That is,[
xhead yhead zhead · · · xtail ytail ztail

]T ∈ R36

(note that the neck location is not included as it corresponds
to the origin.).

In Fig. 6A, we visualize the clusters of the 3D representations
of macaque movements in an exemplary 30 minute sequence
(that is, 54,000 frames). We used Uniform Manifold Approx-
imation and Projection (UMAP) for dimensionality reduction
(26). This process results in coherent clusters. Visual inspec-
tion of these clusters in turn demonstrates that they are highly
correlated with the semantic actions such as sitting, stand-
ing, climbing, and climbing upside down. We further use
these clusters to classify actions in a new testing sequence
(13 mins) using a k nearest neighbor search. This allows
identifying the transitions among these actions as shown in
Fig. 6B. The transitions are physically sensible, e.g., from
walking on the floor to climbing upside down, a macaque
needs transitional actions of walking → standing → climb-
ing → climbing upside down.

For comparison, we next performed the same analyses on
2D representations. To process the 2D representations, we
first vectorized the set of landmarks in each frame, thus,[
xhead yhead · · · xtail ytail

]T ∈ R26 (The number 26
comes from the fact that we have 13 joints in each of two di-
mensions). In contrast, the 2D representation is affected by
viewpoint where the clusters are not distributed in a semanti-
cally meaningful way as shown in Fig. 6C.

Social interaction. Macaques, like all simian primates, are
highly social animals, and their social interactions are a ma-
jor determinant of their reproductive success, as well as a
means of communication (27–30). OpenMonkeyStudio of-
fers the ability to measure multiple macaque poses jointly.
To show its capability, we first generated a dataset using two
macaques placed together in our large cage system. The two
subjects were familiar with each other and exhibited clear be-
havioral tolerance in their home caging. These two macaques
freely navigated in the open environment while interacting
with each other. Fig. 7A illustrates the 3D reconstruction
of their poses over time. It is important to note that extrac-
tion of the animals field of view is highly dependent on the
amount of cameras available thus further justifying our high
camera count. The closer animals are to each other, the more
important are unique views that are able to separate the in-
dividuals. Fig. 7B demonstrates that the same tools and ap-
proaches used for single macaque pose representation readily
extend to social interactions: the co-occurrences of actions of
two macaques illustrate their correlation, e.g., one macaque
follows the other. Fig. 7C illustrates the proxemics (31) of
macaques that characterizes their social space. The 3D loca-
tion of the second macaque is transformed to the body centric
coordinate system of the first macaque to show the spatial dis-
tribution of social interactions. We use the polar histogram
of the transformed coordinate to visualize the proxemics of
macaques.

OpenMonkeyPose dataset. We have argued that the criti-
cal barrier to tracking is overcoming the annotation problem
(see above). We have done so here by leveraging a large-scale
multiview dataset of macaques to build the pose detector for
OpenMonkeyStudio. Our dataset consists of 195,228 image
instances that can densely span a large variation of poses
and positions seen from 62 views (Fig. 9). The dataset in-
cludes diverse configurations of the open unconstrained envi-
ronment, and also involves inanimate objects (barrels, ropes,
feeding stations). It also involves multiple camera configu-
rations and types, it involves two background colors (beige
and chroma-key green), and four macaque subjects varying
in size and age (5.5 - 12 kg). The dataset, trained detection
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Fig. 8. We will make OpenMonkeyData, the trained detection model, and the train-
ing code publicly available. The dataset includes 195,228 annotated pose instances
associated with diverse activities.

model, and training code will be made available at the time
of publication (https://github.com/OpenMonkeyStudio).

