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An intuitionistic fuzzy VIKOR (IF-VIKOR) method is proposed based on a new distance measure considering the waver
of intuitionistic fuzzy information. The method aggregates all individual decision-makers’ assessment information based on
intuitionistic fuzzy weighted averaging operator (IFWA), determines the weights of decision-makers and attributes objectively
using intuitionistic fuzzy entropy, calculates the group utility and individual regret by the new distance measure, and then reaches
a compromise solution. It can be effectively applied to multiattribute decision-making (MADM) problems where the weights of
decision-makers and attributes are completely unknown and the attribute values are intuitionistic fuzzy numbers (IFNs). The
validity and stability of this method are verified by example analysis and sensitivity analysis, and its superiority is illustrated by
the comparison with the existing method.

1. Introduction

Multiattribute decision-making (MADM), which has been
increasingly studied and is of concern to researchers and
administrators, is one of themost important parts of decision
theory. It aims to provide a comprehensive solution by
evaluating and ranking alternatives based on conflicting
attributes with respect to decision-makers’ (DMs’) prefer-
ences and has widely been used in engineering, economics,
and management. Several classical MADM methods have
been proposed by researchers in literature, such as the
TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) method [1], the VIKOR (VIseKriterijumska
Optimizacija I Kompromisno Resenje in Serbian, mean-
ing multiattribute optimization and compromise solution)
method [2], the PROMETHEE (Preference Ranking Organi-
zation Method for Enrichment Evaluations) method [3], and
the ELECTRE (Elimination and Choice Translating reality)
method [4]. Among these methods, VIKOR is shown to have
some advantages over others by several researchers. In [5],
Opricovic and Tzeng compared VIKORmethod and TOPSIS

method from the perspective of aggregation function and
found that although both methods calculate the distance
of an alternative to the ideal solution, the former method
provides a compromise solution bymutual concessions, while
the latter method obtains a solution with the farthest distance
from the negative-ideal solution and the shortest distance
from the positive ideal solution without considering the
relative importance degrees of these distances. Furthermore,
Opricovic and Tzeng compared an extension of the VIKOR
method comprehensively with the TOPSIS, ELECTRE, and
PROMETHEEmethod and revealed that the VIKORmethod
is superior in meeting conflicting and noncommensurable
attributes [6]. At present, the VIKORmethod has wide appli-
cation inmany areas, such as design,mechanical engineering,
and manufacturing [7–9], logistics and supply chain man-
agement [10, 11], structural, construction, and transportation
engineering [12, 13], and business management [14].

Since Zadah put forward the concept of fuzzy sets in
1965, fuzzy sets, especially fuzzy numbers (e.g., triangular
fuzzy numbers and trapezoidal fuzzy numbers), have been
widely researched and applied in MADM problems to deal
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with uncertainty in actual decision-making process. Sayadi
et al. extended the concept of VIKOR method to solve
MADMproblems with interval fuzzy numbers [15]. Kaya and
Kahrarnan developed an integrated VIKOR-AHP method
based on triangular fuzzy numbers in forestation district
selection scenario [16]. Ashtiani and Abdollahi Azgomi
constructed a trust modeling based on a combination of
fuzzy analytic hierarchy process and VIKOR method with
triangular fuzzy numbers [17]. Liu et al. applied the VIKOR
method to find a compromise priority ranking of failure
modes according to the risk factors, in which the weights of
attributes and ratings of alternatives are linguistic variables
represented by trapezoidal or triangular fuzzy numbers [18].
Ju and Wang proposed a new method to solve multiattribute
group decision-making (MAGDM) problems based on the
traditional idea of VIKOR method with trapezoidal fuzzy
numbers [19]. However, none of the above-mentioned studies
considered hesitancy. Due to the increasing complexity and
uncertainty of economic environment, decision-makers’ per-
ception of things involves not only affirmation and negation,
but also hesitation. Therefore, hesitation, as one of the most
important pieces of uncertain information, may have great
impact on the final decision and should be considered
in decision-making process. To deal with this, Atanassov
extended traditional fuzzy sets to intuitionistic fuzzy sets
(IFSs) which consider membership, nonmembership, and
degree of hesitancy at the same time. In practical application,
the use of IFSs can depict the fuzziness and nonspecificity
of problems by employing both membership function and
nonmembership function. Therefore, it is considered to be
more effective than classical FSs with merely a member-
ship function. Recently, intuitionistic fuzzy VIKOR (IF-
VIKOR) method becomes a popular research topic because
it aims to deal with the widespread uncertainty in decision-
making process, and some researchers focus on the IF-
VIKOR method to solve MADM problems. For instance,
Devi [20] first extended VIKOR method in intuitionistic
fuzzy environment to deal with robot selection problem, in
which the weights of attributes and ratings of alternatives are
represented by triangular intuitionistic fuzzy sets (TIFSs). Lu
and Tang [21] employed the VIKOR method to evaluate auto
parts supplier based on IFSs. Roostaee et al. extended VIKOR
method for group decision-making to solve the supplier
selection problem under intuitionistic fuzzy environment
[22]. Wan et al. put forward a new VIKOR method for
MADM problem with TIFSs [23], in which the weights of
attributes and DMs are completely unknown. Park et al.
extended VIKOR method for dynamic intuitionistic fuzzy
MADM concerning university faculty evaluation problem
[24]. Based on similarity measure between IFSs, Peng et al.
proposed a novel IF-VIKOR method to deal with multire-
sponse optimization problem, in which the importance of
each response is given by an engineer as IFSs [25]. Hashemi
et al. proposed a new compromise method based on classical
VIKOR model with interval-valued intuitionistic fuzzy sets
(IVIFSs), illustrated by an application in reservoir flood
control operation [26]. Mousavi et al. presented a new group
decision-making method for MADM problems based on IF-
VIKOR, in which the ratings of alternatives concerning each

attribute and the weights of criterions provided by DMs are
represented as linguistic variables, characterized by IFSs with
multijudge [27].

Distance is an important fundamental concept of IFSs
and plays a significant role in VIKOR method. The classical
compromise programing is based on the distance measure
which is determined by the closeness of a specific solution
to the ideal/infeasible solution, maximizing the group utility
andminimizing the individual regret simultaneously [28, 29].
Although some existing methods employ intuitionistic fuzzy
subtraction and division operator to calculate “group utility”
and “individual regret,” the result is in IFSs form and needs
to be further sorted according to IFSs’ ranking rule. To some
extent, the amount of computation is increased, and the
results are not concise as the crisp value obtained by distance
measure. Also, some researchers [30–32] reviewed existing
distance and similarity measures between IFSs and tested
them with an artificial benchmark. The result showed that
many existing distance measures generate counterintuitive
cases and fail to capture waver, the lack of knowledge,
which should have been an advantage of IFSs. On the one
hand, existing distance measures are shown to have some
limitations with hindered effectiveness, while, on the other
hand, the measure choice is crucial to IF-VIKOR method
due to its significant influence on the result. Therefore, this
paper’s objective is to construct a new distance measure,
which can capture IFS information effectively. Based on this,
an IF-VIKOR method is further proposed to solve MADM
problems with completely unknown weights of DMs and
attributes. The main features and novelties of this paper are
as follows:

(1) Different from the VIKOR method based on classical
fuzzy sets, such as interval fuzzy numbers [15], triangular
fuzzy numbers [16–18], and trapezoidal fuzzy numbers [18,
19], the method proposed in this paper is based on IFSs,
which adds a nonmembership on the basis of the traditional
membership and is able to describe support, opposition, and
neutrality in human cognition. Such an extended definition
helps more adequately to represent situations when decision
maker abstains or hesitates from expressing their assess-
ments.

(2) Compared with the method [20, 27] employing
intuitionistic fuzzy operator to calculate “group utility” and
“individual regret,” our method generates crisp value result
in a more intuitive way with less computation. Although
Roostaee et al. [22] extended the VIKOR method to intu-
itionistic fuzzy environment based on hamming distance,
the method sometimes generates counterintuitive cases and
takes no consideration of waver in IFSs. Instead, our method
based on a new distance measure could reflect intuitionistic
fuzzy information effectively. Also, the new distance does not
generate counterintuitive cases in the artificial benchmark
test proposed by [30].

(3) Compared with the VIKORmethod [20, 23, 26] based
on those extensions of IFSs, IFSs possess sound theoretical
foundation such as basic definition and operations, compar-
ison rules, information fusion method, and measures of IFS.
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The proposed IF-VIKORmethod can take advantage of these
theories in construction and verification, which is favorable
to practical application.

