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Abstract: Over the past few years, online learning has exploded in popularity due to the
potentially unlimited enrollment, lack of geographical limitations, and free accessibility of many
courses. However, learners are prone to have poor performance due to the unconstrained learning
environment, lack of academic pressure, and low interactivity. Personalized intervention design
with the learners’ background and learning behavior factors in mind may improve the learners’
performance. Causality strictly distinguishes cause from outcome factors and plays an irreplaceable
role in designing guiding interventions. The goal of this paper is to construct a Bayesian network to
make causal analysis and then provide personalized interventions for different learners to improve
learning. This paper first constructs a Bayesian network based on background and learning behavior
factors, combining expert knowledge and a structure learning algorithm. Then the important factors in
the constructed network are selected using mutual information based on entropy. At last, we identify
learners with poor performance using inference and propose personalized interventions, which may
help with successful applications in education. Experimental results verify the effectiveness of the
proposed method and demonstrate the impact of factors on learning performance.

Keywords: causal analysis; Bayesian network; mutual information; learning performance prediction;
personalized interventions

1. Introduction

In the past few years, online learning has been increasingly taking center stage outside the
classroom due to potentially unlimited enrollment, lack of geographical limitations, and free access
for many courses [1]. Online courses have attracted substantially billions of learners [2]. Considering
the large number of learners, one major concern that should not be neglected is whether the learning
performance is effective. The grade distributions of courses are heavily skewed, with only 10% of
learners achieving a perfect grade. Many learners have poor performance, achieving a low grade or
even zero [3].

There are two methods to improve learning performance, a teaching-oriented method and
learner-oriented method. The teaching-oriented method focuses on lecture design and improvement,
such as improving lecture content [4], designing tests for lectures [5] and online game-based
teaching [6]. This method helps to provide high-quality educational resources and diverse
teaching methods. However, it lacks personalized interventions to improve learning performance.
The learner-oriented method focuses on making effective and personalized interventions [7,8], which
will help to accelerate the growth of learners explicitly. The intervened learners will be given additional
opportunities to track and master their learning of concepts, which will improve the their performance.

Traditional learning provides a face-to-face environment where teachers can provide timely
feedback and interventions. However, in an online learning environment, it is unrealistic to expect
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teachers to fully track learners’ learning and to provide timely personalized interventions [9].
Fortunately, learners generate plenty of data when interacting with online learning platforms. These
data include learning factors and learning performance which can be collected automatically by
the platforms. Thus, in this new learning environment, we need machine learning to analyze the
relationship between learning factors and learning performance.

Learning performance has different definitions in different learning environments. Many criteria
can measure learning performance, such as the completion rate of a course, grade, the likelihood
of getting a certificate, added knowledge, and skill building, depending on the course content and
the learner’s nature [10]. A course grade is a numerical summary of a selected course that shows
how well a learner understands and applies the knowledge conveyed in the course [11]. Moreover,
it is commonly used in learning performance prediction in an online learning environment [12–15].
Therefore, in this paper, grade is utilized as an objective indicator of learning performance.

Learning factor plays a significant role in improving learning performance. Once the factors
possibly leading to poor performance are identified, we can analyze the underlying reason and provide
corresponding interventions. Factors in this paper can be categorized into two groups: background
factors and learning behavior factors. Background factors include education (highest level of education
completed), age (age brackets), motivation (reason for taking the course), learning type (learning type
of learners, e.g., positive), and expected learning hours (range of expected learning hours per week),
which have an impact on learning behaviors and learning performance. Learning behavior factors
include views (whether views are equal to or more than 50% of the content modules), assignments
(completed assingments equal to or more than three), completion (percent of content modules a
learner has completed), forum posts (total number of posts in discussion forums), events (number of
distinct interaction events with the course), and active days (number of active days with one or more
events), which have an impact on learning performance. A detailed description of factors is shown in
Tables 1 and 2.

Many studies have focused on correlations [16–18] between factors and learning performance.
A correlation is a relationship that can be observed between factors that appear to be related [19].
Correlation analysis is a statistical method used to evaluate the degree of association between two
numerically measured factors [20]. Sometimes, two strongly correlated factors may not have any
causal relationship and a correlation between two factors is completely symmetrical.

Unlike correlation, a causal relationship strictly distinguishes cause from outcome factors, which
is asymmetrical. Once you find out the cause leading to a certain outcome, you may make changes to
meet your needs. Causal analysis is more reliable than correlation analysis and plays an irreplaceable
role in design guiding interventions [21]. Causal analysis has been applied to many fields successfully,
such as industry [22], medical decision making [23], and environmental modeling [24]. Causal analysis
of learning performance is also an important direction in education [25]. A few studies conduct causal
analysis between factors and learning performance [26,27]. That may support educators to make
effective interventions, leading to successful applications such as intelligent tutoring, personalized
recommendations, and learning evaluations.
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Table 1. Detailed description of background factors and their states in the dataset.

Factor Name Factor Description State Name State Description

Education
(User-provided)

Highest level of
education
completed

High school High school or college preparatory school
Completed two-year college Completed two-year college degree
Completed four-year college Completed four-year college degree

Master’s degree Master’s degree or equivalent
Uncertain None of these

Age
(User-provided) Age brackets

19 to 34 From 19 to 34 years old
35 to 54 From 35 to 54 years old

55 or older Older than 54 years old

Motivation
(User-provided)

Standardized
reason for taking
course (from
survey)

Curiosity Is curious about online courses and likes the online format
Topics Enjoys learning about topics that interest me

A new career Hopes to gain skills for a new career
Work Hopes to gain skills to use at work or for a promotion

College Is preparing for college for the first time
School Is preparing to go back to school

Community Enjoys being part of a community of learners

Learning type
(User-provided)

Standardized
learning type (from
survey)

Passive Passive participant
Active Active participant

Drop-in Drop-in participant

Expected learning
hours
(User-provided)

Standardized range
of hours per week
(from survey)

Less than 1 Less than 1 hour per week
1 to 2 Between 1 and 2 h per week
3 to 4 Between 2 and 4 h per week
5 to 6 Between 4 and 6 h per week
7 to 8 Between 6 and 8 h per week

More than 8 More than 8 h per week
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Table 2. Detailed description of behavior factors and their states in the dataset.