Discussion
Here, we present OpenMonkeyStudio, a novel method for
tracking the pose of rhesus macaques without the use of
markers. Our method makes use of 62 precisely arranged
high-resolution video cameras, a deep learning pose detector,
and 3D reconstruction to fit rich behavior. Our system can
track monkey pose (13 joints) with high spatial and temporal
resolution for several hours, which has been impossible with
a marker-based motion capture. It can track two interacting
monkeys and can consistently identify individuals over time.
The ability to track positions of macaques is important be-
cause of their central role in biomedical research, as well as
their importance in psychology, and ethology. Recent years
have witnessed the development of widely used markerless
tracking systems in many species, including flies, worms,
mice and rats, and humans (17, 32, 33). Such systems are
typically not designed with the specific problems of mon-
key pose estimation in mind. Relative to other more readily
trackable species, monkeys have largely homogeneous un-
segmented appearances (due to their thick continuous and
mostly single colored fur covering), have much richer pose
repertoires, and have much richer positional repertoires.
(Consider, for example, that a mouse rarely moves to a sitting
position, much less flips upside down). Although our sys-
tem takes multiple approaches to solve these problems, the
major innovation concerns overcoming the annotation prob-
lem. That is, the major barrier to successful pose tracking
in macaques is the lack of a sufficiently large reliably anno-
tated training set, rather than the lack of an algorithm that can
estimate pose given that set.

The annotation problem is deceptively complex. We estimate
that to generate a dataset of quality equivalent to that used in
human studies would cost a few million dollars - several or-
ders of magnitude more than our system costs. We get around
this problem using several innovations: (1) a novel design of
a dense multi-camera system that can link multiview images
through a common 3D macaque’s pose, (2) an algorithm that
strategically selects maximally informative frames, thus al-
lowing us to allocate manual annotation efforts much more
efficiently, and (3) multiview augmentation, or increasing the
effective size of our dataset by leveraging 3D reconstruction.
We further augment these with a standard additional step,
affine transformation. These steps, combined with profes-
sional annotation of a subset of data, allow for the creation
of a dataset called OpenMonkeyPose sufficient for machine
learning, which we will make publicly available at the time
of publication. Although our system is designed for a single
cage environment, it can readily be extended to other environ-
ment shapes and sizes. We demonstrate that with the trained
pose detector, it is possible to reduce the density of cameras
for other environments, e.g., for 2.45 m × 2.45 m × 2.75 m
space, 8 cameras produce 80% performance compared to 62
cameras (1280×1024). For a larger space, higher spatial reso-
lution is needed, which can effectively produce a similar size
of region of interest that contains a macaque.
It is instructive to compare our system with DeepLabCut
(17, 18). The goals of the two projects are quite different -
whereas DeepLabCut facilitates the development of a track-
ing system that can track animals, OpenMonkeyStudio is a
tracking system. In other words, DeepLabCut provides a
structure that helps develop a model, OpenMonkeyStudio is
a specific model. DeepLabCut is very general - it can track
any of a large number of species; OpenMonkeyStudio only
works with macaques. On the other hand, DeepLabCut skirts
the major problems associated with monkey tracking - the an-
notation problem. The solution to these problems constitutes
the core innovative aspect of OpenMonkeyStudio. Indeed,
the model that results from implementing DeepLabCut will
be highly constrained by the training set provided to it; that
is, if training examples come from a range of behaviors, it
can only track new behaviors within that range. In contrast,
OpenMonkeyStudio can track any pose and position a mon-
key may generate.

Conclusion
Monkeys evolved through natural selection processes to
adaptively fit their environments, not to serve as scientific
subjects. They are, nonetheless, invaluable, and their behav-
ior, in particular, promises major advances, especially if it
can be understood in ever more naturalistic contexts (12, 34–
37). Despite this, much biological research using them con-
torts their behavior to our convenience. By reversing things
and letting them behave in a more naturalistic and ethologi-
cally relevant way, we gain several opportunities. First, we
get a more direct correspondence between what we measure
and what we want to know - the internal factors that drive
the animal’s behavior on a moment to moment basis (38).
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Second, we gain access to a much higher dimensionality rep-
resentation of that dataset, which gives us greater sensitivity
to effects that are not (39). Finally, it gives us an ability to
measure effects that the monkeys simply cannot convey oth-
erwise. It is for these reasons that improved measure of nat-
uralistic behavior holds great hope in the next generation of
neuroscience; we anticipate macaques will be part of that step
forward.
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Methods
Training OpenMonkeyStudio. The main challenge
of training a generalizable pose detection model for
OpenMonkeyStudio is to collect large scale annotated
data that include diverse poses and viewpoints: for each
image, the landmark coordinates of the macaque’s pose
need to be manually specified. Unlike the pose datasets
for human subjects (23–25), this requires primatological
knowledge, which precludes collecting a dataset with com-
parable size (the order of millions; estimated cost: $12M,
assuming a minimum wage of $7.25). One key innovation of
OpenMonkeyStudio is the use of the multi-camera system
to address the annotation problem through a novel data
augmentation scheme using a theory of multiview geometry.
The resulting system allows for robust reconstruction of 3D
pose even with noisy landmark detections.