(4) Although IFSs have the advantage of being able to
consider waver, most of existing IF-VIKOR methods are
applied to environment with less nonspecificity information
[27, 33]. Through an example of ERP system selection, our
paper illustrates the effectiveness of proposedmethod in such
situation. Moreover, an example of material handling selec-
tion indicates that our method can obtain desired ranking
result, superior in environment with low specificity.

(5) In the MADM problem with intuitionistic fuzzy
numbers (IFNs), subjective randomness exists because the
weights of DMs or attributes are usually given artificially
[22, 27]. To avoid this issue, these weights are determined
objectively using intuitionistic fuzzy entropy in the proposed
method.

(6) Compared with similar methods used for MADM [1,
3, 4], the proposedmethod based on the decision principle of
the classical VIKOR method can maximize the group utility
and minimize the individual regret simultaneously, making
the decision result more reasonable. Also, the coefficient
of decision mechanism can be changed according to actual
requirements to balance group utility and individual regret,
which can increase the flexibility of decision-making.

The remainder of this paper is organized as follows.
Section 2 reviews some basic concepts of IFSs. In Section 3, a
new distancemeasure for IFSs is proposed and a comparative
analysis is conducted. In Section 4, a new distance based IF-
VIKOR method is developed to deal with MADM problem.
In Section 5, two application examples are demonstrated to
highlight the applicability and superiority of proposed IF-
VIKORmethod.The final section summarizes themain work
of this paper with a discussion of implications for future
research.

2. Preliminaries

In this section, we briefly review some basic notions and
theories related to IFSs.

2.1. Intuitionistic Fuzzy Set

Definition 1. An intuitionistic fuzzy set 𝐴 in the universe of
discourse𝑋 is defined as follows [34]:𝐴 = {⟨𝑥, 𝑢𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)
where 𝑢𝐴 : 𝑋 → [0, 1] and V𝐴 : 𝑋 → [0, 1] are
called membership function and nonmembership function
of 𝑥 to 𝐴, respectively. 𝑢𝐴(𝑥) represents the lowest bound
of degree of membership derived from proofs of supporting𝑥 while V𝐴(𝑥) represents the lowest bound of degree of
nonmembership derived from proofs of opposing 𝑥. For any𝑥 ∈ 𝑋, 0 ≤ 𝑢𝐴+V𝐴 ≤ 1.The function𝜋𝐴(𝑥) = 1−𝑢𝐴(𝑥)−V𝐴(𝑥)
is called hesitance index, and 𝜋𝐴(𝑥) ∈ [0, 1] represents the
degree of hesitancy of 𝑥 to 𝐴. Specially, if 𝜋𝐴(𝑥) = 0, where𝑥 ∈ 𝑋 is known absolutely, the intuitionistic fuzzy set 𝐴
degenerates into a fuzzy set.

Definition 2. For convenience of computation, let 𝑎 = (𝑢𝑎, V𝑎)
be an intuitionistic fuzzy number (IFN). Then the score
function of 𝑎 is defined as follows [35]:

𝑠 (𝑎) = (𝑢𝑎 − V𝑎) . (2)

And the accuracy function of 𝑎 is defined as follows [36]:
ℎ (𝑎) = (𝑢𝑎 + V𝑎) . (3)

Let 𝑎1 and 𝑎2 be two IFNs; then Xu and Yager [37]
proposed the following rules for ranking of IFNs:

(1) 𝑠(𝑎1) < 𝑠(𝑎2), then 𝑎1 is smaller than 𝑎2, denoted by𝑎1 < 𝑎2;
(2) 𝑠(𝑎1) > 𝑠(𝑎2), then 𝑎2 is smaller than 𝑎1, denoted by𝑎1 > 𝑎2;
(3) 𝑠(𝑎1) = 𝑠(𝑎2), then

(i) ℎ(𝑎1) = ℎ(𝑎2), then 𝑎1 is equal to 𝑎2, denoted by𝑎1 = 𝑎2;
(ii) ℎ(𝑎1) < ℎ(𝑎2), then 𝑎1 is smaller than 𝑎2,

denoted by 𝑎1 < 𝑎2;
(iii) ℎ(𝑎1) > ℎ(𝑎2), then 𝑎2 is smaller than 𝑎1,

denoted by 𝑎1 > 𝑎2.
Definition 3. Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be the set of IFNs, where𝑎𝑖 = (𝑢𝑎𝑖 , V𝑎𝑖). The intuitionistic fuzzy weighted averaging
(IFWA) operator can be defined as follows [33]:

IFWA𝑤 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑤1𝑎1 ⊕ 𝑤2𝑎2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑤𝑛𝑎𝑛
= (1 − 𝑛∏

𝑖=1

(1 − 𝑢𝑎𝑖)𝑤𝑖 , 𝑛∏
𝑖=1

V𝑎𝑖
𝑤𝑖) , (4)

where 𝑤𝑖 is the weight of 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛), 𝑤𝑖 ∈ [0, 1], and∑𝑛𝑖=1 𝑤𝑖 = 1.
Definition 4. Let 𝐴 be an intuitionistic fuzzy set in the
universe of discourse 𝑋. Intuitionistic fuzzy entropy is given
as follows [38]:

𝐸 (𝐴) = 1𝑛
𝑛∑
𝑖=1

min (𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥)) + 𝜋𝐴 (𝑥)
max (𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥)) + 𝜋𝐴 (𝑥) . (5)

2.2. Distance Measure between IFSs

Definition 5. For any𝐴, 𝐵, 𝐶 ∈ IFSs(𝑋), let𝑑 be amapping𝑑 :
IFSs(𝑋) × IFSs(𝑋) → [0, 1]. If 𝑑(𝐴, 𝐵) satisfies the following
properties [39]:

(DP1) 0 ≤ 𝑑(𝐴, 𝐵) ≤ 1;
(DP2) 𝑑(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵;
(DP3) 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴);
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(DP4) if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑑(𝐵, 𝐶) ≤ 𝑑(𝐴, 𝐶) and 𝑑(𝐴, 𝐵) ≤𝑑(𝐴, 𝐶),
then 𝑑(𝐴, 𝐵) is a distance measure between IFSs 𝐴 and 𝐵.

Let 𝑋 be the universe of discourse, where 𝑋 = {𝑥1, 𝑥2,. . . , 𝑥𝑛}, and let 𝐴 and 𝐵 be two IFSs in the universe of
discourse 𝑋, where 𝐴 = {⟨𝑥𝑖, 𝑢𝐴(𝑥𝑖), V𝐴(𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑋}

and 𝐵 = {⟨𝑥𝑖, 𝑢𝐵(𝑥𝑖), V𝐵(𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑋}. Several widely used
distance measures are reviewed as follows.

In [40], Szmidt and Kacprzyk proposed four distances
between IFSs using the well-known hamming distance,
Euclidean distance, and their normalized counterparts as
follows:

𝑑𝐻 (𝐴, 𝐵) = 12
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨] ,
𝑑𝑛𝐻 (𝐴, 𝐵) = 12𝑛

𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨] ,
𝑑𝐸 (𝐴, 𝐵) = √ 12

𝑛∑
𝑖=1

[(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))2 + (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))2 + (𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖))2],
𝑑𝑛𝐸 (𝐴, 𝐵) = √ 12𝑛

𝑛∑
𝑖=1

[(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))2 + (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))2 + (𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖))2].

(6)

Wang and Xin [39] pointed out that Szmidt and
Kacprzyk’s distancemeasures [40] have some good geometric
properties, but there are some limitations in the application.
Therefore, they proposed several new distances as follows.

𝑑1 (𝐴, 𝐵) = 1𝑛
⋅ 𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨4
+ max (󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨)2 ] ,

𝑑𝑃2 (𝐴, 𝐵) = 1𝑝√𝑛
⋅ 𝑝√ 𝑛∑
𝑖=1

(󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )𝑝.

(7)

On the basis of the Hausdorff metric, Grzegorzewski
[41] put forward some approaches for computing distances

between IFSs, and these suggested distances are also gener-
alizations of the well-known hamming distance, Euclidean
distance, and their normalized counterparts.

𝑑ℎ (𝐴, 𝐵)
= 𝑛∑
𝑖=1

max {󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨} ,
𝑙ℎ (𝐴, 𝐵)
= 1𝑛
𝑛∑
𝑖=1

max {󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨} ,
𝑒ℎ (𝐴, 𝐵)
= √ 𝑛∑
𝑖=1

max {(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))2 , (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))2},
𝑞ℎ (𝐴, 𝐵)
= √ 1𝑛

𝑛∑
𝑖=1

max {(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))2 , (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))2}.

