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In�uential nodes act as a hub for information transmission in a command and control network. �e identi�cation of in�uential
nodes in a network of this nature is a signi�cant and challenging task; however, it is necessary if the invulnerability of the network
is to be increased. �e existing k-shell method is problematic in that it features a coarse sorting granularity and does not consider
the local centrality of nodes. �us, the degree of accuracy with which the in�uential nodes can be identi�ed is relatively low. �is
motivates us to propose a method based on an integral k-shell to identify the in�uential nodes in a command and control network.
�is newmethod takes both the global and local information of nodes into account, introduces the historical k-shell and a 2-order
neighboring degree, and re�nes the k-shell decomposition process in a network. Simulation analysis is carried out from two
perspectives: to determine the impact on network performance when in�uential nodes are removed and to obtain the correlation
between the integral k-shell value and its propagation value. �e simulation results show that the integral k-shell method, which
employs an algorithm of lower complexity, accurately identi�es the in�uence of those nodes with the same k-shell values.
Furthermore, the method signi�cantly improves the accuracy with which the in�uential nodes can be identi�ed.

1. Introduction

As the hinge for the command and control system to transfer
information and �ght order, command and control network
(C2 network) is the key to win the war [1–3]. With the
constant improvement of battle�eld information, the or-
ganizational structure of the C2 network is becoming more
and more complex, and the interaction of information is
more frequent [4]. �e C2 network shows the characteristics
of heterogeneous nodes, multilayer structure, and so on.
Command and control networks, which have the typical
complex network characteristics, have scale-free charac-
teristics. �ese networks exhibit the characteristics of “ro-
bustness and fragility” [5–7]; consequently, the problem
associated with their vulnerability is a challenge that needs to
be addressed. If the in�uential nodes in a network are
attacked and damaged, the network structure is severely

compromised, thus reducing the invulnerability of the
command and control network and a�ecting the operational
capability of the command and control system [8, 9].
�erefore, identifying the in�uential nodes of a command
and control network is vital to ensure the reliable operation
of a network and enhance the operational capability of the
system, which has both important theoretical signi�cance
and practical value.

�e methods used to identify the in�uential nodes in
a complex network are mainly divided into two categories:
system science analysis methods and social network analysis
methods [10]. �e basic concept of system science analysis
methods is that “destructiveness is equal to importance”;
that is, the in�uence of a node is equal to the degree of
damage to the network after the deletion of that node. �e
main identi�cation methods are the shortest path method,
which identi�es the in�uential nodes by evaluating the
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difference in the shortest path after the deletion of any one
node; the spanning tree method, which identifies the in-
fluential nodes by evaluating the number of spanning trees
after the deletion of any one node; and the node shrinkage
method, which identifies the influential nodes from the
contraction of the network after the deletion of any one
node. -ese methods have prompted research to identify
the influential nodes in complex networks. However, the
computational complexity of these methods is generally
high, and the network nodes need to be tentatively tested,
which is difficult in practice [11]. -e main concept of
social network analysis is that “importance is equal to
saliency,” with the influential nodes being identified by
gathering statistics on the static characteristic indices of
a network [12]. -ese indexes include the degree centrality
[13], betweenness centrality [14, 15], approach degree [16],
eigenvector [17], PageRank algorithm [18, 19], HITS al-
gorithm [20, 21], structural hole [22, 23], and k-shell de-
composition method [24].

-e degree centrality method identifies the influential
nodes by counting the number of neighboring nodes. A
higher number of neighboring nodes imply that a node is
more significant and therefore has a greater influence. -e
identification of influential nodes based on their degree
centrality is simple and intuitive and has low computational
complexity. However, this method considers only the local
information of a node such that the identification accuracy is
low. Chen et al. [25, 26] proposed a new method for
identifying influential nodes based on local information.
-eir ultimate goal was to improve the recognition precision
of the degree centrality of influential nodes.-is method was
based on the 4-order neighboring information of nodes and
had relatively high recognition accuracy and lower com-
putational complexity. -ese two methods for influential
node identification considered only the number of neigh-
boring nodes and disregarded the location of the node
within the network structure. Nodes that are located in the
core of real networks may have larger influence but a smaller
degree. -e betweenness centrality [14] method identifies
influential nodes by calculating the number of paths through
a node. A higher number of paths correspond to a greater
degree of influence. It assumes that information is trans-
mitted along only the shortest path between any pair of
nodes. -e PageRank algorithm [18, 19] is based on a cu-
mulative nomination and is mainly used for web-page
ranking.When web page A has a link pointing to web page B,
web page B accrues a certain score. -e PageRank algorithm
provides a ranking for web-page matching according to the
information provided by users, and the algorithm com-
plexity is low. When an isolated node or community exists
on a web page, the ranking of the PageRank algorithm is not
unique. -e Hypertext-Induced Topic Search (HITS) algo-
rithm [20, 21] determines the most relevant web pages for
a search by using an iterative approach.-is algorithm offers
wide applicability and low computational complexity. Kitsak
et al. [24] defined the importance of nodes according to their
location within a network and proposed a k-shell de-
composition method. Although this method has low com-
putational complexity and has been widely accepted, the

method is not suitable for application to tree, star, or scale-
free networks. -is is because the identification results are
too coarse, making the influential node difficult to distin-
guish within a shell. Zeng and Zhang [27] proposed
a method based on mixing degree decomposition (MDD),
which considers the number of remaining and deleted
neighboring nodes to improve the visibility of the node
influence. However, the scientific determination of the
adjustable parameter λ was not explained. As a means of
processing a large number of nodes with the same k-shell
value, which the k-shell decomposition method is unable to
distinguish, Liu et al. [28] considered the shortest distance
between a target node and the node set with the highest k-
core value. -ey proposed a method using no parameters,
which they named the distance to network-core (DNC)
method. -is method ranks the influence of the nodes in
terms of the distance from a node to the network core, which
is defined as the node set with the highest k-shell value. -e
k-shell decomposition method could identify the most in-
fluential spreaders of a network and also assign some nodes
with the same value regardless of their role in the spreading
process. In the same way, Ren et al. [29] aimed to overcome
the difficulty of identifying influential nodes with the same k-
shell value. -eir approach was to combine the information
on the neighboring nodes to determine the influential nodes
with a minimum k-shell value, without changing the k-shell
decomposition method. Hou et al. [30] proposed a new
method, named the degree-betweenness-k-shell (DBK)
method, to analyze the influence of the important nodes by
using the Euler formula to combine the indexes of degree,
betweenness, and k-shell. -is method is characterized by
high computational complexity. Finally, the social network
analysis method depends on the network topology, without
considering the heterogeneity and hierarchy of the node.
-ere is a certain sidedness to the exploration of influential
nodes when relying on a single index such that it is not
possible to fully reflect the characteristics of the networks.
Subsequently, Helbing and Podobnik et al. [31, 32] high-
lighted that suitable system design and management can
prevent undesirable cascade effects and promote favorable
kinds of self-organization in the system. Perc et al. [33, 34]
reviewed models that describe information cascades in
complex networks, with an emphasis on the role and
consequences of node centrality. Mahdi also showed that
some centrality measures, such as the degree and be-
tweenness, are positively correlated with the spreading
influence.