Factor Name Factor Description State Name State Description

Views
(Administrative)

Whether views are equal to or more than 50% of the
content modules

Yes Equal to or more than 50% of the content modules
No Less than 50% of the content modules

Assignments
(Administrative) Complete equal to or more than three assignments Yes Equal to or more than three assignments

No Less than three assignments

Completion
(Administrative) Percent of content modules a learner has completed

Low Low completion rate (0 <= Completion <= 0.08)
Moderate Moderate completion rate (0.09 <= Completion <= 0.17)

High High completion rate (0.18 <= Completion <= 0.92)

Forum posts
(Administrative)

Number of posts total in discussion forums throughout
the course

Low Low number of forum posts(0 <= Forum posts <= 1)
Moderate Moderate number of forum posts (2 <= Forum posts <= 4)

High High number of forum posts (5 <= Forum posts <= 64)

Events
(Administrative)

Number of distinct interaction events with the course,
such as page views

Low Low number of events (0 <= Events <= 110))
Moderate Moderate number of events (111 <= Events <= 280)

High High number of events (281 <= Events <= 1002)

Active days
(Administrative) Number of active days with one or more events

Low Low number of active days (1 <= Active days <= 4)
Moderate Moderate number of active days (5 <= Active days <= 8)

High High number of active days (9 <= Active day <= 78)

Grade
(Administrative) Final grade in the course

Level A Excellent performance (0.8 <= Grade <= 1)
Level B Moderate performance (0.65 <= Grade <= 0.79)
Level C Moderate performance (0.5 <= Grade <= 0.64)
Level D Poor performance (0 <= Grade <= 0.49)
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There are three main kinds of methods to make causal analyses, randomized controlled trials,
quasi-experimental designs, and probabilistic graphical models. A randomized control trial is a trial
in which subjects are randomly assigned to one of two groups: the experimental group receiving
the intervention that is being tested, and the comparison or control group receiving an alternative
treatment [28]. However, this requires a deep understanding and high control capability of the
experimental data. A quasi-experiment can be used to empirically estimate the causal impact of
an intervention on a target subject without random assignments. Although quasi-experimental
designs are recommended for educational causal analysis, their empirical justification is inferior to
that of the standard experiment [29]. Cook et. al demonstrated that quasi-experiments regularly
failed to reproduce experimental results unless the assignment mechanism was completely known or
extensively and reliably measured [30]. Due to the massively collected educational data, quite a lot of
studies have adopted machine learning methods to preform causal analysis, especially in the online
learning environment. The probabilistic graphical model is one of the most used machine learning
methods in causal analysis, which has been successfully applied in many fields. The benefits of the
probabilistic graphical model are involving uncertainty in the modelling, resulting in less sensitivity to
noise data.

As a typical probabilistic graphical model, a Bayesian network is a powerful tool for modeling the
causal relationships among factors and can easily complete inference [31]. It can implement learning
performance prediction and helps us to explore factors resulting in poor learning performance. Thus,
we adopt a Bayesian network to make a causal analysis of learning performance.

The goal of this paper is to complete a causal analysis of learning performance and then provide
personalized interventions for learners considering their specific background and learning behavior
factors. Our contributions are as follows. This paper first constructs a Bayesian network for causal
analysis based on learners’ background and learning behavior factors. Secondly, the important factors
in the constructed network are selected using mutual information based on entropy. Thirdly, we
identify learners with poor performance using inference and propose personalized interventions based
on the selected factors, which may help with successful applications in education.

2. Related Work

Causal analysis of learning performance is important for designing interventions. The primary
method of causal analysis in learning performance is the randomized control trial (RCT). RCTs have
played an important role in determining whether an intervention is having a measurable effect on
learning [32]. Bradshaw et al. used RCTs to examine the effects of positive behavioral interventions
and supported on student performance. The results demonstrated significant reductions in student
suspensions [33]. Nevertheless, RCTs require deep understanding and high control capability of the
experimental data. Moreover, it tends to generate simplistic universal rules of cause and effect, and it
is inherently descriptive and contributes little to theory [34].

The second method to make causal analysis of learning performance is a quasi-experiment.
Lusher et al. exploited a long term quasi-experiment where students alternated between morning
and afternoon school blocks every month. The experimental results provided a causal evidence
of student performance during double-shift schooling systems, that a precisely estimated drop
was found in student performance during afternoon blocks. Although quasi-experiment are an
effective method to make causal analysis and have been applied in education frequently, experimental
results can be reproduced only if the assignment mechanism is completely known or extensively and
reliably measured.

In addition to the two traditional methods, a few studies utilized machine learning methods
to perform causal analysis. Wang et al. proposed a causal analysis algorithm by improving
the Apriori algorithm to analyze the relationship between learning behaviors and performance,
and provided an application direction for a daily inspection system based on the learning behaviors [26].
Ramirez-Arellano et al. proposed a model that described the causal relationships concerning
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motivations, emotions, cognitive strategies, meta-cognitive strategies, learning strategies, and their
impact on learning performance [27].

As a widely used machine learning method for causal analysis, a Bayesian network can
demonstrate the causal relationship between factors graphically and can easily complete inference.
There are two methods to construct a Bayesian network: expert knowledge, which relies on professional
experience; and structure learning, which automatically learns relationships from data. Some of the
studies adopted expert knowledge to construct the Bayesian network and then made a causal analysis.
Millán et al. constructed student models for first degree equations using a Bayesian network based on
expert knowledge. Those models were used to obtain accurate estimations of student’s knowledge on
the same concepts and made their analysis [35]. However, only using expert knowledge may ignore
some non-remarkable relationships. In addition, experts may have different opinions towards the
relationship of the same pair of factors.

Certain studies have utilized structure learning to mine the causal relationship between factors.
Millán et al. compared the performance of the student models constructed by expert knowledge
and structure learning respectively. The results demonstrated that both models were able to provide
reasonable estimations for knowledge variables [36]. The structure learning method relies on a
large amount of data to obtain reliable relationships. Thus, we combine the expert knowledge and
structure learning to make causal analysis, because the structure learning can be elicited with the help
of experts knowledge. In the meanwhile, we need to reduce inconsistencies among experts in the
expert knowledge.

A common method to combine expert knowledge and structure learning is to add constraints
during structure learning. There are mainly two types of constraints: parameter constraints, which
define rules about the probability values inside the local distributions; and structural constraints, which
specify arcs, may or may not be included. The authors in [37] proposed an algorithm to learn Bayesian
network structure from data and expert knowledge, integrating parameter constraints and structure
constraints. Niculescu et al. incorporated parameter constraints into learning process of Bayesian
networks, considering domain knowledge that constrains the values among subsets of parameters
with a known structure [38]. Perrier et al. utilized structural constraints to reduce the search space
when learning structure from data [39]. In our study, the knowledge of connection between cause
and effect is easy to be obtained by experts. Thus, we use structure constraints to incorporate expert
knowledge during structure learning.

The remainder of the paper is organized as follows. Section 3 describes the proposed framework
and detailed methods. Section 4 presents the dataset and the experimental tool used in this paper.
Section 5 demonstrates the experimental results and the interventions. The discussion and conclusion
are drawn in Sections 6 and 7.