(8)

Yang and Chiclana [42] suggested that the 3D interpreta-
tion of IFSs could provide different contradistinction results
to the ones obtained with their 2D counterparts [41] and
introduced several extended 3D Hausdorff based distances.

𝑑𝑒ℎ (𝐴, 𝐵) = 𝑛∑
𝑖=1

max {󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨} ,
𝑙𝑒ℎ (𝐴, 𝐵) = 1𝑛

𝑛∑
𝑖=1

max {󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨} ,
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𝑒𝑒ℎ (𝐴, 𝐵) = √ 𝑛∑
𝑖=1

max {(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))2 , (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))2 , (𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖))2},

𝑞𝑒ℎ (𝐴, 𝐵) = √ 1𝑛
𝑛∑
𝑖=1

max {(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖))2 , (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))2 , (𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖))2}.
(9)

3. New Distance Measure between IFSs

3.1. Analysis on Existing Distance Measures between IFSs.
Although various types of distance measures between IFSs
were proposed over the past several years and most of them
satisfies the distance axioms (Definition 5), some unreason-
able cases can still be found [31, 32]. For example, consider
three single-element IFSs 𝐴 = (𝑥, 0.4, 0.2), 𝐵 = (𝑥, 0.5, 0.3),
and 𝐶 = (𝑥, 0.5, 0.2). In this case, the distance between𝐴 and𝐵 calculated by some existing measures (e.g., 𝑑𝑛𝐻, 𝑑𝑛𝐸, 𝑙ℎ, 𝑙𝑒ℎ,𝑑1,𝑑𝑃2 ) is equal to or greater than that between𝐴 and𝐶, which
does not seem to be reasonable since IFSs A, B, and C are
ordered as 𝐶 > 𝐵 > 𝐴 according to the score function and
accuracy function given in Definition 2, indicating that the
distance between𝐴 and 𝐵 is smaller than that between𝐴 and𝐶. For one reason, different distance measures have different
focus, which may be suitable for different applications. For
another, this could mean the definition of distance measures
is too weak. Specifically, the definitionmay bemore complete
and reasonable if it has considered the following two aspects.
First, Definition 5 just provides the value constraints when𝑑(𝐴, 𝐵) = 0, and the other endpoint 𝑑(𝐴, 𝐵) = 1 has not
been discussed. Second, the distance measure between IFSs
could be better convinced if it satisfies the requirement of the
triangle inequality.

Another point worth noting is that there are two facets of
uncertainty of intuitionistic fuzzy information, one of which
is related to fuzziness while the other is related to lack of
knowledge or nonspecificity [43]. First, IFSs are an extension
of FSs and hence are associated with fuzziness.This fuzziness
is the first kind of uncertainty that mainly reflects two types
of distinct and specific information: degree of membership
and degree of nonmembership. In IFSs there exists another
kind of uncertainty that can be called lack of knowledge
or nonspecificity and might also be called waver [30]. This
kind of uncertainty reflects a type of nonspecific information:
degree of hesitancy, indicating how much we do not know
about membership and nonmembership. These two kinds of
uncertainty are obviously different, the degree of hesitancy
with its own uncertainty because it represents a state of “both
this and that.” However, most of the existing distance mea-
sures only consider the differences between numerical values
of the IFS parameters and ignore the waver of intuitionistic
fuzzy information. As an illustration, consider two patterns
represented by IFSs 𝐴 = (𝑥, 0.1, 0.2) and 𝐵 = (𝑥, 0.1, 0.2), in
which both hesitance indexes of 𝐴 and 𝐵 are equal to 0.7. In
this case, the distance between IFSs 𝐴 and 𝐵 calculated by all
aforementioned measures is equal to zero, denoting that the
two patterns are the same. This is true from the perspective

of numerical value because the three parameters of IFSs 𝐴
and 𝐵 have the same value. However, from the perspective
of intuitionistic fuzzy information, the conclusion drawn is
unreasonable. The hesitance index 𝜋(𝑥) = 1 − 𝑢(𝑥) − V(𝑥)
in both IFSs A and B is equal to 0.7, but it just means that in
IFSs A and B the proportion of lack of knowledge is 0.7, and
it cannot represent that the patterns 𝐴 and 𝐵 are the same.
In other words, since we have a lack of knowledge, we should
not draw the conclusion that the two patterns are the same.

As a powerful tool in modeling uncertain information,
IFSs have the advantage of being able to consider waver
mainly because the hesitant index can be used to describe a
neutrality state of “both this and that.” Moreover, it should
be noted that the ultimate goal of distance measure is to
measure the difference of information carried by IFSs, rather
than the numerical value of IFSs themselves. Therefore, in
our view the distance measure should take into account
the characteristics of intuitionistic fuzzy information, both
fuzziness and nonspecificity, and have its own target.

3.2. Intuitive Distance for IFSs. Inspired by the characteristics
of intuitionistic fuzzy information, we introduce a notion
called intuitive distance to compare the information between
two IFSs and compute the degree of difference, and the
axiomatic definition of intuitive distance is as follows.

Definition 6. For any𝐴, 𝐵, 𝐶,𝐷 ∈ IFSs(𝑋), let𝑑 be amapping𝑑 : IFSs(𝑋) × IFSs(𝑋) → [0, 1]. 𝑑(𝐴, 𝐵) is said to be an
intuitive distance between 𝐴 and 𝐵 if 𝑑(𝐴, 𝐵) satisfies the
following properties:

(P1) 0 ≤ 𝑑(𝐴, 𝐵) ≤ 1;
(P2) 𝑑(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵 and 𝜋𝐴(𝑥) = 𝜋𝐵(𝑥) =0;
(P3) 𝑑(𝐴, 𝐵) = 1 if and only if both A and B are crisp sets

and 𝐴 = 𝐵𝐶;
(P4) 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴);
(P5) 𝑑(𝐴, 𝐶) ≤ 𝑑(𝐴, 𝐵)+𝑑(𝐵, 𝐶) for any𝐴, 𝐵, 𝐶 ∈ IFSs(𝑋);
(P6) if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝑑(𝐵, 𝐶) ≤ 𝑑(𝐴, 𝐶) and 𝑑(𝐴, 𝐵) ≤𝑑(𝐴, 𝐶);
(P7) if 𝐴 = 𝐵 and 𝐶 = 𝐷, then

(i) 𝑑(𝐴, 𝐵) > 𝑑(𝐶,𝐷) when 𝜋𝐴(𝑥) + 𝜋𝐵(𝑥) >𝜋𝐶(𝑥) + 𝜋𝐷(𝑥);
(ii) 𝑑(𝐴, 𝐵) < 𝑑(𝐶,𝐷) when 𝜋𝐴(𝑥) + 𝜋𝐵(𝑥) <𝜋𝐶(𝑥) + 𝜋𝐷(𝑥);



6 Mathematical Problems in Engineering

(iii) 𝑑(𝐴, 𝐵) = 𝑑(𝐶,𝐷) when 𝜋𝐴(𝑥) + 𝜋𝐵(𝑥) =𝜋𝐶(𝑥) + 𝜋𝐷(𝑥).
The above definition is a development for Definition 5.

On the one hand, some properties are introduced to make
the definition stronger: (P3) is a more precise condition for
the endpoint of distance 𝑑(𝐴, 𝐵) = 1; (P5) is a new strong
property condition, which requires distance to meet triangle
inequality. On the other hand, the definition highlights
the characteristics of intuitionistic fuzzy information by

reinforcing the existing property condition (P2), as well as
adding a new property condition (P7). The intuitive distance
not only meets the most general properties of traditional
distance, but also satisfies a special property: as long as the
hesitant index is not zero, even if two IFSs are equal in value,
the distance between them is not zero. And the higher the
hesitant index, the greater the distance.

Then, we propose a new distance measure. Let 𝐴 =⟨𝑥, 𝑢𝐴(𝑥), V𝐴(𝑥)⟩, 𝐵 = ⟨𝑥, 𝑢𝐵(𝑥), V𝐵(𝑥)⟩ be two IFSs in the
universe of discourse𝑋, and denote𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}.