Research into influential node identification in a com-
mand and control network led to the introduction of the
concept of a combat ring [35–37]. A combat network model
for a weapons and equipment system based on a combat ring
is established. -e natural connectivity index is proposed as
a measure of the survivability of a combat network. -e
measurement model has high sensitivity and low compu-
tational complexity. A network robustness measure based on
a maximal connected subgraph was proposed. -e measure
enabled the robustness of networks to be evaluated for all
kinds of attacks, including random attacks, degree rank
attacks, and betweenness rank attacks [38]. -e weighted
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algebraic connectivity was employed to analyze the ro-
bustness of the network structure when faced with an un-
certain disturbance [39]. -is work concluded that a high-
density node posse would induce more connections and
greater usage, leading to increased unreliability. -e entropy
of the network structure was used to measure the order and
stability of the supply chain system, which could be used to
analyze the influence of the network scale and node con-
nection probability on the stability of the system structure
[40]. Note that research into the invulnerability of C2
networks is still in the early stages. -e invulnerability of
a combat network was investigated based on the connectivity
of the nodes and edges [41]. -e average path length was
employed to simulate the relationship between the network
structure and the efficiency of the network operations on the
combat unit. -is study concluded that the network average
distance was an effective index for measuring network-
centric warfare, where the essential concept was to employ
traditional measures in complex networks. However, no
special attention was paid to the applicability of a C2 net-
work. From this perspective, the Perron–Frobenius eigen-
value (PFE) of the adjacency matrix is often used to measure
the network performance of an information age combat
model (IACM), as introduced by Cares [42]. Although this
idea has been proposed, the specific application of an IACM
has not been adequately investigated. -is means that the
PFE and other problems have also not been validated,
neither by theoretical derivation nor by experimental ver-
ification. Subsequent research [43, 44] was carried out based
on Cares’s IACM theoretical model, whereby a simulation
was also conducted based on NetLogo. -is study first
validated the PFE as an evaluation index for measuring the
operational effectiveness of a network. -e simulation ex-
periments incurred various limitations. For example, de-
cision nodes were not connected to the network, the network
scale was too small, and the difference in the capability of
a node itself was not adequately considered. -e theory of
“structural holes” to identify the influential nodes in com-
plex networks was proposed [22]. -is method used local
information to calculate the constraints of structural holes
with certain limitations. -e hierarchical structure of
a command and control network was considered, the
concept of hierarchical flow betweenness was defined, and
the constraint coefficient of the structural holes was cal-
culated [23]. Although the algorithm was computationally
efficient, it had poor versatility.

Many methods exist for identifying the influential nodes
in complex networks; however, their application to a com-
mand and control network is still in its infancy, given its
complex network characteristics such as the hierarchical
structure, heterogeneous nodes, local-area collaboration,
and large network scale. -e huge number of nodes and
changeable network topology in a command and control
network make it difficult to apply existing methods to
identify influential nodes in networks with high real-time
requirements. In addition, a command and control network
comprises a large number of leaf nodes. -e degree of these
nodes is 1 and the betweenness is 0. -e use of existing
methods to identify influential nodes is problematic in that

the computational complexity and accuracy cannot be taken
into account. Based on this, this paper proposes a method to
identify influential nodes based on the integral k-shell. -is
method inherits the advantage of the k-shell decomposition
method, i.e., its low computational complexity. -e pro-
posed method overcomes the problem that arises when
a large number of nodes have the same k-shell value, i.e., that
it is impossible to identify the influential nodes. -erefore, it
greatly improves the recognition accuracy of the k-shell
algorithm.

2. Integral k-Shell Method

-e k-shell decomposition method is a classical influential
node identification algorithm for application to complex
networks. -e principle of the algorithm is to shell the
network layer and divide the nodes into different layers
around the core. As the influence of the nodes in the
central core increases, their importance also increases
[45–47]. Although the complexity of the k-shell algorithm
is low, the recognition accuracy is overly coarse-grained
such that the influence of those nodes with the same k-shell
value cannot be distinguished. To overcome the short-
comings of the k-shell decomposition method, an integral
k-shell (IKS) decomposition method is proposed. -is
section first briefly introduces the principle of the k-shell
decomposition method and then describes the IKS method
in detail.

2.1. k-ShellDecompositionMethod. Within a network, the k-
shell decomposition method recursively shells those nodes
with a degree that is less than or equal to k. -e method
considers the location of the nodes in the network and the
aggregation characteristics of the other nodes, thus over-
coming the limitations of the degree centrality method.
Assuming that there are no isolated nodes with a degree of
0 in the network, those nodes with a degree of 1 are the least
influential nodes in the network from the perspective of the
degree index. -erefore, those nodes with a degree of 1 and
their edges are deleted from the network first. After this
deletion, new nodes with a degree of 1 appear in the
network. -ese new nodes and their edges are then deleted,
and the process is repeated until there are no new nodes
with a degree of 1 within the network. At this point, all the
deleted nodes form the first level, that is, the 1-shell, and the
k-shell value of these nodes is 1. -e degree of each of the
nodes remaining in the network is at least 2. By repeating
the above deletion operation, it is possible to acquire
a second layer for which the k-shell value is equal to 2, that
is, the 2-shell. -is process is continued until all the nodes
in the network are assigned k-shell values. A diagram of the
k-shell decomposition is shown in Figure 1. -e nodes in
the different circles belong to different cores, namely, the 1-
shell, 2-shell, and 3-shell, from the outside to the inside.
-e k-shell decomposition method has a low time com-
plexity of only o(m). -is is extremely advantageous for
large-scale network analysis; however, because a large
number of nodes are assigned the same k-shell value, their
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influence cannot be identified, resulting in approximate
partitioning results.

