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Abstract: Real networks typically studied in various research fields—ecology and economic
complexity, for example—often exhibit a nested topology, which means that the neighborhoods
of high-degree nodes tend to include the neighborhoods of low-degree nodes. Focusing on nested
networks, we study the problem of link prediction in complex networks, which aims at identifying
likely candidates for missing links. We find that a new method that takes network nestedness into
account outperforms well-established link-prediction methods not only when the input networks
are sufficiently nested, but also for networks where the nested structure is imperfect. Our study
paves the way to search for optimal methods for link prediction in nested networks, which might be
beneficial for World Trade and ecological network analysis.

Keywords: link prediction; nested networks; bipartite networks

1. Introduction

Link prediction is a popular problem in network science [1–4]. The goal of link prediction is to
identify the links that are missing because of erroneous or incomplete data (such as in predicting gene
interactions from available data [5]), or links that are likely to appear in the system in the course of
its temporal evolution (when we speak of a network that naturally grows or otherwise evolves in
time [6,7]). Note that not all networks are equally permissible to link prediction as intrinsic network
randomness and link sparsity both contribute to making link prediction more difficult. The attempt to
quantify network “link predictability” [8] is highly relevant in this respect.

Various classes of systems have their specificities that impact the link prediction process. For
example, social networks typically feature high clustering coefficient (if person A knows B and B
knows C, then it is likely that also A knows C), which implies that link prediction methods based on
closing such open triangles typically perform well [2,9]. In this sense, the link prediction accuracy
depends on the understanding of network specificities, that is, whether the link prediction algorithm
can well reflect the corresponding mechanisms of network organization. However, even the most
recent reviews of predictions in complex networks [10,11] do not specifically consider link predictions
in nested networks. Our goal here is to fill the gap and provide a comparison of how various link
prediction methods perform in nested networks.

A network is nested when neighborhoods of low-degree nodes tend to be subsets of
neighborhoods of high-degree nodes [12,13]. Nested networks have been much studied with respect
to their analysis [14], their formation [15–18], and their implications [19–21]. Nested structures are
often found in ecological networks, in particular in plant–animal mutualistic networks [13] and species
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geographic distribution patterns [12] (see [14,22] for reviews on ecological nested networks), as well as
in country-product trade data [23].

Despite the interest of scholars from diverse fields in nestedness, only few attempts [24,25] have
been made to exploit the nested topology to identify missing links. Developing effective methodologies
for link prediction in nested networks can improve our understanding of at least two important classes
of systems which typically exhibit a nested topology: World Trade Networks and ecological mutualistic
networks. When analyzing World Trade networks, available data are often characterized by inaccurate
or missing information. In the COMTRADE dataset (available at http://comtrade.un.org), for example,
given the export of product α from country i to j, the export volume declared by country i often does
not match the import volume declared by country j for that product [26]. In the recent Economic
Complexity research field [23,27], this has led scholars to investigate the robustness of network-based
metrics of country fitness and product complexity against network structural perturbation [28–30].

Analysis of ecological mutualistic networks is also affected by the fact that unobserved interactions
might simply be rare and, therefore, require a longer observation time [31]. Such missing links are
fundamentally different from biologically forbidden interactions that cannot physically take place
due to species-specific reasons, such as size mismatch or temporal uncoupling [32]. This leads
to the problem of estimating sampling bias [33] and its impact on observed network topological
properties [34].

Our main contribution is two-fold. First, we provide an extensive benchmarking of link-prediction
techniques on synthetic and real data that exhibit a nested structure. In line with recent
developments [35,36], we consider not only networks that are overall nested, but also networks that
are partitioned into blocks that internally exhibit a nested structure (“in-block nested” networks [36]).
Intriguingly, we find that some well-established approaches to link prediction in bipartite networks
fail on nested networks. Second, we develop and validate a link-prediction method that takes
full advantage of the nested structure of the input data. Importantly, besides achieving optimal
performance in perfectly nested networks, the new method performs well also on networks with
imperfect nestedness structure, up to a certain number of discrepancies from a perfectly nested
network.