3. Method

3.1. Overall Framework

To achieve our goal, we propose a framework as shown in Figure 1. Factors and learning
performance are input into the Bayesian network construction module and factor selection module,
to construct the network and identify important factors, respectively. For Bayesian network
construction, we first construct an initial Bayesian network from expert knowledge and then use
the structure learning method to add some relationships not in the initial network. For factor selection,
we use mutual information based on entropy to find important factors towards the target factor.
Next, the constructed network and important factors are input into the intervention design module to
propose personalized interventions for different learners.
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Figure 1. The theoretical framework. The input of the framework is factors and learning performance.
The method module includes Bayesian network construction, factor selection, and intervention design.

3.2. Bayesian Network Construction

In this paper, we construct a Bayesian network (BN) to represent the causal relationships between
factors. A BN is comprised of a qualitative part and a quantitative part. The qualitative part is a
directed acyclic graph. The factors and their causal relationships are represented as nodes and directed
arcs, respectively. The parents of each node are its direct causes. The quantitative part of a BN is
its conditional probability tables where local conditional probabilities are mapped into the factors.
A conditional probability table specifies the probability of each state of a factor given its parents. Tables
for root nodes only contain unconditional probabilities. The BN is represented as a pair (G, P), where
G is a directed acyclic graph over a set of factors X = X1, X2, X3, . . . Xn and P is a joint probability
distribution of X. P can be calculated by (1), multiplying the conditional probabilities of every factor
given its parent nodes, under conditional independence assertions.

P(X1, X2, . . . , Xn) = ∏n
i=1 P(Xi|Parent(Xi)). (1)

The BN not only demonstrates the graphic structure among factors but also measures the
relationships among factors quantitatively. Learning performance prediction and personalized
intervention design rely on the graph structure and corresponding conditional probability table
of each node. When new observations are obtained, such as background and learning behavior factors,
the states of those observations are determined. Next, the state probabilities of the target factor, such
as learning performance, will be calculated using the probabilistic method.

To construct a BN, a directed acyclic graph should be built first, which reflects the causal
relationship of the desired factors. Secondly, the conditional probability table for each factor is
estimated. There are two methods to construct a directed acyclic graph, using expert knowledge and
the structure learning algorithm. The former relies on the experience of experts in education. In this
way, some non remarkable causal relationships between factors may be omitted. Using the structure
learning algorithm means that the network structure is learned from data. However, this approach
needs a large amount of data. Under the condition of a limited amount of data, the graphic network
learned from data may not be accurate [22]. Therefore, in this study, we combine those two methods to
construct the network. The constructing process is shown in Figure 2.
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HC algorithm Directed acyclic graph 
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X | Y
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X ? Y

Figure 2. Process of network construction. There are four steps to construct a Bayesian network (BN),
including relationship probability assignment, relation direction determination, structure learning,
and network construction.

Step 1. Relationship probability assignment. There are four relationships between each pair of
factors. For example, the four possible relationships between factor X and factor Y are as follows: X
directly influencing Y (X → Y), Y directly influencing X (Y → X), no relationship between X and Y
(X|Y), and uncertain relationship between X and Y (X?Y). An odd number of educational experts
are requested to assign a probability for each of these four possible relationships; the sum of the four
assigned probabilities is equal to one.

Step 2. Relationship direction determination. To reduce inconsistencies among experts, we utilize
the Dempster–Shafer theory [22] to integrate the probabilities of the four possible relationships from
different experts. The relationship with the maximum value between each pair of factors is adopted to
represent the specified relationship. The equations used for integration are as follows:

P(R) =
1
K ∑R1∩R2···∩Rn=R P1(R1) · P2(R2) · · · Pn(Rn) (2)

K = 1−∑R1∩R2···∩Rn=∅ P1(R1) · P2(R2) · · · Pn(Rn)

= ∑R1∩R2···∩Rn 6=∅ P1(R1) · P2(R2) · · · Pn(Rn)
(3)

where P(R) is the integrated probability for each relationship. PnRn is the probability that the nth
expert specifies a relationship. K is the normalizing factor and 1− K is a measure of the amount of
conflict information. The detailed calculation process is shown in Section 5.1. If there exists a cycle in
the network, we will remove the edge with the minimum integration probability of the network. That
means the most uncertain relationship in a cycle will be removed to guarantee the acyclicity.

Step 3. Structure learning. To avoid ignoring non-obvious and reasonable causal relationships,
we utilize the structure learning algorithm to supplement the causal relationships not included in the
initial network. We use a score-based algorithm with a hill-climbing (HC) search algorithm to complete
structure learning. Score-based algorithms are simply applications of various general purpose heuristic
search algorithms. They assigns a score to each candidate Bayesian network and try to maximize
it with a heuristic search algorithm, such as hill-climbing [40]. To combine the expert knowledge
during structure learning, we add the structure constraints to specify where arcs may or may not be
included [41]. For example, given a pair of variables X and Y, if there is no relation between X and Y
which is determined by expert knowledge, then neither X → Y nor Y → X will be added to the final
network by the structure learning algorithm with constraints.

Step 4. Network construction. First, we use expectation–maximization to fill the missing values
in the dataset. The expectation–maximization algorithm is one of the most effective algorithms for
parameter estimation when incomplete data exists. The algorithm alternates iteratively between
two steps until it reaches the specified stopping criterion, such as different values of two iterations
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converging to a certain threshold. Second, the initial BN is determined by expert knowledge based
on the Dempster–Shafer theory. Third, the structure learning algorithm is implemented based on the
initial network. At last, a directed acyclic graph is constructed, which is the qualitative part of a BN.
Then the conditional probability table for each factor is calculated by maximum likelihood estimation,
which is the quantitative part of a BN.

3.3. Factor Selection Based on Mutual Information

The objective of factor selection is to measure the importance of factors influencing the target
and to select the important factors. Different state combinations of factors lead to different learning
performance results. We choose the combinations leading to poor performance and then designed
appropriate interventions for those learners with specific states of background and learning behavior
factors. Generally, several factors exist and each has several states. There will be too many situations
if all states are combined. For example, if there are ten factors and each factor has two states, there
will be 1024 (210) combinations, making it difficult for instructors to catch key points. If there are four
important factors and each factor has two states, there will be 16 (24) combinations. The number of
factors decreased by 60% and the number of combinations is reduced by tens of times. The more the
number of factors, the faster the number of combinations grows. Thus, factor selection is essential in
intervention design.

One of the most commonly used and effective methods to select important factors is mutual
information (MI) based on entropy. MI is a measure of the mutual dependence between two random
factors. More specifically, it quantifies the amount of information of one random factor by observing
the other random factor.

