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1. Introduction 

The multimodel approach has arisen from the 
needs of process industries for which 
operations often include set-point changes 
and/or the co-existence of multiple operating 
modes. While nonlinear control is complicated 
to derive and tune, it is often more appropriate 
to consider a set of well-known operating 
points and their respective subsystems to 
achieve modelling or control by an accurate 
blending of the local systems/controllers. 
However, the multimodel approach owns, from 
its distributed structure, a high number of 
degrees of freedom, including the number and 
parameters of the different models 
representative of the system, the choice of the 
blending method and the design of a suitable 
control merging algorithm. 

Over the last few years, many authors [e.g. 1,5] 
have proposed methods for identification and 
model structure validation, and a huge literature 
addresses linear models blending such as fuzzy 
Takagi-Sugeno models [e.g. 11]. However, the 
multimodel representation is more difficult to 
obtain when the subsystems are nonlinear 
and/or should be determined from raw input-
output data. Some results were given in [7, 8]. 
In the main, classification of models with 
unsupervised algorithms was used to find an 
appropriate size for the model-base and estimate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the models parameters, and the blending 
functions between several models were selected 
in the common case where the operating 
domains overlap. 

Classification or neural techniques have been 
used for output to state modelling or control [1, 
15, 19] and also to build multimodel 
representation and control from raw data; 
however, whereas Cho et al. [5] used Kohonen 
Self Organizing Map and K-means techniques 
[21], few other works have attempted to bridge the 
classification and multimodel control domains. 

This paper thus proposes a practical approach 
for complex systems control based on 
classification algorithms while extending 
previous works in which the modelling issue 
was addressed [6, 8] and the preliminary results 
in [7]. Multimodel control is based on the 
multimodel representation and has been applied 
very successfully, for example, to chemical and 
biological plants (see e.g. [4, 18]). The 
procedure consists in designing a controller for 
each model of the base and to obtain a global 
control by some blending law. Local controls 
have been chosen as neural networks (e.g. [1]), 
PID (eg. [4]), predictive (e.g. [18]), or adaptive 
controllers [9], whereas the blending law can 
be selected either as a commutation between 
the partial controllers (e.g. [9]) or a fusion by 
using validity indexes [14]. However, again, 
these multimodel-based controllers suffer from 
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the initial choice of model number and 
structure, when the operating points are not 
chosen a priori but should emerge from insight 
in input-output data.  

In a first place, it will be recalled how to build 
a set of models from input-output data using 
the fuzzy K-means algorithm and to determine 
the transition functions. An appropriate 
clustering method called Rival Penalized 
Competitive Learning (RPCL) [20] which is an 
extension of Kohonen competitive algorithm 
will enhance the determination of the number 
of models/clusters to be considered. Second, an 
adaptive – multimodel – controller will be 
obtained through a fusion of the parameters of 
the different controllers already designed for 
the models of the base by means of the 
appropriate validity indexes based on the 
residual approach [6, 8]. 

A nonlinear system which has been already 
presented in [5] allows confirming the 
relevance and the simplicity of the suggested 
approach, as results show that the number of 
local models can be reduced drastically. 

2. Designing Multimodel Base 
using Classification Algorithms 

The multimodel representation assumes that it 
is possible to replace a unique nonlinear 
representation by a combination of simpler 
models describing the system dynamics at 
specific operating points, the interaction 
between the models being captured via 
activation functions.  The decision unit (Figure 
1) selects the relevant contribution of each 
model of the base while the output unit 
computes the multimodel output from the local 
models outputs and weights.  

When no a priori knowledge is assumed and 
only I/O data are available, a logical procedure 
and the help of unsupervised classification 
algorithms are necessary to extract information 
from data to build the model base. In a first 
time, the relevant number of the models is to be 
determined, and, then, local clusters and 
domains should be found.  Finally, local – 
possibly linear or not – model structure and 
parameters should be estimated, which is 
related to model identification. 

 

Figure 1. Multimodel approach  

Clusters selection and estimation 

Most existing clustering algorithms do not 
handle the selection of a relevant number of 
clusters, whereas it is a key feature of the 
multimodel approach, resulting in a tradeoff 
between algorithmic complexity and modelling 
accuracy. However, the RPCL algorithm [20], 
which is a variant of the Kohonen rule, has 
shown to be able to discard irrelevant extra 
units by driving away their clusters from the 
data cloud. The corresponding neural network 
rewards the winning neuron but also penalizes 
the second winning unit (called the rival), 
allowing not only better cluster separation but 
also moving away some of the units. The 
learning rate is much greater than the 
penalization rate [e.g. 16]. Given a competitive 
learning neural network, i.e. a layer of units 
with the output ui of each unit and its weight 
vector wi for i=1…K; K is the number             
of clusters. 
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Figure 2. Competitive learning neural network 

The RPCL algorithm can be described by the 
following steps. 

