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The paper exploits the outlier detection techniques for wireless-sensor-network- (WSN-) based localization problem and proposes
an outlier detection scheme to cope with noisy sensor data. The cheap and widely available measurement technique—received
signal strength (RSS)—is usually taken into account in the indoor localization system, but the RSS measurements are known to be
sensitive to the change of the environment. The paper develops an outlier detection scheme to deal with abnormal RSS data so as
to obtain more reliable measurements for localization. The effectiveness of the proposed approach is verified experimentally in an
indoor environment.

1. Introduction

Advances in Microelectromechanical Systems (MEMSs), em-
bedded technologies, wireless communication, digital and
analog devices, and battery techniques make the wireless sen-
sor networks (WSNs) a prominent and enabling technology
in surveillance and exploration applications [1]. One signifi-
cant attribute of the WSNs is the localization capability. The
location information can remarkably enhance the contents
of the gathered information in monitoring, tracking, and
decision making applications. Indeed, in many applications
such as surveillance, target tracking, and intrusion detection,
the measurement data are meaningless without the location
attributes. To establish a low-cost, easily implementable, and
high-reliable indoor positioning capability, WSNs can utilize
the received signal strength (RSS) measurements as the base-
line for range determination and location estimation. Unfor-
tunately, the propagation behavior of radio signal in indoor
environments is complex, which makes the RSS-based in-
door localization a challenging issue.

Wireless positioning technology can be roughly divided
into two categories: radio positioning, which includes GPS,
RFID, WiFi, and ultra-wideband (UWB), and non-radio po-
sitioning, which includes video cameras (optical), infrared,
ultrasound, and inertial systems [2, 3]. It is worthwhile to

note that as each sensor has its limitations, a practical posi-
tioning system may often employ sensor fusion techniques
to integrate the sensors to yield improved performance. To
enhance the overall reliability and accuracy in localization,
the basic problem in signal reliability of each sensor needs to
be addressed. Although sensors can be well calibrated, each
measurement is subject to measurement noise and systematic
error. In particular, outliers to sensor data need to be detected
and precluded in the signal processing stage; for otherwise
the results are prone to significant errors. The paper is
dedicated to address the outlier detection problem for the
localization in a WSN-based indoor environment. The paper
proposes an outlier detection scheme to cope with unreliable
measurement data. Together with the fingerprinting method
and kernel density estimation, the approach is shown to
be effective in achieving robust localization results. The
scheme is applied at the database construction phase for the
establishment of a reliable database. It is also used at the
localization/tracking phase to detect and remove unreliable
measurement. The method can thus pave a way for applica-
tions to heterogeneous sensor networks.

The organization of the paper is as follows. The related
works of localization algorithms and outlier detection tech-
niques are provided in Section 2. The main results are pro-
vided in Section 3 in which the localization and outlier
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Figure 1: Flowchart of fingerprinting method.

detection techniques used in an RSS-based indoor localiza-
tion system are described. More precisely, the localization
algorithm used in the indoor localization system is inves-
tigated and a novel outlier detection technique is proposed
to cope with outliers in the localization procedure. Further-
more, quality control with the proposed outlier detection is
employed in database management. Section 4 is dedicated to
the implementation and verification of the aforementioned
methods in a ZigBee-based WSN. Several experiments are
conducted and the results are discussed. Finally, Section 5
concludes the paper with some discussions and remarks.

