
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 186057, 12 pages
doi:10.1155/2012/186057

Research Article

DMPDS: A Fast Motion Estimation Algorithm Targeting High
Resolution Videos and Its FPGA Implementation

Gustavo Sanchez,1 Felipe Sampaio,2 Marcelo Porto,1, 2 Sergio Bampi,2 and Luciano Agostini1

1 Group of Architectures and Integrated Circuits (GACI), Federal University of Pelotas (UFPEL), 96010-610 Pelotas, RS, Brazil
2 Microelectronics Group (GME), Federal University of Rio Grande do Sul (UFRGS), 90040-060 Porto Alegre, RS, Brazil

Correspondence should be addressed to Gustavo Sanchez, gustavofreitassanchez@gmail.com

Received 2 May 2012; Accepted 9 October 2012

Academic Editor: Michael Hübner

Copyright © 2012 Gustavo Sanchez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a new fast motion estimation (ME) algorithm targeting high resolution digital videos and its efficient hardware
architecture design. The new Dynamic Multipoint Diamond Search (DMPDS) algorithm is a fast algorithm which increases the
ME quality when compared with other fast ME algorithms. The DMPDS achieves a better digital video quality reducing the
occurrence of local minima falls, especially in high definition videos. The quality results show that the DMPDS is able to reach
an average PSNR gain of 1.85 dB when compared with the well-known Diamond Search (DS) algorithm. When compared to the
optimum results generated by the Full Search (FS) algorithm the DMPDS shows a lose of only 1.03 dB in the PSNR. On the other
hand, the DMPDS reached a complexity reduction higher than 45 times when compared to FS. The quality gains related to DS
caused an expected increase in the DMPDS complexity which uses 6.4-times more calculations than DS. The DMPDS architecture
was designed focused on high performance and low cost, targeting to process Quad Full High Definition (QFHD) videos in real
time (30 frames per second). The architecture was described in VHDL and synthesized to Altera Stratix 4 and Xilinx Virtex 5
FPGAs. The synthesis results show that the architecture is able to achieve processing rates higher than 53 QFHD fps, reaching the
real-time requirements. The DMPDS architecture achieved the highest processing rate when compared to related works in the
literature. This high processing rate was obtained designing an architecture with a high operation frequency and low numbers of
cycles necessary to process each block.

1. Introduction

Nowadays digital video compression is really a relevant issue.
It happens due to the growing development of applications
that handle high definition videos, as smart phones, digital
cameras, tablets, and so on. These applications would not
be possible without video compression. The video bitstream
must be drastically reduced to enable the transmission and
storage, especially when high definition videos must be
processed in real-time.

In a digital video there is a lot of redundant information,
and this redundancy is explored in the current video coder
standards. Neighbor blocks in a frame usually have very sim-
ilar pixel colors and intensity and the intraframe prediction
of the current video coders explore this type of redundancy.
The transforms and quantization also contribute to reduce
the intraframe redundancy, but in this case, in the frequency

domain. In a set of neighbor frames, the information is also
very similar among them, because the video is encoded at a
frame rate of at least 24–30 frames per second, so neighbor
frames tend to be very similar. This redundancy is explored
by the interframe prediction operation. The redundancy on
the bitstream representation is also explored by the current
video coder standards through the entropy coding operation.
Our work is focused on the interframe prediction.

Motion Estimation (ME) is the main operation of the
interframe prediction and it represents about 80% of the
total computational complexity of current video coders [1].
The ME must find the best matching in the reference frames
for each block of the current frame, defining a motion vector
indicating where the best matching was found. A search
algorithm defines how the search is done and a similarity
criterion is used to compare the candidate blocks with each
original block. A search area is defined inside the reference

2 International Journal of Reconfigurable Computing

frame around the collocated block to constrain the ME
complexity. The collocated block is that block in the reference
frame which is located at the same position of the original
block that is currently being processed. The search for best
vectors is known to be very expensive in terms of calculations
and, consequentially, in terms of the processing time. The
Full Search (FS) [2] algorithm explores all possibilities in a
given search area, which implies in a very high computational
cost, especially for high resolution videos, which requires the
use of larger search areas.

The current video coding standards like MPEG2 [3]
and H.264/AVC [4] and even the emerging HEVC (High
Efficiency Video Coding) [5] standard do not restrict how
the ME is done. Based on this fact, there is a vast space to
explore new algorithm solutions for the ME. These solutions
are evaluated according to the tradeoff between complexity
and objective quality of the encoded digital video.