1. Initialize weight vectors wi randomly. 

2. Take a sample x from a data set D, and for i 
= 1…K, let  
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||*||: Euclidean distance; 

c  : index of the unit which wins the 
competition (winner); 

wc : weight vector of the winner; 

r  : second winner (rival) index; 

wr : weight vector of the rival; 

 γj : conscience factor (relative winning 
frequency) used to reduce the winning rate of 
the frequent winners.  
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where nj refers to the cumulative number of 
occurrences the node j has won the competition 
(uj = 1). 

3. Update the weight vectors as follows: 
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0 ( )c t  and 0 ( ) ( )r ct ta a£   are 
respectively the winner learning rate and the 
rival de-learning rate. Several empirical 
functions have been proposed for the update of 
the learning and de-learning rates [16]. 

4. Repeat steps 2 and 3 until the whole 
learning process has converged. 

The RPCL only provides the adequate number of 
clusters, but does not estimate the operating 
domains; a fuzzy-based method such as the fuzzy 
K-means classification algorithm allows, with an 
easy workout, to estimate both clusters and 
overlapping operating domains [3]. Every data 
can belong fuzzily – following a membership 
degrees between 0 and 1 – to several clusters, 
while the optimal K-partition is obtained by 
minimizing the fuzzy objective function: 
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with:  

||*||: any norm expressing the similarity between 
any measured data and a cluster centre; 

m  : weighting exponent (real number greater 
than 1) which is a constant that influences the 
membership values; 

uij : degree of membership of xi to the cluster j, 

such as  0,1iju  , 
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xi  : i
th data point; 

cj  : centre vector (node) of the cluster j; 

N  : number of observations; 

K  : number of clusters ( 2 K N  ). 

Fuzzy partitioning is carried out through an 
iterative optimization of the objective function 
shown above, with the update of membership 
uij and the cluster centres cj [17]. 

The algorithm is composed of the following steps: 

5. Initialize the matrix U(k)=[uij(k)], U(0). 

6. At k-step: calculate the centres vectors 
C(k)=[cj]: 
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7. Update U(k), U(k+1): 
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8. If || U(k+1) - U(k)||< ε  then STOP; 
otherwise return to step 2.  

For representation purposes, a point will belong 
to the cluster for which its membership degree 
is the highest. 

Local model estimation and multimodel 
computation  

The repartition of the data set is the key part of 
the designing procedure, as further 
identification procedures can be applied on 
each local model, which use classical 
estimation methods. For further details, the 
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reader is referred to [2]. When the sub-models 
are supposed to be linear, their parameters and 
order can be estimated along with their data 
kernel, i.e. data for which the degree of 
membership is equal to 1. Model order m can 
be determined using the Instrumental 
Determinants Ratio (IDR) 

1

det ( )
( ) .

det ( )
m

m

Q
IDR m

Q 

  (9) 

where Qm is the well-known information 
matrix,  is a threshold, the model order m is 
given by: 

 min arg ( ) ( 1) .m IDR m IDR m       (10) 

When the model order is found, a classical 
estimation procedure using I/O data such as the 
Recursive Least-Squares method (RLS) is 
applied to achieve the parameters estimation. 

Now that the model-base is complete, the 
multimodel output can be computed using the 
decision and output units (Figure 1). 
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The relevance of each model is estimated in 
real-time according to the validity index which 
is computed, in this study, via the residues’ 
approach, i.e. the distance measurement 
between the outputs of the process and of the 
considered model, e.g.: 

1, , ;i ir y y i K     (12) 

with: 

y: process output; 

yi: output of the model Mi. 

Between the methods proposed for the 
calculation of validities (see [6, 13]), only the 
simple and the reinforced validities approaches 
are here considered. In general, the expression 
of the normalized validities is given by: 
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A reinforcement step can be considered, for 

example by the normalized validities renf
iv : 
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Previous studies have shown that the designer 
should select discarding methods (K-means and 
reinforced validities) to allow a better 
separation of data when the operating points are 
quite independent, whereas operating domain 
overlap require more smooth methods (e.g. 
fuzzy classifiers). Once this step is complete, 
the validation of the global modelling scheme 
is carried out through a comparison between 
the real and the multimodel outputs, obtained 
through a fusion of the K models’ outputs yi 
weighted by their respective validity indexes vi,  
for different input sequences. 