The MI of two random factors can be represented as follows:

I(X, Y) = ∑x∈X ∑y∈Y p(x, y) log
p(x, y)

p(x)p(y)
(4)

where p(x, y) is the joint probability function of the factors X and Y, and p(x) and p(y) are the marginal
probability functions of X and Y, respectively. The entropy measures the expected uncertainty in a
factor that is represented as follows:

H(X) = −∑x∈X p(x) log p(x). (5)

MI is related to entropies of the factors as follows:

I(X, Y) =H(X)− H(X|Y)
=H(Y)− H(Y|X)

=H(X) + H(Y)− H(X, Y)

(6)

where I(X, Y) represents the MI between factors X and Y. H(X) and H(Y) are the entropy of X and Y.
H(X, Y) is the joint entropy of X and Y H(X|Y) is the conditional entropy of X given Y, which is a
measure of how much uncertainty remains about the factor X when we know the value of Y. Likewise,
H(Y|X) is the conditional entropy of Y given X. The joint and conditional entropies are represented
as follows:

H(X, Y) = −∑x∈X ∑y∈Y p(x, y) log(x, y) (7)

H(Y|X) = −∑x∈X ∑y∈Y p(x, y) log(y|x). (8)

In general, many factors exist and each factor has several states. Different state combinations lead
to different learning performance results. If there are many factors and we make state combinations
for all factors, it will increase the complexity for intervention design. Some of those factors may not
have much impact on learning performance or other factors. Thus, factor selection is essential for
intervention design. We can focus on the important factors and make state combinations of only
important factors.
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3.4. Intervention Design Based on BN and MI

This section aims to provide personalized interventions for different learners. It has been proven
that a wide variety of interventions need to be adapted to accommodate learners’ individual differences,
rather than a single intervention strategy, which is not sufficient for all learners [42]. It is essential to
combine specific background and learning behavior factors of different learners to design interventions.

3.4.1. Intervention Design

Considering that learning behavior factors have a direct impact on learning performance, we
first make state combinations of learning behaviors and identify two state combinations leading to
the highest probabilities of high grade and low grade. Next, we make combinations of those two
state combinations of learning behaviors with all states of important backgrounds. Then the state
combinations of learning behavior and background factors leading to higher probabilities of high
grade and low grade can be obtained by inference. In this study, we combine MI and inference to
design personalized interventions for different learners.

The illustration of the personalized intervention design strategy is shown in Figure 3. Based
on the results of MI, X1 and X2 are two important learning behavior factors. X3 and X4 are two
important background factors. Each factor has two states. We first make state combinations of X1 and
X2 and find that the state combination (A, C) leads to the highest probability of a low grade. Similarly,
the state combination (B, D) leads to the highest probability of a high grade. Second, we make state
combinations of learning behavior factors and background factors (for example, combinations of (A,
C) and (E, M), combination (A, C) and (E, N), or combination (B, D) and (F, N), etc.). There are eight
total combinations, leading to different learning performances. The group of learners with the highest
probability of low grade. represents the poor performance group. Similarly, the group of learners with
the highest probability of high grade represents the excellent performance group. Furthermore, we
can trace back to the states of factors and draw conclusions about learners with specific backgrounds
and behaviors leading to poor or excellent performance. That is important to support making effective
educational interventions.

Important behavior 

factors

Important background 

factors

State A

State B

State C

State D

Combinations of states of background 

and behavior factors

State E

State F

State M

State N

Poor learning 

performance

Excellent learning 

performance

Infer
Trace back 

to the states
Infer

Trace back to 

the states

1Factor X

2Factor X

3Factor X

4Factor X

Figure 3. Illustration of personalized intervention design strategy. We make combinations of two state
combinations of behavior factors leading to the highest proportion of low grade (A, C) and high grade
(B, D) with all states of important background factors ((E, M), (E, N), (F, M), and (F, N)).

3.4.2. Learning Performance Prediction Using Inference

Once a BN is created, probabilistic inference can be used for learning performance prediction
to support intervention design. It is performed using belief updating, which is used to update the
probability for a hypothesis when new observations have been received. The objective of inference
is to compute the posterior probability P(Y|X = X′) of query factor Y, given a set of observations
X = X′. X is a list of observed factors and X′ is the corresponding list of states (observed values).
A factor has several states and Y comprises only one query factor. After belief updating, a posterior
probability distribution is associated with each factor, reflecting the influence of the set of observations.
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Inference can be utilized to evaluate the effects of changing of some factors on others, but it does not
change the constructed BN.

For example, X is a list of new observed factors, such as learning behavior factors (X1, X2, X3),
and X′ is the corresponding list of observed values, such as states of factors (X1 = A, X2 = C, X3 = E).
The posterior probability of query factor Y, such as a low grade level (L), can be represented as
P(Y = L|X1 = A, X2 = C, X3 = E). The probability of the representation can be inferred using belief
updating based on the Bayes theorem [43]. To better design and provide personalized interventions
for different learners, we change the states of important factors. The results of MI determine that X1

and X2 are important factors affecting the query factor Y. It means that the state change of X1 and
X2 lead to a larger fluctuation of Y, and different state combinations of X1 and X2 lead to different
probabilities of Y. If the state combination (X1 = B, X2 = C, X3 = E) leads to the highest probability
of Y, that means learners with those specific states have poor learning performance. We can then trace
back to analyze those states and apply effective interventions.

4. Materials

This study uses the open dataset comprising de-identified data from Canvas Network open
courses (running January 2014–September 2015) [44]. We categorized the factors into background
factors, behavior factors, and grade to construct the BN. The details of the factors and their states are
shown in Tables 1 and 2.

Depending on the nature of the factor being measured, there are discrete and continuous values.
The discrete values, also called states, are mutually exclusive and exhaustive. The continuous values are
taken from a given range. It is possible to represent a factor that is naturally represented by continuous
values, by using discrete values. To accomplish this, continuous values need to be discretized. In this
study, we discretize the continuous values of behavior factors and learning performance into different
intervals based on the equal-frequency method [45] and grade level of the Victoria University of
Wellington [46], respectively.

For each factor, “Administrative” indicates that the data are generated by users during their
interaction with the courses and have been computed by the Canvas Network system. “User-provided”
indicates that the data come from questions or surveys of the learner at the time of account registration
or at the beginning of the course. We choose data with as much complete background information as
possible. For behavior data with empty values, the expectation–maximization algorithm is adopted to
fill the empty data. Therefore, there are 1,061 total records. We utilize 80% of the records to construct
and training the BN and another 20% of the records for prediction to verify the effectiveness of the BN.

RStudio [47] is an integrated development environment (IDE) for R programming language,
which supports extensive R packages. The R package bnlearn can be used for structure learning
graphically and contains implementations of various structure learning algorithms and inferences [48].
We use the R package bnlearn to conduct the Bayesian network and make inference for analysis.