2. Methods

Before detailing various link prediction methods and their evaluation procedure, we introduce the
notation used in this paper. The input bipartite network consists of two sets of nodes with links running
only between nodes from different groups. The sizes of the two sets are N1 and N2, respectively. Nodes
in the two groups are labeled with Latin (i, j, · · · = 1, . . . , N1) and Greek (α, β, · · · = 1, . . . , N2) indices,
respectively. The network structure can be captured in the N1×N2 biadjacency matrix B with elements
Biα (Biα is one if nodes i and α are connected, and zero otherwise). The sets of neighbors of nodes i and
α are Γi and Φα, respectively. The sizes of these neighborhoods then define the node degree values,
ki := |Γi| and dα := |Φα|. Finally, the number of links in the network is E := ∑i ki = ∑α dα.

Since the maximal possible number of links in a bipartite network is N1N2, there are N1N2 − E
links that are not present in the input data. In link prediction, we aim to assign score siα, which reflects
the link likelihood, to all these links. Links are then ranked by the score in decreasing order; links at
the top of this ranking are the most likely candidates for “missing” links.

2.1. Link Prediction Methods

2.1.1. Preferential Attachment Index (PrefA)

The number of common neighbors of two nodes is the usual benchmark link prediction method
in unipartite networks [2]. However, nodes i and α in a bipartite network cannot have any common
neighbors by definition, which makes the number of common neighbors as well as popular derived
metrics such as the Adamic–Adar index and the Jaccard coefficient [4] not applicable to bipartite
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networks. The simplest local link prediction metric is thus the preferential attachment index kidα where
the name is of due to the close relation with the preferential attachment mechanism [37]. Notably, this
simple approach was found to outperform more sophisticated algebraic link prediction methods based
on the eigenvalue decomposition of the network biadjacency matrix B [38].

2.1.2. Number of Local Community Links (LCL)

While the common neighbor metric based on paths of length two between the nodes from different
sets is not applicable to bipartite networks, paths of length three can exist between nodes from different
sets and can be used for link prediction [39]. Since nodes i and α have ki and dα neighbors respectively,
there can be at most kidα links that connect them—this quantity is directly used as link prediction
score by the preferential attachment (PrefA) index above. The number of local community links, by
contrast, takes into account only the actually existing links between the neighbors of nodes i and α,
and in this way takes the local network structure into account. In Figure 1, for example, nodes i and
α have comparatively high degree, resulting in high PrefA score of the possible link between them.
However, link (i, α) would be a bridge between two otherwise little connected parts of the network.
From the point of view of network structure, link (i, α) thus seems little likely which manifests itself in
the small number of local community links nodes i and α, and a correspondingly low LCL score.

i

α

Figure 1. A toy example of a bipartite network where N1 = 4 and N2 = 5. Network links are shown
with the solid lines. The dashed line shows the possible link between nodes i and α whose likelihood is
being evaluated. The thick lines highlight the only existing link between the neighbors of nodes i and α

(see the prediction method “Number of Local Community Links”). The preferential attachment index
(PrefA) and LCL scores of the link between the highlighted nodes are 6 and 1, respectively.

2.1.3. Probabilistic Spreading (ProbS)

Also known under the name mass diffusion, probabilistic spreading is a network-based
recommendation method [40] that was later generalized in many different ways [41,42]. While the
original goal of the method is to produce a personalized list of recommended items for each individual
user, these personalized recommendation scores can be also used as link prediction scores. In the case
of probabilistic spreading, the recommendation score is computed by a step-wise propagation process
inspired by random walk on the network. For a given target node i (for which the “recommendation”
is being computed), unit resource is allocated to all nodes α connected with node i (and zero resource
otherwise). We denote the initial resource vector as f (i)α where the superscript highlights the target
node i. In the first step, the resource propagates along the network’s links to all nodes j in the other set
of nodes by being divided uniformly among the adjacent nodes. The resulting resource vector g(i)j can
be computed as

g(i)j = ∑
α∼j

f (i)α

dα
(1)

where the summation is over all α connected with j (α ∼ j). In the second step, the resource propagates
along the links again in the same way, yielding the resource vector h(i)α in the form

h(i)α = ∑
j∼α

g(i)j

k j
(2)
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where the sum is now over all j connected with α. Score h(i)α can be then interpreted as the
recommendation score of node α when computing recommendation for node i. We interpret it
here as the link prediction score siα.