Keyframe selection for maximally informative poses.
Some images are more informative than others. For example,
when a macaque is engaged in quiescent repose, its posture
will only change modestly over seconds or minutes. After the
first image in such a sequence, subsequent ones will provide
little to no additional visual information. Including such re-
dundant image instances introduces imbalance of the training
data, which leads to biased pose estimation. A compact set
of the images that include all possible distinctive poses from
many views are ideal for the training dataset.
To identify the informative images, we develop a keyframe
selection algorithm based on monkey movement, e.g., loco-
motion, jumping, and hanging. A keyframe is defined here
as frame that has large translational movement between its
consecutive frames. The translational movement is the 3D
distance traveled by the center of mass of a macaque. We
approximate the center of mass using the triangulated cen-
ter of mass. The macaque body is segmented from an image
using a background subtraction method that employs a Gaus-
sian mixture model (40), and the center of segmented pixels
is computed. The centers of segmented pixels from multi-
view images are triangulated in 3D using the direct linear
transform method (11) given the camera calibration param-
eters. Robust triangulation using a mean-shift triangulation
approach (41) or random sample consensus (RANSAC (42),

see below) can be complementary when background subtrac-
tion is highly noisy. With the keyframe selection, the amount
of required annotations is reduced by a factor of 100-400,
e.g., instead of needing 200,000 labeled frames, we would
only need 500-2000.

Cross-view data augmentation using multiview cam-
eras. Given the selected keyframes, we annotate the data and
extensively augment the size of data using multiview images.

Annotation. For each keyframe, we crop the region of inter-
est in the images such that the center of mass is located at the
center of the cropped region and the window size is inversely
proportional to the distance between the center of mass and
the camera. By resizing all cropped images to the common
resolution (368 width × 368 height), the macaque appears
roughly the same size in pixel units. Among 62 view im-
ages, we select three to four views that maximize visibility,
i.e., most body parts of macaques are visible, and minimize
view redundancy, i.e., maximum distance between cameras’
optical centers. This selection process is done in a semi-
automatic fashion: an algorithm is developed to propose a
few camera candidates that the center of mass is visible while
retaining the maximal distance between them, and a trained
lab member selects the views among the candidates. This
selection process significantly alleviates the annotation am-
biguity and efforts and reduces the uncertainty of the triangu-
lation by providing a wide baseline between camera optical
centers. The set of selected images are manually annotated
by the trained annotators. In practice, we leverage a commer-
cial annotation service (Hive AI). As of January 2020, 33,192
images are annotated.

Adjustment. The manual annotations can be still noisy. We
use a geometric verification to correct the erroneous annota-
tions. The annotated landmarks are triangulated in 3D using
the direct linear transform and projected to the annotated im-
ages to check reprojection error, i.e., how the annotations are
geometrically consistent. Ideally, the annotated landmarks
must agree with the projected landmarks. For the landmark
that has reprojection error higher than 10 pixels, we manu-
ally adjust the annotations or indicate outliers using an inter-
active graphical user interface that visualizes the annotated
landmarks and their corresponding projections in real time.
This interface allows efficient correction of the erroneous an-
notations across views jointly. The resulting annotations are
geometrically consistent even for occluded landmarks. MAT-
LAB code of the adjustment interface is publicly available on
our github page.

Propagation. The refined annotations form a macaque’s 3D
pose (13 landmarks), which can be projected onto the rest of
the views for data augmentation. For example, the annotation
of the left shoulder joint in two images can be propagated
through any of the other 60 view images collected at that at
the same time instant (i.e. same frame count) that include
that landmark (i.e., that are not occluded by the body or out
of frame). Given our circular arrangement of cameras, this
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Fig. 9. OpenMonkeyStudio leverages multiview geometry to augment the anno-
tated data across views. The three images in the left most column are manually
annotated and the 2D pose of the rest images are automatically augmented by 3D
reconstruction and its projection.

propagation step reduces the amount of annotation needed
by a factor of 15-20 depending on the visibility of the 3D
landmark location (Fig. 9).

