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Limits of instruction-level parallelism and higher transistor density sustain the increasing need for multiprocessor systems: they are
rapidly taking over both general-purpose and embedded processor domains. Current multiprocessing systems are composed either
of many homogeneous and simple cores or of complex superscalar, simultaneous multithread processing elements. As parallel
applications are becoming increasingly present in embedded and general-purpose domains and multiprocessing systems must
handle a wide range of different application classes, there is no consensus over which are the best hardware solutions to better
exploit instruction-level parallelism (TLP) and thread-level parallelism (TLP) together. Therefore, in this work, we have expanded
the DIM (dynamic instruction merging) technique to be used in a multiprocessing scenario, proving the need for an adaptable
ILP exploitation even in TLP architectures. We have successfully coupled a dynamic reconfigurable system to an SPARC-based
multiprocessor and obtained performance gains of up to 40%, even for applications that show a great level of parallelism at thread
level.

1. Introduction

Industry competition in the current electronics market
makes the design of a device increasingly complex. New
marketing strategies have been focusing on increasing the
product functionalities to attract consumer’s interest: they
desire the equivalent of a supercomputer at the size of
a portable device. However, the convergence of different
functions in a single device produces new design challenges
by enlarging the range of heterogeneous code that the system
must handle. To worsen such scenario, the designers must
take into account tighter design constraints as power budget
and manufacturing process costs, all mixed up in the difficult
task of increasing the processing capability.

Because of that, the instruction-level parallelism (ILP)
exploitation strategy is no longer enough to improve the
overall performance of general and embedded applications.
The newest ILP exploitation techniques do not provide an
advantageous tradeoff between the amount of transistors

added and the extra speedup obtained [1, 2]. Despite the
great advantages shown in the employment of instruction
set architecture (ISA) extensions, like the employment
of single instruction multiple data (SIMD) instructions,
such approaches rely on long design and validation times,
which goes against the need for a fast time-to-market for
present day systems. On the other hand, application-specific
integrated circuits (ASICs) provide high-performance and
small chip area. However, such an approach attacks only
a very specific application class, failing to deliver the
required performance when executing applications in which
behaviors were not considered at design time, being not
suitable for executing general-purpose applications.

Reconfigurable systems appear as a mid-term between
general-purpose processors and ASICs, solving somehow
the ILP issues discussed before. They have already shown
good performance improvements and energy savings for
stand-alone applications in single core environments [3–
6]. Adaptable ILP exploitation is the major advantage of
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this technique, since the reconfigurable fabric can adapt to
fit the required application parallelism degree at a given
time, enabling acceleration over a wide range of different
application classes.

However, as already discussed, general-purpose and
embedded systems are composed of a wide range of appli-
cations with different behaviors, in which the parallelism
grain available varies from the finest to the coarsest. To accel-
erate applications that present high level of coarse-grained
parallelism (at thread/process level), multiprocessor systems
are widely employed, providing high performance and short
validation time [7]. However, in contrast to architectures that
make use of fine-grained parallelism (at instruction level)
exploitation, such as the superscalar processors, the usage
of the multiprocessor approach leaves all the responsibility
of parallelism detection and allocation to the programmers.
They must split and distribute the parallelized code among
processing elements, handling all the communication issues.
The software partitioning is a key feature in a multiprocessor
system: if it is poorly performed or if the application does not
provide a minimum parallelism at process/thread levels, even
the most computational powerful system will run way below
their full potential.

Thus, to cover all possible types of applications, the
system must be conceived to provide a good performance
at any parallelism level and to be adaptable to the run-
ning applications. Nowadays, at one side of the spectrum,
there are the multiprocessing systems composed of many
homogeneous and simple cores to better explore the coarse-
grained parallelism of highly thread-based applications. At
the other side, there are multiprocessor chips assembled
with few complex superscalar/SMT processing elements, to
explore applications where ILP exploration is mandatory. As
can be noticed, there is no consensus on the hardware logic
distribution to explore the best of ILP and TLP together
regarding a wide range of application classes.

In this scenario, we merge different concepts by propos-
ing a novel dynamic reconfigurable multiprocessor system
based on the dynamic instruction merging (DIM) technique
[8]. This system is capable of transparently exploring (no
changes in the binary code are necessary at all) the fine-
grained parallelism of the individual threads, adapting to the
available ILP degree, while at the same time taking advantage
of the available thread/process parallelism. This way, it is
possible to have a system that adapts itself to any kind of
available parallelism, handling a wide range of application
classes.

Therefore, the primary contributions of this work are

(i) to reinforce, by the use of an analytical model, the
need for heterogeneous parallelism exploitation in
multiprocessor environments,

(ii) to propose a multiprocessor architecture provided
with an adaptable reconfigurable system (DIM tech-
nique), so it is possible to balance the best of both
thread/process and ILP exploitations. This way, any
kind of code, those that present high TLP and low
ILP, or those that are exactly the opposite, will be
accelerated.

2. Related Work

The usage of reconfigurable architectures in a multiprocessor
chip is not a novel approach. In [9] the thread warping
system is proposed. It is composed of an FPGA coupled
to an ARM11-based multiprocessor system. Thread warping
uses complex computer-aided detection (CAD) tools to
detect, at execution time, critical regions of the running
application and to map them to custom accelerators imple-
mented in a simplified FPGA. A greedy knapsack heuristic
is used to find the best possible allocation of the custom
accelerators onto the FPGA, considering the possibility of
partial reconfiguration. In this system, one processor is
totally dedicated to run the operating system tasks needed
to synchronize threads and to schedule their kernels to be
executed in the accelerators. However, this processor may
become overloaded if several threads are running on tens or
hundreds of processors, affecting system scalability. Another
drawback is that, due to the high time overhead imposed
by the CAD and greedy knapsack algorithms, only critical
code regions are optimized. Consequently, only applications
with few and very defined kernels (e.g., filters and image
processing algorithms) are accelerated, narrowing the field
of application of this approach.