2. Related Works

In a WSN system, sensor nodes or devices are scattered in the
field to perform sensing, computation, and communication
tasks. Depending on the roles, the nodes are further classified
as coordinator, router, and end device. The coordinator is in
charge of constructing the whole network and coordinating
all devices in the network such as the management of devices
for the participation of the network. There can be only one
coordinator in a network. For the WSN under consideration,
the routers which are also referred to anchors are located at
fixed and known locations for the relay of information. The
end devices which may be fixed or mobile are responsible for
the information collection task. The collection information is
transmitted from the end devices to the coordinator directly
or through routers. Typically, the locations of the end devices
are not known when the WSN is deployed. Hereafter, for
clarification, the nodes refer to the end devices whose posi-
tions are to be determined. The localization system being a
feature of the WSN aims to establish the location informa-
tion of the nodes in a WSN based on some measurements
and a priori information [1, 4]. In an indoor environment,
the design of a localization system is extremely challenging.
On one hand, the computation, communication, memory,
and energy resources of each node in a WSN are limited. On
the other hand, the multipath and shadowing effects may
degrade the quality of the measurements for position deter-
mination. Several indoor localization systems such as “Active
Badge” [5], “Cricket” [6], and “RADAR” [7] have been
investigated. It is, however, noted that there remain many
challenges in the realization of a high-accuracy, high-reliable,
and easily implementable indoor localization system. In

particular, the mitigation of measurement outliers in local-
ization has seldom been addressed.

Measurement techniques in radio positioning can be
roughly classified in four categories: angle of arrival (AOA),
time of arrival (TOA), time difference of arrival (TDOA),
and RSS; see [3] for further discussions. The paper adopts
the low cost, low power consumption, and widely available
RSS measurements for localization in a WSN.

2.1. RSS-Based Localization Algorithms. The RSS-based lo-
calization can be implemented using either a range-based
approach or a range-free approach. The former locates the
nodes by using the distance information between two nodes,
while the latter is independent of the range measurements
[3, 8, 9].

The range-based approaches typically consist of two
steps: conversion of the RSS measurements into equivalent
range measurements through a path loss model and estima-
tion of the location through mutilateration [2, 10]. Several
different path loss models have been proposed to better re-
present the propagation phenomena. As for position deter-
mination, in addition to multilateration, methods includ-
ing multidimensional scaling (MDS) localization algorithm
[11], semidefinite Programming (SDP) [12], DV-Hop, DV-
distance and their refinements CDV-Hop, and CDV-Dis-
tance [13] have been investigated.

Another category of localization algorithms is the range-
free approach, also known as fingerprinting, proximity-
based, database matching, or pattern recognition method,
which builds up a reference model or database for localiza-
tion. The fingerprinting method typically consists of two
phases, as shown in Figure 1. The first phase, called the off-
line phase, is the construction of the database. In this phase,
the nodes are placed at some reference points in the envi-
ronment and the signal strengths with respect to anchors are
measured. The reference points are presurveyed points in the
environment that are used to facilitate the construction of the
database, calibration of devices/algorithms, and assessment
of localization performance. The RSS database at all reference
points with respect to anchors is thus constructed. The
second phase, called online phase or real-time phase, is to
perform localization. The signal strengths of a node at an
unknown position with respect to anchors are measured and
the measurement vector is compared against the database for
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the determination of the location. The range-free approach,
being a two-phase approach, does not rely on a path loss
model and, consequently, the environmental effect can be
better accounted for. However, it is pointed out that outliers
in the offline phase and online phase may have a significant
effect on the resulting database quality and positioning error.

In the paper, the range-free approach is adopted. The
database contains two maps which represent two different
probability density functions for position determination.
One map is the conditional RSS probability P(ξ | am, sn)
which stands for the condition probability of RSS ξ for
the anchor am and reference point sn. Another map in the
database is P( fm | sn) that is used o reflect the reception
condition of the environment. Here, fm stands for the relative
frequency for a device at the reference point sn to receive
signal from the anchor am. In the following, it is assumed
that the number of anchors is M and the number of reference
points is N . The left plate in Figure 2 depicts a representative
histogram of P( fm | sn) at sn with respect to five different
anchors. The right plate is a representative RSS distribution
P(ξ | am, sn) for some anchor and reference point.