2.2. Definition and Mathematical Description of Integral k-
Shell. An analysis of the specific process of the k-shell de-
composition method reveals the shortcomings described
below.

First, by shelling the core, layer by layer, a large number
of nodes are found to have the same k-shell value. As such,
the influence of the nodes in the same shell cannot be de-
termined, and the ranking results are too coarse-grained.

Second, the k-shell decomposition method only con-
siders the residual degree of the current node; however, it
does not consider the number of neighbors removed by the
node. -at is, although the method considers the global
centrality of the node, it does not consider the local centrality
of the node.

-ird, the k-shell decomposition method is not suitable
for networks without obvious aggregation or a large number
of nodes with the same degree, such as tree networks, star
networks, and BA scale-free networks. A command and
control network exhibits obvious scale-free characteristics,
retains the skeleton of a tree network, and has a large
number of nodes with a degree of 1, without any obvious
aggregation characteristics. -erefore, although the k-shell
decomposition method has low computational complexity,
it cannot be directly applied to rank influential nodes in
a command and control network.

-is study therefore attempted to address these short-
comings of the k-shell decomposition method. Herein, we
propose an integral k-shell (IKS) method to evaluate the
influence of the nodes in a command and control network.

-e k-shell decomposition method removes those
nodes with the same shell values from the original net-
work in different batches. In order to better distinguish
the influential nodes among those with the same k-shell
values and overcome the problem of the overly coarse-
grained sorting results of the k-shell decomposition
method, it is assumed that nodes removed later are more
important than nodes removed earlier. When the IKS
method is used to decompose a network, the k-shell value
and batches are recorded at the time when each node is
removed.

When using the k-shell method to decompose a network,
it is necessary to consider both the number of k-shell values
when the nodes are removed and the number of integral
shelling times in each k-shell. When nodes in the same k-
shell are removed from the network, a greater number of
neighboring nodes would increase the shelling time.
-erefore, the sum of the current k-shell values for the nodes
and their historical k-shells can reflect the influence of nodes
as they are removed from a network. -is concept over-
comes the problem of the k-shell method by considering
only the global centrality of the nodes; however, it does not
consider the local centrality of the nodes. According to
reference [22], when calculating the influential nodes by
considering the location and self-degree of nodes in the
network, it is more accurate to get the ranking result of node

importance by calculating the 2-order neighboring degree,
and the complexity is the lowest.

When analyzing the influence of nodes, it is necessary to
consider the location and self-degree of the nodes within the
network. -e IKS method assumes that the influence of
a node is also affected by its neighbors. If its neighbors are
important, then the influence of that node is enhanced. -is
concept overcomes the problem of the k-shell method, i.e.,
that it is unsuitable for networks containing a large number
of nodes of the same degree but no obvious aggregation.

Definition 1 (L-order neighboring degree). For any node vi

in a network, the number of neighboring nodes that can be
reached in N steps from the node vi is referred to as the L-
order neighboring degree of the node vi, which is denoted as
QN(i). Obviously, for any network, G and L are not larger
than the network diameter, and Q1(i) � ki; that is, the 1-
order neighboring degree is equal to the degree of the nodes.

Definition 2 (historical k-shell). Based on the k-shell de-
composition method, when any node vi is removed, the sum
of the k-shell values corresponding to the previous shelling
of the network is referred to as the historical k-shell of the
node vi.

Definition 3 (integral k-shell). For any node vi in a network,
the sum of its 2-order neighboring degree and historical k-
shell is termed the integral k-shell of the node vi.

Given the basic concept of the IKS method, the integral
k-shell index of each node vi is set to iks(i), which can be
expressed as follows:

iks(i) � Q2(i) + 􏽘

mi

j�1
kS(i), (1)

where Q2(i) is the 2-order neighboring degree of the node vi,
mi is the number of times the network is shelled when the
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Figure 1: k-shell decomposition.
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node vi is removed, and kS(j) represents the k-shell value
when the network has been shelled j times.

3. Influential Node Identification in
Command and Control Networks Based on
Integral k-Shell

A command and control network is characterized by its large
scale, heterogeneous nodes, multiple interleaved links, and
scale-free nature. At the same time, given the influence of
a military organizational structure, command entities have
strict subordinate command relationships in a command
and control system. -e relationships between the higher
and lower entities in a command organization are charac-
terized by a hierarchical topological structure in the com-
mand and control network [48]. -e heterogeneity of the
nodes indicates that there are relatively influential nodes in
a command and control network, which must be protected
to enhance the invulnerability of the network. -e hierarchy
of the structure indicates that there are a large number of leaf
nodes with a degree of 1 and a betweenness of 0 in
a command and control network. -e complex character-
istics of a command and control network determine that the
general method used to identify influential nodes cannot be
easily applied to this network. -e integral k-shell method
contains the historical k-shell value and the 2-order
neighboring degree. -e method also comprehensively takes
the global and local information of the node into account to
more accurately identify the influential nodes of the com-
mand and control network.

3.1. Algorithms for Influential Node Identification. Given the
basic concept of the integral k-shell and the definition of
the node iks(i), an algorithm for influential node iden-
tification based on the integral k-shell for a command and
control network is proposed.-e algorithm is based on the
k-shell decomposition method, which takes into account
the local and global centrality of nodes, and evaluates the
influence of nodes from their iks(i) value. -e integral k-
shell algorithm is modified to enable it to be used for scale-
free networks. -e modified design considers the com-
plexity and accuracy of the algorithm and introduces the
2-order neighboring degree when calculating the iks(i)

value of a node. -e specific steps of the algorithm are as
follows:

Step 1: calculate the L-order neighboring degree L(i) of
each node; mark the degree of each node as the initial
iks(i) value, namely, iks(i) � L(i); and initialize kS � 1.
Step 2: use the k-shell decomposition method to
construct the k-shell. First, remove the nodes in the
outermost layer, for which the degree is kS. -en,
update the integral k-shell values for each node in the
network such that iks(i) � iks(i) + kS.
Step 3: remove those nodes with a degree of kS from the
remaining network, which is newly created. -en,

update the integral k-shell values of the nodes in the
network again such that iks(i) � iks(i) + kS.
Step 4: repeat Steps 2 and 3 to delete the new nodes for
which the degree is kS, and update the integral k-shell
values of each node, until no nodes with a degree of kS

remain in the network. -e nodes removed up to this
point constitute the kS − shell.
Step 5: update kS and iks(i) such that kS � kS + 1 and
iks(i) � iks(i) + kS.
Step 6: count the number of remaining nodes in the
network as Nr. If Nr> 0, return to Step 2 and continue
the k-shell decomposition until Nr � 0, at which point
the algorithm terminates.