There are many fast search algorithms in scientific
literature. These algorithms deal with this complexity, at
different levels of impact in objective quality (PSNR). Gen-
erally, these algorithms exploit the characteristic of locality
among temporal correlated blocks and they can achieve
good results in terms of numbers of calculations. However,
these algorithms assume that the error function decreases
monotonically on the surface of the frame, in order to
speed up the algorithm. This assumption does not hold true
sometimes, and the search might be trapped into a local
minima.

The majority of the published ME search algorithms
only considers low resolution videos, as QCIF and CIF,
in its experiments. However, the quality results of the ME
algorithms can significantly change with the increasing of
the video resolution. For low resolution videos, the quality
results for FS and many other fast algorithms are very
close. The great amount of pixels in high definition videos
may lead the fast algorithms to choose, more frequently,
local minima as the best matching. Thus, the quality losses
(in comparison with FS) are significant in this scenario.
Techniques to avoid local minima falls must be explored to
enhance the video quality without a significant increase in
the ME computational complexity.

In previous works of our group, new algorithms and
hardware architectures for ME on high definition videos
were presented, as [6, 7]. The Multipoint Diamond Search
(MPDS) and the hardware solution targeting real-time for
HD 1080 p (1920 × 1080 pixels) videos were presented in
[6]. The Dynamic Multipoint Diamond Search (DMPDS)
algorithm and the initial hardware design for this algorithm
were presented in [7]. This paper presents detailed results
related to the ME behavior on high resolution videos,
showing the growth on the quality losses of the traditional
fast algorithms with the increasing of the video resolution.
The DMPDS algorithm is also presented and evaluated with
detailed information. The results showed that the DMPDS
algorithms can significantly improve the video quality when
compared with traditional fast algorithms like Diamond
Search (DS) [8], especially when high definition videos are
considered. Finally, this paper presents the hardware design
for the DMPDS algorithm, including the synthesis results

29

30

31

32

33

35

36

37

FS

DS

34

144 p UMD 272 p EDTV 480 p HD 720 p HD 1088 p

P
SN

R
 (

dB
)

Video resolution

Figure 1: Average PSNR curves of DS and FS.

targeting an Altera Stratix 4 [9] and a Xilinx Virtex 5 FPGAs
[10]. The hardware design of the DMPDS algorithm targeted
real-time processing for Quad Full High Definition (QFHD)
(2160× 3840 pixels) video sequences.

The paper is organized as follows. Section 2 presents
an investigation about the ME in high definition videos.
Section 3 explains the MPDS and DMPDS algorithms.
Section 4 shows details about the architecture presented in
this paper and Section 5 presents the results and comparisons
with related works. Finally, Section 6 renders the conclusions.

2. Motion Estimation in High Definition Videos

The increasing in the video resolution can directly affect
the ME results. The fast ME algorithms can be affected by
this characteristic, generating different results, for the same
video, in different resolutions. High resolution videos tend
to present very similar neighboring pixels (much more than
low resolution ones) and this fact contributes to increase the
occurrence of local minima falls.

Diamond Search (DS) [8] and Full Search (FS) [2]
algorithms were applied to ten HD 1080 p video sequences
to demonstrate the influence of the video resolution growing
in the ME quality. The used video sequences were blue sky,
man in car, pedestrian area, hush hour, station2, sunflower,
riverbed, rolling tomatoes, traffic, and tractor [11]. These
sequences were resized for many lower resolutions: 256×144
pixels (144p—which is equivalent to QCIF resolution in a
16 : 9 aspect ratio); UMD 272 p (480 × 272); EDTV 480 p
(854× 480); HD 720 p (1280× 720) and HD 1080 p (1920×
1080). The search areas were defined proportionally with the
resolution. All the experiments in this paper will consider the
average results achieved for these ten video sequences.

Figure 1 presents the average PSNR curves of DS
algorithm in red and FS algorithm in blue, considering the
five different resolutions. The used block size was 16 × 16
pixels, and the search area grew proportionally to the video
resolution growing.