𝑑𝐿 (𝐴, 𝐵) = 13𝑛
𝑛∑
𝑖=1

[𝜃1 (𝑥𝑖) + 𝜃2 (𝑥𝑖) + 𝜃3 (𝑥𝑖)] ,
𝜃1 (𝑥𝑖) = 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) + 1 − V𝐴 (𝑥𝑖)) − (𝑢𝐵 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖))󵄨󵄨󵄨󵄨2 ,
𝜃2 (𝑥𝑖) = 𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)2 ,
𝜃3 (𝑥𝑖) = max(󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨2 ) .

(10)

The structure of 𝑑𝐿(𝐴, 𝐵) is mainly related to two
aspects. One is to take the differences of IFS parameters
into account, which is similar to the traditional distance. It
includes differences betweenmemberships𝑢𝐴(𝑥𝑖) and𝑢𝐵(𝑥𝑖),
nonmemberships V𝐴(𝑥𝑖) and V𝐵(𝑥𝑖), hesitance indexes 𝜋𝐴(𝑥𝑖)
and 𝜋𝐵(𝑥𝑖), and the differences between median values of
intervals (𝑢𝐴(𝑥𝑖)+1−V𝐴(𝑥𝑖))/2 and (𝑢𝐵(𝑥𝑖)+1−V𝐵(𝑥𝑖))/2.The
second is to satisfy the new requirements of intuitive distance,
taking the degree of hesitancy into account. 𝜃2(𝑥𝑖) aims to
reflect the waver of uncertain information. The higher the
degree of nonspecificity of intuitionistic fuzzy information,
the greater the possibility of existing differences between
them. Then, we have the following theorem.

Theorem 7. 𝑑𝐿(𝐴, 𝐵) is an intuitive distance between IFSs 𝐴
and 𝐵 in the universe of discourse𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}.
Proof. It is easy to see that 𝑑𝐿(𝐴, 𝐵) satisfies (P4) and (P7) of
Definition 6. Therefore, we shall prove that 𝑑𝐿(𝐴, 𝐵) satisfies
(P1), (P2), (P3), (P5), and (P6).

(P1) Let 𝐴 and 𝐵 be two IFSs; we can write the relational
expression as follows:

0 ≤ 𝜃1 (𝑥𝑖) + 𝜃2 (𝑥𝑖) = (󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) + 1 − V𝐴 (𝑥𝑖)) − (𝑢𝐵 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖))󵄨󵄨󵄨󵄨
+ 𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)) × (2)−1 = (󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)) − (V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))󵄨󵄨󵄨󵄨 + 2

− 𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖) − V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)) × (2)−1
≤ (󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 2
− 𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖) − V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)) × (2)−1
= (2 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 − (𝑢𝐴 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖))
+ 2 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 − (V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖)) + 2)
× (2)−1 ≤ (2 (𝑢𝐴 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖))
− (𝑢𝐴 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖)) + 2 (V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖))
− (V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖)) + 2) × (2)−1
= 𝑢𝐴 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖) + V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖) + 22
= (𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖)) + (𝑢𝐵 (𝑥𝑖) + V𝐵 (𝑥𝑖)) + 22
≤ 1 + 1 + 22 = 2.

(11)

It is known that

0 ≤ 𝜃3 (𝑥𝑖) = max(󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨2 ) ≤ 1.

(12)
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Taking (11) and (12) into account, it is not difficult to find that

0 ≤ 𝜃1 (𝑥𝑖) + 𝜃2 (𝑥𝑖) + 𝜃3 (𝑥𝑖) ≤ 3. (13)

And therefore we have

0 ≤ 𝑑𝐿 (𝐴, 𝐵) = 13𝑛
𝑛∑
𝑖=1

[𝜃1 (𝑥𝑖) + 𝜃2 (𝑥𝑖) + 𝜃3 (𝑥𝑖)]
≤ 33 = 1.

(14)

(P2) Let 𝐴 and 𝐵 be two IFSs; the following relational
expression can be written:

𝑑𝐿 (𝐴, 𝐵) = 0⇕
𝑢𝐴 (𝑥𝑖) = 𝑢𝐵 (𝑥𝑖) ,
V𝐴 (𝑥𝑖) = V𝐵 (𝑥𝑖) ,

𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖) = 0⇕
𝐴 (𝑥) = 𝐵 (𝑥) ,
𝜋𝐴 (𝑥) = 𝜋𝐵 (𝑥) = 0.

(15)

Thus, 𝑑𝐿(𝐴, 𝐵) satisfies (P2) of Definition 6.

(P3) Let 𝐴 and 𝐵 be two IFSs. Taking (11) and (12) into
account, the following relational expressions can be
written:

𝑑𝐿 (𝐴, 𝐵) = 1⇕
𝜃1 (𝑥𝑖) + 𝜃2 (𝑥𝑖) = 2,𝜃3 (𝑥𝑖) = 1⇕
𝑢𝐴 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖) + V𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖) + 22 = 2,
max(󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨2 ) = 1

⇕
𝐴 (𝑥) = (1, 0, 0) ,𝐵 (𝑥) = (0, 1, 0)
or 𝐴 (𝑥) = (0, 1, 0) ,
𝐵 (𝑥) = (1, 0, 0) .

(16)

Thus, 𝑑𝐿(𝐴, 𝐵) satisfies (P3) of Definition 6.

(P5) Let 𝐴, 𝐵, and 𝐶 be three IFSs; the distances between
A and B, B and C, and A and C are the following:

𝑑𝐿 (𝐴, 𝐵) = 13𝑛
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) + 1 − V𝐴 (𝑥𝑖)) − (𝑢𝐵 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖))󵄨󵄨󵄨󵄨2
+ 𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)2 +max(󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] ,

𝑑𝐿 (𝐵, 𝐶) = 13𝑛
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑢𝐵 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐵 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(𝑢𝐵 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖)) − (𝑢𝐶 (𝑥𝑖) + 1 − V𝐶 (𝑥𝑖))󵄨󵄨󵄨󵄨2
+ 𝜋𝐵 (𝑥𝑖) + 𝜋𝐶 (𝑥𝑖)2 +max(󵄨󵄨󵄨󵄨𝑢𝐵 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐵 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐵 (𝑥𝑖) − 𝜋𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] ,

𝑑𝐿 (𝐴, 𝐶) = 13𝑛
⋅ 𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) + 1 − V𝐴 (𝑥𝑖)) − (𝑢𝐶 (𝑥𝑖) + 1 − V𝐶 (𝑥𝑖))󵄨󵄨󵄨󵄨 + 𝜋𝐴 (𝑥𝑖) + 𝜋𝐶 (𝑥𝑖)2
+max(󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] .

(17)
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It is obvious that

󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝐵 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖)
− 𝑢𝐵 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝐵 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖)
− V𝐵 (𝑥𝑖) + V𝐵 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) + 1 − V𝐴 (𝑥𝑖)) − (𝑢𝐵 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖))󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨(𝑢𝐵 (𝑥𝑖) + 1 − V𝐵 (𝑥𝑖))
− (𝑢𝐶 (𝑥𝑖) + 1 − V𝐶 (𝑥𝑖))󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖)
− 𝑢𝐵 (𝑥𝑖) − V𝐴 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝐵 (𝑥𝑖) + V𝐶 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)
− V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖) − V𝐴 (𝑥𝑖)+ 𝑢𝐵 (𝑥𝑖) + V𝐶 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖) − V𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑢𝐴 (𝑥𝑖)

− V𝐴 (𝑥𝑖) + V𝐶 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨(𝑢𝐴 (𝑥𝑖) + 1 − V𝐴 (𝑥𝑖))
− (𝑢𝐶 (𝑥𝑖) + 1 − V𝐶 (𝑥𝑖))󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜋𝐵 (𝑥𝑖) − 𝜋𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖)
− 𝜋𝐵 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖) − 𝜋𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖)
− 𝜋𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨 ,

𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖) + 𝜋𝐶 (𝑥𝑖)2 ≥ 𝜋𝐴 + 𝜋𝐶2 .
(18)

Therefore, we have 𝑑𝐿(𝐴, 𝐵) + 𝑑𝐿(𝐵, 𝐶) ≥ 𝑑𝐿(𝐴, 𝐶).
(P6) Let 𝐴, 𝐵, and 𝐶 be three IFSs; if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

we have 𝑢𝐴(𝑥𝑖) ≤ 𝑢𝐵(𝑥𝑖) ≤ 𝑢𝐶(𝑥𝑖), V𝐴(𝑥𝑖) ≥ V𝐵(𝑥𝑖) ≥
V𝐶(𝑥𝑖). The following equations are given out:

𝑑𝐿 (𝐴, 𝐵) = 13𝑛
𝑛∑
𝑖=1

[𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) + 𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖)2
+max(𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐵 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] = 13𝑛
⋅ 𝑛∑
𝑖=1

[𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) + 𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) + 2 − 𝑢𝐴 (𝑥𝑖) − 𝑢𝐵 (𝑥𝑖) − V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖)2
+max(𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) , 󵄨󵄨󵄨󵄨𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐵 (𝑥𝑖) − V𝐴 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] = 13𝑛
⋅ 𝑛∑
𝑖=1

[𝑢𝐵 (𝑥𝑖) − 3𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − 3V𝐵 (𝑥𝑖)2 +max (𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖))] ,
𝑑𝐿 (𝐴, 𝐶) = 13𝑛

𝑛∑
𝑖=1

[𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) + 𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) + 𝜋𝐴 (𝑥𝑖) + 𝜋𝐶 (𝑥𝑖)2
+max(𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) , 󵄨󵄨󵄨󵄨𝜋𝐴 (𝑥𝑖) − 𝜋𝐶 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] = 13𝑛
⋅ 𝑛∑
𝑖=1

[𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) + 𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) + 2 − 𝑢𝐴 (𝑥𝑖) − 𝑢𝐶 (𝑥𝑖) − V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖)2
+max(𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) , 󵄨󵄨󵄨󵄨𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) + V𝐶 (𝑥𝑖) − V𝐴 (𝑥𝑖)󵄨󵄨󵄨󵄨2 )] = 13𝑛
⋅ 𝑛∑
𝑖=1

[𝑢𝐶 (𝑥𝑖) − 3𝑢𝐴 (𝑥𝑖) + V𝐴 (𝑥𝑖) − 3V𝐶 (𝑥𝑖)2 +max (𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) , V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖))] .

(19)

We know that𝑢𝐶 (𝑥𝑖) − 3V𝐶 (𝑥𝑖) ≥ 𝑢𝐵 (𝑥𝑖) − 3V𝐵 (𝑥𝑖) ,𝑢𝐶 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) ≥ 𝑢𝐵 (𝑥𝑖) − 𝑢𝐴 (𝑥𝑖) ,
V𝐴 (𝑥𝑖) − V𝐶 (𝑥𝑖) ≥ V𝐴 (𝑥𝑖) − V𝐵 (𝑥𝑖) .

(20)

It means that

𝑑𝐿 (𝐴, 𝐵) ≤ 𝑑𝐿 (𝐴, 𝐶) . (21)

Similarly, it is easy to prove that

𝑑𝐿 (𝐵, 𝐶) ≤ 𝑑𝐿 (𝐴, 𝐶) . (22)

Thus, 𝑑𝐿(𝐴, 𝐵) satisfies (P6) of Definition 6.
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Table 1: Test intuitionistic fuzzy sets (IFSs).

Test IFSs
1 2 3 4 5 6 7𝐴 = (𝑢𝐴, V𝐴) (1, 0) (0, 0) (0.4, 0.2) (0.3, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.2)𝐵 = (𝑢𝐵, V𝐵) (0, 0) (0.5, 0.5) (0.5, 0.3) (0.4, 0.4) (0.4, 0.3) (0.1, 0.2) (0.5, 0.2)

Table 2: The comparison of distance measures (counterintuitive cases are in bold italic type).

Test IFSs
1 2 3 4 5 6 7𝑑𝐿(𝐴, 𝐵) 0.8333 0.5000 0.1667 0.1667 0.2000 0.2333 0.1833𝑑𝑛𝐻(𝐴, 𝐵) 1.0000 1.0000 0.2000 0.2000 0.1000 0 0.1000𝑑𝑛𝐸(𝐴, 𝐵) 1.0000 0.8660 0.1732 0.1732 0.1000 0 0.1000𝑙ℎ(𝐴, 𝐵) 1.0000 0.5000 0.1000 0.1000 0.1000 0 0.1000𝑙𝑒ℎ(𝐴, 𝐵) 1.0000 1.0000 0.2000 0.2000 0.1000 0 0.1000𝑑1(𝐴, 𝐵) 0.7500 0.5000 0.1000 0.1000 0.1000 0 0.0750𝑑𝑃2 (𝐴, 𝐵), 𝑝 = 1 0.5000 0.5000 0.1000 0.1000 0.1000 0 0.0500

That is to say, 𝑑𝐿(𝐴, 𝐵) is an intuitive distance between
IFSs 𝐴 and 𝐵 since it satisfies (P1)–(P7).
3.3. A Comparison of Distance Measures for IFSs Based on
an Artificial Benchmark. When a new distance measure is
proposed, it is always accompanied with explanations of
overcoming counterintuitive cases of other methods and
these cases are usually illustrated by single-element IFSs. In
[30], Li et al. summarized counterintuitive cases proposed by
previous literature and constituted an artificial benchmark
with six different pairs of single-element IFSs, which has
been widely used in the test of distance and similarity
measures [31, 44–49]. Although these cases cannot represent
all counterintuitive situations, they are typical and represen-
tative. In [31], Papakostas et al. suggested that any proposed
measures should be tested by the artificial benchmark to
avoid counterintuitive cases. To illustrate the effectiveness of
the proposed distancemeasure, all the test IFSs of the artificial
benchmark are applied to compare the proposed distance
measure to the widely used distance measures. In addition,
in order to reflect the characteristics of intuitionistic fuzzy
information, a new pair of single-element IFSs as illustrated
in Section 3.1 is added to the artificial benchmark test set.
Table 1 shows the test IFSs of extended artificial benchmark.

Table 2 provides a comprehensive comparison of the
distance measures for IFSs with counterintuitive cases. It is
apparent that the property condition (P3) is not met by 𝑑𝑛𝐻,𝑑𝑛𝐸, 𝑙ℎ, 𝑙𝑒ℎ, because the distances calculated by thesemeasures
are equal to 1 when {𝐴 = (𝑥, 1, 0), 𝐵 = (𝑥, 0, 0)}. Similarly,
the property condition (P3) is also not satisfied by 𝑑𝑛𝐻, 𝑙𝑒ℎ
when {𝐴 = (𝑥, 0, 0), 𝐵 = (𝑥, 0.5, 0.5)}. The distance measures𝑑𝑛𝐻, 𝑙𝑒ℎ, and 𝑑𝑃2 , 𝑝 = 1, indicate that the distances of the
1st test IFSs and the 2nd test IFSs are identical, which does
not seem to be reasonable. Distance measures 𝑙ℎ, 𝑑1, and𝑑𝑃2 , 𝑝 = 1, claim that the distances of the 4th test IFSs and
the 5th test IFSs show the same value of 0.1, which indicates
that there are not sufficient abilities to distinguish positive
difference from negative difference. The distance of 3rd test

IFSs is equal to or greater than the distance of the 7th test
IFSs when 𝑑𝑛𝐻, 𝑑𝑛𝐸, 𝑙ℎ, 𝑙𝑒ℎ, 𝑑1, and 𝑑𝑃2 , 𝑝 = 1, are used,
which does not seem to be reasonable since IFSs A, B, and
C are ordered as 𝐶 > 𝐵 > 𝐴 according to the score function
and accuracy function given in Definition 2, indicating that
the distance between 𝐴 and 𝐵 is smaller than that between 𝐴
and 𝐶. Furthermore, all of these existing distances claim that
the distance of the 6th test IFSs is equal to zero, which does
not seem to be reasonable. As a mathematical tool, IFSs can
describe the uncertain information greatly, because it adds a
hesitant index to describe the state of “both this and that.” In
this case, we indeed cannot confirm that there is no difference
between the information carried by IFSs 𝐴 and 𝐵, because
the hesitance index includes some nonspecificity information
and the proportion of support and opposition is not sure.

Based on analysis in Table 2, it is deduced that the existing
distance measures with their own measuring focus can meet
all or most of properties condition of distance measure
between IFSs; however, most distance measures show coun-
terintuitive cases and may fail to distinguish IFSs accurately
in some practical applications. Besides, the proposed distance
measure is the only one that has no aforementioned coun-
terintuitive cases as illustrated in Table 2. Furthermore, the
proposed distance conforms to all the property requirements
of the intuitive distance and the potential difference brought
by hesitance index is considered.

4. IF-VIKOR Method for MADM

On the basis of new distance measure, this section present
stepwise algorithm for proposed IF-VIKOR method.