After decomposing the network according to the integral
k-shell method, the iks(i) array indicates the influence of all
the nodes. -en, the elements of the iks(i) array are ranked
to determine the influence of the nodes in the command and
control network. A higher iks(i) value corresponds to a node
with greater influence.

-e calculation of the 2-order neighboring degree of
a node needs to traverse all the nodes in a network. -e
neighboring node set Ni Set of the node vi is summed, and
then the neighboring nodes of each node in the neighboring
node set Ni Set are found. After removing the duplicate
nodes and the node vi, the set becomes the 2-order
neighboring set Ni Zuhe(i) of the node vi. -e number of
nodes in the set is the number of 2-order neighbors of the
node vi.

-e above analysis indicates that when calculating the
2-order neighboring degree of a node, the first step is to
find the neighboring node of each node, that is, to cal-
culate the degree of that node. For any node vi, it is
necessary to find those nodes that are directly connected to
node vi from N − 1 nodes except the node vi in the set
Ni Set. -e complexity of the algorithm is as follows:

f1 � o(N − 1). (2)

In the second step, for any point vj in the set Ni Set, it
remains necessary to find those nodes that are directly
connected to the node vj from N− 1 nodes, except the node vj

in the set Nj Set. -e complexity remains o(N − 1). As-
suming that the degree of the node vi is ki, the computational
complexity of the 2-order neighboring degree of the node vi is

f2 � f1 + ki · o(N − 1). (3)

If the total number of nodes in the network is N, and the
average degree is 〈k〉, then all the nodes in the network are
traversed and the 2-order neighboring degree of each node is
solved. -e complexity of the algorithm is as follows:

f � N · f2 � o(N(N − 1) +〈k〉 · N(N − 1)) ≈ o N
2
〈k〉􏼐 􏼑.

(4)

-e core of the influential node-ranking algorithm
based on the integral k-shell continues to be k-shell
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decomposition. -e complexity of the k-shell de-
composition algorithm is o(N). -e complexity of the
influential node-ranking algorithm based on the integral k-
shell is the sum of the complexities of the 2-order neigh-
boring algorithm and the k-shell decomposition algorithm.
-e complexity is as follows:

f � o(N) + o N
2
〈k〉􏼐 􏼑 ≈ o N

2
〈k〉􏼐 􏼑. (5)

-erefore, the complexity of the influential node-
ranking algorithm based on the integral k-shell is o(N2〈k〉).

-e classical k-shell decomposition method does not in-
volve calculation of the distance between the nodes, but rather
decomposes the network, layer by layer. -e complexity of the
algorithm is o(N).-e k-shell value of each shell increases by 1.
However, this causes low identification accuracy and results in
poor applicability. Compared with the k-shell algorithm, the
MDD algorithm [27] is an obvious improvement, in that the
network can be divided into a greater number of cores, in
which case the computational complexity remains as o(N).
For different networks, however, the value of λ cannot be
determined. -e DNC algorithm [28] involves the calculation
of the distance between the nodes, and its complexity is o(N2).
However, although it can efficiently identify the influential
nodes of a network, it cannot be applied to a command and
control network with a hierarchical structure.

-e distance between the nodes in the same layer of
a command and control network and the maximum k-shell
of the network is the same.-eDBK algorithm [30] is closely
correlated with the betweenness centrality, and it can effi-
ciently identify the influential nodes of a network. However,
the computational complexity is very high, similar to that of
the betweenness centrality, at o(N3), making it difficult to
apply to a command and control network. -e computa-
tional complexities of the k-shell decomposition, MDD al-
gorithm, DNC algorithm, DBK algorithm, degree centrality
(DC), betweenness centrality (BC), and IKS algorithm,
described herein, are listed in Table 1.

-e identification of influential nodes in a command and
control network based on the IKS algorithm does not change
the process of k-shell decomposition. Instead, it improves
the criteria for determining the influential nodes such that
the influential nodes in the same shell can be more easily
distinguished, thus inheriting the advantages of the k-shell
decomposition method. -erefore, the IKS algorithm is
suitable for command and control networks with a large
number of nodes, frequent changes in the network structure,
and high real-time requirements.

3.2. ExampleAnalysis. -e specific calculation process of the
IKS algorithm is further analyzed by examining the iks(i)

values of the nodes shown in Figure 1 as an example. In the
example, the iks(10) values of the node v10 are calculated.
-e specific calculation process is as follows.

First, the 2-order neighboring degree of the node v10 is
calculated. -e set of neighboring nodes of the node v10 is
Ni Set � 8, 9, 11, 12, 13, 14{ }. -e neighboring nodes of
nodes 8, 9, 11, 12, 13, and 14 are {6, 9, 10}, {7, 8, 10}, {10, 12,
13}, {10, 11, 13, 15}, {10, 11, 12, 15}, {10, 11, 12, 15}, and {10},

respectively.-erefore, the set of 2-order neighboring nodes of
the node v10 is Ni Zuhe(10) � Ni Set∪ 6,9,10{ }∪ 7,8,10{ }∪
10,12,13{ }∪ 10,11,13,15{ }∪ 10,11,12,15{ }∪ 10{ }− 10{ }� 6,7,{

8,9,11,12,13,14,15}, and the number of nodes in this set is 9;
hence, the 2-order neighboring degree N(10) of the node
v10 is 9.

Second, the k-shell algorithm is used to decompose the
network. All the nodes shelled from the network are listed in
Table 2.