5. Results

5.1. Results of Expert Knowledge

To construct the BN, each invited expert assigns a probability to four relationships for each pair
of factors. The Dempster–Shafer theory is then utilized to reduce inconsistencies among experts.
The relationship with the highest integrated probability will be chosen as the determined relationship
between those two factors. Table 3 shows the probabilities of some relationships and integrated
probabilities for those relationships.

Taking the first item as an example, three experts provide probabilities for the relationship of
the factor learning type and forum posts. According to (2) and (3), the most probable relationship
of “Learning type” and “Forum posts” is obtained and the calculating process is as follows. Then
the integrated probabilities for each pair of relationships can be obtained and the final relationship
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is “Learning type→ Forum posts”. Using expert knowledge and the Dempster–Shafer theory, we
construct the initial network.

K = 0.5× 0.6× 0.3 + 0 + 0.3× 0.3× 0.4 + 0.2× 0.1× 0.3 = 0.132 (9)

P(R1) =
0.5× 0.6× 0.3

0.132
= 0.682 P(R2) =

0
0.132

= 0 (10)

P(R3) =
0.3× 0.3× 0.4

0.132
= 0.273 P(R4) =

0.2× 0.1× 0.3
0.132

= 0.045. (11)

Table 3. The integrated probabilities for each pair of relationships between factors based on the
opinions elicited from three experts.

Expert Learning Type →
Forum Posts

Learning Type ←
Forum Posts

Learning Type |
Forum Posts

Learning Type ?
Forum Posts

Expert 1 P1(R1) = 0.5 P1(R2) = 0 P1(R3) = 0.3 P1(R4) = 0.2
Expert 2 P2(R1) = 0.6 P2(R2) = 0 P2(R3) = 0.3 P2(R4) = 0.1
Expert 3 P3(R1) = 0.3 P3(R2) = 0 P3(R3) = 0.4 P3(R4) = 0.3

Integrated
probability

P(R1) = 0.682 P(R2) = 0 P(R3) = 0.273 P(R4) = 0.045

Expert Grade→ Completion Grade← Completion Grade | Completion Grade ? Completion

Expert 1 P1(R1) = 0.2 P1(R2) = 0.5 P1(R3) = 0.1 P1(R4) = 0.2
Expert 2 P2(R1) = 0.2 P2(R2) = 0.6 P2(R3) = 0 P2(R4) = 0.2
Expert 3 P3(R1) = 0.1 P3(R2) = 0.5 P3(R3) = 0 P3(R4) = 0.3

Integrated
probability

P(R1) = 0.02 P(R2) = 0.918 P(R3) = 0 P(R4) = 0.061

Expert Forum posts →
Active days

Forum posts ←
Active days

Forum posts | Active
days

Forum posts ? Active
days

Expert 1 P1(R1) = 0.3 P1(R2) = 0.2 P1(R3) = 0.4 P1(R4) = 0.1
Expert 2 P2(R1) = 0.2 P2(R2) = 0.4 P2(R3) = 0.4 P2(R4) = 0
Expert 3 P3(R1) = 0.4 P3(R2) = 0.1 P3(R3) = 0.5 P3(R4) = 0

Integrated
probability

P(R1) = 0.214 P(R2) = 0.071 P(R3) = 0.714 P(R4) = 0

Expert Completion →
Events

Completion ←
Events

Completion | Events Completion ? Events

Expert 1 P1(R1) = 0 P1(R2) = 0.3 P1(R3) = 0 P1(R4) = 0.7
Expert 2 P2(R1) = 0.1 P2(R2) = 0.3 P2(R3) = 0. P2(R4) = 0.6
Expert 3 P3(R1) = 0.2 P3(R2) = 0.3 P3(R3) = 0 P3(R4) = 0.5

Integrated
probability

P(R1) = 0 P(R2) = 0.114 P(R3) = 0 P(R4) = 0.886

5.2. Results of the Constructed BN

Figure 4 shows the results of expert knowledge and structure learning respectively and subgraph
(b) is the final result. Table 4 shows the factor number and corresponding factor name. In the two
graphs, the nodes with the gray color represent the background factors and the nodes with the green
color represent the behavior factors. After structure learning, there are six relationships (Views→
Completion, Completion→ Events, Age→ Forum posts, Events→ Forum posts, Motivation→ Views,
and Events→ Active days) to be added to the initial network determined by the expert knowledge.
The node with the yellow color represents the learning performance. Assignments, completion, forum
posts, events, and active days are factors that have a direct influence on grade. Views has a direct
impact on completion. Motivation, learning type, expected learning hours, and age are factors that
have a direct influence on behavior factors.
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Figure 4. Results of the constructed BN. Subgraph (a) shows the initial BN determined by expert
knowledge. Subgraph (b) shows the final BN after structure learning incorporating expert knowledge.

Table 4. Factor representation and the corresponding factor name.

Representation Factor Name Representation Factor Name

A Education G Assignments
B Motivation H Completion
C Learning type I Events
D Expected learning hours J Forum posts
E Age K Active days
F Views L Grade

When the BN structure is completely directed, we can fit the parameters of the local distributions,
which are the quantitative parts, and take the form of the conditional probability tables. From the
results, about 40% of learners achieve a level D grade, which represents poor performance on the
selected courses and the learners may not master the knowledge prescribed in the syllabus. About
24% of learners achieve a level A grade, which represents excellent performance. The performance of
learning behaviors directly affecting the grade is not satisfying. Only a small proportion of learners
achieve a high level in completion, forum posts, events, and active days. More than 80% of learners
view less than 50% of the content modules. Thus, most learners devote too little on learning and
complete a low percent of the total required content modules. Only a few learners participate in their
studies continuously. Meanwhile, most of the learners have no intention of communicating through
posting on forums. Although most learners complete equal to or more than three assignments, based
on their poor performance on other learning behaviors, several learners achieve a level D grade. In the
distribution of background factors, more than half of the learners are aged from 19 to 34 years. Several
learners study for interest in the topics and for a new career. More than half of the learners deem
themselves as active participants. However, there are still about 31.9% of passive learners. About 36%
of learners expect to learn two to four hours per week. Learners with a master’s degree or equivalent
account for nearly half of the total.

5.3. Prediction Results

Learning performance prediction attempts to identify the most likely grade level given a set of
observations. We carry out learning performance prediction to verify the effectiveness of the BN.
We design three groups of experiments. The first groups use both behavior and background factors
(Combined factors) to predict learning performance. The second and third groups use behavior
factors and background factors to predict learning performance, respectively. The accuracy is utilized
to evaluate the predictive performance. We choose 20% of the data randomly, this was about 212
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records as the test data. Logistic regression (LG) and decision tree (DT) are the most commonly used
algorithms, which are chosen as the compared methods. The BN is the method used in this paper,
and the experimental results are shown in Table 5.