In [10], the Annabelle SoC is presented. It comprises an
ARM core and four domain-specific coarse-grain reconfig-
urable architectures, named Montium cores. Each Montium
core is composed of five 16-bit arithmetic and logic units
(ALUs), structured to accelerate DSP applications. The
ARM926 is responsible for the dynamic reconfiguration
processes by executing the run-time mapping algorithm,
which is used to determine a near-optimal mapping of the
applications to the Montium cores. Although the authors
discuss the possibility of heterogeneous parallelism exploita-
tion in a multiprocessor environment, this work focuses only
on speeding up DSP applications (e.g., FFT, FIR, and SISO
algorithms).

In [11], the authors propose the employment of a
shared reconfigurable logic, claiming that area and energy
overhead are barriers when reconfigurable fabric is used
as a private accelerator for each processing element of a
multiprocessor design. Results of area and power reduction
are demonstrated when sharing temporally and spatially
the reconfigurable fabric. However, such approach relies
on compiler support, precluding binary compatibility and
affecting time-to-market due to larger design times.

In this work, we address the particular drawbacks of the
above approaches by creating an adaptable reconfigurable
multiprocessing system that

(i) unlike [9, 10], provides lower reconfiguration time,
thus allowing ILP investigation/acceleration of the
entire application code, including highly thread-
parallel algorithms,

(ii) unlike [11], maintains binary compatibility through
the application of a lightweight dynamic detection
hardware that, at run-time, recognizes parts of code
to be executed on the reconfigurable data path.
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3. Analytical Model

In this section, we try to define the design space for
multiprocessor-based architectures. First, we model a mul-
tiprocessing architecture (MP—multiprocessor) composed of
many simple and homogeneous cores to elucidate the advan-
tages of thread-level parallelism and compare its execution
time (ET) to the modeling of a high-end single processor
(SHE—single high-end) model with a great instruction-level
parallelism exploration capability.

In the software point of view, we have used the amount
of fine- (instruction) and coarse- (thread) level parallelism
available in the application to investigate the performance
potentials of both architectures. Considering a portion of
code of a certain application, these software characteristics
are denoted as

(i) α—can be executed in parallel in a single core,

(ii) β—cannot be executed in parallel in a single core,

(iii) δ—can be split among the cores of the multiproces-
sor environment,

(iv) γ—cannot be split among the cores of the multipro-
cessor environment.

Let us start with the basic equation relating execution
time (ET) with instructions,

ET = Instructions∗ CPI∗ CycleTime, (1)

where CPI is the mean number of cycles necessary to execute
an instruction and Cycletime the operating frequency of the
processor.

In this model, no information about cache accesses is
considered, nor the performance of the disk or I/O is taken
into account. Nevertheless, although simple, this model can
provide interesting clues on the potential of multiprocessing
architectures for a wide range of applications classes.

3.1. Low-End Single Processor. Based on (1), for a low-end
single (SLE—single low-end) processor, the execution time
can be written as

ETSLE = Instructions
(∝ CPISLE + βCPISLE

)
CycleTimeSLE.

(2)

Since the low-end processor is a single-issue processor, it
is not able to exploit ILP. Therefore, classifying instructions
in α and β as previously stated does not make much sense.
In this case, α is always equal to zero and β equal to one, but
we will keep the notation and their meaning for comparison
purposes.

3.2. High-End Single Processor. In the case of a high-end ILP
exploitation architecture, based on (1) and (2), one can state
that ETSHE (execution time of the high-end single processor) is
given by the following equation:

ETSHE = Instructions
(∝ CPISHE + βCPISLE

)
CycleTimeSHE,

(3)

CPISHE, that also could be written as ∝ CPISLE/issue (i.e., a
high-end single processor would have the same CPI as the
CPI of a low-end processor divided by the mean number
of instructions issued per cycle), is usually smaller than 1,
because a high-end single processor can exploit high levels
of ILP, thanks to replication of functional units, branch
prediction, speculative execution and mechanisms to handle
false data dependencies, and so on. A typical value of CPISHE

for a current high-end single processor is 0.62 [12], showing
that more than one instruction can be executed per cycle.
Thus, based on (3) one gets

ETSHE

= Instructions
(∝ CPISLE

issue
+ βCPISLE

)
CycleTimeSHE.

(4)

Issue represents the maximum number of instructions that
can be issued in parallel to the functional units, considering
the best-case situation: there are no data or control depen-
dencies in the code. As already explained, coefficients α and
β refer to the percentage of instructions that can be executed
in parallel or not (this way, α + β = 1), respectively. Finally,
CycleTimeSHE represents the clock cycle time of the high-end
single processor.

3.3. Homogeneous Multiprocessor Chip. Having stated the
equation to calculate the performance of the high-end and
low-end single processor, now the potential use of a homo-
geneous multiprocessing architecture, built by the replication
of low-end processors, is studied. Such architecture does not
heavily exploit the available ILP, but mostly the thread-level
parallelism (TLP). Some works [13] propose an automatic
translation of code with enough ILP into TLP, so that
more than one core will execute the code. A multiprocessor
environment is usually composed of low-end processor
units, so that a large number of them can be integrated
within the same die. Considering that each application has
a certain number of instructions that can be split into several
processors, one could write the following equation, based on
(1) and (2):

ETMP = Instructions
(
δ

P
+ γ

)

× (αCPISLE + βCPISLE
)
CycleTimeMP,

(5)

where δ is the amount of code that can be transformed
into multithreaded code, while γ is the part of the code that
must be executed sequentially (no TLP is available). P is the
number of low-end processors that is available in the chip.
Hence, the second term of (5) reflects the fact that in a
multiprocessor environment one could benefit from thread-
level parallelism, since increasing the number of processors
will only accelerate parts of the code that can be parallelized
at thread level.