Training Pose detector. Given the annotated landmarks,
we automatically crop the region of the monkey from each
image based on the method used in keyframe selection.
When multiple macaques are present, we use a k-means clus-
tering method to identify their centers. We further augment
the data by applying a family of nine affine transforms (±30°
rotations, 20% left/right/up/down shifting, ±10% scaling, and
horizontal flipping) to form the training data. These trans-
formed images enhance the robustness of the detector with
respect to affine transformations. The pose detector (CPM)
takes as an input a resized color image (368×368×3 pixel,
368 pixel width and height with RGB channels) and outputs
46×46×14 pixel response maps (46 width and height with 13
landmarks and one for background). The ground truth re-
sponse maps are generated by convolving a Gaussian kernel
at the landmark location, i.e., in each output response map,
the coordinate of the maximum response corresponds to the
models’ best guess as to the position of the landmark coor-
dinate. L2 loss between the ground truth and inference re-
sponse maps is minimized to train the CPM. We use ADAM
stochastic gradient descent method for the optimization (43).
A key feature of CPM is multi-stage inference, which al-
lows iterative refinements of landmark localization (10). In
particular, such multi-stage inference is highly effective for
macaques as the visual appearance of their landmarks (e.g.
their hips) is often ambiguous due to the uniform coloration
of their pelage. In practice, we use a six stage CPM that pro-
duces optimal performance in terms of accuracy and com-
putational complexity. We use a server containing 8 GPU’s
(NVIDIA RTX 2080 Ti; 11Gb memory) to train the CPM.
Training the model only requires 7 days for 1.1M iterations
with 20 batch size on one card. Hardware on model training
(a task usually not repeated often) are quite modest.

Plausible pose inference. For the testing (inference)
phase, no manual intervention and training is needed. For
synchronized multiview image streams of a testing sequence,
we compute the 3D center of mass of macaque based on the
method used for the keyframe selection and crop the regions
of monkeys from multiview images. We localize the land-
mark position in each cropped image by finding the maxi-
mum locations in the response maps predicted by the trained

CPM. Given the camera calibration, the landmarks are ro-
bustly triangulated in 3D using a RANSAC procedure (42),
i.e., for each landmark, a pair of images among 62 images
are randomly selected to reconstruct the 3D position that is
validated by projecting onto the remaining images. This ran-
domized process allows robustly finding the best 3D position
that agrees with the most CPM inferences in the presence of
spurious inferences.
The obtained 3D reconstruction is performed on each land-
mark independently while considering physical plausibility,
e.g., limb length must remain approximately constant across
time. Given the initialization of the 3D pose reconstruction,
we incorporate two physical cues for its refinement without
explicit supervision. (1) Limb length cue: for an identical
macaque, the distance between landmarks needs to be pre-
served. We estimate the distance between the connected land-
marks (e.g., right shoulder and right elbow) using the median
of the distance over time. This estimated distance is used to
refine the landmark localization. (2) Temporal smoothness
cue: the movement of macaque is temporally smooth over
time. The poses between consecutive frames must be similar,
which allows us to filter the spurious initialization. We inte-
grate these two cues by minimizing the following objective
function:

minimize
Xt

‖Πi(Xt)−xi,t‖2 + (‖Xt−Yt‖−LX,Y)2

+‖Xt−1−Xt‖2

where Xt is the 3D location of a landmark at the t time in-
stant, xi,t is the predicted location of the landmark at the
ith image, and Πi is the projection operation at the ith im-
age. Yt is the parent landmark in the kinematic chain, LX,Y
is the estimated length between X and Y, and Xt−1 is the
3D location of the landmark at t− 1 time instant. The first
term ensures the projection of the 3D landmark to match with
the CPM inference, the second term enforces the limb length
constraint, i.e., the distance between adjacent landmarks re-
main constant, and the third term applies a temporal smooth-
ness. This optimization is recursively applied along a kine-
matic chain of body, e.g., neck→pelvis→right knee→right
foot.