In low resolution videos, DS and FS algorithms obtained
almost the same PSNR results. However, through the analysis
of Figure 1 curves it is possible to notice that the difference

International Journal of Reconfigurable Computing 3

in PSNR results between DS and FS algorithms grows
significantly with the video resolution increasing. The FS
continuously increases the PSNR gains with the video
resolution growing. This happens because the search area
also grows and the FS algorithm can explore all candidate
blocks in the search area. Analyzing the DS algorithm PSNR
curve, the growing in resolution does not mean that the
DS quality increases. In fact, the DS got a worse quality for
1088 p than when encoding 720 p or 480 p. It is explained
because the DS can easily be trapped into a local minimum.
The efficiency of the DS is reduced a lot for high definition
videos, because there is a lot of similar information among
neighbor pixels (and blocks).

These results show that the DS algorithm is efficient
for low resolution videos, since it has PSNR results which
are very similar to FS results, with a significant computa-
tional cost reduction. For high definition videos, the PSNR
losses become more significant, and the relevance of the
algorithm is only related with computational cost reduction.
This experiment demonstrates that quality results for fast
algorithms in low resolution videos cannot be extrapolated
for a high definition video scenario.

The increase of local minima falls in high definition
videos is the main reason why the DS algorithm loses its
efficiency. The increase in the search area for the DS does not
present much gain because in average the DS iterates only
5 times. Also, with the increase in the search area, the ME
optimum candidate block can be far away from the center of
the search area. Fast algorithms, like DS, can be easily trapped
in local minima, before they achieve the optimum result.

A widely used similar criterion is the Sum of Absolute
Difference (SAD). To perform the SAD, the block that
has been encoded is subtracted from a candidate block
and the absolute value of this operation is added. SAD
maps are presented in Figure 2, to illustrate the growing of
the local minima occurrences in high definition videos. In
Figure 2 SAD maps are presented for a search area in the
sun flower video. Each map represents the same region of
the frame, with a different number of pixels. Figures 2(a)–
2(e) represents the SAD maps for the resolutions 144 p, UMD
272 p, EDTV 480 p, HD 720 p, and HD 1080 p, respectively.
The images represent the SAD magnitude for 16× 16 blocks,
where dark blue represents lower SAD values, and light
orange represents higher SAD values.

In Figure 2(a) it is possible to see that good SAD
results can be achieved around the center of the search
area; traditional fast algorithms like DS would easily reach
the global minimum. With the increase of resolution, some
regions, dark blue regions, that is, good SADs results, can
be found within some distance from the central block. This
proves that the video resolution increase is a problem if
the used search algorithm cannot deal with local minima
falls. More dark regions can be seen in Figure 2(c); however,
in Figures 2(a)–2(c) the global minima can be visually
identified. However, in Figure 2(d) and Figure 2(e), there
are a lot of dark blue regions and it is impossible to visually
identify the global minima.

The analyses of the images presented in Figure 2 can
explain the results presented in Figure 1. Both DS and FS

algorithms choose similar candidate blocks (or even the
same) at low resolution videos. As presented in Figure 2(a),
there are only a few candidate blocks with good SAD
results in a low resolution video, and all around the center
of the search area. Even if the DS does not reach the
optimal candidate block, it will choose a closer block with a
similar SAD value (average difference of 0.19 dB). For high
resolution videos, like HD 1080 p, the higher number of
local minima significantly increases the differences between
PSNR results for DS and FS algorithms (more than 3.4 dB).
This DS fragility to local minima falls should be explored
by new algorithms to achieve a good quality result without
increasing a lot the complexity like FS would.

For a better analysis about local minima, Figure 3
presents the SAD for every candidate block in a search area
of 128× 128 samples in the HD 1080 p sun flower sequence.
This picture represents a 3D view of the SAD magnitude
for blocks with 16x16 samples, where valleys represent lower
SAD values, and peaks represent higher SAD values.

In Figure 3 it is also possible to see that there are a lot of
peaks and valleys in this search area. The global minimum
is the valley with the lowest SAD. This scenario is different
for low resolution videos, where the number of peaks and
valleys is much lower than that presented in Figure 3. In high
resolution videos, fast iterative algorithms (DS for example)
are unable to transpose some peaks around the center to
achieve a global minimum. Then fast algorithms are easily
trapped in local minima around the center of the search area.

Due to the FS algorithms complexity, their implemen-
tation for high definition videos is very computationally
expensive. The performance requirements to achieve real-
time processing in this kind of video are extremely high.
Hardware solutions for FS algorithm must massively explore
parallelism to reach real-time, increasing the hardware
recourses utilization and also power consumption. Fast algo-
rithm implementations use much lower hardware resources
and achieve a much better processing rate, but at a cost of an
expressive loss in quality.