Table 5. Prediction results in accuracy (%). There are three groups of experiments—methods using
combined factors (LG-C, DT-C, BN-C), behavior factors (LG-Be, DT-Be, BN-Be), and background factors
(LG-Ba, DT-Ba, BN-Ba). “C” is the abbreviation for “combined factors”. “Be” is the abbreviation for
“behavior factors” and “Ba” is the abbreviation for “background factors”. LG-C represents logistic
regression using combined factors. The representation of other methods is similar. From the results,
methods using combined factors perform much better, from which, our proposed method BN-C
performs best.

Combined Factors Behavior Factors Background Factors

Method Accuracy Method Accuracy Method Accuracy
LG-C 62.86 LG-Be 58.95 LG-Ba 45.35
DT-C 76.47 DT-Be 65.38 DT-Ba 54.24
BN-C 82.14 BN-Be 80.29 BN-Ba 56.37

From the results, the Bayesian network based on combined factors (BN-C) performs best, which
achieves 82.14% accuracy, about 30.67%, 7.41% higher than logistic regression and decision tree based
on combined factors (LG-C, DT-C), respectively. Additionally, the prediction results of methods based
on combined factors perform much better than methods based on behavior factors (LG-Be, DT-Be,
BN-Be) and background factors (LG-Ba, DT-Ba, BN-Ba). For example, LG-C achieves about 6.63% and
38.61% higher than LG-Be and LG-Ba, respectively, in accuracy. Similarly, BN-C achieves about 2.3%
and 45.71% higher than BN-Be and BN-Ba, respectively, in accuracy, confirming the effectiveness of the
constructed network with combined factors.

5.4. Results of Factor Selection Using MI

Factor selection aims to select the important factors influencing the target factor. We use MI to
implement factor selection, and the factor with the maximum value has the highest effect on the grade.
The mutual information of factors influencing grade is shown in Table 6.

Table 6. MI of factors influencing grade.

Factor MI

Completion 0.36489
Forum posts 0.1489
Active days 0.11021
Events 0.10308
Views 0.02308
Assignments 0.0017

Learning type 0.06549
Motivation 0.02803
Age 0.0073
Education 0.0065
Expected Learning Hours 0.00367

From the results, we select two important behavior factors and two important background factors.
The selected factors have a high MI influencing the target factor in comprehensive and their MI is
shown in bold. Completion (MI:0.36489) and forum posts (MI:0.1489) are the two most important
behavior factors influencing grade. Learning type (MI:0.06549) and motivation (MI:0.02803) are the
two most important background factors influencing grade. As behavior factors have a direct impact
on learning performance, the MI of completion and forum posts are much higher than that of learning
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type and motivation. Moreover, we also select important factors influencing the important behavior
factors. According to the results shown in Tables 7 and 8, learning type and motivation both have
important impacts on completion and forum posts.

Table 7. MI of factors influencing completion.

Factor MI

Motivation 0.09092
Learning Type 0.07323
Views 0.06093
Expected Learning Hours 0.01278

Table 8. MI of factors influencing forum posts.

Factor MI

Learning Type 0.08779
Events 0.03974
Age 0.03879
Motivation 0.01969

In conclusion, we choose completion and forum posts as important behavior factors, and learning
type and motivation as important background factors. Further analysis is performed based on the
results of this factor selection. We will explore learners with different performances considering the
most important factors, aiming to design personalized interventions strategies for them.

5.4.1. Impact of Behavior Factors

To explore the impact of important behavior factors on learning performance, we make state
combinations of completion and forum posts, and infer the grade level. There are nine state
combinations, and the probabilities of grade levels (Grade = Level A, B, C, or D) for each combination
are shown in Table 9.

Table 9. State combinations of completion and forum posts, and their probabilities of grade level (%).
About 74% learners achieve grade level A with “Completion = High” and “Forum posts = High” and
about 87.5% learners achieve grade level D with “Completion = Low” and “Forum posts = Low”.

Completion Forum Posts Grade = Level
A

Grade = Level
B

Grade = Level
C

Grade = Level
D

High High 74 9.48 6.97 9.58
High Moderate 51.1 6.62 27.7 14.6
High Low 37.5 8.4 19.4 34.7
Moderate High 66.3 2.12 25.7 5.87
Moderate Moderate 12.8 0.11 71.5 15.5
Moderate Low 9.08 0.12 63.8 27
Low High 48.7 16.5 2.09 32.7
Low Moderate 7.27 3.22 2.78 86.7
Low Low 2.09 2.35 8.09 87.5

From the results, learners with a low level of completion and forum posts are prone to achieve
grade level D (87.5%) and learners with a high level of completion of courses and forum posts are
prone to achieve grade level A (74%). Further analysis will be conducted combining those two
state combinations with state combinations of important background factors leading to poor and
excellent performance.
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5.4.2. Impact of Background Factors

To explore the impact of important background factors on learning performance, we make state
combinations of motivation and learning type under the condition of “Completion = High” and
“Forum posts = High”, and infer the grade level. The top three highest probabilities of grade level D
and level A for state combinations of important background factors are shown in Tables 10 and 11,
respectively. From the results, passive learners with the motivation of preparing for college are prone
to achieve grade level D (79.9%) and active learners with the motivation of gaining skills to use at
work or for a promotion are prone to achieve grade level A (44.3%).

Table 10. Probabilities of each grade level of state combinations of motivation and learning type (Top
three items ordered by Grade = “Level D”) (%). About 79.9% learners achieve grade level D with
“Motivation = College” and “Learning type = Passive”.

Motivation Learning Type Level A Level B Level C Level D

College Passive 6.12 5.2 8.82 79.9
School Passive 7.67 1.27 13.2 77.9
College Drop-in 13.6 3.14 8.15 75.1

Table 11. Probabilities of each grade level of state combinations of motivation and learning type (Top
three items ordered by Grade = “Level A”) (%). About 44.3% learners achieve grade level A with
“Motivation = Work” and “Learning type = Active”.

Motivation Learning Type Level A Level B Level C Level D

Work Active 44.3 9.53 17.8 28.3
Topics Active 35.1 4.74 27.3 32.8
School Active 32.8 9.04 9.7 48.5

5.4.3. Impact of the Combinations of Behavior and Background Factors

To design interventions, the groups of learners with specific states leading to poor performance
should be inferred. For comparison, we also infer the groups of learners leading to excellent
performance. According to the personalized intervention design method, due to the more remarkable
impact of behavior factors on learning performance, we first fix the state combination of completion
and forum posts, leading to much higher probability of level D grade (“Completion = Low” and
“Forum posts = Low”) or level A grade (“Completion = High” and “Forum posts = High”). Next,
we make all state combinations of motivation and learning type with the fixed state combinations of
completion and forum posts. Thus, we can infer that what behavior and background states lead to
much better or worse learning performance. We will then identify learners in need of help and design
personalized interventions for different groups of learners. Additionally, computation is performed
fewer times than when making all state combinations of all behavior and background factors. The top
three highest proportions of grade level D and grade level A for the state combinations of important
background and behavior factors are shown in Tables 12 and 13, respectively.