2.2. Bayesian Inference. The localization algorithm used in
the paper is Bayesian Inference [14, 15]. Unlike most existing
range-free algorithms, the Bayesian inference does not take
the RSS values for positioning directly; instead, the Bayesian
inference views the RSS distributions as probabilities and
matches the RSS vector with the database by finding the entry
that results in maximal likelihood. The data in the Bayesian
inference is represented as statistics of signal strengths, in
terms of histogram, not the signal strength itself [3]. This
property sets the Bayesian inference method apart from other
fingerprinting methods due to the fact that the statistics
of signal strength can prevent the location estimations
from single or multiple abnormal measurements during the
real-time phase; henceforth, the localization error can be
mitigated.

Let z be the measurement vector of the node at an
unknown location with respect to anchors. A key step in the
Bayesian inference is to infer the a posteriori probability. Let
P(sn) be the a priori probability and let P(z | sn) be the
conditional probability; then the a posteriori probability can
be expressed as

P(sn | z) = P(z | sn)P(sn)
∑N

n=1 P(z | sn)P(sn)
. (1)

In localization, the a posteriori probabilities are calculated
for different sn and the location is estimated as

ŝ = arg max
sn

P(sn | z). (2)

In the application of Bayesian inference technique for
localization, the a priori probability P(sn) is typically set
as P(sn) = 1/N and the maximum a posteriori estimation
is the same as the maximum likelihood estimation. For
target tracking application, the probability P(sn) can be
updated through the time propagation model. The condition
probability (likelihood) P(z | sn) can be computed as follows.
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Figure 2: Histogram of probability of relative frequency (a) and
RSS distribution (b).

Suppose that the measurement vector z is a J × 1 vector.
Each entry of z indeed contains the RSS measurement ξj
between the node and the anchor ai. From the database, the
conditional probability P(z | sn) can be computed as [3]

P(z | sn) =
M∏

m=1

P
(
fm | sn

) J∏

j=1

P
(
ξj | am, sn

)
. (3)

More precisely, with respect to each entry of z, the cor-
responding anchor am is extracted and the probability
P( fm | sn) is obtained. In addition, the RSS measurement ξj
is used for the determination of P(ξj | am, sn). Thus, the con-
dition probability (3) can be computed and, consequently,
the maximum a posteriori estimate can be obtained.

3. Localization with Outlier Detection

Due to multipath, shadowing effects, and some hardware
constraints, the outliers in RSS measurements are not un-
common. If the measurement is contaminated with outliers,
whether at the offline or online phase, the resulting position
estimate is likely to be misleading. Several outlier detection
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techniques have been investigated in [16–18]. The section
briefly reviews some outlier detection techniques, then
proposes a new outlier detection scheme, and integrates it
into the localization procedure to enhance the robustness of
the localization system.

3.1. Hampel Filter. Perhaps, the most well-known method
for outlier detection is the so-called 3σ edit rule which is
based on the concept that if a data sequence is approximately
normally distributed, the probability of observing a data
point farther than three standard deviations from mean is
approximately 0.3%. The rule classifies the data as “normal”
or “suspicious” by using estimated mean and standard
deviation of the dataset. Unfortunately, due to the outlier-
sensitivity of the mean and standard deviation, the masking
effect [19] will affect the results of 3σ edit rule seriously.

The Hampel filter [17] is similar to 3σ edit rule in princi-
ple but the Hampel filter replaces the outlier-sensitive mean
and standard deviation with outlier-resistance median and
median absolute deviate from median (MAD), respectively.
In this approach, for a set of data P = {pi}, let median(P) be
the median. The MAD or MAD-scale estimate R is defined as

R = 1.4826×median
{∣
∣pi −median (P)

∣
∣
}
. (4)

Here the factor 1.4826 is chosen so that the expected value of
R is equal to the standard deviation for normally distributed
data. The MAD-scale estimate is easy to evaluate and the
median is obtained by a simple sorting procedure; therefore,
it is suitable for the resource-limited WSNs.

