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Abstract Object tracking has been a challenge
in computer vision. In this paper, we present a
novel method to model target appearance and combine
it with structured output learning for robust online
tracking within a tracking-by-detection framework.
We take both convolutional features and hand-
crafted features into account to robustly encode the
target appearance. First, we extract convolutional
features of the target by kernels generated from
the initial annotated frame. To capture appearance
variation during tracking, we propose a new strategy
to update the target and background kernel pool.
Secondly, we employ a structured output SVM for
refining the target’s location to mitigate uncertainty
in labeling samples as positive or negative. Compared
with existing state-of-the-art trackers, our tracking
method not only enhances the robustness of the
feature representation, but also uses structured output
prediction to avoid relying on heuristic intermediate
steps to produce labelled binary samples. Extensive
experimental evaluation on the challenging OTB-50
video sequences shows competitive results in terms
of both success and precision rate, demonstrating the
merits of the proposed tracking method.

Keywords object tracking; convolutional network;
structured learning; feature extraction

1 Introduction

Visual tracking is a fundamental research problem in
computer vision and robotics, with wide applications
such as intelligent video surveillance, transportation
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monitoring, robot–human interaction, etc. In recent
years, many excellent tracking algorithms have been
proposed, but it remains a challenging problem
for a tracker to handle occlusion, abrupt motion,
appearance variation, and background clutter.

In this paper, we propose a novel tracking
method which utilizes a discriminative convolutional
network [1] and HOG descriptors [2] to encode
target appearance, together with a structured
output support vector machine (SO-SVM) to jointly
estimate target appearance. In the proposed method,
tracking is formulated as binary classification and
structured output tasks, to select the most likely
target candidate and reject background patches. It
uses an online trained structural output classifier
within a particle filter framework. The convolutional
filters for modeling target appearance are generated
from the initial frame (annotated manually). We
perform a soft-shrink operation on the output
convolutional feature maps to enhance their
robustness. One of the most significant advantages
is that the convolutional filters are generated from
both the target and its surrounding area, so fully
exploiting local structure and internal geometric
layout of the target. Additionally, our method
employs an SO-SVM to overcome the drawback that
samples used for training the classifier are all equally
weighted, meaning that a negative example which
overlaps significantly with the tracker’s bounding
box is treated the same as one which overlaps very
little. Another advantage of SO-SVM is that the
labeler no longer labels the samples as positive or
negative based on intuition and heuristics.

The remainder of this paper is organized as
follows. Section 2 gives a brief overview of
related work. Details of our tracking method are
described in Section 3. Section 4 reports qualitative

325



326 J. Li, X. Zhou, S. Chan, et al.

and quantitative experimental results. We finally
conclude this paper in Section 5.

2 Related work

Most existing tracking methods belong to two
categories: generative models and discriminative
models. The generative approach formulates the
tracking problem as minimizing reconstruction error,
while the discriminative model method considers
the tracking problem as a binary classification
task to separate the target from the background.
From another perspective, a tracker can be
decomposed into two components: an online updated
appearance model for feature extraction and an
observation model to find the most probable target
transformation.

Recent tracking methods mainly focus on
designing a robust appearance model [3] to capture
target appearance variation. The most popular
approach based on the discriminative model casts
tracking as a foreground and background separation
problem, performing tracking by learning a classifier
using multiple instance learning [4], P-N learning [5],
online boosting [6, 7], SVM [8], structured output
SVMs [9], CRFs [10], probability hypothesis
density methods [11, 12], etc. These tracking
methods first train a classifier online, inspired by
statistical machine learning methods, to separate
the target from the background surrounding the
target location in the previous frame. Generative
methods describe the target’s appearance using
generative models and search for target regions
that best fit the model. Various generative
target appearance modeling algorithms have
been proposed using sparse representation [13, 14],
density estimation [15, 16], and incremental
subspace learning [17]. In Ref. [18], generative
and discriminative models were combined for more
accurate online tracking. Some efficient trackers
have been proposed using hand-crafted features,
including Haar-like feature histograms [4, 6, 9, 19],
HOG descriptors [2], binary features [20], and
covariance descriptors [21]. However, such trackers
do not adapt well to target appearance variation.