3.4. High-End Single Processor versus Homogeneous Mul-
tiprocessor Chip. Based on the above reasoning, one can
compare the performance of the high-end single processor
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to the multiprocessor environment. However, one important
aspect is that the several low-end processors that compose
the homogeneous multiprocessor design could also run at
much higher frequencies than high-end processors, since
their simple organizations reflect smaller area and power
consumption. However, the total power budget will probably
be the limiting performance factor for both designs. For the
sake of the model, we will assume that

CycleTimeMP = K ∗ CycleTimeSHE, (6)

where K is the frequency adjustment factor to normalize the
power consumption of both homogeneous multiprocessor
and the high-end single processor.

Thus, the comparison of both architectures, based on (3)
and (5), is given by

ETSHE

ETMP

=
[
Instructions

(∝(CPISLE/issue)+βCPISLE
)
CycleTimeSHE

]

[
Instructions

(
δ/P+γ

)(∝CPISLE+βCPISLE
)
CycleTimeMP

] .

(7)

By simplifying and merging (6) and (7), one gets

ETSHE

ETMP
=
[

1
δ/P

+ γ
][∝ (CPISLE/issue) + βCPISLE

∝ CPISLE + βCPISLE

][
1
K

]
.

(8)

From (8) one can notice that the high-end pro-
cessor is faster than multiprocessor architecture when
(ETSHE/ETMP) < 1. In addition, this equation shows
that, although the multiprocessor architecture with low-end
simple processors could have a faster cycle time (by a factor
of K), that factor alone is not enough to define performance.
Regarding the second term between brackets in (8), the fact
that the high-end processor can execute many instructions
in parallel could give a better performance. Since there is no
instruction-level parallelism exploration in a low-end single
processor, it means that the term∝ CPISLE is always zero.

In the extreme case, let us imagine that issue = P = ∞,
meaning that we have infinite resources, either in the form of
arithmetic operators or in the form of processors. This would
reduce (8) to

ETSHE∞
ETMP∞

=
[

1
γ

][
βCPISLE

∝ CPISLE + βCPISLE

][
1
K

]

. (9)

Equation (9) clearly shows that, as long as one has code
which carries control or data dependencies, and cannot be
parallelized (at the instruction or thread level), a machine
based on a high-end single core will always be faster than a
multiprocessor-based machine, regardless of the amount of
available resources.

Another interesting experiment is to try to equal the per-
formance of the high-end single core and the performance

0.001

0.01

0.1

1

0.01 0.1 0.25 0.5 0.75 0.99

4-issue supersc

c

alar

8-core MPSoC
18-core MPSoC48-core MPSoC
128-core MPSoC

E
xe

cu
ti

on
ti

m
e

(l
og

)

Parallelism per entage (α or δ)

Figure 1: Multiprocessor system and superscalar performance
regarding a power budget using different ILP and TLP; α = δ is
assumed.

of the multiprocessor core. This way, let us consider that
TSHE = TMP; hence,

[
(∝ CPISHE + βCPISLE

) 1
K

]

=
[(

δ

P
+ γ
)
(
αCPISLE + βCPISLE

)
]
.

(10)

From (10), one can see that one must have enough low-
end processors combined to a highly parallel code (greater
δ) to overcome the high-end processors advantage. This
statement is clarified by the fact that the term ∝ CPISLE is
always zero, imposing that β is equal to one and CPISLE is
much higher than CPISHE.

3.5. Applying the Analytical Model in Real Processors. Given
the theoretical model, one can briefly test it with some
numbers based on real data. Let us consider a high-end single
core: a 4-issue MIPS R10000 superscalar processor, with CPI
equal to 0.6 [14] and a multiprocessor design composed
of low-end MIPS R3000 processors, with CPI equal to 1.3
each [15]. A comparison between both architectures is done
using the equations of the aforementioned analytical model.
Figure 1 shows, in a logarithmic scale, the performance of the
superscalar processor when parameters α and β change. In
addition, in Figure 1 we also show the performance of the
multiprocessor design, varying the δ and γ parameters and
the number of processors from 8 to 128. To provide a better
view of the performance considering both approaches, the x-
axis of Figure 1 represents the amount of the instruction- (α)
and thread- (δ) level parallelism in the application, where α
is only valid for the 4-issue superscalar, while δ is valid for all
the MPSoC’s setups.

The goal of this comparison is to demonstrate which
technique better explores its particular parallelism at differ-
ent levels, considering six values for both ILP and TLP. For
instance, δ = 0.01 means that an application only shows
1% of thread-level parallelism within its code (valid only for



International Journal of Reconfigurable Computing 5

the MPSoC’s examples). In the same way, when α = 0.01, it
is assumed that 1% of instruction-level parallelism (ILP) is
available. That is, only 1% of its instructions can be executed
in parallel in the 4-issue superscalar processor. Following
the same strategy found in current processor designs, for a
fair performance comparison, we considered the same power
budget for the high-end single core and the multiprocessor
approaches. In order to normalize their power budget,
we have tuned the frequency adjustment factor K of (5).
For that, we fixed the 4-issue superscalar frequency to use
it as the power reference, changing the K factor of the
remaining approaches to achieve the same consumption as
the reference. Thus, the frequency of the 8-core MPSoC
must be 3 times higher than 4-issue superscalar processor.
For the 18-core, such value must be a quarter higher
than the reference value. Since a considerable number of
cores employed in the 48-core MPSoC setup, this approach
should execute 2 times slower than the 4-issue superscalar
processor to achieve the same power consumption. Finally,
the frequency of the 128-core MPSoC must be 5.3 times
smaller than the 4-issue superscalar to respect the same
power budget.