Multi-camera system design. Our computational ap-
proach is strongly tied to the customized multi-camera sys-
tem that can collect our training data and to reconstruct 3D
pose on the fly (Fig. 10). We integrate the camera system
into our 2.45 m × 2.45 m × 2.75 m open cage at the Uni-
versity of Minnesota. The cameras are mounted on movable
arms mounted to a rigid exoskeleton surrounding the cage
system and not touching it (to reduce jitter). The cameras
peer into holes in the mesh caging covered with plastic win-
dows. The cameras are carefully positioned so as to provide
coverage of the entire system. The resulting system possesses
the following desired properties for accurate markerless mo-
tion capture: high spatial resolution, continuous views, pre-
cise synchronization, and subpixel accurate calibration.
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High spatial resolution. We use machine vision cameras
(BlackFly S, FLIR) that produce a resolution of 1280×1024
at up to 80 frames per second (although in practice we use
30 fps). The camera is equipped with a global shutter with
sensor size 1/2” format (4.8µm pixel size). Fisheye lenses
with 3-4 mm focal length (Fujinon) are attached to the cam-
era. This optical configuration results in a monkey with 1 m
size appearing at a approximately 150×150 pixel image patch
from the farthest camera (diagonal distance: 5.2m). Our cam-
era placement guarantees that, in each frame, there exist at
least 10 cameras that observe the monkey with a greater than
550×550 resolution. This resolution is sufficiently high such
that the CPM can recognize the landmark.

Continuous views. 62 cameras are uniformly dis-
tributed along the two levels of horizontal perimeter of
OpenMonkeyStudio made of 80/20 T-slot aluminum (Global
Industrial), i.e., for each wall except for the wall with a
gate, there are 16 cameras facing at the center of the studio.
The baseline between adjacent cameras is approximately
35 cm, producing less than 6.7° view difference, or 70
pixel disparity at the monkey 3m away. This dense camera
placement results in nearly continuous change of appearance
across views where the landmark detector can learn a
view invariant representation, and therefore, can reliably
reconstruct landmarks using redundant detection. Further,
uniform distribution of cameras minimizes the probability of
self-occlusion, e.g., the left shoulder that is occluded by torso
for one side of cameras can be visible from the other side of
cameras. Positioning of the cameras is performed according
to 2 fundamental principles. First we sample the internal
space of the cage with overlapping camera field of views
while maintaining a focal length that enables the viewed
subject to cover at least half the camera’s image sensor.
This is done to ensure adequate resolution of the subject.
Additionally we configure the cameras in the corners of the
rectangular skeleton frame to have a 45° angle. This allows
corner cameras to oversample even further which greatly
helps with intrinsic and extrinsic camera calibration.

Precise synchronization. The principle of multiview geome-
try applies on completely static scenes where the precise syn-
chronization is a key enabler of 3D reconstruction. We use
an external synchronization TTL pulse (5V) that triggers to
open and close the shutters of all cameras at exactly the same
moment through General Purpose Input/Output (GPIO). This
pulse is generated by a high precision custom waveform gen-
erator (Agilent 33120A) capable of 70 ns rise and fall times.
Our system has been extensively tested and remains accurace
to sub millisecond precision over 4 hours of data acquisition
(maximum capacity of our NVMe Raid array)

Subpixel accurate calibration. Geometric camera calibration,
the estimate of the parameters of each individual lens and im-
age sensor has to be performed before each recording session.
Parameters are used to correct for lens distortions as well as
determine the location of the cameras within the scene. To
calibrate the cameras, we use a large 3D object (1 m × 3

Fig. 10. OpenMonkeyStudio integrates 62 cameras into a large space (2.45 m
× 2.45 m × 2.75 m) that allows unconstrained movement of macaques. These
cameras face at the center of space, which is ideal for view augmentation and re-
construction.

m) with non repeating visual patterns (mixed art works and
comic strips), which facilitates visual feature matching across
views. A standard structure-from-motion algorithm (44) is
used to reconstruct the 3D object and 62 camera poses in-
cluding intrinsic and extrinsic parameters automatically.