2.1.4. Number of Violations of the Nestedness Property (NViol)

In [35], network nestedness was quantified using the concept of violations of the nestedness
property. One first defines nodes i and j as pairwise nested if the following holds: k j ≤ ki : Γj ⊂ Γi
(note that we adapt here the original notation to bipartite networks). In other words, two nodes are
nested if the neighborhood of the higher degree node includes the neighborhood of the other node.
Pairwise nestedness can be analogously formulated for nodes from the other set: dβ ≤ dα : Φβ ⊂ Φα.
In [35], they proceed by introducing the number of violations of the nestedness property, which is
defined as the number of neighbors of the lower degree node that are not neighbors of the higher degree
node: V(i, j) := Θ(ki − k j)∑α Bjα(1− Biα) where the Θ(x) is one for x ≥ 0 and zero otherwise. The
total number of violations in the network, V, is obtained by summing V(i, j) over all node pairs (i, j).

In social networks where clustering coefficient is high and network links form many triangles,
effective link predictions can be obtained [2] by the number of common neighbors which is equal
to how many new triangles a new link introduces in the network. Having introduced a measure
of network nestedness, we can reason analogously: In a nested network, links that would decrease
the number of nestedness violations most are the most likely candidates for missing links. We thus
compute the score of link (i, α) as

V(i,α) −V (3)

where V is the network’s original number of nestedness violations, and V(i,α) is the number of violations
after link (i, α) is added. Since V is the same for all links in a network, we consider directly V(i,α) as a
link prediction score. Differently from the other link prediction indices, here the lower the better.

Since the value of V changes when the biadjacency matrix is transposed, we evaluate NViol on
both the original and the transposed network, and choose the approach that yields the best results in
terms of AUC (of course, one is free to choose a different criterion).

2.2. Evaluation Process

Unlike [43], which considered link prediction in time-stamped country-product data, we do not
aim to evaluate the prediction of future links in nested networks, because the notion of time is typically
not defined in ecological nested networks. Instead, we adopt the usual setting of link prediction in
networks without time information, where a small fraction of input data are moved in the probe
and the predicted links are then compared with the probe links. In an input network with E links,
EP := fPE links are moved in the probe and the remaining ET := E− EP links comprise training data
that are used for prediction; we use fP = 0.1 here. We remark, though, that the choice of the probe
set by timestamps of the network’s links still remains the preferable option in systems where time
matters because it exposes link prediction methods to double difficulty of capturing both the systems’
structural patterns, as well as their dynamical patterns [44].

Of the methods included in the evaluation, NViol is the only that is not parameter-free: It has one
binary parameter that determines whether it ultimately acts on the original or transposed data. While
methods with parameters are best to be evaluated using a triple training-learning-probe division [42]
where the additional learning set is used to determine the optimal parameter values, we use for
simplicity the training-probe division described above because the “minimal” parametrization of NViol
is negligible in comparison with the size of the input data. The situation is very different for methods
whose number of parameters scales with the input data size (as is the case for the popular matrix
factorization recommendation methods [45]) where the simple training-probe evaluation typically
substantially overestimates the method’s actual performance.
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An obtained ranking of the N1N2 − ET links that are not present in the data can be compared
with the probe data in various ways [4]. We use four common link performance metrics: Ranking
score, AUC, precision, and F1 score. To compute the ranking score, r, the rank of all probe links in
the link prediction list is averaged and subsequently normalized by the list length N1N2 − ET . Rank
score thus lies between zero and one (the lower, the better: small ranking score indicates that the probe
items are placed high in the link prediction list). The second metric, AUC, is based on constructing a
curve in the unit square [0, 1]× [0, 1] that corresponds to gradually following the link prediction list
from the top (links with the highest score) to the bottom. The coordinates [x, y] of a point on the curve
then correspond to the fraction of non-probe and probe-links, respectively, recovered so far. The final
AUC value is then obtained by computing the area under thus-constructed curve [46]. AUC lies in the
range [0, 1]; the higher the value, the better the performance. Note that the ranking score and AUC of a
random link prediction list are 0.5. Any result below (in the case of r) or above (in the case of AUC)
this value thus indicates that link prediction is better than random. The third metric, precision, focuses
on the top L ranks of the link prediction list. If there are n(L) probe links in the top L ranks, we say
that the link prediction precision is P(L) := n(L)/L. Precision too lies in the range [0, 1] (the higher,
the better: precision of one is achieved if all top L ranks are occupied by probe links). To evaluate
precision, we use L = 100. Precision has a closely related counterpart, recall, which is defined as
R(L) := n(L)/EP. The two metrics are combined together in our fourth metric, the F1 score, which is
defined as the harmonic mean of the observed precision and recall. To make this metric parameter-free,
we report the maximum F1 score with respect to the number of top ranks L included in performance
evaluation.