The leftmost side of Figure 1 considers any given appli-
cation that has a minimum amount of instruction- (α =
0.01) and thread- (δ = 0.01) level parallelism available. In
this case, the superscalar processor and the 8-core design
present almost the same performance. However, considering
the same power budget for all approaches by using different
operating frequencies shown before, when applications show
greater parallelism percentage (α > 0.25 and δ > 0.25),
the 8-core design achieves better performance with TLP
exploitation than the 4-issue superscalar processor with ILP
exploitation.

When more cores are added in a multiprocessor design,
the overall clock frequency tends to decrease, since the
adjustment factor of (5) should be smaller to obey the power
budget. In this way, the performance of applications that
present low-thread-level parallelism (small δ) worsens when
increasing the number of cores. Regarding the applications
with δ = 0.01 in Figure 1, performance is significantly
decreased as the number of cores increases. Nevertheless, as
the application thread-level parallelism increases (i.e., δ >
0.01), the negative impact on performance is softened, since
the additional cores will have better use.

Aiming to make a fairer performance comparison among
high-end single core and multiprocessor approaches, we have
devised an 18-core design composed of low-end processors
that, besides presenting the same power consumption due
to the power budget assumed, also has the same area of
the 4-issue superscalar processor. For that, we considered
that the MIPS R3000 takes only 75.000 transistors [16],
almost 29 times less than the 2.2 millions of transistors
spent on the MIPS R10000 design [17]. Furthermore,
for a reasonable comparison, we also considered that the
intercommunication mechanism would take nearly 37% of
the chip area, as reported in [18]. The performance of both
approaches shows the powerful capabilities of the superscalar
processor. Regarding the same area and power for both
designs, as shown in Figure 1, the multiprocessor approach

(18-core MPSoC) only surpasses the superscalar (4-issue
superscalar) performance when the TLP level is greater than
85% (δ > 0.85).

Summarizing the comparison with the same power
budget, the superscalar machine shows better performance
over applications with low-thread-level parallelism. On the
other hand, there is an additional tradeoff that must be
considered regarding multiprocessor designs, since, when
more cores are included in the chip, the multiprocessor
performance tends to worsen, since the operating frequency
must be decreased to respect the power budget limits. When
almost the whole application presents high TLP (δ > 0.99),
the 128-core design takes longer execution time than the
other multiprocessor designs since its operating frequency is
very low.

Considering real applications, thread-level parallelism
exploitation is widespread employed to accelerate most
multimedia and DSP applications thanks to their data inde-
pendent iteration loops. However, even applications with
high TLP could still obtain some performance improvement
by also exploiting ILP. Hence, in a multiprocessor design,
ILP techniques also should be investigated to conclude what
is the best fit concerning the design requirements. Hence,
the analytical model indicates that heterogeneous multipro-
cessor system is necessary to balance the performance of a
wide range of application classes. Section 6 reinforces this
trend running real applications over a multiprocessor design
coupled to an adaptable ILP exploitation approach named
DIM technique.

4. Reconfigurable Multiprocessing System

Section 3 demonstrated that in a heterogeneous application
environment, TLP and ILP exploitation are complementary.
This way, it is necessary to explore different grains of
parallelism to balance performance. Aiming to support
this statement, we have built a multiprocessor structure
shown in Figure 2(a) to reproduce the analytical model
shown in Section 3 by executing well-known applications.
The architecture in the example is composed of four
cores, so TLP exploitation is guaranteed. However, as ILP
exploitation is also mandatory, we have coupled a coarse-
grain reconfigurable data path to each one of the cores,
since the use of reconfigurable fabric has already shown great
speedups with low-energy consumption [6, 8] concerning
single thread applications.

Figure 2(b) shows in detail the microarchitecture of
the processor, named as reconfigurable core (RC), used as
the base processing element of the reconfigurable multi-
processing system. To better explain the RC processor, we
divided such architecture in 4 blocks. Block 1 depicts the
reconfigurable data path that aggregates the input context,
output context, and the functional units. Block 2 presents
the basic SparcV8 like five-stage pipelined processor. Block
3 illustrates the pipeline stages of the dynamic instruction
merging (DIM) [8] technique that works in parallel to the
processor pipeline. It is responsible for transforming instruc-
tion blocks into configurations of the reconfigurable data
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Figure 2: (a) Multiprocessing system. (b) Reconfigurable core. (c) Example of a loop optimization.

path at run time. Block 4 demonstrates the reconfiguration
memory and the address cache. The reconfiguration memory
holds the configuration bits previously generated by the
DIM, so next time when the same translated sequence is
found, the configuration bits are reused. The address cache
(4-way associative) is responsible for keeping the first PC
address of each translated sequence. More details about these
components will be presented in the next sections.

Figure 2(c) shows an example of how a loop would be
accelerated using the proposed process. The reconfigurable

core works in four modes: probing, detecting, reconfiguring,
and accelerating. At the beginning of the time bar shown
in Figure 2(c), the RC is searching for an already translated
configuration to accelerate through execution in the recon-
figurable data path.