Distributed image acquisition. 62 cameras produce 3.7
GB data per second (each image is approximately 2MB with
a JPEG lossless compression at 30 Hz). To accommodate
such a large data stream, we designed a novel distributed im-
age acquisition system consisting of 6 local servers controlled
by a global server (Fig. 11). The data streams from 10-11
cameras are routed to a local server (Core i7, Intel Inc.) using
individual Cat6 cables to a power over ethernet (PoE) capa-
ble network switch (Aruba 2540). The firmware of the switch
has been altered by the authors to allow for the specialized re-
quirements of high data throughput using JUMBO packages.
Each PoE switch is then connected to the local servers us-
ing dedicated fiberoptic 10 Gbit SFP+ transceivers. The data
streams are compressed and stored in three solid state drives
(NVMe SSD in RAID 0 mode) of the local server.
Cameras also received synchronization pulses through gen-
eral purpose input output lines (GPIO, Hirose). An individ-
ually designed wiring setup provided TTL pulses (5V) gen-
erated at a target frequency of 30 Hz to each camera. Pulses
were generated using a high precision custom waveform gen-
erator (Agilent 33120A) capable of 70 ns rise and fall times.
Upon completion of a data acquisition session, data is copied
onto 12 Terabyte HDD’s and physically moved to a JBOD
daisy chained SAS hot swappable array (Colfax Storage So-
lutions) connected to Lambda Blade (Lambda Labs) server.

Data Collection.

Subjects and apparatus. All research and animal care was
conducted in accordance with University of Minnesota Insti-
tutional Animal Care and Use Committee approval and in ac-
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Fig. 11. System configuration of distributed image acquisition. 62 cameras are
connected to the local servers through 10Gb network switches, and six local servers
are controlled by a global server. The cameras are triggered by the external clock,
which allows synchronization.

cord with National Institutes of Health standards for the care
and use of non-human primates. Four male rhesus macaques
served as subjects for the experiment. All four subjects were
fed ad libitum and pair housed within a light and temperature
controlled colony room. Subjects were water restricted to 25
mL/kg for initial training, and readily worked to maintain 50
mL/kg throughout experimental testing. Three of the sub-
jects had previously served as subjects on standard neuroe-
conomic tasks, including a set shifting task (45) and several
simple choice tasks (46–50). Training also included experi-
ence with foraging tasks (51, 52), including one study using
the large cage apparatus (53). One subject was naive to all
experimental procedures.
Subjects were allowed for unconstrained movement within
the cage in three dimensions. Five 208 L drum barrels
weighted with sand were placed within the cage to serve as
perches for the subjects to sit upon. In some sessions, four
juice feeders were placed at each of the four corners of the
cage in a rotationally symmetric alignment. The juice feed-
ers consisted of a 16 × 16 LED screen, a lever, buzzer, a
solenoid (Parker Instruments), and were controlled via an Ar-
duino Uno microcontroller. Data were collected in MATLAB
via Bluetooth communication with each of the juice feeders.
We first introduced subjects to the large cage and allowed
them to acclimate to it. Acclimation consisted of placing sub-
jects within the large cage for progressively longer periods of
time over the course of about five weeks. To make the cage
environment more positive, we provisioned the subjects with
copious food rewards (chopped fruit and vegetables) placed
throughout the enclosure. This process ensured that subjects
were comfortable with the environment. We then trained sub-
jects to use the specially designed juice dispenser (53).

Implantation of headcap for marker testing. For purposes of
comparison with marker data, we collected one large dataset
with simultaneous tracking by our OpenMonkeyStudio sys-
tem and the OptiTrack system. We placed three markers onto
a head implant that was surgically attached to the subject’s
calvarium. This was placed for another study using meth-
ods described therein (Azab and Hayden, 2017 and 2018).
Briefly, the skin was removed and ceramic screws placed with
the bone overlying the crown. A headpost (GrayMatter Re-
search) was placed adjacent to the bone and orthopedic ce-
ment (Palacos) was placed around the screws and post in a
circular pattern. The marker test took place several years af-

ter this procedure. It involved attaching a novel 3-D printed
three-arm holder to the heapost itself. The three arms each
bore a reflective marker that could be detected by the Opti-
Track system. We used 8 Opti-Track cameras (Natural Point,
Corvallis, OR) mounted in the same room as our camera sys-
tem. Placement of the 8 cameras was optimized to minimize
IR reflections and interference and to obtain a camera cali-
bration (through wanding) error of less that 1 mm.
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