To overcome the shortcomings of handcrafted
features in modeling object appearance, deep
networks have been employed to directly learn
features from raw data without resorting to manual

intervention. Convolutional features have been used
in many applications such as Ref. [22]. In Ref. [23],
Li et al. used a convolutional neural network (CNN)
for visual tracking with multiple image cues as
inputs. In Ref. [24], Zhou et al. used an ensemble
of deep networks in combination with an online
boosting method for visual tracking. Reference
[25] presented a human tracking algorithm that
learns a specific feature extractor with CNNs.
Numerous auxiliary data are required for offline
training the deep networks; the pre-trained model
is then used for online visual tracking. Wang
and Yeung [26] developed a deep learning tracking
method that uses stacked de-noising auto-encoders
to learn generic features from a large number of
auxiliary images. Reference [27] used a two-layer
CNN to learn hierarchical features from auxiliary
video sequences; it takes into account complicated
motion transformations and appearance variations
in visual tracking. A drawback of all the above
frameworks is that they need a large amount of
auxiliary data to pre-train a deep network model;
such models can be highly specific and have poor
adaptive ability.

In Ref. [1] Zhang et al. incorporated convolutional
networks (convolutional filters defined as normalized
image patches from the first frame) which do
not require auxiliary data to train filters. They
achieved state-of-the-art precision. Several tracking
algorithms based on hand-crafted features have
been developed within a multiple instance learning
framework, aiming to improving the poor ability
of hand-crafted features to represent semantic level
features. Grabner et al. proposed an online boosting
algorithm to select features for tracking. However,
these trackers [28, 29] use one positive sample
(i.e., the current tracker location) and a few
negative samples when updating the classifier. As
the appearance model is updated with noisy and
potentially misaligned examples, this often leads to
the problem of tracking drift. A semi-supervised
learning approach can be used in which positive
and negative samples are selected via an online
classifier with structural constraints. Yang et al. [30]
present a discriminative appearance model based on
superpixels. It is able to handle heavy occlusion
and recover from drift. In Ref. [9], Hare et al.
used an online structured output support vector
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machine (SVM) for robust tracking; it can mitigate
the effect of wrongly labeled samples. Reference [31]
introduced a fast tracking algorithm which exploits
the circulant structure of the kernel matrix in SVM
classifiers so that it can be efficiently computed by
the fast Fourier transform algorithm.

3 Method

In this section, we describe our proposed tracking
method in detail. The tracking problem is formulated
as a detection task, and the pipeline of the proposed
approach is shown in Fig. 1. We assume that the
tracking target is manually annotated in the first
frame. To model target appearance, we sample
various background and foreground convolutional
kernels to encode target and background structural
information. When a new frame arrives, we first
extract its convolutional feature map to estimate
the target transformation. Secondly, we incorporate
structured output learning and HOG descriptors
to predict the target location and scale variation.
Lastly, the tracking results are combined to jointly
determine the target transformation and scale
variation.
3.1 Feature extraction by convolutional

network

The convolutional network includes two separate

layers. Firstly, a set of background and foreground
convolutional kernels are generated from a bank
of filters which sample the input frame using a
sliding window. Secondly, to enhance the robustness
of the convolutional feature representation, all
feature maps are stacked together, and the final
feature vector is determined by solving a sparse
representation equation.

In the initial frame, a set of samples, denoted
I ⊂ Rn×n, is warped to a canonical size of n× n
in grayscale color space. Then each sample is
pre-processed by subtracting the mean and L2
normalization is performed, aiming to modify
local brightness differences and achieve contrast
normalization, respectively. A sliding window
strategy is employed to generate a bank of patches
with the field size w × w. This results in a total of
l = (n−w+ 1)× (n−w+ 1) image patches sampled
from the initial frame.

Following the pre-processing step, the k-means
algorithm is used to select multiple convolution filter
kernels F o

1 = {F o
1,1, . . . , F

o
1,d} ⊆ Y1 from the filter

bank using the initial frame as the representative
target filters. The remaining object filter kernels
F o
t = {F o

t,1, . . . , F
o
t,d} ⊆ Yt are selected dynamically

to capture target appearance variation, and are
generated by clustering the target filter bank of
the tth frame. Y1 and Yt are filter banks obtained

Fig. 1 Architecture of the proposed tracking algorithm.
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from the initial and tth frame, respectively. The
strategy of generating a dynamic convolutional filter
is the most significant difference from Ref. [1].
One obvious advantage is that our filters have the
ability to adapt in the face of target occlusion and
deformation, and illumination changes, which cause
target appearance variation. In other words, the
proposed convolutional filters are more robust in
dynamic environments.

Given the target candidate image I, and
the ith object filter kernels Fo

i ∈ Rw×w, the
convolution of I and the filters is denoted by So

i ∈
R(n−w−1)×(n−w−1), where So

i =
{

Fo
1,i,Fo

t,i

}
⊗ I, and

⊗ denotes the convolution operator. The local filters
encode stable object visual information from both
the initial frame and the previous frame even though
the object may experience significant appearance
change from the initial frame. Thereby, we can
extract more discriminative features and effectively
handle the drift problem.