For a MADM problem with 𝑛 alternatives 𝐴 𝑖 (𝑖 =1, 2, . . . , 𝑚), the performance of the alternative𝐴 𝑖 concerning
the attribute𝐶𝑗 (𝑗 = 1, 2, . . . , 𝑛) is assessed by a decision orga-
nization with several decision-makers 𝐷𝑞 (𝑞 = 1, 2, . . . , 𝑙).
The corresponding weights of attributes are denoted by𝑤𝑗 (𝑗 = 1, 2, . . . , 𝑛), 0 ≤ 𝑤𝑗 ≤ 1,∑𝑛𝑗=1 𝑤𝑗 = 1, and the weights
of DMs are denoted by 𝜆𝑞 (𝑞 = 1, 2, . . . , 𝑙), 0 ≤ 𝜆𝑞 ≤ 1,
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∑𝑙𝑞=1 𝜆𝑞 = 1. Inspired by the classical VIKOR method and
its extensions, the intuitive distance based VIKOR method
can be given for MADM problem with intuitionistic fuzzy
information; it includes seven steps.

Step 1. Generate assessment information. Assume that DMs𝐷𝑞 (𝑞 = 1, 2, . . . , 𝑙) provide their opinion of the alternatives𝐴 𝑖 concerning each attribute 𝐶𝑗 by using IFNs 𝑥𝑞𝑖𝑗 =(𝑢𝑞𝑖𝑗, V𝑞𝑖𝑗, 𝜋𝑞𝑖𝑗) or linguistic values represented by IFNs.Then, the
assessments given by𝐷𝑞 can be expressed as

𝐷(𝑞) =
[[[[[[[[[

𝑥(𝑞)11 𝑥(𝑞)12 ⋅ ⋅ ⋅ 𝑥(𝑞)1𝑛𝑥(𝑞)21 𝑥(𝑞)22 ⋅ ⋅ ⋅ 𝑥(𝑞)2𝑛... ... d
...

𝑥(𝑞)𝑚1 𝑥(𝑞)𝑚2 ⋅ ⋅ ⋅ 𝑥(𝑞)𝑚𝑛

]]]]]]]]]
. (23)

Step 2. Acquire the weights of DMs. According to the degree
of fuzziness and nonspecificity of assessments provided by
DMs, in this step, DM weight 𝜆𝑞 (𝑞 = 1, 2, . . . , 𝑙) can be
acquired by intuitionistic fuzzy entropy measure objectively.
The lower the degree of fuzziness and nonspecificity is, the
smaller the entropy is and the bigger the weight of DM is,
and vice versa. By using (5), the intuitionistic fuzzy entropy
of assessments provided by𝐷𝑞 can be obtained as follows:

𝐸𝑞 = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

min (𝑢(𝑞)𝑖𝑗 , V(𝑞)𝑖𝑗 ) + 𝜋(𝑞)𝑖𝑗
max (𝑢(𝑞)𝑖𝑗 , V(𝑞)𝑖𝑗 ) + 𝜋(𝑞)𝑖𝑗 . (24)

Then, the weight of DM𝐷𝑞 can be defined as follows:

𝜆𝑞 = 1 − 𝐸𝑞𝑙 − ∑𝑙𝑞=1 𝐸𝑞 , (25)

where 𝑙 is the number of DMs.

Step 3. Establish the aggregated intuitionistic fuzzy decision
matrix. By using (4), all individual decisionmatrixes𝐷(𝑞) can
be converted into an aggregated decision matrix as follows:

𝐷 = [[[[[[[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑛𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑛... ... d
...𝑥𝑚1 𝑥𝑚2 ⋅ ⋅ ⋅ 𝑥𝑚𝑛

]]]]]]]
, (26)

where 𝑥𝑖𝑗 = (𝑢𝑖𝑗, V𝑖𝑗, 𝜋𝑖𝑗), 𝑢𝑖𝑗 = 1 − ∏𝑙𝑞=1(1 − 𝑢𝑞𝑖𝑗)𝜆𝑞 , V𝑖𝑗 =∏𝑙𝑞=1(V𝑞𝑖𝑗)𝜆𝑞 , 𝜋𝑖𝑗 = 1 − 𝑢𝑖𝑗 − V𝑖𝑗.
Step 4. Acquire the weights of attributes. Similar to Step 2,
the unknown weight of attribute 𝑤𝑗 (𝑗 = 1, 2, . . . , 𝑛) can
be determined by entropy measure to effectively reduce the
subjective randomness. By using (5), we can obtain the
entropy with respect to 𝐶𝑗:

𝐸𝑗 = 1𝑚
𝑚∑
𝑖=1

min (𝑢𝑖𝑗, V𝑖𝑗) + 𝜋𝑖𝑗
max (𝑢𝑖𝑗, V𝑖𝑗) + 𝜋𝑖𝑗 . (27)

Then, the weight of attribute𝐶𝑗 can be defined as follows:
𝑤𝑗 = 1 − 𝐸𝑗𝑛 − ∑𝑛𝑗=1 𝐸𝑗 , (28)

where 𝑛 is the number of attributes.

Step 5. Find the best and worst value. The best value 𝑥+𝑗 and
the worst value 𝑥−𝑗 for each attribute 𝐶𝑗 can be defined as
follows:

𝑥+𝑗 = {{{
max
𝑖=1,2,...,𝑚

𝑥𝑖𝑗, for benefit attribute 𝐶𝑗
min
𝑖=1,2,...,𝑚

𝑥𝑖𝑗, for cos t attribute 𝐶𝑗,
(𝑗 = 1, 2, . . . , 𝑛) .

𝑥−𝑗 = {{{
min
𝑖=1,2,...,𝑚

𝑥𝑖𝑗, for benefit attribute 𝐶𝑗
max
𝑖=1,2,...,𝑚

𝑥𝑖𝑗, for cos t attribute 𝐶𝑗,
(𝑗 = 1, 2, . . . , 𝑛)

(29)

Step 6. Compute the values 𝑆𝑖, 𝑅𝑖, and𝑄𝑖. Three key values of
IF-VIKOR method, the group utility value 𝑆𝑖, the individual
regret value 𝑅𝑖, and the compromise value 𝑄𝑖, are computed
in light of the intuitive distance measure for each alternative:

𝑆𝑖 = 𝑛∑
𝑗=1

𝑤𝑗(𝑑(𝑥+𝑗 , 𝑥𝑖𝑗)𝑑 (𝑥+𝑗 , 𝑥−𝑗 )) ,
𝑅𝑖 = max

𝑗
𝑤𝑗(𝑑(𝑥+𝑗 , 𝑥𝑖𝑗)𝑑 (𝑥+𝑗 , 𝑥−𝑗 )) ,

𝑄𝑖 = 𝛾( 𝑆𝑖 − 𝑆∗𝑆− − 𝑆∗) + (1 − 𝛾) ( 𝑅𝑖 − 𝑅
∗

𝑅− − 𝑅∗) ,
(30)

where 𝑆− = max𝑖 𝑆𝑖, 𝑆∗ = min𝑖 𝑆𝑖, 𝑅− = max𝑖 𝑅𝑖, 𝑅∗ =
min𝑖 𝑅𝑖. 𝛾 is the coefficient of decision mechanism. The
compromise solution can be elected by majority (𝛾 > 0.5),
consensus (𝛾 = 0.5), or veto (𝛾 < 0.5).
Step 7. Rank the alternatives and derive the compromise solu-
tion. Sort 𝑆𝑖, 𝑅𝑖, and𝑄𝑖 in ascending order and generate three
ranking lists 𝑆[⋅], 𝑅[⋅], and 𝑄[⋅]. Then, the alternative 𝐴(1) that
ranks the best in 𝑄[⋅] (minimum value) and fulfills following
two conditions simultaneously would be the compromise
solution.

Condition 1 (acceptable advantage). One has

𝑄(𝐴(2)) − 𝑄 (𝐴(1)) ≥ 1𝑚 − 1 , (31)

where 𝐴(1) and 𝐴(2) are the top two alternatives in 𝑄𝑖.
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Condition 2 (acceptable stability). The alternative𝐴(1) should
also be the best ranked by 𝑆𝑖 and 𝑅𝑖.

If the above conditions cannot be satisfied simultaneously,
there exist multiple compromise solutions:

(1) alternatives 𝐴(1) and 𝐴(2) if only Condition 2 is not
satisfied;

(2) alternatives 𝐴(1), 𝐴(2), . . . , 𝐴(𝑢) if Condition 1 is not
satisfied, where 𝐴(𝑢) is established by the relation𝑄(𝐴(𝑢)) − 𝑄(𝐴(1)) < 1/(𝑚 − 1) for the maximum.