From the results, compared with single factors, much worse and better performance can be
obtained combining background and behavior factors. For example, drop-in learners with a low level
of completion and forum posts, but who enjoy being part of a community of learners, have a 95.2%
probability to achieve a level D grade and only a 2.68% probability to achieve a level A grade. Similarly,
active learners with a high level of completion and forum posts, and learning for school have a 77%
probability to achieve a level A grade and have a 12.6% probability to achieve a level D grade. Thus,
we can identify the groups of learners who may need help. Furthermore, we can design personalized
interventions for learners considering their background factors.



Entropy 2019, 21, 1102 17 of 25

Table 12. Probabilities of each grade level of state combinations of motivation, learning type, and fixed
behavior states (Top three items ordered by Grade = “Level D”) (%). About 95.2% learners achieve
grade level D with “Motivation = Community”, “Learning type = Drop-in”, “Completion = Low” and
“Forum posts = Low”.

Motivation Learning Type Completion Forum Posts Level A Level B Level C Level D

Community Drop-in Low Low 2.68 2.01 0.12 95.2
Topics Drop-in Low Low 1.92 1.35 4.14 92.6

Curiosity Active Low Low 2.73 2.84 5.09 89.3

Table 13. Probabilities of each grade level of state combinations of motivation, learning type, and fixed
behavior states (Top three items ordered by Grade = “Level A”) (%). About 77% learners achieve grade
level A with “Motivation = School”, “Learning type = Active”, “Completion = High” and “Forum posts
= High”.

Motivation Learning Type Completion Forum Posts Level A Level B Level C Level D

School Active High High 77 10.2 0.21 12.6
Work Drop-in High High 76.3 10.3 1.12 12.2
Work Active High High 75.4 9.68 4.1 10.8

5.5. Personalized Interventions

5.5.1. Interventions for Different Learners

The important application of MI and learning performance prediction is to anticipate effective
intervention strategies based on more than one contributory factor, aiming to improve learning
performance. Specifically, we identify learners with poor performance and design interventions
considering their background and learning behaviors. In this study, motivation, learning type,
completion, and forum posts are important background and learning behavior factors influencing
learning performance. Thus, we make interventions considering the state combinations of those
factors. For example, Table 12 shows three situations of poor learning performance with different state
combinations. Considering the learning motivation (e.g., community and topics), we can make some
interventions related to enhancing social interactions and interesting topics. Considering the learning
type (e.g., Drop-in), we can make some interventions related to reward mechanism and game-based
learning to encourage learning. Likewise, considering the learning behaviors (“Completion = Low”
and “Forum posts = Low”), we can make some interventions related to enhancing social interactions,
reward mechanisms, and game-based learning. For comparison, we also identify learners with excellent
performance similarly. From the two types of learners, we may obtain a deep and comprehensive
understanding of the discrepancy in learning outcomes.

However, not all learners will be provided with interventions. For example, a positive correlation
between effort and learning performance can be easily obtained [49]. This conclusion has little practical
significance for intervention design besides encouraging learners to work harder in learning. In this
situation, we are not sure what factors cause less investment in learning and whether interventions
should be made for all poor performance learners. Learners enroll in courses for various reasons.
Satisfying curiosity and advancing in a current job are common motivating factors [50,51]. Many
learners join online courses only to have some exposure to the best platforms in the world [52].
Learners motivated for a work promotion may result in more investment than for curiosity, leading to
better learning performance. There is no urgent need to design interventions for learners motivated
by curiosity.

According to previous studies, five categories of interventions in an online learning environment
are summarized as follows: (1) observation, (2) knowledge-building interventions, (3) interactive
interventions, (4) curriculum and pedagogical interventions, and (5) text-based warning interventions.
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Different from previous studies, an important conclusion in this paper is that we do not have to
design interventions for all poor performance learners. For a learner who lacks motivation, the best
intervention is no intervention and tracking observation. If the learner continues engagement in
learning and performs worse, we will design corresponding interventions.

Knowledge-building interventions develop new understandings and thinking to improve learning
and generate further knowledge [53]. Educational resource recommendations are an effective strategy
to optimize learning and broaden knowledge [54]. If a learner has difficulty with understanding the
current lecture, we can recommend some related educational resources, which may explain theories
in an easily understandable way and have sufficient examples. To better complete personalized
educational resources, which are matched to learners’ need, we should take some measures to estimate
learners’ knowledge level, such as a knowledge assessment [55]. In this way, we can identify the
knowledge that is only weakly mastered by learners and improve their learning.

The goal of interactive interventions is either to promote learner–learner communication [56] or
to support learner–instructor feedback [57], such as collaborative learning [58], forum discussion [59],
game-based activities [60], and post-lecture exercises [61]. Communication can promote learning
enthusiasm and make learners invest more in learning. Curriculum and pedagogical interventions
are used to help learners engage in learning and generate interest for courses, such as sending
learning materials and automatic reminders [62], adding interactive elements in the lecture [63],
post-hoc analysis (e.g., click data analysis) [64] and reward mechanisms [65]. Text-based warning
interventions are designed for psychological considerations, including identification of negative or
anxious sentiments [66] and topic modeling of forum posts [67]. Sentiment analysis and topic modeling
of those valuable opinionated texts can assist instructors to make guiding instructions to improve
learning performances. The detailed conclusion of the proposed personalized interventions are shown
in Table 14.
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Table 14. Detailed description of the five types of personalized interventions.

Category Item Description

Observation Observation Take no intervention and keep tracing learners’ learning.

Knowledge-
building
interventions

Knowledge mastery
level assessment

Model learners’ mastery level of given knowledge conveyed by
lectures. If only a small proportion of learners do not master
the knowledge, we suggest designing interventions, such as
educational resources recommendations, to improve learners’
learning. If most learners do not master the knowledge, we suggest
instructors to improve teaching and lecture quality.

Exercise
recommendation

Recommend exercises related to knowledge that learners have not
mastered well, according to the learners’ knowledge mastery level.

Book
recommendation

Recommend books according to the learners’ knowledge mastery
level and education backgrounds. These books may explain
theories in an easily understandable way and have sufficient
examples.

Video
recommendation

Recommend high quality videos related to the selected course
according to the learners’ knowledge mastery level and education
backgrounds.