However, when the first loop iteration appears (i = 0),
the DIM detects that there is a new code to translate and it
changes to detecting mode. In that mode, while the instruc-
tions are executed in the processor pipeline, they are also
translated to a configuration by the DIM. When the second



International Journal of Reconfigurable Computing 7

loop iteration is found (i = 1), the DIM is still finishing
building the current configuration (that started when i = 0)
and storing it into the reconfiguration memory.

Then, when the first instruction of the third loop
iteration comes to the fetch stage of the processor pipeline
(i = 2), the probing mode detects a valid configuration
in the reconfiguration memory, since the previously started
detection process is now finished and the memory address of
the first instruction of the translated sequence was found in
the address cache.

Therefore, the RC enters in reconfiguring mode to
feed the reconfigurable data path with the operands and
the reconfiguration bits. Finally, the accelerating mode is
activated and the next loop iterations (until the 99th) are
efficiently executed, taking advantage of the reconfigurable
logic.

4.1. Reconfigurable Data Path Structure (Block 1). Following
the classifications shown in [19, 20], the reconfigurable
data path is tightly coupled to the processor pipeline.
Such coupling approach avoids external accesses to the
memory, saving power and reducing the reconfiguration
time. Moreover, its coarse-grained nature decreases the size
of the memory necessary to keep each configuration, since
the basic processing elements are functional units that work
at the word level (arithmetic and logic, memory access,
and multiplier). The data path is organized as a matrix of
rows and columns, composed of functional units. Three
columns of arithmetic and logic units (ALUs) compose
a level. A level does not affect the SparcV8 critical path
(which, in this case, it is given by the register file). The
number of basic rows dictates the maximum instruction-
level parallelism that can be exploited, since instructions
placed in the same column are executed concurrently (in
parallel). The example of the data path shown in Figure 2(b)
could execute up to four arithmetic and logic operations,
two memory accesses (two memory ports are available), and
one multiplication in parallel. The number of rows, in turn,
determines the maximum number of dependent instructions
placed into one configuration. Both the number of rows
and the number of parallel components can be modified
according to the application requirements and the design
constraints. It is important to notice that simple arithmetic
and logic operations can be executed within the same pro-
cessor cycle without affecting the critical path. Consequently,
data-dependent instructions are also accelerated. Memory
accesses and multiplications take one equivalent processor
cycle to perform their operations.

The entire structure of the reconfigurable data path is
purely combinational: there is no temporal barrier between
the functional units. The only exception is for the entry and
exit points. The entry point is used to keep the input context,
which is connected to the processor register file. The fetching
of the operands from the register file is the first step to
configure the data path before actual execution. After that,
results are stored in the output context registers through the
exit point of the data path. The values stored in the output
context are sent to the processor register file on demand.

It means that if a given result is produced at any level and
it will not be changed in the subsequent levels, its value is
written back at the same level that it was produced. In the
current implementation, the reconfigurable system provides
two write-backs per level.

We have coupled sleep transistors [18] to switch power
on/off of each functional unit in the reconfigurable data path.
The dynamic reconfiguration process is responsible for the
sleep transistors management. Their states are stored in the
reconfiguration memory, together with the reconfiguration
data. Thus, for a certain configuration, idle functional units
are set to the off state, avoiding leakage or dynamic power
dissipation, since the incoming bits do not produce switching
activity in the disconnected circuit. Although the sleep
transistors are bigger and in series to the regular transistors
used in the implemented circuit, they have been designed so
that their delays do not significantly impact the critical path
or the reconfiguration time.

4.2. Processor Pipeline (Block 2). A SPARC-based architecture
is used as the baseline processor to work together with
the reconfigurable system. Its five-stage pipeline reflects a
traditional RISC architecture (instruction fetch, decode, exe-
cution, data fetch, and write-back). The microarchitecture
and the performance of such processor are very similar to
the MIPS R3000, considered as the low-end processor in the
analytical model shown in Section 3.

4.3. Dynamic Instruction Merging (Block 3). As explained
before, the dynamic instruction merging (DIM) can work
in four modes: detecting, probing, accelerating, and recon-
figuring. As can be observed in Figure 2(b), the hardware
responsible for the detecting mode contains four pipeline
stages.

(i) Instruction decode (ID): the instruction is broken
into operation, source operands, and target operand.

(ii) Dependence verification (DV): the source operands
are compared to the target operands of previously
detected instructions to verify which column the
current instruction should be allocated, according to
their data dependencies. The placement algorithm is
very simple: the DV stage only indicates the leftmost
column that the current instruction should be placed.

(iii) Resource allocation (RA): in this stage, the data
dependence is already solved and the correct data
path column is known. Hence, the RA stage is
responsible for verifying the resources availability in
that column, linking the instruction operation to
the correct type of functional unit. If there is no
functional unit available at this column, the next
column at the right side will be checked. This process
is repeated until finding a free functional unit.

(iv) Update tables (UT): this stage configures the routing
to feed that functional unit with the correct source
operands from the input context and to write the
result in the correct register of the output context.
After that, the bitmaps and tables are updated and
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Figure 3: DIM activity diagram.

the configuration is finished: their configuration bits
are sent to the reconfiguration memory and the
address cache is updated.

Figure 3 illustrates, by an activity diagram, the whole
DIM process to create a configuration. The first step is the
execution support verification. If there is no compatible
functional unit to execute such an operation (e.g., division),
the configuration is finished and the next instruction is a
candidate to start a new configuration. On the other hand,
if there is support, the data dependency among previously
allocated instructions is verified (DV stage) and the correct
functional unit within that column is defined. Then, the
current configuration is sent to the reconfiguration memory.