Table 2 indicates that when the k-shell decomposition
network is used for the fifth decomposition, the node v10 is
removed such that m10 � 5 and 􏽐

m10
j�1kS(j) � 1 + 1 + 1 + 2+

3 � 8; thus, the iks(10) value of the node v10 is

iks(10) � Q2(10) + 􏽘

m10

j�1
kS(j) � 9 + 8 � 17. (6)

According to the above-mentioned flow of the IKS al-
gorithm, each node has a corresponding iks(i) value and k-
shell, and the calculation process is the same as iks(10) IKS.
-e iks(i) values and k-shells of each node shown in Figure 1
are listed in Table 3.

In comparison, when using the k-shell decomposition
method, all the nodes in the network shown in Figure 1 are
divided into three layers. -is ensures that the differences
between the influential nodes are very small, and the ranking
results are very coarse-grained. -e IKS algorithm can
clearly identify the influences of the nodes. -erefore, rel-
ative to the k-shell decomposition method, the IKS algo-
rithm is more effective at identifying the influence of a given
k-shell node.

4. Simulation Analysis

A typical command and control network model is estab-
lished to verify the effectiveness and feasibility of the in-
fluential node identification method based on the IKS
algorithm proposed in this paper. -e topology of the
command and control network is shown in Figure 2. -e
number of nodes N is 453, including 85 command nodes
(red circles), 256 fire attack nodes (blue triangles), and 112
perception nodes (green squares).-e command levelD is 5,
and the span S is 4.

-is section presents the validation of the efficacy and
generality of the IKS method from two aspects: the impact of
the network performance when the influential nodes are
removed and the correlation between the iks value and its
propagation value. First, the network efficiency is taken as

Table 1: Computational complexities.

Method Complexity
k-shell o(N)
MDD o(N)
DNC o(N2)
DBK o(N3)
DC o(N)
BC o(N3)
IKS o(N2〈k〉)
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a measure, and node deletion is used to analyze the impact of
the influential node removal on the network performance;
second, the SIR propagation model is used to study the
propagation ability of the influential nodes. Subsequently,
Kendall’s tau coefficient is used to analyze the correlation
between the node influence values obtained by the various
algorithms and the potential propagation abilities of the
nodes. -is approach makes it possible to verify the feasi-
bility and accuracy of the IKS method.

4.1. Impact of Influential Node Removal on Network
Performance. First, the k-shell, MDD, DNC, DBK, degree
centrality (DC), betweenness centrality (BC), and IKS

methods were used to measure the influence of the nodes in
a command and control network. -e first 10 nodes in the
network were ranked according to their influence, as shown
in Table 4.

-e results in Table 4 indicate that the ranking results
obtained with the proposed IKS method are close to those of
the DBK and BC methods for a command and control
network and are quite different from those obtained with the
k-shell method.

Second, based on the concept of “destructiveness being
equal to importance,” the influence of the nodes in
a command and control network is ranked using the
different methods described above. Based on the ranking
results, one node is deleted from the initial network at
a time, and different evaluation indicators are used to
calculate the rate of decline in the network performance
after the removal of each of the nodes. -is cycle is re-
peated until all the nodes are removed such that the impact
of each node on network performance can be calculated.
Figures 3(a)–3(g) present the change in the network ef-
ficiency when nodes are deleted according to the k-shell,
MDD, DNC, DBK, DC, BC, and IKS algorithms. Because
of the huge number of nodes in a command and control
network, only the relationship between the rate of decline
in the network efficiency and the first 100 nodes in the
influence ranking is shown in Figure 3.

As shown in Figure 3, the results of ranking the influence of
the nodes using the seven different methods show that, after
deleting nodes according to their order of influence, the
network efficiency declines. -is indicates that each method
can basically distinguish the influence ofmost nodes. However,
for the k-shell, MDD, and DNCmethods, the rate of decline of
the network efficiency does not strictly conform to the
descending trend in the ranking results; furthermore, the
fluctuations are large, indicating that the identification

Table 3: iks(i) values and k-shells of each node shown in Figure 1.

Node label iks(i) ks − shell

1 4 1
2 4 1
3 8 1
4 5 1
5 5 1
6 11 1
7 4 1
8 16 2
9 13 2
10 17 3
11 15 3
12 16 3
13 16 3
14 7 1
15 11 2
16 6 1
17 3 1

Table 2: Decomposing a network with the k-shell algorithm.

Number of shellings (j) k-shell value k-shell (j) value Shelled nodes from the network
1 1 1 1, 2, 4, 5, 7, 14, 17
2 1 3, 16
3 1 6
4 2 2 8, 9, 15
5 3 3 10, 11, 12, 13

Table 4: Comparison of seven methods used to rank influential
nodes.

Method
No. k-shell MDD DNC DBK DC BC IKS
1 2 10 37 10 10 7 10
2 8 11 43 11 11 4 11
3 10 7 46 9 9 13 4
4 32 8 47 7 15 11 8
5 33 14 2 5 37 14 9
6 36 9 41 14 4 10 7
7 37 4 42 8 7 9 37
8 41 15 8 13 8 15 46
9 42 37 10 15 14 8 14
10 43 13 32 12 18 6 47

Figure 2: Command and control network model.
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accuracy of the k-shell, MDD, DNC, and DC methods is low.
When the proposed IKS and BC methods are used to rank the
nodes, the rate at which the network efficiency decreases clearly
most closely corresponds to the ranking result. -is implies
that these twomethods can rank the nodes in the networkmost
accurately and offer the best identification accuracy.

Additionally, the IKS method is also compared with
other methods using Kendall’s tau coefficient. -e re-
sults, which are shown in Figures 4(a)–4(f ), present the
ranking comparison results of the IKS algorithm and the
k-shell, MDD, DNC, DBK, DC, and BC algorithms, re-
spectively. -e dots in the graph represent the nodes of
the network, and the color of the dots corresponds to the
rate at which the network efficiency decreases after the

nodes are removed. -e abscissa corresponds to the
influence value of the nodes calculated using the IKS
method, that is, the iks(i) value of the node, whereas the
ordinate corresponds to the influence of the nodes cal-
culated using the other algorithms. Kendall’s tau co-
efficient is τ and is used to measure the correlation
between two sequences X and Y. For any pair of nodes
(xi, yi) and (xj, yj), if xi >xj and yi >yj, or if xi < xj and
yi <yj, the pair of nodes is regarded as being relevant; if
xi >xj and yi <yj, or xi < xj and yi >yj, the node pair is
regarded as being irrelevant; if yi � yj, the correlation
between the pair of nodes cannot be judged. -e
mathematical expression of Kendall’s tau coefficient is as
follows:
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Figure 3: Relationship between the rate of decline of network efficiency and importance rankings of nodes.
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τ �
2 n1 − n2( 􏼁

N(N − 1)
, (7)

where N is the number of nodes, n1 is the number of related
node pairs in sequences X and Y, and n2 is the number of
unrelated node pairs.