A limitation of the Hampel filter occurs when more than
half data are the same. Indeed, when more than half data
are the same, the MAD-scale estimate is zero and all other
data in this dataset are classified as outliers. This situation
may happen when the dataset is coarsely quantized. A simple
example that illustrates this situation is shown in Figure 3 in
which 6 data are observed as−50, 3 data are observed as−51,
and 2 data are observed as −49. When the Hampel filter is
applied to process the data, data observed as−51 and−49 are
regarded as outliers even though they are close to the median
value −50.

3.2. Kernel Density Estimator. In order to estimate the
distribution of sensor observations as well as overcome the
aforementioned shortcoming of the Hampel filter, the paper
utilizes kernel density estimator (KDE) to estimate the data
distribution of the data sequence. Kernel density estimation
is a nonparametric way of estimating the probability density

function of a random variable [15]. The estimator f̂ (p) is
defined as

f̂
(
p
) = 1

|P|
∑

hi∈P
k
(
p − pi

)
, (5)

where |P| is the number of samples in the data set P.
Each pi is a sample drawn from some distribution with
unknown density f and the estimator attempts to estimate
the distribution through a kernel function k(·) [20]. The
paper adopts the Epanechnikov kernel for KDE as the kernel
is optimal in the minimum variance sense while its efficiency
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Figure 3: A pathology of Hampel filter.
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where B is the bandwidth of the kernel function [21]. In
the RSS-based localization problems, the observed RSS data
from each sensor can be treated as random data samples; the
KDE can then be employed to estimate the distribution of the
RSS values.

The KDE may also be subject to erroneous behavior
when RSS data are varied significantly in an indoor envi-
ronment. An example of such a circumstance is illustrated in
Figure 4. In the figure, the squares are the observed RSS data.
The probability of the RSS value equals to −73 is relatively
high in comparison with those with RSS value being equal to
−53 or−50. As a result, the RSS data of−73 may be classified
as normal data although they appear to be outliers.

The paper exploits the properties of Hampel filter and
KDE to develop a new method for finding outliers in large
datasets. The estimated density from KDE can prevent the
Hampel filter from having a zero MAD. On the other hand,
the Hampel filter can identify multiple outliers when the
density of outliers is relatively high in the KDE.

3.3. Proposed Outlier Detection Technique. Although outliers
are often considered as erroneous data, it may also carry
some important information; as a result, the outlier detec-
tion technique should cope with the outliers instead of just
removing them. Storing the entire history of RSS data is not
recommended in WSN applications due to the increasing
memory requirements. To this end, the paper presents a
general framework for estimating the data distribution in
view of adjustable window operation. In the RSS-based
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Figure 4: A pathology of KDE.

localization problems, the values of RSS are integers and the
values of RSS from a fixed node are usually not a constant
as time varies, as shown in Figure 5. Thus, the dataset of
RSS values is coarsely quantized and the distributed density
of outliers in a small size window may be relatively high in
comparison with normally distributed data.

In the indoor environments, the characteristics of radio
signal and the obstacles often cause some data to deviate
to become outliers. These outliers, however, may provide
the information about the walls or obstacles in the indoor
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environments. Hence, the proposed outlier detection scheme
assigns each data a confidence indicator which indicates the
degree of the reliability of the corresponding data instead of
just identifying or removing it. This is depicted in Figure 6.

To combine the Hampel filter with KDE, the MAD-scale
score is introduced. The MAD-scale score mi for each data
sample pi is defined as

mi =
∣
∣pi −median (P)

∣
∣

R
, (7)

where R is the MAD-scale estimate as computed in (4).
The MAD-scale score addresses how far the data sample is
deviated from the median of the data set in terms of MAD
scale. Then, combining the Hampel filter and probability
density estimation from KDE, one can obtain the confidence
indicator ci of the data sample pi as

ci = Prob
(
pi
)

mi
, (8)

where Prob(pi) is the probability of the data computed from
kernel density estimator. From (8), it is clear that when
the probability is high and the MAD-scale score is low, the
confidence indicator is high, implying that the data sample is
trustworthy. On the other hand, when the probability is low
and MAD-scale score is high, the confidence indicator is low
and the data must be used judiciously.