The background context surrounding the object
provides useful information to discriminate the
target. The convolutional networks select m

background samples surrounding the object, and
then the same cluster algorithm is used to generate
background filters F b

i = {F b
i,1, . . . , F

b
i,d} ⊆ Yb from

the ith background sample. An average pooling
strategy is operated to summarize each filter in F b

i .
Next, the background kernels F b that encode the
visual information and geometric layout surrounding
the object are generated:

F b =
{
F b

1 , F
b
2 , ..., F

b
d

}
(1)

Fb
i = 1

m

m∑
i=1

Fb
i,1 (2)

Given the input image I, the ith background feature
map is defined as Sb

i = Sb
i ⊗I . The final feature map

is
Si = So

i − Sb
i =

{
[Fo

1,i,Fo
t,i]− Fb

i

}
⊗ I (3)

To further enhance the strength of this
representation and eliminate the influence of
noise, a complex cell feature map that is a 3D
tensor C ∈ R(n−w−1)×(n−w−1)×d is constructed,
which stacks d different simple cell feature maps
constructed with the filter set F = {F o

1 , F
o
t }

⋃
F b
i .

A sparse vector c is set to approximate vec(C) by
minimizing the following objective function:

ĉ = arg minλ‖c‖11 + 1
2‖c − vec(C)‖22 (4)

where vec(C) is a column vector concatenating all
the elements in C , of length (n − w + 1)2d. The
optimization problem in Eq. (4) has a closed form
solution, as explained in Ref. [32]:
ĉ = sign(C)max(0, abs(vec(C)))−median(C) (5)

where median(vec(C)) is robust to target
appearance variation and noise interference.

3.2 HOG feature extraction

Hand-crafted features are morphological, shape,
statistical, or textural based representations that
attempt to encode object appearance at low-
level, and are the fundamental elements of object
representation. Contrary to the high-level semantic
features found by convolutional networks, which can
be treated as a black-box object representation,
hand-crafted features encode object appearance and
effectively preserve structure information, which is
very important in object tracking. In this paper,
we use HOG (histograms of oriented gradients)
features [33] as complementary features to jointly
encode target appearance. HOG descriptors have
several advantages. For example, their gradient
structure is very characteristic of local shape,
they are computed in a local cell with an easily
controllable degree, and they are invariant to local
geometric and photometric transformations. In other
words, translations or rotations make little difference
even if they are much smaller than the local spatial or
orientation bin size. All of these advantages of HOG
features play a key role in target location and scale
estimation.

3.3 Structured output learning

Traditional tracking-by-detection approaches employ
a classifier trained online to distinguish the target
object from its surrounding background. In the
tracking process, the classifier is used to estimate
the object’s transformation by searching for the
maximum classification score amongst a set of
target candidates around the target’s location in the
previous frame, typically using a sliding window or
another motion model to generate target candidates.
Given the estimated target location, traditional
tracking methods generate a set of binary labelled
training samples to update the classifier online.
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This tracking framework raises a number of issues.
Firstly, it is not clear how to label the training
samples in a principled manner. One popular way
is to utilize predefined rules such as the distance
between a sample and the estimated target candidate
to determine whether a sample should be labelled as
positive or negative. Secondly, the goal of a classifier
is to predict a binary label instead of a structured
output. However, the objective for a tracker is to
estimate the object’s transformation accurately. In
Ref. [6], Ma et al. formulated the tracking problem
as structured output prediction to mitigate the gap
between binary classification and accurate target
transformation determination.

When a new frame arrives, the ultimate goal for
a tracker is to estimate the target position p (a 2D
rectangle) in the current frame. To capture target
appearance variation, the classifier is updated online
based on the newly estimated target appearance
around p and the corresponding samples xp

t ∈ X .
The classifier is trained on the example pairs (x,
z), where z = ±1 is a binary label, and makes its
prediction according to z = sign(h(x)), where h :
X → R is the classification confidence function which
maps from feature space X to a real target confidence
value R. Let pt−1 denote the estimated bounding
box at time (t − 1). The objective is to estimate
a transformation pt ∈ Y, so the new position of
the object is approximated by the composition pt =
pt−1 ◦ yt. Y is the search space. Mathematically,
the estimation process is converted to searching for
the position change relative to the previous frame by
solving:

yt = arg max
y∈Y

(xpt−1◦y) (6)
To overcome the above two issues arising from

traditional classifiers, we utilize the structured
output SVM (SO-SVM) framework to estimate
object location changes. The output space is thus
the space of all transformations Y instead of the
confidence labels. Thus we introduce an SO-SVM
based discriminant function F :

yt = f(xpt−1
t ) = arg max

y∈Y
F (xpt−1

t ,y) (7)

SO-SVM performs a maximization step in order
to predict the object transformation, while the
discriminant function F includes the label y
explicitly, meaning it can be incorporated into the
learning algorithm. The model update procedure
is performed on a labelled example pair (xpt

t ,y0).