Interactive
interventions

Collaborative
learning

Divide learners into small collaborative learning groups. Each
learning group comprises learners with different knowledge
mastery levels and the same backgrounds, to enhance and improve
their learning.

Discussion forum Guide learners to participate in the discussion forum to ask
questions or help others. Setting up different topics related to not
well-mastered knowledge or extended knowledge outside lectures
for discussion.

Game-based activities Organize game-based activities between learning groups, such as
virtual reality-based teaching, and question-and-answer contests
between groups.

Post-lecture exercises Design exercises after lectures to assess learners’ knowledge
mastery levels. Set several knowledge points for each exercise
and perform statistics of the answering time, times of asking for
help, and so on.

Curriculum
and
pedagogical
interventions

Automatic reminder Send learning materials before the lecture and learning progress to
learners automatically.

Add interactive
elements in the
lecture

Add interactive exercises and questions during the video to
stimulate thinking.

Post-hoc analysis Perform post-hoc analysis of clickstream data and major video
interaction events, to enhance learner engagement by improving
the quality and interactivity.

Reward mechanism Give incentives for changing behaviors, such as accumulated points
and vouchers, which may be a convertible opportunity to have
priority of communication with instructors.

Text-based
warning
interventions

Identification of
negative or anxious
sentiment

Identify forum posts with negative or anxious sentiment. Those
posts will be used for topic modeling to improve teaching or
learning.

Topic modeling of
forum posts

Conduct topic modeling of the forum posts. If most learners have
negative or anxious comments, we suggest improving the teaching
or lecture quality with the results of the topic modeling, such as
“poor sound quality”, “too obscure to understand”, “speaks too
fast”, etc. If a small proportion of learners have negative or anxious
comments, we suggest designing interventions for the results of
topic modelling, such as “hard to understand the ’stack’ concept”,
“need more detailed explanation”, and so on.
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5.5.2. Case Study

This section demonstrates a case of poor performance with the state combination of specific
background and learning behavior factors. In Table 12, drop-in learners who are interested in
participating in the community (“Motivation = Community” and “Learning type = Drop-in”) leads to
the highest probability of a level D grade of the combination of motivation and learning type with the
learning behaviors of “Completion = Low” and “Forum posts = Low”. In this case, learners have some
difficulties in continuous learning and are prone to drop courses in the online environment. Learning
willingness and behaviors of those learners may change rapidly over the span of a course. At the
beginning, those learners probably have great enthusiasm to watch videos and participate discussions.
With the course in session, the learners may become inactive or dropout from courses. Therefore, it is
extremely necessary for instructors to make some guiding suggestions or interventions to improve
learning for those learners. Table 15 demonstrates the personalized interventions for the given case.

Table 15. Personalized interventions for learners of the given case.

Background Learning Behavior Intervention

Motivation =
Community
Learning type =
Drop-in

Completion = Low
Forum posts = Low

(1) Collaborative learning. Guiding learners to join some
collaborative learning groups with the same age, education and
knowledge mastery level or organizing new groups of topics
related to the participated courses.
(2) Reward mechanism. As the learners’ learning type is drop-in,
adopt some reward interventions such as accumulated points for
continued learning and posting forums, which may encourage
their learning.
(3) Automatic reminders and educational resource
recommendations. Sending some simple and interesting
books and videos before the lecture to stimulate interest in
learning.
(4) Game-based activities. Organizing game-based activities in or
between collaborative learning groups.
(5)Identification of negative or anxious sentiments. Identify
learners with negative or anxious sentiments.
(6)Topic modeling of forum posts. We can analyze the forum posts
by text mining to identify why the learners drop lectures.

6. Discussion

The experimental results have proven the effectiveness of the proposed framework.
The constructed BN not only demonstrates the causal relationships between factors and learning
performance visually but also measures those relationships quantitatively. The prior probabilities of
the BN demonstrate that several learners do not perform well on the selected courses; about 40% of
learners achieve a level D grade. A previous study has shown an even higher proportion of a low
grade [3]. It is essential to design some interventions to improve learning performance. The results of
factor selection show that completion, forum posts, learning type, and motivation are important factors.
Moreover, the results of learning performance prediction verify the effectiveness of the constructed
model, and combining backgrounds and learning behaviors is the best way to identify learners in need
of help. Finally, the personalized interventions are given for different learners with poor performance.
In practice, there will be more cases with different state combinations of different factors. Naturally,
there is room for further work and improvements. We discuss a few points here.

Criteria of learning performance. According to the learning performance criteria of Victoria
University of Wellington, a grade less than 50 is discretized to grade D, which represents poor
performance. The proportion of poor performance may be different based on different criteria. In
future work, the criteria from other research institutes and various criteria, such as added knowledge
and skill building, will be considered [10].
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Other factors. Many other factors are not researched in this paper, which have not been proven
to have an important impact on learning performance, such as gender, total scores from previous
education [68], cumulative time spent on learning, and the number of viewed posts [69]. Our future
work is to analyze and model those factors alongside the factors used in this paper, which may help
to gain a deeper insight into why learners achieve poor learning performances, and how to improve
learning performance.

Other methods. Some other machine learning methods can be applied in causal analysis.
The authors in [26] improved the Apriori algorithm to make causal analysis between learning behaviors
and performance. This method is based on association analysis that can not express the connection
between different rules. BN can graphically represent the joint probability distribution among factors
and comprehensively considers the effect of several factors on target factors. The structure equation
model is also a graphical model that is able to model causal relationships between factors. The method
is applied in education [27] and other fields. The structure equation model heavily relies on expert
knowledge and uses data to justify the expert knowledge. BN can combine the expert knowledge
with a constructed network that gives the maximum likelihood based on data. In future work, we will
preform a causal analysis using other methods and make a comparison.

Other applications. The framework proposed in this paper can be applied not only to causal
relationship modeling between factors and learning performance but also to other educational research
fields, which have similar needs for causal relationship modeling and analysis to propose some
guiding suggestions.

7. Conclusions

The goal of this paper is to construct a well-defined Bayesian network and then provide
personalized interventions for different learners to improve learning. To construct a reasonable
network, we combine expert knowledge based on the Dempster–Shafer theory, which exploits prior
knowledge and structure learning, taking advantage of the data. To make accurate predictions, we
combine background and behavior factors, which perform much better than the single-factor method.
To design effective interventions, we choose the important factors, which help instructors focus on the
most relevant points. Based on the state combinations of important factors, we identify the learners
in need of the most help, not simply all poor performance learners. And last, we conclude several
interventions for different learners which may support making effective decisions and successful
applications in education. In future work, we will continue our research considering more factors
affecting learning performance, criteria of learning performances, and methods for modeling the causal
relationships between factors.
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