The development of new fast ME algorithms, focused
in high definition videos, is very important to achieve a
good tradeoff between quality and computational cost. The
hardware implementation is also very important, mainly for
real-time applications on portable devices. Fast algorithms
must be easily implemented in hardware, translating their
computational cost reduction to hardware resources reduc-
tion, and also power in savings.

3. The DMPDS Algorithm

The DMPDS algorithm is based on the MPDS algorithm
[6]; however, DMPDS introduces the dynamic control of the
multi point search engines position. The basic engine used by
the DMPDS algorithms is the well-known DS algorithm. A
multi point approach is used to find the best matching in five
different positions of a search area, and the dynamic control
defines where the search engines will be placed, according to
the video motion activity characteristics. With this strategy
it is possible to reduce the local minima falls and to increase
the quality results.

4 International Journal of Reconfigurable Computing

×103

16

14

12

10

8

6

4

2

0

(a) 144 p

22

20

18

16

14

12

10

8

6

4

2

0

×103

(b) 272 p

×103

30

25

20

15

10

5

0

(c) 480 p

×103

0

40

35

30

25

20

15

10

5

(d) 720 p

45

40

35

30

25

15

10

5

0

20

×103

(e) 1080 p

Figure 2: SAD maps for a sun flower frame.

This section presents the Diamond Search and the
Multipoint Diamond Search algorithms which are the basis
for the Dynamic Multipoint Diamond Search proposed in
this paper.

3.1. Diamond Search Algorithm. Diamond Search [8] is a
fast and well-known search algorithm for ME. As previously
explained, the DS achieves quite impressive results for

low resolution videos; however, when dealing with high
resolution videos, the quality degradation becomes higher.

The DS algorithm has two search patterns: the Large
Diamond Search Pattern (LDSP) and the Small Diamond
Search Pattern (SDSP) [8], as presented in Figure 4. The first
used pattern is the LPDS. If a best match is found in an edge
or a vertex of the LDSP, a new LDSP is formed, considering
the best match of the previous LDSP as the center. This

International Journal of Reconfigurable Computing 5

0–200
200–400

400–600
600–800

800

600

400

200

0

Figure 3: 3D SAD map for a 1080 p sun flower frame.

process can be repeated many times. When the best match of
an LDSP is found at the center, then all positions of the SDSP
are evaluated to refine the result, considering the previous
best result of LDSP as the center. The SDSP is applied just
once while LDSP may be used many times and the best
position found in the refinement is used to generate the
motion vector.

3.2. Multipoint Diamond Search Algorithm. The main moti-
vation to develop new fast algorithms to ME is related
to the behavior of the traditional approach used in fast
ME algorithms which does not reach good results for high
resolution videos. The single iterative approach, as the one
used in DS and other algorithms, is strongly susceptible to
local minima falls when processing high resolution videos.
Then new approaches are mandatory if the quality increase
is intended in this type of applications. The MPDS algorithm
was a first solution developed in our group [6] dealing with
this challenge. The MPDS algorithm intends to generate
quality results close to those generated by FS with a much
lower number of calculations. In low resolution videos, the
DS achieves good results ruining alone; however, the MPDS
increases the DS computational complexity and it is able to
achieve high quality on high definition videos.

The MPDS finds the best block matching in five different
positions of a search area. Each position is the start point
of a DS iterative search. Beyond the central point, other
four points are defined, each one inside of a sector (A,
B, C, and D), as presented in Figure 5. The MPDS is not
restricted to only one start point, exactly to avoid the same
local minimum reached by DS. In the worst case, the MPDS
algorithm will reach the same results as the DS algorithm.
This multi point approach is the technique that is used by
MPDS to obtain a better quality when a high definition video
has been encoded.

(a) (b)

Figure 4: LDPS at the left and SDSP at the right [8].

Sector 2

Sector 3

Sector 1

Sector 4

AB

C D

(−d, +d) (+d, +d)

(−d, −d) (+d, −d)

0

Figure 5: MPDS search in five regions of the search area.