To factor out the randomness of the division into training and probe data, we repeat the evaluation
process for 100 random training-probe divisions (in synthetic data, we use 10 independent model
realizations and 10 training-probe divisions for each of them), and report the mean and the standard
error of the mean for the three chosen evaluation metrics.

3. Data

3.1. Synthetic Data

To create synthetic nested networks, we adapt to a bipartite setting the construction that was used
in [36] to test the detection of simultaneous modular and nested structure in data. We first present
this construction in the case without modular structure. The first step is to establish a perfectly nested
biadjacency matrix where no nestedness violations are present. To this end, one introduces the contour

y = 1− (1− x1/ξ)ξ (4)

in the unit square [0, 1]× [0, 1] (see Figure 2); the unit square can be then mapped onto the N1 × N2

biadjacency matrix by setting y := 1− i/N1 (in this way we follow the usual matrix notation and
the first row corresponding to i = 1 maps onto the top part of the unit square) and x := α/N2. All
biadjacency matrix elements “above” the contour are then set to one, and the remaining elements are
to zero. As ξ increases, the degree distribution corresponding to the such-created biadjacency matrix
becomes more heterogeneous and the network becomes more sparse . While the resulting biadjacency
matrix is nested for any ξ > 0, the range ξ ∈ [1, 5] is considered in [36]. After creating a perfectly
nested network, noise is introduced by moving each of the initial links with probability p to a random
node pair (i, α) that is not yet connected by a link. When p = 1, the initial nested structure completely
disappears and the resulting network is fully random.

The above-described nested networks with noise are in [36] further generalized to in-block nested
networks where the network consists of NB blocks whose internal connections are more dense than
the connections between different blocks (hence the network has a community structure [47]), and
each block separately has a nested structure. In the model, this is achieved by forming perfectly nested
blocks, adding intrablock noise as described above, and finally adding interblock noise by moving
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each link with probability µ(NB − 1)/NB to a randomly chosen node from the original block and a
randomly chosen node from another block. When p = µ = 0, we obtain unperturbed nested structure
in each block and the blocks are mutually disconnected. When µ = 1, then the density of links between
the blocks is the same as the density of links within each block (i.e., the community structure vanishes).
Synthetic data for various model settings are shown in Figure 2.

0.0 0.5 1.0
x

0.0

0.5

1.0

y

(A)

ξ = 1
ξ = 2
ξ = 3

(B)

ξ = 2, p = 0

(C)

ξ = 2, p = 0.2

(D)

ξ = 1, p = 0.1, µ = 0.2

Figure 2. An illustration of synthetic nested networks. (A) Nestedness contours for various values
of the ξ parameter. (B–D) Nested networks with N1 = 30 and N2 = 42: Perfectly nested network
(B), nested network with low noise (C), and in-block nested network with three blocks and low noise
(parameter values are specified in the panels). The results are averaged over 10 model realizations and
10 independently chosen probe sets for each realization.

3.2. Real Data

We use six datasets from the ecological networks database http://www.web-of-life.es/ (from
the available datasets, all with at least 1000 links are used). These datasets are referred to by their
original identifiers (M_SD_022, M_PL_021, M_PL_044, M_PL_015, M_PL_057, and M_PL_062). The
five datasets whose identifiers contain PL capture plant-pollinator interactions. M_SD_022 captures
fruit-frugivores interactions in two bird communities in south-eastern Brazil.

We further use country-product datasets from two different years (2001 and 2009). These datasets
are obtained from the detailed data on the export volumes (measured in dollars) of various categories
of products by individual countries (the data has been obtained from https://atlas.media.mit.edu/
en/resources/data/). In the first step, the total export of each product category for each country
is computed. To represent these data in binary form (a country either exports a product or not),
the weighted country-product links are typically filtered [23,26,27] using the concept of Revealed
Comparative Advantage (RCA) which quantifies how much a country exports a product with respect to
the country’s total export and the product’s total export. All country-product pairs with RCA above
one are represented as links in the resulting bipartite network (the RCA of one indicates that the
country exports as much as one would expect from the country size and the overall export of the given
product). The resulting datasets are labeled CP-2001 and CP-2009 (CP stands for country-product, the
number denotes the export data year).