-e analysis in Figure 4 shows that the ranking results
of the IKS method proposed in this paper are positively
correlated with those of the k-shell, MDD, DBK, DC, and
BC methods. -e correlation coefficient τ between the IKS
and BC methods is the largest; that is, the ranking results
obtained with these two methods are the most highly
correlated. -e IKS method is negatively correlated with
the DNCmethod because with the DNCmethod, a smaller
influence value corresponds to a greater node influence,
which is different from that of other methods. -e BC
method is an existing influential node identification
method that provides high-accuracy identification. -e
IKS method is most closely correlated with the BC
method, which shows that the proposed method for in-
fluential node identification has high identification ac-
curacy. In addition, the IKS and BC methods are superior
to other methods according to the trend in the node color
change. Generally, the IKS and BC methods are able to
identify influential nodes more accurately in a command
and control network. However, the IKS method has lower
complexity than other methods. -erefore, considering
the complexity and accuracy of the IKS method in

combination, this method is superior in terms of iden-
tifying the influential nodes of a command and control
network.

Next, the different methods are used to rank the in-
fluential nodes by sequentially deleting the first 45 nodes (the
first 10%) based on influence ranking in the network. -e
network efficiency, network connectivity coefficient, and
maximum connected subgraph ratio are used to analyze the
impact of the removal of influential nodes on the network,
and the identification accuracies of the different methods are
compared.

Figure 5 shows a plot of the rate at which the network
efficiency μE decreases as a function of the ratio of removed
nodes p after the removal of the influential nodes in
a command and control network. -e formula to calculate
μE is as follows:

μE(i) � 1 −
Ei
′

E0
, (8)

where Ei
′ is the efficiency of the network after removing the

nodes and E0 is the initial network efficiency. As the value of
μE(i) increases, the network efficiency declines more dras-
tically, indicating that the removal of the node v(i) is more
influential.

According to (8), the removal of influential nodes
causes the network efficiency to decrease, whereas the rate
of decline of the network efficiency increases. As can be
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Figure 4: Relationship between the IKS method and other methods in terms of the ranking result.
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seen from Figure 5, macroscopically, an increase in the
removal ratio of the influential nodes leads to an increase in
the rate of decline of the network efficiency as more nodes
are removed. Obviously, as the network efficiency falls, the
connectivity deteriorates. Microscopically, the removal of the
influential nodes first causes the curve for the IKS and BC
methods to rise, and the network efficiency clearly decreases.
-is confirms the high accuracy of the ranking results of the
IKS method, which is consistent with the simulation results
shown in Figure 3.

-e network connectivity coefficient examines the
network performance from the perspective of network
connectivity. Figure 6 shows the variation in the rate of
descent of the network connectivity coefficient with the
proportion p of the removed nodes after the influential
nodes of the command and control network are sequen-
tially removed. -e expressions defining the network
connectivity coefficient C and the rate of descent of the
network connectivity coefficient μC(i) are, respectively, as
follows:

C �
1

ω􏽐
ω
i�1 Ni/Ninit( 􏼁li

,

μC(i) � 1 −
Ci
′

C0
,

(9)

where ω is the number of subnets in the network, Ninit is the
total number of nodes in the network, and Ni and li are the
number of nodes in the i subnet and the average distance to
the corresponding subnet, respectively. Furthermore, Ci

′ is
the connectivity coefficient of the network after removing
the nodes, and C0 is the connectivity coefficient of the
initial network. As the value of μC(i) increases, the decline

in the network connectivity becomes more obvious, in-
dicating that the removal of the node v(i) is more
influential.

Figure 6 compares and analyzes the ranking accuracy
that is possible with the seven different methods regarding
the influence of the nodes from the perspective of their
network connectivity coefficient. -is figure shows that
when the first 10% of the influential nodes are removed
using the BC method, the rate at which the network
connectivity coefficient declines is the largest, followed
by the IKS method. Based on the concept that “de-
structiveness is equal to importance,” the BC method ranks
the influences of the nodes most accurately. -e IKS
method is slightly worse than the BCmethod at ranking the
influence of the nodes but outperforms the remaining five
methods.

Figure 7 shows the change in the rate of decrease of the
maximal connected subgraphs of the network with the
proportion p of the removed nodes, after the influential
nodes identified by the different methods are removed. -e
rate of decrease μS(i) of the maximum connected subgraph
ratio also reflects the influence of the deleted node v(i). -e
rate is calculated as follows:

μS(i) � 1 − Si
′, (10)

where Si
′ is the ratio of the maximal connected subgraphs of

the network after removing the nodes. As the value of μS(i)

increases, the network is divided more uniformly, and the
removed node v(i) has a greater influence.

As can be seen from Figure 7, all the curves exhibit
a downward trend as the proportion of removed nodes
increases. Upon removing the first 1% of the influential
nodes according to the sequences of the different methods,
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Figure 5: Relationship between the rate of decline of network
efficiency and the ratio of removed nodes.
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the ratio of the maximal connected subgraphs of the network
approaches 1, and the curves of the different methods almost
coincide, indicating that deleting very few influential nodes
will not form a subnet. As the number of deleted influential
nodes increases, the curve of the BC method decreases most
rapidly, followed by that of the IKS method.-e curves of the
other methods are intertwined and difficult to distinguish.
When the removal ratio of the influential nodes exceeds 6%,
the maximal connected subgraphs decrease most rapidly
when the influential nodes are removed sequentially
according to the IKS method.