In Eq. (6), y is generated by a motion model, and
the objective is to estimate the object confidence
of each candidate sample instead of the target
transformation.

Function F measures the compatibility between
(x, y) pairs, and gives high scores to those which
are well matched. We restrict F to be of the
form F (x,y) = 〈w, φ(x,y)〉, where φ(x,y) is a
joint kernel map. The parameters can be learned
in a large-margin framework from a set of example
pairs {(x1,y1), ..., (xn,yn)} by minimizing a convex
objective function:

min
w

1
2‖w‖

2 + C
n∑
i=1

εi

such that ∀i : εi > 0,

∀i,∀y 6= yi : 〈w, δ(φi(y))〉 > ∆(yi,y)− εi (8)
where δ(φi(y)) = φ(xi,yi) − φ(xi,y), and ∆(yi,y)
is a loss function. The value of ∆(yi,y) decreases
towards 0 as y and yi become more similar. The
optimization aims to ensure the value of F (xi,yi)
is greater than F (xi,y) for any y 6= yi, by a
margin which depends on a loss function ∆. The loss
function plays an important role in our approach, as
it allows us to address the issue raised previously of
all samples being treated equally.

Using standard Lagrangian duality techniques,
Eq. (8) can be converted into an equivalent dual
form:
max
α

∑
i,y 6=yi

∆(y,yi)α
y
i −

1
2

∑
i;j
αy
jα

ȳ
j 〈δφi(y), δφj(ȳ)〉

such that ∀y 6= yi : αy
i > 0;∀i :

∑
y 6=yi

αy
i 6 C (9)

The discriminant function then becomes F(x,y) =∑
i,ȳ 6=yi

αȳ
i 〈δφj(ȳ), φ(x,y)〉. This dual problem can

be considerably simplified by reparametrizing it with
n ∗ k variables βy

i defined by

f(x) =


−αy

i , if y 6 yi
αȳ∑

ȳ 6=y
, otherwise

(10)

which leads to a much simpler expression for the dual
problem in Eq. (11) and corresponding discriminant
function Eq. (12):

max
α

∑
i,y 6=yi

∆(y,yi)β
y
i −

1
2

∑
i;j
βy
j β

ȳ
j 〈δφi(xi,y), δφj(xj , ȳ)〉
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such that ∀i,∀y : βy
i 6 δφi(y,yi)C

∀i :
∑

y
βy
i = 0 (11)

F (x,y) =
∑
i,ȳ

βȳ
i 〈φi(xi,y), φj(x,y)〉 (12)

3.4 Tracking algorithm

The proposed tracking algorithm is formulated
within a particle filter framework. Given the
observation set Ot = {o1,o2, ...,ot}, the goal is to
determine the maximize the a posteriori probability
p(st|Ot) using Bayes Theorem:

p(st|Ot) ∝ p(Ot|st)
∫
p(st|st−1)p(st−1|Ot−1)dst−1

(13)
where st = [xt, yt, st] denotes the target state
translation (xt, yt) and scale st, and p(st|st−1),
p(Ot|st) are the motion model that predicts state st
based on the previous state st−1 and the likelihood
of observation respectively.

The sparse feature vector c in Eq. (5) is used as the
object feature template. It is updated incrementally
to accommodate appearance changes over time for
robust visual tracking. We use temporal low-pass
filtering to update the tracking model:

ct = (1− ρ)ct−1 + ρĉt−1 (14)
where ρ is a learning parameter, ct is the target
template in the tth frame, and ĉt−1 is the sparse
representation of the tracked object in frame t − 1.
Note that a significant innovation compared with the
strategy in Ref. [1] is that the convolutional filters for
extracting the object template are updated based on
the newly tracked target:

F o = F o
1

⋃
clusterd (pt) , pt ∈ Rw×w (15)

where clusterd (·) denotes a clustering operation with
d clssses, and pt are the image patches generated by
a sliding window within the tracked object region.
One of the advantages of this operation is that we can
both preserve the original target appearance as well
as capture new object variation, preventing target
drift.