4.4. Storage Components (Block 4). Two storage components
are part of the reconfigurable system: address cache and
reconfiguration memory. The configurations are indexed by
the address of the first instruction of the translated sequence
and kept in the address cache, a 128-entry 4-way associative
cache. The Address Cache is only accessed when the DIM is
working in the probing mode. An address cache hit indicates
that a configuration was found, changing the system to the
reconfiguring mode. In this mode, using the pointer given by
the address cache, the reconfiguration memory is accessed
to feed the data path routing. The reconfiguration memory
stores the routing bits and the necessary information (such
as the input and output contexts and immediate values) to
fire a configuration. Finally, the DIM hardware changes to
accelerating mode, beginning the execution process in the
reconfigurable data path.

5. Simulation Environment

5.1. Workload. A workload of only high parallel applications
with distinct behaviors was chosen, using benchmarks from
the well-known SPLASH2 [21] and PARSEC [22] suites. In
addition, two numerical applications written in OpenMP
were used [23].

The list below briefly describes each of them.

(i) FFT [21]. It is a complex 1D version of a six-step FFT
algorithm.

(ii) LU [21]. It factors a dense matrix in the equivalent
lower-upper matrix multiplication.

(iii) Blackscholes [22]. It solves the partial differential
equation of Blackscholes in order to compute prices
for a portfolio of European options.

(iv) Swaptions [22]. Monte Carlo simulation is used to
price a portfolio of swaptions.

(v) Molecular Dynamics (MD) [4]. It implements the
velocity Verlet algorithm for molecular dynamics
simulation.

(vi) Jacobi [23]. It utilizes the Jacobi iterative method to
solve a finite difference discretization of Helmholtz.

5.2. TLP and ILP Exploration Opportunities. In this section
we show the opportunities for coarse- and fine-grain par-
allelism exploration in the selected benchmarks shown in
Section 5.1. The experiments addressing these applications
were done in a SparcV8 architecture varying the number of
threads from 1 to 64.

The mean size of the basic blocks (BB) of an application
is an important aspect to define its fine grain parallelism
level since the room for most ILP exploration techniques
relies on this characteristic. The second column of Table 1
presents the mean BBs size of the selected applications. As it
can be noticed, even parallel applications provide great room
for instruction-level parallelism exploration. The remaining
columns in Table 1 show, in percentage, the load balancing
between threads of the selected applications. As expected,
most applications provide a perfect load balancing up to
64 threads. FFT and LU do not follow the trend of the
other applications, since the load balancing decreases as the
number of threads increases.

Therefore, even applications with perfect load balancing
(e.g., swaptions) provide a great room for instruction-level
parallelism since their basic blocks have enough instructions
to be parallelized. In the same way, applications with
poor load balancing, where probably thread-level parallelism
exploration will not be enough to achieve satisfactory
performance improvements (e.g., lu with a great number
of threads), can benefit even more from instruction-level
parallelism exploitation. In this way, one can conclude that
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Table 1: ILP and TLP opportunities for the selected benchmarks.

Benchmark Mean BB size (#instr)
Load balancing (%)

4 threads 8 threads 16 threads 64 threads

Swaptions 5.92 99.00 99.00 99.00 98.00

Blackscholes 4.83 99.00 99.00 99.00 98.00

MD 6.51 95.04 83.24 88.92 89.87

Jacobi 6.94 97.02 97.02 92.07 93.12

FFT 8.10 69.39 49.50 31.96 24.58

LU 8.32 81.20 56.77 29.35 7.03

Table 2: Number of basic functional units of setups.

RC#1 RC#2

Columns 48 150

ALU/column 6 8

Load/column 4 6

Mul/column 1 2

the mixed parallelism exploitation is mandatory even for
applications where the thread-level parallelism is dominant.

5.3. Methodology. To simulate the reconfigurable multipro-
cessor system, we have used the scheme presented in [24].
It consists of a functional full system [25] that models the
SparcV8 architecture and cycle accurate timing simulators
[26] that reproduce the behavior of the individual reconfig-
urable cores depicted in Figure 2(b). Since the applications
are split automatically by the OpenMP and the Posix Threads
API, the cycle accurate simulator gives special attention to
synchronization mechanisms, such as locks and barriers.
Therefore, the elapsed time regarding blocking synchroniza-
tion and memory transfers are precisely measured.

For all experiments, we have tuned the number of
reconfigurable cores based on the number of threads used
to run the applications presented in Section 5.1.

To demonstrate the impact of ILP exploitation in the
performance, we have used two different configurations
for the reconfigurable data path (block 1 of Figure 2(b)),
changing its number of basic functional units. The setups,
shown in the Table 2, have already presented the best tradeoff
considering area and performance executing single-thread
applications [8].

6. Results

6.1. Performance Results. This section demonstrates the per-
formance evaluation of the reconfigurable multiprocessing
system over three different aspects:

(i) TLP exploitation by changing the number of cores
from four up to 64 (in these experiments, stand-alone
SPARC cores are used: they are not coupled to the
reconfigurable architecture);

(ii) TLP + ILP exploitation, repeating the previous exper-
iment but now using the SPARC cores together with

Table 3: Average speedup on different number of cores.

4 cores 8 cores 16 cores 64 cores

TLP 3.74 6.86 12.47 44.3

ILP + TLP 6.46 11.85 21.71 51

the reconfigurable architecture in the two different
versions (RC#1 or RC#2);

(iii) the influence of changing the applications’ data set
sizes on performance.

Figure 4 explores the first two aspects discussed above:
TLP exploitation only, varying the number of stand-alone
SPARC cores (solid bars) and TLP + ILP exploitation, by
coupling the reconfigurable architecture (RC#1) to each
one of the cores (striped bars). Regarding the former,
performance scales linearly as the number of cores increases.
FFT and LU do not follow this behavior, since their codes,
as shown in Table 1, do not present perfect load balancing as
other applications.