Figure 5 describes the search positions of MPDS algo-
rithm. Each initial search point is defined by its coordinates
inside the sector. The point (0, 0) is the central position and it
will obtain the same vector as the DS algorithm. The search in
the sectors A, B, C and D will be done according the distance
parameter d. The d parameter is the distance (number of
samples in X- and Y-axis) from the central point (0, 0).
The sector A, B, C and D starts searching, respectively, at
positions (d, d), (−d, d), (−d, −d) and (d, −d). When the
search ends the MPDS algorithm selects the best result from
the five applied diamonds. Pseudocode 1 describes the MPDS
algorithm.

The d parameter has a high impact on the results
obtained by the MPDS algorithm. If a low motion activity
video has been encoded, the MPDS algorithm would achieve
good results if low values of d are used since the motion
would be so small that there would be good candidate blocks
near the origin. On the other hand, high motion activity
videos would achieve better results using the opposite (high
values of d). Figure 6 shows the PSNR curves for MPDS
algorithm with each one of the ten used test video sequences
cited before. The curves were generated considering the
variation of the d parameter value, from zero to 40,
considering blocks of 8× 8 pixels. One can notice that when

6 International Journal of Reconfigurable Computing

(1) Define d
(2) Frame <= 0
(3) Block <= 0
(4) Repeat
(5) Repeat
(6) SAD zero <= Execute DS (0, 0)
(7) SAD A <= Execute DS (d, d)
(8) SAD B <= Execute DS (−d, d)
(9) SAD C <= Execute DS (−d,−d)
(10) SAD D <= Execute DS (d,−d)
(11) Lowest SAD <= Min (zero, A, B, C, D)
(12) Generate Vector (Lowest SAD)
(13) Block ++
(14) While (Block<Max Blocks)
(15) Frame ++
(16) While (Frame<Max Frames)

Pseudocode 1

d = 0 the MPDS applies all DS in the same position (i.e.,
in the correlated block) and the MPDS will obtain the same
result obtained by a single DS.

From Figure 6 it is easy to notice that the MPDS
algorithm obtains different results based on the d parameter
value. The optimum value can significantly change according
to the video motion characteristics. Low motion activity
videos like blue sky can reach best results using d = 5, with
more than 6 dB gain in comparison to the DS algorithm.
The video pedestrian area has a lot of motion activities and
reaches the best results with a d = 20, obtaining a quality
gain superior to 4.5 dB in relation to DS algorithm.

The same experiment was made for 16 × 16 block sizes
to identify the d value that maximize the average results of
MPDS algorithm (considering the ten sequences). Using d =
10 the MPDS algorithm can achieve the best average gain in
comparison to the DS algorithm (1.69 dB). This was the used
value for d parameter on MPDS algorithm.

3.3. Dynamic Multipoint Diamond Search Algorithm. With
the analyses about the d parameter it was possible to
notice that a fixed d parameter would not achieve the
optimum quality result for all video sequences. The best d
parameter value for the blue sky sequence does not generate
the best result for the traffic sequence, for example. It
happens because these two sequences have different motion
activity scenarios, which has significant influence in ME
quality results. In this context, the DMPDS algorithm was
developed, inserting a dynamic control of the d parameter
of the MPDS algorithm. This makes the DMPDS algorithm
more robust to handle videos with different motion activity
scenarios.

The DMPDS defines the d parameter value dynamically.
The variations of the d parameter are influenced by the
characteristic of the current scene. For a low motion
activity scene, the d parameter value can be dynamically
reduced, resulting in better quality results. If the charac-
teristic changes, and the motion activity is increased, the d

25

27

29

31

33

35

37

39

41

43

0 5 10 15 20 25 30 35 40

d parameter value

P
SN

R
 e

m
 (

dB
)

Blue sky Man in car
Pedestrian area Riverbed
Tomatoes Rush hour
Station2 Sunflower

Tractor Traffic

Figure 6: Variation of d parameter for MPDS algorithm.

Figure 7: Dynamic control of the d parameter in the DMPDS
algorithm.

parameter value can be dynamically increased. This dynamic
adjustment enhances the robustness of the algorithm to deal
with any kind of video sequences.

The algorithm to define the d parameter is presented in
Figure 7. Firstly, an initial d value and a dynamic variation
(Δ) are set. The first frame is processed with an original
d parameter, the second frame with d1 = d − Δ, and the
third one with d2 = d + Δ. The d used in the frame that
obtains the lowest SAD becomes the new d and the dynamic
variation (Δ) is divided by 2. This process is repeated until
the dynamic variation reach the value 1, when the oscillation
becomes 1 until the algorithm is restarted. This technique
tries to approximate the optimal d for each frame using a
low complexity heuristic. The start value of the dynamic
parameter Δ is 5 and the start value of d is 10.