Basic statistical properties of the datasets are summarized in Table 1. To quantify the nested
structure of the datasets, we use the density of nestedness property violations $V introduced in [35].
This quantity is obtained by diving the actual number of nestedness property violations in the network,
V, with the maximum number of violations Vm where Vm is obtained by summing Vm(i, j) := Θ(ki −
k j)min(k j, N2 − ki) over all node pairs (i, j). To evaluate whether a network has a nested structure, we
compare the obtained $V value with the mean µ($V) and the standard deviation σ($V) of $V observed
on the network randomized using the classical Configuration Model [37]. The difference $V − µ($V) is
negative for all eight real networks (meaning that the original networks are more nested—as measured
by $V—than their randomized counterparts), and the z-score [$V − µ($V)]/σ($V) shows the statistical
significance (at p < 0.05) for six out of eight networks (all except for M_PL_044 and M_PL_062).
Note, however, that the observed statistical significance is not indicative of whether these networks
are suitable candidates for link prediction with NViol that assumes nested structure in the data. The

http://www.web-of-life.es/
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Country-Product networks, for example, are deemed significantly nested but their values $V and
µ($V) are actually close to each other (they differ by 0.0003).

Table 1. Basic properties of the real datasets used to evaluate link prediction methods: Number of rows
(N1), columns (N2), edges (E), and the density of edges [$E := E/(N1N2)].

Dataset N1 N2 E $E

M_SD_022 207 110 1121 0.05
M_PL_015 131 666 2933 0.03
M_PL_021 91 677 1193 0.02
M_PL_044 110 609 1125 0.02
M_PL_057 114 883 1920 0.02
M_PL_062 456 1044 15,255 0.03

CP-2001 169 781 17,639 0.13
CP-2009 168 774 17,739 0.14

4. Results

Results on model data with no community structure (B = 1) are shown in Figure 3. There is a
number of points to note:

1. As ξ grows and the networks’ nested structure thus becomes more pronounced, differences
between the methods grow.

2. NViol is generally the best-performing method with respect to the metrics r and AUC that take the
whole link prediction list into account. Upon a closer inspection of link prediction lists produced
by the respective methods, the advantage of NViol is due to its ability to place well also links
connecting low-degree nodes that the other methods miss due to their general bias towards
high-degree nodes. With NViol, though, probe links adjacent to low-degree nodes are not among
the top 100 and hence do not contribute to the method’s precision, yet they rank much better
than where other methods are used. If we would increase the number of top ranks included in
precision evaluation from 100 to 200 or 300, NViol would have an edge also in this metric.

3. As the randomization parameter p grows, PrefA eventually outperforms NViol in terms of link
prediction precision. High precision improvement with respect to LCL’s precision for ξ = 5 are
due to the generally low precision achieved for the sparse networks produced at ξ = 5 (which is
made further worse by introducing the noise when p > 0).

4. ProbS outperforms LCL but lacks behind PrefA and NViol. This is expected because ProbS is based
on a “personalized” recommendation algorithm; with no communities in the data, there is no
place for personalization and thus ProbS’s merits cannot manifest themselves. The situation
becomes radically different when there is more than one nested block in the data (see below).

To illustrate how the relative performance of the methods changes when there is more than one
nested block in the data, we choose the simplest case with two blocks and no links between the blocks
(NB = 2, µ = 0). As can be seen in Figure 4, the relative performance of PrefA and NViol lowers with
respect to the one-block case, in particular in terms of precision which is now worse than the precision
achieved by LCL. While NViol remains the best method in terms of the ranking score and AUC, ProbS is
clearly best in terms of precision. The reason for the worsening performance of PrefA and NViol is that
they both ignore the block structure of the network. If, for example, nodes i and α have high degree,
PrefA will assign them high score even if they belong to different blocks. By contrast, ProbS and LCL
explore the network locally, and thus naturally obey the blocks’ boundaries. To help PrefA and NViol
overcome the challenge poised by the presence of multiple blocks, community detection [47] could be
first applied to detect blocks in the input network. The very recent method for detecting the structure
of nested networks with block-wise nested structure is particularly relevant in this respect [36].
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Figure 3. Link prediction results on model data with N1 = 100, N2 = 200, and no community structure.
To remove the strong dependency of method performance on the randomization parameter p, the
shown results are scaled with the results of the simplest PrefA method.
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Figure 4. Link prediction results on model data with N1 = 100, N2 = 200, NB = 2, µ = 0 (two blocks,
no links between the blocks). As in Figure 3, results are again scaled with the results of the simplest
PrefA method.