5. Application Examples

5.1. ERP Selection Problem. In recent years, enterprise
resource planning (ERP) system has become a powerful tool
for enterprises to improve their operating performance and
competitiveness. However, ERP projects report an unusually
high failure rate and sometimes imperil implementers’ core
operation due to their high costs and wide range of configu-
ration. Consequently, selecting the ERP system which fit the
enterprise would be a critical step to success. Considering
a situation that one high-tech manufacturing enterprise is
trying to implement ERP system with four alternatives 𝐴1,𝐴2, 𝐴3, and 𝐴4, three DMs of 𝐷1, 𝐷2, 𝐷3 are employed to
evaluate these alternatives from five main aspects as follows:𝐶1: Functionality and reliability, which involve suitability,
accuracy, security, functionality compliance, maturity, recov-
erability, fault tolerance, and reliability compliance.𝐶2: Usability and efficiency, which involve understand-
ability, learnability, operability, attractiveness, usability com-
pliance, time behavior, resource behavior, and efficiency
compliance.𝐶3: Maintainability and portability, which involve analyz-
ability, changeability, testability, coexistence, interoperation,
maintainability, and portability compliance.

Table 3: Linguistic terms for rating the alternatives with IFNs.

Linguistic variables IFNs
Extremely poor (EP) (0.05, 0.95, 0.00)
Poor (P) (0.20, 0.70, 0.10)
Medium poor (MP) (0.35, 0.55, 0.10)
Medium (M) (0.50, 0.40, 0.10)
Medium good (MG) (0.65, 0.25, 0.10)
Good (G) (0.80, 0.10, 0.10)
Extremely good (EG) (0.95, 0.05, 0.00)

𝐶4: Supplier services, which involve the quality of training
staff, technical support and follow-up services, the level of
implementation and standardization, customer satisfaction,
supplier credibility, and strength.𝐶5: The enterprise characteristics, which involve enter-
prisemanagement, employee support, comprehensive invest-
ment cost, internal rate of return, benefit cost ratio, and
dynamic payback period.

Since the weights of attributes and DMs are completely
unknown, the best alternative would be selected with the
information given above. In the following, the proposed
IF-VIKOR method is applied to solve this problem. The
operation process according to the algorithm developed in
Section 4 is given below.

Step 1. Each DM assesses alternative 𝐴 𝑖 concerning attribute𝐶𝑗 with linguistic rating variables in Table 3. Table 4 shows
the assessments by three decision-makers.

Step 2. By using (24) and (25), the weights of DMs can be
obtained as 𝜆1 = 0.3220, 𝜆2 = 0.3244, 𝜆3 = 0.3536.
Step 3. Byusing (26), we can establish the aggregated decision
matrix as follows.

𝐷 =
[[[[[[[[[

(0.6689, 0.2193) (0.8000, 0.1000) (0.3500, 0.5500) (0.7081, 0.1857) (0.5592, 0.3388)
(0.6062, 0.2717) (0.6495, 0.2331) (0.6071, 0.2912) (0.5000, 0.4000) (0.7562, 0.1383)
(0.5542, 0.3438) (0.7308, 0.1568) (0.8355, 0.1223) (0.8465, 0.1077) (0.7128, 0.1808)
(0.6495, 0.2331) (0.6719, 0.2168) (0.6074, 0.2908) (0.5546, 0.3434) (0.5423, 0.3491)

]]]]]]]]]
. (32)

Step 4. By using (27) and (28), the weights of attributes are
obtained as 𝑤1 = 0.1950, 𝑤2 = 0.2129, 𝑤3 = 0.1980, 𝑤4 =0.1966, 𝑤5 = 0.1976.
Step 5. By using (29), the best and the worst values of all
attribute ratings can be calculated and we have 𝑥+1 = (0.6689,
0.2193), 𝑥+2 = (0.8000, 0.1000), 𝑥+3 = (0.8355, 0.1223), 𝑥+4 =
(0.8465, 0.1077), 𝑥+5 = (0.7562, 0.1383), 𝑥−1 = (0.5542, 0.3438),𝑥−2 = (0.6495, 0.2331), 𝑥−3 = (0.3500, 0.5500), 𝑥−4 = (0.5000,
0.4000), 𝑥−5 = (0.5423, 0.3491).

Step 6. Without loss of generality, let 𝛾 = 0.5. By using (30),
the values of 𝑆𝑖,𝑅𝑖, and𝑄𝑖 for each alternative can be obtained
as listed in Table 5.

Step 7. From Table 5, we have 𝑄3 < 𝑄1 < 𝑄4 < 𝑄2,
which means 𝐴3 (minimum value) ranks best in terms
of 𝑄. In addition, 𝑄1 − 𝑄3 = 0.3298 ≥ 0.25 and𝐴3 is also the best ranked by 𝑆𝑖 and 𝑅𝑖, which shows
that 𝐴3 is the unique compromise solution for this prob-
lem.
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Table 4: Rating of the alternatives from DMs.

Attributes DM1 DM3 DM4
A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

C1 MG M MG MP G MP M MG M G M G
C2 G MP G G G MG M M G G G MG
C3 MP MG M M MP M G MG MP MG EG MG
C4 MG M EG M G M MG MG MG M G M
C5 M G MG MG M G MG P MG MG G MG

Table 5: The values of 𝑆, 𝑅, and 𝑄 for all alternatives by the proposed IF-VIKOR method.

Value A1 A2 A3 A4𝑆 0.5470 0.6657 0.3911 0.7175𝑅 0.1979 0.2127 0.1948 0.1974𝑄 0.3298 0.9065 0.0000 0.5698

Table 6: Linguistic terms for rating the alternatives with trapezoidal
fuzzy numbers.

Linguistic variables Trapezoidal fuzzy numbers
Extremely poor (EP) (0, 0, 1, 2)
Poor (P) (1, 2, 2, 3)
Medium poor (MP) (2, 3, 4, 5)
Medium (M) (4, 5, 5, 6)
Medium good (MG) (5, 6, 7, 8)
Good (G) (7, 8, 8, 9)
Extremely good (EG) (8, 9, 10, 10)

Liu et al. [18] developed the VIKOR method for MADM
problem based on trapezoidal fuzzy numbers, which is one
of the most commonly used fuzzy numbers. In this method,
the weights of DMs or attributes are given artificially and
the linguistic variables are represented by trapezoidal fuzzy
numbers shown in Table 6. A trapezoidal fuzzy number𝐴 can
be denoted as (𝑎1, 𝑎2, 𝑎3, 𝑎4), where 𝑎1 and 𝑎4 are called lower
and upper limits of 𝐴 and 𝑎2 and 𝑎3 are two most promising
values. When 𝑎2 and 𝑎3 are the same value, the trapezoidal
fuzzy number degenerated a triangular fuzzy number. We
apply themethod [18] in the ERP selection problem to explain
the difference between the proposed method and traditional
VIKOR method with trapezoidal fuzzy numbers. Assume
that the weights of DMs and attributes are 𝜆1 = 0.3220,𝜆2 = 0.3244, 𝜆3 = 0.3536 and 𝑤1 = 0.1950, 𝑤2 = 0.2129,𝑤3 = 0.1980, 𝑤4 = 0.1966, 𝑤5 = 0.1976, respectively.
Through calculation of linguistic assessment information and
trapezoidal fuzzy numbers shown inTables 4 and 6, the values
of 𝑆,𝑅, and𝑄 for all alternatives are obtained as inTable 7.The
result shows that the ranking order of alternatives obtained
by the method [18] is 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2, which
is in harmony with our proposed method. Although the
results obtained from the twoVIKORmethods are consistent,
the trapezoidal fuzzy numbers are only characterized by
a membership function, while IFNs are characterized by
a membership function and a nonmembership function,

which closely resembles the thinking habit of human beings
under the situation of being uncertain and hesitant. Fur-
thermore, the trapezoidal fuzzy numbers need four values
to determine the membership distribution, while the IFNs
only need two values: membership and nonmembership,
and the degree of hesitancy can be automatically generated
by 1 minus membership and nonmembership. In general,
the computation of trapezoidal fuzzy numbers is large, and
the application of IFNs is relatively simple. In addition, the
method presented by [18] needs the weight information of
DMs and attributes predetermined, whereas theseweights are
determined objectively using intuitionistic fuzzy entropy in
the proposed method, which avoids subjective randomness
to some extent.