It is important to notice that the DMPDS algorithm
could be executed in a parallel or in a sequential fashion. Each

International Journal of Reconfigurable Computing 7

Table 1: Quality and computational cost results for the DMPDS Algorithm.

Video
DS MPDS DMPDS FS

PSNR
(dB)

Number of ECB
(×109)

PSNR
(dB)

Number of ECB
(×109)

PSNR
(dB)

Number of ECB
(×109)

PSNR
(dB)

Number of ECB
(×109)

Blue sky 30.38 0.04 33.23 0.27 33.73 0.24 34.51 14.66

Man in car 38.15 0.03 39.41 0.22 39.60 0.24 40.34 14.66

Pedestrian area 32.56 0.05 35.05 0.33 35.25 0.34 36.15 14.66

Riverbed 24.61 0.06 26.48 0.35 26.86 0.36 27.88 14.66

Rolling tomatoes 37.76 0.03 38.27 0.25 38.32 0.28 38.65 14.66

Rush hour 36.70 0.03 37.29 0.31 37.28 0.36 37.60 14.66

Station2 38.00 0.04 38.39 0.26 38.50 0.22 38.80 14.66

Sunflower 37.31 0.05 38.68 0.37 38.53 0.43 39.11 14.66

Traffic 25.10 0.06 29.05 0.38 28.81 0.39 33.38 14.66

Tractor 29.65 0.07 31.69 0.35 31.85 0.33 32.54 14.66

Average 33.02 0.05 34.75 0.31 34.87 0.32 35.90 14.66

sector can execute its search independently, and in parallel
with the other sectors.

4. Software Evaluation

The DMPDS algorithm was described in C language and
evaluated in a framework containing the ME and MC
(Motion Compensation) processes. The framework just
contained the ME and MC because the ME algorithm can
be performed in many different standards like MPGE-2,
H.264/AVC, or even in the emerging HEVC. For this reason
no other features were added in this framework so the ME is
able to be evaluated without a specific video coding standard,
since no characteristics of a standard like fractional ME [12],
entropy coding tools, and others are going to be evaluated.
The multi point technique is useful to reduce the local
minima falls and then it will reduce the residual information
improving the overall encoder efficiency.

The ten previously presented 1080 p video sequences
were used in this evaluation, with a 16 × 16 block size
and a search range of [−64, +64]. The results for quality
and computational cost of DS, MPDS, DMPDS, and FS
algorithms are presented in Table 1. The computational cost
is measured in a number of Evaluated Candidate Blocks
(ECB) and the quality results are presented in PSNR.

The best DMPDS result in comparison to MPDS is
achieved in the blue sky video, where the DMPDS obtains
a PSNR gain of about 0.50 dB. The DMPDS also presents
a lower number of comparisons in this video and this is a
significant result since the quality result can be improved
with a reduction of the computational cost.

In some videos the MPDS achieves better results than the
DMPDS, for example, in the rush hour video. It happens
because the number of frames encoded in this evaluation
was only 200 and the DMPDS could not converge to the
optimum point for the video sequence.

In the average results, the DMPDS achieves a PSNR
0.12 dB higher than MPDS with a minimum increase of
complexity (about 3% more comparisons). However, the
DMPDS could achieve a higher gain for real videos because

Table 2: Average results for DMPDS and DS with iteration
restrictions and subsampling.

Algorithm
PSNR
(dB)

Number of
ECB

(×109)

Number of
Comp.
(×109)

DMPDS 34.87 0.32 81.55

DS 33.06 0.05 12.33

DMPDS 4 : 1 34.65 0.30 19.29

DS 4 : 1 32.76 0.05 2.97

DMPDS 4 : 1 and 5
iterations

33.67 0.24 15.54

DS 4 : 1 and 5 iterations 31.42 0.04 2.64

there would be more frames in the same sequence (the 200
frames in the evaluation represent less than 7 seconds of a
scene).

Comparing to FS, the DMPDS achieves 1.03 dB lower
PSNR; however, it is possible to reduce the number of ECBs
in more than 45 times. One can notice that a good tradeoff
between computational complexity and digital video quality
was reached using the proposed DMPDS algorithm.