Table 2 summarizes the performance of the evaluated methods on the chosen real datasets. In
terms of precision, LCL and ProbS are the best methods. Similarly to Figure 3, global ranking metrics
r and AUC show a more diverse pattern with NViol being the best method by a large margin in
three datasets (ProbS is the best in the remaining ones). The performance gap between the link
prediction methods that do not consider the local network structure (PrefA and NViol) and the network
neighborhood-based methods (LCL and ProbS) in some networks (M_PL_015 and M_PL_062) suggest
that these networks have a more pronounced block structure which puts the PrefA and NViol in
disadvantage. Similarly to Figure 4, link prediction with NViol could be helped in these cases by
combining it with detection of the block structure.
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Table 2. Mean link prediction results on real datasets. Best performance values for a given method
and metric are highlighted with bold. Results are averaged over 100 independently chosen probe sets.
Standard error of the mean is less than 0.005 in all cases. If NViol produces best AUC on transposed
data, it is labeled as NViol>.

M_SD_022

method r AUC P F1

PrefA 0.20 0.80 0.11 0.13
LCL 0.19 0.80 0.14 0.15

ProbS 0.17 0.82 0.15 0.16
NViol> 0.19 0.81 0.11 0.12

M_PL_015

method r AUC P F1

PrefA 0.23 0.77 0.12 0.09
LCL 0.19 0.80 0.20 0.14

ProbS 0.18 0.82 0.25 0.18
NViol 0.24 0.75 0.13 0.08

M_PL_021

method r AUC P F1

PrefA 0.49 0.49 0.06 0.07
LCL 0.41 0.46 0.09 0.09

ProbS 0.40 0.48 0.09 0.10
NViol 0.16 0.84 0.06 0.05

M_PL_044

method r AUC P F1

PrefA 0.47 0.52 0.05 0.06
LCL 0.38 0.45 0.07 0.07

ProbS 0.37 0.46 0.06 0.07
NViol 0.21 0.79 0.04 0.05

M_PL_057

method r AUC P F1

PrefA 0.38 0.61 0.12 0.10
LCL 0.34 0.59 0.14 0.12

ProbS 0.33 0.61 0.16 0.13
NViol 0.16 0.84 0.12 0.10

M_PL_062

method r AUC P F1

PrefA 0.20 0.80 0.05 0.05
LCL 0.17 0.83 0.12 0.07

ProbS 0.16 0.84 0.15 0.08
NViol> 0.20 0.80 0.04 0.05

CP-2001

method r AUC P F1

PrefA 0.23 0.78 0.05 0.10
LCL 0.21 0.79 0.18 0.13

ProbS 0.19 0.81 0.14 0.12
NViol 0.24 0.76 0.06 0.10

CP-2009

method r AUC P F1

PrefA 0.24 0.77 0.07 0.10
LCL 0.22 0.79 0.22 0.13

ProbS 0.20 0.80 0.13 0.12
NViol 0.25 0.75 0.08 0.10

5. Discussion

To summarize, our paper compared the performance of existing link prediction techniques to
identify missing links in networks that exhibit nestedness at both macroscopic [14] and mesoscopic [36]
scale. For both kinds of structures, we found that a method that exploits the nested structure of such
systems (NViol) outperforms existing methods not only for perfectly nested structures, but also for
imperfect nested structures up to a certain level of departure from perfect nestedness. The new NViol
method performs well also on some real nested datasets where it is the second most successful method
after ProbS.

One of the challenges raised by our work is how to best combine the detection of blocks that
exhibit an internal nested structure [36] with link prediction. By definition, no links would be predicted
between the blocks if the blocks were considered in isolation; however, such rigid assumption is likely
to be suboptimal for “mixed” topologies where a given amount of inter-block links exist. Developing a
well-performing link-prediction that takes into account this aspect is a challenge for future research.

More generally, our work shows that if we know that a given system exhibit a given structural
pattern, we can exploit this information to design a competitive link-prediction techniques. In this
respect, we envision that optimal methods for link prediction might be based on a two-step process:
First, we learn the topology of the network in hand; second, we adopt a prediction method that
is optimal for the detected topology. Once fully developed, such a link prediction method could
help us understand how best to measure the degree to which a network is nested. As discussed
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in Section 3.2, the detection of a statistically significant structural pattern does not necessarily have
practical implications. By contrast, whether or not a nestedness-based link prediction method can
outperform other benchmark link prediction methods is a very practical way of assessing the value
of a network’s nested structure. Work in this direction can help us to better understand not only the
nested structure of networks, but also other specific network topologies such as the core-periphery
structure, for example.
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