As can be observed, the results reinforce the conclusion
gathered from the analytical model in Section 3: even for
high TLP-based applications, there is a need for finer-
grain parallelism exploitation to complement the TLP gains.
Table 3 shows the average speedup of both approaches. This
table demonstrates that TLP+ILP exploitation, using the
RC#1 setup composed of four cores, presents similar per-
formance gains comparing to the eight standalone cores
exploiting only TLP parallelism. The same occurs when
comparing a system with 8 cores and the RC#1 setup to 16
stand-alone cores.

Figure 5 compares the performance of a system com-
posed of 4 or 8 cores, in which each is coupled to the RC#2
over the system in which the cores are coupled to the RC#1.
The improvement is negligible, and not proportional to the
additional number of basic functional units. This happens
because of the high TLP degree presented in the selected
workload. Their threads do not present enough instructions
that can be accelerated by the additional basic functional
units available in RC#2, so the amount of basic functional
units of RC#1 is adequate to satisfactorily explore the ILP
available in most applications of the selected workload.
Molecular dynamics (MD) is the one that best takes advantage
of the extra units of the RC#2, although it presents only
5% of performance improvements than RC#1. Jacobi and
LU executions show performance loss when using the RC#2
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Figure 5: Performance comparison among RC#1 and RC#2 setups.

setup. It happens because the DIM produces a different
amount of configurations for both setups. Due to the
dynamic behavior of DIM technique, it affects the address
cache storage producing more configuration misses in the
RC#2 setup. Therefore, since RC#2 does not show any
significant advantage over the RC#1, the RC#1 will be used
for the remaining experiments.

Figure 6 shows the performance evaluation when run-
ning the same application workload with two different data
set sizes, so it is possible to demonstrate that changing the
data set size does not affect the performance results shown in
Figure 4.

However, FFT and LU present a significant impact when
changing the data set size. Figure 7 shows this data in more
detail. FFT has a significant amount of sequential code re-
sponsible for data initialization. Thus, when we increase the
data set size, the initialization becomes more significant over

the whole application execution time. This behavior is more
evident in the multiprocessing system composed of 16 cores.

Regarding LU, the larger data set size provides a perfect
load balance with a great number of processors [21], as
observed in Figure 7. On the other hand, smaller data set
sizes increase the imbalance by splitting less blocks per
processor in each step of the factorization.

6.2. Energy Results Considering the Same Power Budget. In
Section 3.4, we have created a power budget to clarify the
advantages/disadvantages of instruction- and thread-level
parallelism exploitation. This way, we have also evaluated the
energy consumption of the selected benchmarks considering
the same power budget for both parallelism exploitations
(ILP and TLP+ILP). The power dissipation of the stand-
alone SparcV8 is 385.14 mWatts and the reconfigurable
core consumes 699.33 mWatts. Therefore, we have compared
the 8-core SparcV8 with the reconfigurable multiprocessing
system composed of 4 reconfigurable cores, since both
reach nearly 3 Watts of power dissipation. In addition,
these setups will help us to measure the contribution of
the proposed approach in reducing energy consumption,
since, as shown in Table 3, both setups provide almost the
same performance. Due to the high simulation time, we
choose three benchmarks from the application workload
to show the energy consumption of both approaches. This
application subset contains massive thread-level parallelism
applications (MD and Jacobi) as well as application that
shows considerable load unbalancing (LU).

Despite the fact that all applications provide massive
thread-level parallelism, since their performance scales
linearly as the number of cores increases, the proposed
approach consumes less Power than the multiprocessing
system composed of stand-alone SparcV8 in all benchmarks
evaluated. Energy savings are possible because, although
the power consumption of reconfigurable core is the same as
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the power presented in the multiprocessing system composed
of stand-alone SparcV8, the average power is lower, mainly
thanks to the use of sleep transistors to turn off idle
functional units of the reconfigurable data path. In addition,
although more power is spent because of the DIM hardware
and reconfigurable data path, total average power is reduced
since there are fewer memory accesses for instructions: once
they were translated to a data path configuration, they will
reside in the reconfiguration memory.

Disregarding the power budget proposed in this section,
we can compare the energy consumption of the 8-core
SparcV8 with the multiprocessing system composed of eight
reconfigurable cores. As can be seen in Table 4, the proposed

approach outperforms the 8-core SparcV8, on average, by
72% and still consumes 42% less energy. The main source,
besides the already mentioned, is the shorter execution time
of the mixed parallelism exploration.

7. Conclusions

This paper demonstrated that, although the instruction-
level parallelism (ILP) exploitation is reaching its limits and
multiprocessing system appears as a solution to accelerate
applications by exploring coarse grains of parallelism, there
are significant sequential parts of code that still must
be handled by ILP exploitation mechanisms. Therefore,
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Table 4: Energy consumption, in mJ, of both multiprocessing system and reconfigurable system on running MD, Jacobi and LU.

TLP ILP + TLP

4 cores 8 cores 16 cores 64 cores 4 cores 8 cores 16 cores 64 cores

MD 0.282 0.329 0.353 0.376 0.185 0.216 0.232 0.248

Jacobi 99.1 115.7 124.3 132.3 69.6 81.3 87.3 93.1

LU 0.167 0.194 0.232 0.330 0.113 0.132 0.157 0.227

Average 33.2 38.8 41.6 44.3 23.3 27.2 29.2 31.2

there is the need of mixed-grain parallelism exploitation
to achieve balanced performance improvements even for
applications that present dominant thread-level parallelism.
This paper presented such system: an adaptable ILP exploita-
tion mechanism, using reconfigurable logic, coupled to a
multiprocessing environment.