4 Experiments

We have evaluated our proposed tracking algorithm
on a public dataset [34] which includes 50
video sequences categorized with 11 attributes
based on different challenging factors including

illumination variation (IV), out-of-plane rotation
(OPR), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), out-of-view (OV),
background clutter (BC), and low resolution (LR).
We compared the proposed tracking algorithm on
OTB-50 against other methods including SCM [35],
Struck’s method [9], TLD [20], MIL [3], and CT [19].
In addition, we also compared our method with a
state-of-the-art method convolutional network based
tracker (CNT). For quantitative evaluation, we used
a success plot and a precision plot for one-pass
evaluation (OPE) protocols. All 50 videos were
processed using the same parameter values during
the tracking process, without modification.

The results in Fig. 2 compare our tracking
framework and CNT, Struck’s method, TLD, MIL,
SCM, CT. It is clear that the combination of
convolutional features and HOG features plays an
important role in robust object tracking. For
both success rate and precision rate for the OTB-

Fig. 2 One-pass evaluation. Top: average precision plot. Bottom:
success rate plot.
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50 dataset, our method achieves the maximum
area under the curve. Unlike the CNT tracker,
our tracking method updates the convolutional
filter during the tracking process to capture target
appearance variation, taking into account both the
original target appearance and any target variation.
In addition, the combination of HOG features and
a structural output SVM improves the success and
precision rates of our tracker by 13.4% and 12.2%
respectively. In contrast, by adding convolutional
features, our tracker enhances the performance of
Struck’s method by 7.6% and 2.0% in terms of overall
success rate and precision rate respectively.

To analyze the strengths and weaknesses of the
proposed algorithm, we further evaluate the trackers
on videos with 11 attributes. Figure 3 shows success
rate plots for videos with different attributes, while
Fig. 4 shows the corresponding precision plots. In
the success rate evaluation, our tracking algorithm
ranks first in 8 out of 11 attributes. Meanwhile, for
the video sequences with occlusion, deformation, and
fast motion, our tracking method is ranked second,
with the SCM and Struck trackers achieving the
best performance—they employe useful background

information to train discriminative classifiers. In the
precision plots in Fig. 4, our tracking algorithm is
ranked first in 6 out of 11 attributes, namely scale
variation, out-of-plane rotation, in-plane rotation,
illumination variation, motion blur, and background
cluster, while our tracker is ranked second for the
other 5 attributes.

Figures 5 and 6 show some tracking results on
some challenge image sequences for 7 trackers. The
basketball, deer, and soccer video sequences contain
illumination change, pose variation, and fast motion.
In the above 3 sequences, the CNT tracker fails
around frames 134, 6, and 79, respectively. At
basketball frame 531, all other trackers (CT, MIL,
SCM, Struck, TLD) lose the target. The coke and
freeman4 sequences contain significant out-of-plane
rotation, occlusion, and pose variation. Tracking
results on the freeman4 sequence show that most
trackers drift away from the target when it is
heavily occluded. These tracking results prove
the effectiveness and robustness of the proposed
feature representation (a combination of HOG
and convolutional features) and structural output
learning. The proposed tracking method can cope

Fig. 3 Tracker success rates for videos with different attributes, annotated with the area under the curve. The number in each title indicates
the number of video sequences with a given attribute.
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Fig. 4 Tracker precision for videos with different attributes, annotated with the area under the curve. The number in each title indicates
the number of video sequences with a given attribute.

Fig. 5 Qualitative results using the proposed method on various challenging sequences (basketball, deer, liquor, soccer) having illumination
variation. Frame number is shown at the top left of each frame in green.
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Fig. 6 Qualitative results using the proposed method on various challenging sequences (coke, doll, freeman4) having out-of-plane rotation.
Frame number is shown at the top left of each frame in green.

with target appearance variation in the tracking
process by updating the object kernels over time. To
make the tracker robust to target scale variation, we
employ a combination of HOG descriptors and SO-
SVM to capture mid-level object cues. However, the
time consumed is only 1.2 times greater than that
used by the CNT tracker, and runs at 4.1 fps.

5 Conclusions

In this paper, we have proposed a novel method
to model target appearance with background and
foreground convolutional filters for online tracking.
To further improve tracking performance, we
exploit the combination of hand-crafted features and
structured output learning within a particle filter
framework to jointly estimate target transformation
and scale variation. Experimental results show that
the proposed tracking method achieves excellent
results in terms of both success rate and precision
when compared to several state-of-the-art methods
on public datasets. In the future, we hope to further
exploit the convolutional feature representation at
super-pixel level and use sparse representation to
encode target appearance.
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