3. Design of Multimodel Control 

Multimodel control is a replication of the 
distributed modelling method presented above, 
where the global adjustable controller of the 
system (Figure 3) depends on a decision 
mechanism which computes the real-time 
estimation of the contribution of each local 
model and corresponding adequate local 
controller. After local controller synthesis, the 
fusion can be designed using the controllers’ 
output blending, the global system control u is 
obtained here through a simple fusion of model 
controls ui weighted by their relative validity 
coefficients vi,  
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
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Whenever controllers exhibit the same 
structure, parameter fusion can be proposed 
according to the weights - validities - defined in 
(13-14). In the latter case, the multimodel 
controller can be seen as an adaptive-like 
controller, where parameters are updated 
according to the relevance of the local models 
vi, for which the corresponding parameter is pi 
(Figure 4). 

1

( ) ( ) ( )
K

i i
i

p k v k p k


  (16) 



Studies in Informatics and Control, Vol. 21, No. 1, March 2012 http://www.sic.ici.ro 105

 

4. Nonlinear Process Control 

The control of a discrete nonlinear system 
found in the work of [5] is tackled: 
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where u and y are the system’s input and output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multimodel representation 

Before control design, a multimodel 
representation was given, and Figure 5 shows 
that some of the centres move away, leaving 
only 4 classes, to be compared with the 64 
models found in [5]. Since domain overlapping 
is important as can be seen from Figure 5, 
fuzzy K-means was selected to generate the 4 
clusters, and 4 linear models were estimated, 
each of order 4. Introducing the NRMSE 
(Normalized Root Mean Square Error) 
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Figure 3. Multimodel control principle 
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Figure 4. Principle of the fusion of control parameters 
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Figure 5. RPCL algorithm applied to nonlinear example 
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where mmy  and y are respectively the 

multimodel and system outputs, N is the 
number of samples, one obtains an accuracy of 
NRMSE = 0.002 compared to NRMSE = 
0.0006 – best over Monte Carlo simulations – 
in [5] and NRMSE = 0.006 for a Time Delay 
Neural Network. Accuracy is thus fairly 
comparable whereas the design and workout 
complexity is reduced with respect to the work 
of [5]. 

The input sequence in Figure 6 was applied, 
and Figure 7 shows the difference between 
multimodel and real outputs. 
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Figure 6. Input u2 
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Figure 7. Real and multimodel outputs (input u2) 

Multimodel control 

Once the multimodel structure is elaborated, a 
polynomial controller can be designed for each 
linear model of the base.  
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where q-1 is the delay operator, yc is the 
reference, ui , yi are the ith model input and 
output, and 
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The same kind of equation applies for S, T, 
parameters are obtained by pole placement [2]. 

Since the controller’s structure is the same, it is 
chosen to blend controllers parameters in the 
multimodel way (equation 20). For example, 
one has [2] 
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and so on for S and T.  

One expects a pole at 0.5z   which yields e.g.  
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and so on for the remaining 3 models. 

Taking the set-point 

  2 2 0.5sin(0.2 ) 0.7sin(0.04 )cy k k   , 

Figure 8 enlightens the relevance of the 
proposed scheme, as the output and set-point 
are nearly the same. The value of the NRMSE 
(where NRMSE in (17)  is now defined as a 
measure between system output and set-point) 
is 0.046, which yields a small relative error.  
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Figure 8. Evolution of output and set-point 

5. Conclusion 

The multimodel technique can be of a great help 
for blending local models or controllers of a 
more complicated system. However, the 
designer faces a high number of degrees of 
freedom, which is directly proportional to the 
number of local model and to their parameters 
set size. This paper shows how classification 
algorithm can automatically allocate an adequate 
number of models in the sense of a trade-off 
between modelling complexity and accuracy. It 
is also shown that the results of classification 
allow to direct the designer to a an algorithm 
which will accordingly separate or blend the 
different models. The same method can be 
replicated for multimodel control design. 
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This method has proved to be able to represent 
and control a nonlinear system, with the same 
accuracy and far less complexity than other 
multimodel or neural networks schemes. 
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