4.2. Impact of Influential Node Removal on Correlation
Analysis between the iks Value and Its Propagation Value.
-e present study used the SIR propagation model to
simulate the propagation capability of the influential
nodes. In the SIR model, individuals have three states: (1)
susceptible state (S state), referring to the state of in-
dividual health, which may be infected as a result of
contact with infected individuals; (2) infected state (I
state), referring to the state of individual infection, which
is infectious; and (3) removed/recovered state (R state),
which is that state in which an individual has either
recovered from an infection and acquired immunity or
died as a result of an infection, and thus can no longer
affect other individuals, which is the equivalent of re-
moval from the system. In the SIR model, nodes in the I
state transmit an infectious disease to nodes in the S state
with the probability α. At the same time, a node in the I
state passes through at time Tr after infection and re-
covers or dies with the probability β. -e infection
process and mechanism of the SIR model can be
expressed as follows:

S(i) + I(j)⟶α I(i) + I(j),

I(i)⟶
β

R(i).

⎧⎪⎨

⎪⎩
(11)

For time t, the node densities in the S, I, and R states are
S(t), I(t), and R(t), respectively, for which the propagation
dynamics of the SIR method can be described as

ds(t)

dt
� − αi(t)∗ s(t),

di(t)

dt
� αi(t)∗ s(t) − βi(t),

dr(t)

dt
� βi(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

When ranking the influence of the network nodes, the
different methods start from the most influential node each
time a node vi is designated as the source of infection. -e
SIR simulation of each node is carried out N times. After
time steps T, the number of non-S-state nodes Xi is counted.
In the present study, the average propagation value Xi and
the standard deviation σ(i) are used to measure the prop-
agation ability of the node vi. -e potential propagation
capability of a node can be expressed as

Xi �
1
N

􏽘

N

n�1
Xi(n),

σ(i) �

��������������������

1
N − 1

􏽘

N

n�1
Xi(n) − Xi( 􏼁

2

􏽶
􏽴

,

(13)
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Figure 7: Relationship between the ratio of maximal connected subgraphs and the ratio of nodes removed.
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where Xi(n) is the propagation value of the node vi in the n
th

simulation, that is, the number of nodes in the non-S state at
the end of the nth simulation; Xi is the average propagation
value after the nth simulation; and σ(i) is the standard
deviation of the propagation ability of the node vi. -e
standard deviation reflects the deviation level of Xi(n) and
Xi and expresses the divergence or convergence of the
propagation ability of the node vi. As the value of σ(i)

increases, the difference in the transmission ability of the
node vi also increases, as does the divergence of the
transmission ability of the node vi. Conversely, as the value
of σ(i) decreases, the transmission ability of the node vi

becomes more convergent.
-e simulation is based on the assumption that

Tr � 2 and β � 1; that is, the nodes in the I state change to the
R state after Tr � 2 time steps, and each node is used as
a source of infection according to the order of the nodes.
After a certain time step T (assumed to be 100 in the present
study), the number of network nodes in the infected state is
counted. Random errors are avoided by repeating the SIR
simulation 100 times (N� 100) using each node as a source
of infection.

Figure 8 shows the correlation between the propagation
value, the standard deviation of the first 10% of influential
nodes, and the propagation rates for the seven methods as
a function of the propagation rate α. -e correlation ob-
tained for the DNC method is opposite to that of the in-
fluence of the nodes; that is, as the value of the influence
decreases, the nodes become more influential. -erefore, the
correlation coefficient between the influence of the nodes
obtained using the DNC method and both its propagation
value and standard deviation is negative. -us, in Figure 8,
the DNC curve was plotted using the absolute values of the
results for convenience.

-e relationship curve in Figure 8(a) shows that when
the propagation rate α is small and increases gradually, the
correlation between the propagation value and the in-
fluence value of the influential nodes also increases
gradually. -is indicates that the propagation ability of the
influential nodes increases with the propagation rate.
When the propagation rate α reaches a certain value
(α≥ 0.4), the correlation coefficient between the propa-
gation value and the influence value tends to be fixed. In
comparison, the standard deviation of the node propa-
gation value first increases and then decreases with the
propagation rate. -is proves that when the propagation
rate reaches a certain level, the number of infected in-
dividuals in the network tends to be fixed, and the
propagation values of the nodes tend to converge. An
analysis of the amplitude of the curve reveals that the
degree of the nodes best reflects the propagation ability of
the nodes, followed by the IKS method, which is mainly
related to the propagation mode of the virus in terms of
“neighbor contact infection.” At the same time, compared
with other indicators, the IKS method can predict the
propagation ability of nodes more accurately, which
confirms the effectiveness of the proposed IKS algorithm.
-is is in good agreement with the conclusions of previous
studies.

Similarly, Kendall’s tau coefficients were used to com-
pare the correlation between the node influence metrics
obtained using the different methods and the node propa-
gation ability. Subsequently, the ability of each method to
accurately identify the influential nodes was analyzed.
Figure 9 shows the correlation between the propagation
capability of the nodes in a command and control network
and the influence of the nodes obtained by various methods
at a propagation rate α of 0.4. Figures 9(a)–9(g) show the

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Propagation value

k-shell
MDD
DNC
DBK

DC
BC
IKS

τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

(a)

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

τ

Standard deviation

k-shell
MDD
DNC
DBK

DC
BC
IKS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

(b)

Figure 8: Relationship between the propagation value, standard deviation of influential nodes, and propagation rates. (a) Relation between
the spreading value and transmission rates. (b) Relation between the standard deviation and transmission rates.
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relationship between the propagation capability and the
importance of nodes, as obtained by the k-shell, MDD,
DNC, DBK, DC, BC, and IKS algorithms, respectively. -e
circles in the graph represent the first 10% of the influential
nodes obtained by each ranking method. -e abscissa shows
the influence value of the nodes under each ranking method,
whereas the ordinate shows the propagation value of the
corresponding nodes (the number of infected nodes in

a network). -e color indicates the standard deviation of the
propagation value of the nodes.

As can be seen in Figure 9, the influence values of the
nodes obtained using the six methods other than the
DNC method are moderately correlated with the cor-
responding node propagation values (τ ∈ [0.3, 0.8]) for
a propagation rate α of 0.4. -at is, as the influence values
increase, the propagation ability of a node becomes
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Figure 9: Correlation between the node influence value and the propagation value when the propagation rate α � 0.4.