In [22], Roostaee et al. put forward a hamming distance
based IF-VIKOR method. To further illustrate its effective-
ness, the proposed method is compared to the IF-VIKOR
method presented by [22]. Computational results for the
hamming distance based IF-VIKOR method are shown in
Table 8. The result indicates that these two methods reach a
consensus that the third ERP system should be implemented
by the high-tech manufacturing enterprise.

In this example, it should be noted that the assessments
provided by DMs are in low degree of hesitancy. As shown
in Tables 3 and 4, the maximum hesitance index with
respect to linguistic values is 0.1, denoting the low degree
of nonspecificity (lack of knowledge) for assessments. In
this case, both methods can effectively evaluate and sort
the alternatives. However, the hamming distance based IF-
VIKOR method is not always capable of obtaining valid
results especially in MADM problem with high degree of
nonspecificity. It might generate some counterintuitive cases
so that unreasonable results might be obtained.The following
example further illustrates such cases.

5.2. Material Handling Selection Problem. To illustrate the
superiority of the proposed methods, a comparison between
the proposed IF-VIKOR method and the hamming distance
based IF-VIKOR method in a material handling selection
problem is made.
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Table 7: The values of 𝑆, 𝑅, and 𝑄 for all alternatives by the trapezoidal fuzzy numbers based VIKOR method.

Value A1 A2 A3 A4𝑆 0.3827 0.4629 0.3231 0.5632𝑅 0.2135 0.2204 0.1973 0.1996𝑄 0.2736 0.7911 0.0000 0.5052

Table 8: The values of 𝑆, 𝑅, and 𝑄 for all alternatives by the hamming distance based IF-VIKOR method.

Value A1 A2 A3 A4𝑆 0.4495 0.5896 0.3295 0.6569𝑅 0.1980 0.2129 0.1950 0.1976𝑄 0.2671 0.8972 0.0000 0.5726

Table 9: Rating of the alternatives from decision organization.

C1 C2 C3 C4
A1 (0.1, 0.2) (0.4, 0.2) (0.5, 0.2) (0.2, 0.4)
A2 (0.2, 0.1) (0.3, 0.3) (0.3, 0.5) (0.5, 0.5)
A3 (0.0, 0.3) (0.3, 0.4) (0.2, 0.3) (0.5, 0.2)
A4 (0.4, 0.4) (0.5, 0.2) (0.5, 0.2) (0.2, 0.4)

Table 10:The compromise values and ranking results obtained by the hamming distance based IF-VIKORmethod and the proposed method
in this paper.

Alternative Hamming distance based IF-VIKOR method The method proposed in this paper
The values of 𝑄𝑖 Ranking orders The values of 𝑄𝑖 Ranking orders

A1 0 1 0.3099 2
A2 0.4029 2 0.7286 3
A3 0.5046 3 1.0000 4
A4 0.6312 4 0 1

Suppose that a manufacturing company is considering
implementing a material handling system. After preliminary
screening, four alternatives of 𝐴1, 𝐴2, 𝐴3, and 𝐴4 remain
to be further evaluated. Several DMs from the company’s
technical committee are arranged to evaluate and select
the appropriate alternative. They assess the four alternatives
according to four conflicting attributes, including investment
cost 𝐶1, operation time 𝐶2, expansion possibility 𝐶3, and
closeness tomarket demand𝐶4. Due to the lack of experience,
time constraints, and other factors, the ratings of alternatives
concerning each attribute provided by DMs are represented
as IFNs with high degree of hesitancy, listed in Table 9. By
using (27) and (28), the weights of attributes are obtained
as 𝑤1 = 0.2426, 𝑤2 = 0.2490, 𝑤3 = 0.2593, 𝑤4 =0.2490. Without losing generality, let 𝛾 = 0.5. Then, the
values of 𝑆𝑖, 𝑅𝑖, and 𝑄𝑖 for each alternative can be calculated.
Computational results obtained by the hamming distance
based IF-VIKOR method and the proposed method in this
paper are listed in Table 10. The ranking of alternatives
calculated by the hamming distance based IF-VIKORmethod
is 𝐴1 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4, reaching a conclusion that𝐴1 (minimum value) is the best choice and 𝐴4 is the worst
choice for the material handling selection problem. However,
according to the score function and accuracy function, each

attribute rating of 𝐴1 is lower than or equal to that of 𝐴4,
indicating that 𝐴4 is superior to 𝐴1, which is contradicted to
the ranking results obtained by hamming distance based IF-
VIKORmethod. Instead, our proposedmethod can overcome
the drawback of traditional method and obtain a valid
ranking result as 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3, which means
that material handling system 𝐴4 is the best choice for the
manufacturing company.

5.3. Sensitivity Analysis. In intuitionistic fuzzy VIKOR
method, 𝛾, the coefficient of decisionmechanism is critical to
the ranking results. Hence, a sensitivity analysis is conducted
in order to assess the stability of our method in these
examples. For each 𝛾 from 0 to 1 at 0.1 intervals, we calculate
the corresponding compromise solution to investigate the
influence of different 𝛾 on the ranking result.

Table 11 shows the sensitivity analysis of ERP selection
example. For all the tested values of 𝛾, three different ranking
results are generated including 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2,𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2, and 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4. While the
ranking result is indeed affected by 𝛾,𝐴3 is always the optimal
solution. Table 12 shows the sensitivity analysis of material
handling system selection example. For all the tested values
of 𝛾, the ranking result remains 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 and
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Table 11: Rating of the alternatives for different 𝛾 values (ERP selection example).

𝛾 𝑄1 𝑄2 𝑄3 𝑄4 Ranking Optimal solution
0 0.1676 1.0000 0 0.1397 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 𝐴3
0.1 0.2000 0.9813 0.0000 0.2257 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.2 0.2325 0.9626 0.0000 0.3117 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.3 0.2649 0.9439 0.0000 0.3978 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.4 0.2974 0.9252 0.0000 0.4838 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.5 0.3298 0.9065 0.0000 0.5698 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.6 0.3622 0.8878 0.0000 0.6559 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.7 0.3947 0.8691 0.0000 0.7419 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.8 0.4271 0.8504 0.0000 0.8279 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 𝐴3
0.9 0.4596 0.8317 0.0000 0.9140 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 𝐴3
1 0.4920 0.8130 0.0000 1.0000 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 𝐴3

Table 12: Rating of the alternatives for different 𝛾 values (material handling selection example).

𝛾 𝑄1 𝑄2 𝑄3 𝑄4 Ranking Optimal solution
0 0.3224 0.6299 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.1 0.3199 0.6496 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.2 0.3174 0.6694 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.3 0.3149 0.6891 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.4 0.3124 0.7089 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.5 0.3099 0.7286 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.6 0.3074 0.7484 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.7 0.3049 0.7682 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.8 0.3025 0.7879 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
0.9 0.3000 0.8077 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
1 0.2975 0.8274 1.0000 0 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 𝐴4
the optimal solution is 𝐴4. The sensitivity analysis illustrates
how the decision-making strategy would affect the result, and
also it indicates that the conclusion arrived from our method
is stable and effective.

6. Conclusion

Since the VIKOR method is an effective MADM method
to reach a compromise solution, and IFSs are an effective
tool to depict fuzziness and nonspecificity in assessment
information, we combine them and develop a new intuitive
distance based IF-VIKOR method. This new method aims at
MADM problems with unknown weights of both the DMs
and attributes in intuitionistic fuzzy environment. It aggre-
gates assessment information by intuitionistic fuzzy weighted
averaging operator, generates weights of DMs and attributes
by intuitionistic fuzzy entropy objectively, calculates the
group utility and individual regret based on intuitive distance
measure, and finally reaches the compromise solution. Two
application examples of ERP and material handing selection
problem further illustrate each step of this method. Com-
paredwith the hamming distancemeasure used in traditional
IF-VIKOR method, the new intuitive distance measure in
this method focuses on the fuzziness and nonspecificity
of intuitionistic fuzzy information, reflecting not only the

difference among the values of intuitionistic fuzzy sets, but
also the waver of intuitionistic fuzzy sets. Both the artificial
benchmark test and application examples demonstrate its
effectiveness and superiority to traditional method. Also,
the determination of weights of DMs and attributes using
intuitionistic fuzzy entropy can avoid subjective randomness,
and sensitivity analysis shows the stability of the proposed
method. For future work, the comparison of the proposed
VIKOR method with other MADM methods under intu-
itionistic fuzzy environment, such as the TOPSIS method,
the PROMETHEE method, and the ELECTRE method, is
worthy of further study and exploration. It would also be
interesting to apply the proposed VIKOR method to other
MADM problems, such as investment decision and supplier
selection.
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