The DS algorithm does not have any limitation in the
number of iterations. This is a problem if we want to design
a real-time system. The proposed hardware solution should
be able to guarantee that the real-time restriction should
be reached, that is, at least 30 frames per second. Since the
number of DS iterations is variable, and consequently the
number of clock cycles are nondeterministic, an iteration
limit should be set. Results targeting hardware implementa-
tion, considering the restriction in the number of iterations,
are presented in Table 2. In this case, the evaluation considers
a restriction of five LDSP iterations and only the DMPDS and
the DS algorithms are considered with this evaluation. This
restriction of five LDSP iterations was used in the hardware
architecture design presented in the next section. Table 2
also presents the evaluation considering the use of 4 : 1 pixel
subsampling. This is a useful technique to reduce the number
of calculations with low impact in the quality results. The use

8 International Journal of Reconfigurable Computing

Comparator

Reference memory

MEM 2 MEM 3 MEM 4 MEM 5 MEM 9MEM 1MEM DMEM CMEM BMEM A

External memory

PU 1 PU 2 PU 3 PU 4 PU 5 PU 9

Position controller Position controller SDSP

Vector x, y Motion vector

Current
memory

SAD

. . .

. . .

Figure 8: Block diagram of the DS core architecture.

of pixel subsampling is an interesting strategy especially for
hardware implementations, since the internal memory and
processing unities can be reduced. It helps to increase the
processing rate without an impressive impact in the video
quality.

The use of pixel subsampling in a 4 : 1 level together
with the DMPDS algorithm reduces the number of ECBs
and comparison operations about four times, as presented
in Table 2. In this case, the quality losses are very small (less
than 0.13 dB) and the number of comparisons is only 56.4%
higher than DS without pixel subsampling, with an average
PSNR gain of 1.59 dB.

The PSNR gain of the DMPDS algorithm over DS
increases when the restriction in the number of iterations
and the subsampling are considered. The DMPDS PSNR gain
can reach 2.25 dB over DS considering the 4 : 1 subsampling
and the restriction of five iterations. Another positive point
is that the difference in the number of comparisons between
DMPDS and DS is reduced in this scenario. In this case,
the number of comparisons used by the DMPDS algorithm
is six-times higher than the DS. If no iteration restriction
or subsampling is considered, the DMPDS PSNR gain is of
1.81 dB and the number of comparisons is 6.4-times higher
than DS.

Considering the good quality and complexity results
achieved by the DMPDS algorithm with subsampling and
the restriction of LDSP iterations, the designed hardware
architecture considered these two simplifications, intending
to reduce the hardware cost and increase its performance.

5. DMPDS Architecture

The DMPDS architecture works with a block size of 16× 16
samples, and it uses a 4 : 1 pixel subsampling rate. Each
one of the five DS cores is restricted to five iterations

for the reasons presented in the last section. The DMPDS
architecture performance is focused on real-time processing
for QFHD videos, with low consumption of the hardware
resources.

The DMPDS architecture is formed by five DS cores
and some additional logic to dynamically control the d
parameter, to define which is the best vector among the five
cores and to group these DS cores. Figure 8 presents the
block diagram of the DS architecture, which is strongly based
on the DS architecture presented in [13] for this module.
To start the ME process, it is necessary to fill the reference
memory and the current memory. The reference memory is
a 34 × 34 bytes memory, which can store all data for five
iterations and the final refinement. The current memory has
8× 8 bytes and it contains the block being processed.

This first memory reading process takes 34 cycles to fill
the DS reference memory. However, when this memory is
being filled, this memory is also being read by the local
memories (8 × 8 bytes), which are responsible to store the
data of each possible candidate in the current iteration.
During the reference memory writing process, the processing
units (PUs) also start to perform the SAD computation of
the available blocks. Each PU calculates the SAD between the
current block and a candidate block. The PU architecture was
implemented in a pipeline with five stages, as presented in
Figure 9.

When the PUs finish to compute the SADs, these SADs
are compared and the position is updated. The process is
repeated until the comparator finds the lowest SAD in the
center of the DS (in PU 5). In this case the data for the
final refinement is already stored in Local Memories A–D and
in Local Memory 5, then the refinement can be computed
without any additional access to the external memory.

The first LDSP takes 34 cycles to be processed and the
next iterations can be performed in 27 cycles each because

International Journal of Reconfigurable Computing 9

O0

R0

O1

R1

O14

O15

R15

R14

+

−

−

−

+

+

+

−

+

Abs

Abs

Abs

Abs

Figure 9: PU architecture.

there is no need to fill the reference memory again. In the
worst case scenario, the DS is computed in 169 cycles (five
LDSP iterations plus one SDSP refinement).