References

[1] D. W. Wall, “Limits of instruction-level parallelism,” ACM
SIGPLAN Notices, vol. 26, no. 4, pp. 176–188, 1991.

[2] J. Mak and A. Mycroft, “Limits of instruction data dependence
graphs,” in Proceedings of the 7th International Workshop on
Dynamic Analysis (WODA ’09), Chicago, Ill, USA, July 2009.

[3] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach,
and M. Weinhardt, “PACT XPP—a self-reconfigurable data
processing architecture,” Journal of Supercomputing, vol. 26,
no. 2, pp. 167–184, 2003.

[4] S. J. Patel and S. S. Lumetta, “rePLay: a hardware framework
for dynamic optimization,” IEEE Transactions on Computers,
vol. 50, no. 6, pp. 590–608, 2001.

[5] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor with
a reconfigurable coprocessor,” in Proceedings of the 5th IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM
’97), pp. 12–21, IEEE Computer Society, Napa Valley, Calif,
USA, 1997.

[6] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” in Pro-
ceedings of the 41st Annual Conference on Design Automation
(DAC ’04), pp. 659–681, ACM, New York, NY, USA, 2004.

[7] K. Olukotun, Chip Multiprocessor Architecture: Techniques
to Improve Throughput and Latency, Morgan and Claypool
Publishers, 1st edition, 2007.

[8] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro,
“Transparent reconfigurable acceleration for heterogeneous
embedded applications,” in Proceedings of the Design, Automa-
tion and Test in Europe (DATE ’08), pp. 1208–1213, March
2008.

[9] G. Stitt and F. Vahid, “Thread warping: a framework for
dynamic synthesis of thread accelerators,” in Proceedings of the
5th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS ’07), ACM,
Salzburg, Austria, September-October 2007.

[10] G. J. Smit, A. B. Kokkeler, P. T. Wolkotte, and M. D.
van de Burgwal, “Multi-core architectures and streaming
applications,” in Proceedings of the International Workshop on
System Level Interconnect Prediction (SLIP ’08), pp. 35–42,
ACM, Newcastle, UK, April 2008.

[11] M. A. Watkins, M. J. Cianchetti, and D. H. Albonesi, “Shared
reconfigurable architectures for CMPS,” in Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL ’08), pp. 299–304, September 2008.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: a free, commercially
representative embedded benchmark suite,” in Proceedings of
the IEEE International Workshop Workload Characterization
(WWC ’01), pp. 3–14, Washington, DC, USA, December 2001.

[13] Y. Song, S. Kalogeropulos, and P. Tirumalai, “Design and
implementation of a compiler framework for helper threading
on multi-core processors,” in Proceedings of the 14th Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT ’05), pp. 99–109, IEEE Computer Society,
Washington, DC, USA, September 2005.

[14] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, “Per-
formance analysis using the MIPS R10000 performance
counters,” in Proceedings of the ACM/IEEE Conference on
Supercomputing, p. 16, IEEE Computer Society, Pittsburgh, Pa,
USA, January 1996.

[15] T. Roirdan, G. P. Grewal, S. Hsu et al., “System design using
the MIPS R3000/3010 RISC chipset,” in Proceedings of the 34th
IEEE Computer Society International Conference on Intellectual
Leverage, Digest of Papers (COMPCON ’89), pp. 494–498, San
Francisco, Calif, USA, 1989.

[16] C. Rowen, M. Johnson, and P. Ries, “The MIPS R3010
floating-point coprocessor,” IEEE Micro, vol. 8, no. 3, pp. 53–
62, 1988.

[17] K. C. Yeager, “The Mips R10000 superscalar microprocessor,”
IEEE Micro, vol. 16, no. 2, pp. 28–40, 1996.

[18] http://blogs.intel.com/research/2007/07/inside the terascale
many core.php.

[19] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys, vol.
34, no. 2, pp. 171–210, 2002.

[20] A. C. Beck and L. Carro, Dynamic Reconfigurable Architectures
and Transparent Optimization Techniques, Springer, New York,
NY, USA, 2009.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological
considerations,” in Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture (ISCA ’95), pp.
24–36, ACM, S. Margherita Ligure, Italy, June 1995.

[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: characterization and architectural implica-
tions,” in Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’08),
pp. 72–81, ACM, Toronto, Canada, October 2008.

[23] A. J. Dorta, C. Rodriguez, F. D. Sande, and A. Gonzalez-
Escribano, “The OpenMP source code repository,” in Proceed-
ings of the 13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP ’05), pp. 244–250, IEEE
Computer Society, Washington, DC, USA, February 2005.

[24] M. Monchiero, J. Ahn, A. Falcón, D. Ortega, and P. Faraboschi,
“How to simulate 1000 cores,” ACM SIGARCH Computer
Architecture, vol. 37, no. 2, pp. 10–19, 2009.



International Journal of Reconfigurable Computing 13

[25] P. S. Magnusson, M. Christensson, J. Eskilson et al., “Simics: a
full system simulation platform,” Computer, vol. 35, no. 2, pp.
12–58, 2002.

[26] M. B. Rutzig, A. C. Beck, and L. Carro, “Dynamically adapted
low power ASIPs,” in Proceedings of the 5th International
Workshop on Reconfigurable Computing: Architectures, Tools
and Applications, J. Becker, R. Woods, P. Athanas, and F.
Morgan, Eds., vol. 5453 of Lecture Notes In Computer Science,
pp. 110–122, Springer, Karlsruhe, Germany, March 2009.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