An example of the relationship between inputs and
outputs of the proposed outlier detection technique is
illustrated in Figure 7 in which the square-dash line is the raw
RSS measurement data which are the inputs of the outlier
detection scheme, and the asterisk-solid line is the confidence
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indicators of the data. In the figure, the confidence indicator
of data 431 is significantly lower due to the fact that the RSS
measurement is notably higher than other data in the dataset.

In the localization procedure, the proposed outlier
detection scheme can be applied in two ways: censoring
sensor reading sequences and RSS database, respectively.
The proposed outlier detection scheme can censor raw RSS
sequences and give each reading a confidence indicator; then
the fingerprinting methods can use the confidence indicators
as weightings in the position determination process. The
RSS database can also be censored by the proposed outlier
detection scheme and the overall mechanism is described in
the following section.

3.4. Quality Control. The RSS database plays a critical role in
the fingerprinting methods. However, in the indoor environ-
ments, the change of environment such as addition/removal
of furniture or the variation of hardware such as low battery
may affect the quality of RSS database seriously. In order to
overcome this problem and maintain the localization quality,
a quality control scheme should be employed for the warning
of suspicious RSS distribution in the database.

The flow chart of the quality control system based on
outlier detection is shown in Figure 8. During the quality
control, the outlier detection scheme is applied on the RSS
distribution map with respect to the two axes; and then
the confidence of RSS data below certain threshold ε will
be viewed as suspicious data. In the establishment of the
RSS distribution map, additional measurements can then be
conducted at those reference points upon which the RSS data
are suspicious. The newly obtained RSS data are examined by
the outlier detection scheme again and the RSS distribution
map is updated once the RSS data with a high confidence are
obtained.

Combining the database quality control system and
the localization system, this paper constructs a localization
system which can localize the nodes and also update and
maintain the RSS database. The localization system views the
static localization data points as a kind of training data; after
localizing the static unknown nodes, the system adopts the
RSS information into training data and passes to the quality
control procedures.

4. System Implementations and Experiments

In this section, a WSN is set up to evaluate the proposed
localization technique in an office environment. Both static
localization and dynamic tracking are considered.

4.1. Localization Platform. A WSN is composed of a set of
nodes that are capable of performing sensing, computation,
and communication. The experiment adopts the Texas
Instrument (TI) CC2431 ZigBee Development Kit (ZDK)
[22] which includes the ZigBee Evaluation Module (EM),
Battery Board (BB), and Evaluation Board (EB), as shown
in Figures 9 and 10, respectively, for the construction of the
WSN. The CC2431 SoC chip is on the EM board, which
can be programmed and compiled by using IAR EW8051 C
compiler and be connected to BB or EB in this development
kit to perform different functionalities and message formats
in a network that is based on the ZigBee protocol [23].

Each device in the WSN can be programmed as a coordi-
nator, router, or end device. In this paper, the routers are
programmed as anchors that are fixed and located at known
positions. In contrast, the end devices which may be carried
by users are nodes of which the positions are to be deter-
mined. The network architecture of the WSN localization
system is shown in Figure 11. The coordinator which is in
charge of coordinating all devices in the network serves as
the communication interface between the server and the
WSN. The end devices also referred to as unknown nodes or
mobile nodes are responsible for searching the anchors in
the whole network and broadcasting the requests of RSS
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(a)

(b)

Figure 9: ZigBee evaluation module (EM) of CC2431ZDK.

measurements when they receive the location request mes-
sages from the coordinator. After receiving the responded
messages of RSS measurements from anchors, the unknown
nodes transmit the whole messages to respond to the request
of the coordinator. The anchors take charge of measuring the
RSS values when they receive the requests from the unknown
nodes. After measuring the RSS values, the anchors send
the corresponding RSS values to the coordinator for further
localization processing at the server.