Table 5: Comparison of performance of the seven influential node identification methods.

Rank method Network information Computational complexity Accuracy
k-shell Global information o(N) Lower
MDD Global information o(N) Lower
DNC Global information o(N2) Lower
DBK Global information o(N3) Higher
DC Local information o(N) Lower
BC Global information o(N3) Higher
IKS Global and local information o(N2〈k〉) Higher
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stronger, and the standard deviation of the propagation
values increases. -e correlation coefficient between the
integral k-shell index and the node propagation value
obtained by the IKS method is 0.7128, which is second
only to the correlation coefficient between the degree
index and the node propagation value. -is shows that
the IKS method can still rank the influence of the nodes
in a command and control network accurately when the
influence of the nodes is represented by their propagation
ability.

Results based on a large number of simulations show that
the integral k-shell method offers a higher degree of accuracy
from the perspective of network destructiveness caused by
the removal of the influential nodes. Although the perfor-
mance of the integral k-shell method is slightly less accurate
than the betweenness, the integral k-shell method has the
advantage of low complexity. With respect to its node
propagation ability, the integral k-shell method can also
identify the influential nodes of the network more accu-
rately. -e network information, computational complexity,
and accuracy required by the various methods are compared
in Table 5.

-erefore, the proposed integral k-shell method has
higher identification accuracy and lower computational
complexity and can identify the influential nodes of the
command and control network well.

5. Conclusion

-is study addressed the problem of influential node
identification in a command and control network. -e study
led to the proposal of a method to identify influential nodes
in a command and control network based on an integral k-
shell (IKS). -e method was designed to overcome the
problems associated with the existing k-shell method and
improved methods based thereupon. -e disadvantages of
these methods are their coarse ranking granularity and the
fact that they disregard the local centrality of the nodes,
which lowers the accuracy of influential node identification.
-e proposed IKS method, which uses a refinement of the k-
shell decomposition, was used to determine the influence of
nodes by using the k-shell method and 2-order neighboring
degree. -e algorithm was described, and its computational
complexity was deduced. -e influence of node removal on
the network performance and the correlation between the iks
values of the nodes and their propagation values were
compared and analyzed. -e simulation results showed that
the proposed IKS method has higher identification accuracy
and lower computational complexity and confirmed its
ability to efficiently identify the influential nodes of a com-
mand and control network. -e key node identification IKS
algorithm is applied to the SIR model and its improved virus
propagation model, and its mathematical analysis is the next
research focus.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was supported by the Natural Science Foundation
of China under Grant 61471080; the Equipment Develop-
ment Department Research Foundation of China under
Grant 61400010303; and the Natural Science Research
Project of Liaoning Education Department of China under
Grant JDL2019019.

References

[1] Y. M. Wang, S. Chen, C. S. Pan et al., “Measure of in-
vulnerability for command and control network based on
mission link,” Information Sciences, vol. 426, pp. 148–159,
2018.

[2] D. A. Eisenberg, D. L. Alderson, M. Kitsak, A. Ganin, and
I. Linkov, “Network foundation for command and control
(C2) systems: literature review,” IEEE Access, vol. 6,
pp. 68782–68794, 2018.

[3] X. F. Hu, X. Y. He, and D. H. Rao, “A methodology for
investigating the capabilities of command and coordination
for system of system operation based on complex network
theory,” Complex Systems and Complexity Science, vol. 12,
no. 2, pp. 9–17, 2015.

[4] X. Song, W. Shi, G. Tan, and Y. Ma, “Multi-level tolerance
opinion dynamics in military command and control net-
works,” Physica A: Statistical Mechanics and Its Applications,
vol. 437, pp. 322–332, 2015.

[5] X. Gao, K. Li, and B. Chen, “Invulnerability measure of
a military heterogeneous network based on network structure
entropy,” IEEE Access, vol. 6, pp. 6700–6708, 2018.

[6] X. F. Hu, “A brief survey on war complex networks studies,”
Complex Systems and Complexity Science, vol. 7, no. 2-3,
pp. 24–28, 2010.

[7] A. H. Dekker, “Measuring the agility of networked military
forces,” Journal of Battlefield Technology, vol. 9, no. 1,
pp. 19–24, 2006.

[8] R. Albert, H. Jeong, and A. L. Barabási, “Error and attack
tolerance of complex networks,” Nature, vol. 406, pp. 378–382,
2010.

[9] Y. P. Li, S. Y. Tan, Y. Deng et al., “Attacker-defender game
from a network science perspective,” CHAOS, vol. 28, no. 5,
Article ID 051102, 2018.

[10] H. Yu, Z. Liu, and Y. J. Li, “Key nodes in complex networks
identified by multi-attribute decision-making method,” Acta
Physica Sinica, vol. 62, no. 2, Article ID 020204, 2013.

[11] Z. Liu, C. Jiang, J. Wang, and H. Yu, “-e node importance in
actual complex networks based on a multi-attribute ranking
method,” Knowledge-Based Systems, vol. 84, pp. 56–66, 2015.

[12] D. Wei, X. Deng, X. Zhang, Y. Deng, and S. Mahadevan,
“Identifying influential nodes in weighted networks based on
evidence theory,” Physica A: Statistical Mechanics and Its
Applications, vol. 392, no. 10, pp. 2564–2575, 2013.

[13] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in
weighted networks: generalizing degree and shortest paths,”
Social Networks, vol. 32, no. 3, pp. 245–251, 2010.

14 Wireless Communications and Mobile Computing



[14] U. Brandes, “A faster algorithm for betweenness centrality,”
De Journal of Mathematical Sociology, vol. 25, no. 2,
pp. 163–177, 2001.

[15] Y. Li, W. G. Li, Y. Tan et al., “Hierarchical decomposition for
betweenness centrality measure of complex networks,” Sci-
entific Reports, vol. 7, Article ID 46491, 2017.

[16] X. Q. Cheng, F. X. Ren, H. W. Shen et al., “Bridgeness: a local
index on edge significance in maintaining global connectiv-
ity,” Journal of Statistical Mechanics: Deory and Experiment,
vol. 2010, no. 10, Article ID P10011, 2010.

[17] R. Poulin, M.-C. Boily, and B. R. Mâsse, “Dynamical systems
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