The experiments are conducted at the 8th floor, Depart-
ment of Electrical Engineering, National Cheng Kung Uni-
versity, Taiwan. The size of the sensing area is 11 meters by
12 meters. The environment layout is depicted in Figure 12
which contains three regions (bottom left: Room 1; top left:
Room 2; right: corridor). The WSN localization system plat-
form consists of one coordinator, 12 anchors, and a number
of mobile nodes. The red marks in Figure 12 are the locations
of anchors. In the experiment, in order to mitigate the
shadowing effects in indoor environments, the anchors are
fixed at the ceiling which is 2.5 meters high from the floor.

The RSS database is created first. In the offline phase,
the RSS information is collected by placing the end devices
at some predefined reference points. Each reference point is
about 90 centimeters from the ground since 90 centimeters
is approximately the height of the wrist of a human from the
ground. The distance between two nearby reference points in
the database is about 60 centimeters. In this offline phase, as
anchors and end devices are placed at known locations, a set
of training data is obtained.

In establishing the RSS database, the RSS measurements
at each reference point are censored by the outlier detection

(a)

(b)

Figure 10: (a) Battery board (BB) and (b) evaluation board (EB).

scheme and tagged by a confidence indicator. Afterwards,
by taking the confidence indicators as weighting factor, the
weighted mean of RSS at each reference point is computed
and saved as RSS distribution. Further, by adopting the
Kriging method, the database is enhanced to cover the whole
area [9]. Such a database is termed as the refined database
hereafter. In contrast, the database that is established without
using the outlier detection scheme is termed as the original
database.

4.2. Static Localization Experiments. In the static localization
experiment, mobile nodes are placed in the area to collect
RSS measurements with respect to anchors. Once the data
are obtained, the outlier detection and kernel density estima-
tion schemes are applied to tag each measurement with a
confidence indicator. The data are then compared against



8 International Journal of Navigation and Observation

Anchor

Coordinator
Server

Anchor

Anchor

Mobile node

RS232

Figure 11: Network architecture.

AP 9
0EA8

AP 6
0E01

AP 8
0EA0

AP 7
0E40

AP 13
0C7C

AP 10
0E74

AP 4
0EC8

AP 3
0EE7

AP 2
0AEE

AP 12
0C70

AP 11
OEC9

AP 1
0F07

Figure 12: Environment layout.

the database by using Bayesian inference to obtain the maxi-
mum a posteriori estimate of the position.

To assess the performance of the quality control scheme,
the static localization experimental results are obtained
based on the original database and the refined database,
respectively. The static localization result based on original
database is depicted in Figure 13. In the figure, the circles
represent the true positions of unknown nodes, the asterisks
represent the estimated locations, the lines between circles
and asterisks are the error distances between true positions
and estimated positions, and the triangles are the positions
of anchors. In contrast, when the outlier detection scheme
is applied on the received RSS data, the localization results
based on the refined database are shown in Figure 14.

By comparing the two experimental results, it is clear
that with the outlier detection scheme in enhancing the
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Figure 13: Localization results without outlier detection.
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Figure 14: Localization results with outlier detection.

refined database and improving the data quality, the results
with the outlier detection are better than those without
the outlier detection. The average localization errors and
standard deviations are summarized in Tables 1 and 2,
respectively. The improvement in static localization by using
the outlier detection scheme ranges from 13.95% to 31.11%.
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Table 1: Comparisons of average localization error.

Localization area

Room 1 Room 2 Corridor Overall

Without outlier detection scheme (unit: cm) 82.86 89.90 83.47 85.41

With outlier detection scheme (unit: cm) 71.30 61.93 66.23 66.49

Improvement 13.95% 31.11% 20.58% 22.15%

Table 2: Comparisons of standard deviation.

Localization area

Room 1 Room 2 Corridor Overall

Without outlier detection scheme (unit: cm) 52.60 87.43 27.11 62.78

With outlier detection scheme (unit: cm) 25.03 46.02 36.89 35.52

1

2

3

Figure 15: Paths in the tracking experiments.

It is also noted that the use of the outlier detection scheme
can reduce the worst case positioning error. For example,
the positioning result near Anchor 8 is misleading when the
outlier detection scheme is not used. The result is improved
after the application of the outlier detection scheme.

4.3. Human Tracking Experiments. The experimental envi-
ronment of the human tracking experiments is the same
as the environment of static localization experiments. The
RSS database is also the same. The only difference is that
the unknown nodes are carried by user and are movable. A
concern in the tracking experiment is that the human body
forms the major blocking effect. As a result, the unknown

Table 3: Performance comparisons of different outlier detection
methods (unit: cm).

Method Proposed method KDE Hampel filter 3σ rule

Average error 166.26 265.43 389.14 405.22

nodes will suffer from severe data loss. On the other hand,
by incorporating a simple human motion model, the a priori
position estimate can be used in the Bayesian inference for
position determination.

To better quantify the performance, the tracking exper-
iments are conducted by considering the case when the
human moves along a straight line. The three paths are
illustrated in Figure 15. The rounded points in each path are
the starting points of the paths and the arrows are the final
positions.

Figure 16 depicts the starting point (star) and terminal
point (square) of path 1. The estimated trajectories without
and with the outlier detection scheme are provided in the top
and bottom plates of the figure. The average tracking error
without the outlier detection scheme is 103.53 centimeters,
while the average tracking error with the outlier detection
scheme is reduced to 39.21 centimeters, which implies a
62.1% improvement.

The results of path 2 tracking experiment are shown in
Figure 17. In the figure, the top plate is the result without
outlier detection and the bottom plate is the result with
outlier detection. The former leads to an average tracking
error of 118.01 centimeters, while the latter results in an
error of 65.91 centimeters. The improvement is about 46.5%.
Similar results are also observed in path 3, which are not
included due to space limitation.

4.4. Discussions. In the resource-limited WSN, the compu-
tational cost is a critical factor. As the computational cost
of the fingerprinting method depends on the size of the
RSS map or, equivalently, the number of reference points,
the localization performance as a function of the number of
reference points is discussed.
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Figure 16: Estimated trajectory comparison of path 1.

Figure 18 depicts the localization error as a function of
reference or candidate nodes. In this analysis, three outlier
detection techniques, namely, the Hampel filter (dotted
line), KDE (dashed line), and the proposed Hampel+KDE
filter (solid line) are compared. It is shown that when
the proposed scheme is employed, the positioning error
can be significantly reduced when there are only a few
reference points. This is due to the fact that high-confidence
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Figure 17: The estimated trajectory of path 2.

trustworthy data are processed with a heavy weighting and
the localization result is not misled. This implies that the
proposed outlier detection scheme meets the requirement
of the resource-limited environment of WSN. The average
localization errors among all numbers of candidate points of
different methods are computed and depicted in Table 3. For
comparative purpose, the average error of the 3σ edit rule
is also provided. The proposed outlier detection scheme has
less tracking error than other methods when the number of
candidate points is varied.
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Figure 18: Comparison of the filter performances.

5. Conclusions

To account for the complicated RF propagation effects with
limited resources in WSN-based indoor localization, the
paper proposes an outlier detection scheme to perform
quality control of the RSS database and data filtering in real-
time localization. The approach is shown to be robust and
effective in dealing with data that are subject to anomalies.
The experimental results indicate that the incorporation of
the outlier detection scheme can improve the localization
accuracy by 13∼30%. The outlier detection scheme and
the localization system can thus pave a way for diverse
WSN applications in automated surveillance, exploration,
and context awareness.
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