The block diagram of the DMPDS architecture is pre-
sented in Figure 10. Each core in Figure 10 is composed by
a DS architecture presented in Figure 8. The comparator in
Figure 10 is responsible to find the best SAD among the
SADs of the five cores. The DMPDS architecture basically
controls where to write the data received from the external
memory and it informs the external memory which data is
necessary. In advance to start the ME process, the Core O (in
the center) starts to receive data from the off-chip memory.
It is necessary for 34 cock cycles to fill the internal memories
of this core. When these memories are completely filled, this
core does not read additional data from the external memory
until this block is completely computed and the next one is
required.

This filling process is repeated for the memories of the
next cores until the memories of core D are completely
filled. In this moment, it is possible to start to fill again the
memories of the O core with data for the next motion vector
generation. After core D computes its SAD it is possible
to define the best SAD among the five cores and the final
motion vector.

Figure 11 presents the clock cycles diagram of the MPDS
architecture. The DMPDS architecture has a latency of 170
cycles to fill all cores’ internal memories. In the worst case
scenario, the core D needs more 135 cycles to finish the SAD
computation and more 17 cycles are necessary to perform
the refinement of Core D; the comparator decides which
are the best SADs and to generate the final motion vector.
After the first motion vector is generated, only more 170
cycles necessary to generate the next one. It happens because

SAD

Control

External
memory

Core 0

Core A

Core B

Core C

Core D

Comparator

MV

“d” generator

Figure 10: Block diagram of the DMPDS architecture.

Cycles

34 102 170 306 323 476 493

Core 0

Core A
Core B

Core C
Core D

Reading memory
Processing
Comparison

340
Comparison + SDSP

Figure 11: Clock cycles diagram.

when the first vector finishes it is processing, the cores
O, A, B and C are already processing the next block. The
DMPDS architecture efficiently explores the used hardware
maintaining the cores operating during 169 of 170 cycles
after the first iteration (considering the worst case), that is,
the architecture was designed to be active during 99.4% of
the time. The external memory bandwidth necessary for the
DMPDS architecture is 34 bytes per cycle.

The control block is responsible to implement the state
machine to model the control flow presented in Figure 7
(Section 2). This step is important to define the d parameter
for the next frame. Since this operation is simple, it does
not imply extra clock cycles and it can be done in parallel
with other operations. The control block is responsible to
correctly select which core is being fed from the external
memory and to inform the external memory the value of d
in the current iteration. Firstly, the architecture processes one
frame with d = 10. The second frame will be processed with
d = 5, and the third one will be processed with d = 15. Then
the d is updated to the value that generated the lowest SAD
among these three first frames and the dynamic parameter Δ
becomes 2. This process is repeated with the new d and the
new dynamic parameter until Δ = 1.

10 International Journal of Reconfigurable Computing

6. Synthesis Results and Comparisons

The DMPDS architecture was described in VHDL and
synthesized to an EP4S40G2F40I2 Altera Stratix 4 FPGA
and to an XC5VLX30-3FF324 Xilinx Virtex 5 FPGA. The
synthesis results are presented in Table 3. The performance
results considered the worst case scenario, when all cores
use five iterations. The DMPDS architecture synthesis results
show that it can work with an operational frequency of
187.58 MHz (Stratix 4) and 294 MHz (Virtex 5).

The high operation frequency reached in both syntheses
is function of the well-balanced pipelined designed in all
architectural stages. The Stratix 4 synthesis used dedicated
RAM blocks and also registers. The registers were used to
implement the pipeline and the block RAMs were used to
implement the memory hierarchy. The Virtex 5 synthesis
used only registers to implement both the memory hierarchy
and the pipeline.

Considering the reached operation frequency and since
the designed architecture consumes 170 clock cycles to
process one 16 × 16 block, then the DMPDS architecture
is able to process 213.2 1080 p frames per second or 53.3
QHDTV frames per second.

The comparative results for the DMPDS architecture and
some related works are presented in Table 4. The DMPDS
architecture was compared with the results of related works
[6, 14–19]. Table 4 presents some synthesis results, like the
reached operations frequency, the use of hardware resources,
and the use of memory bits. The used technology for each
solution is also presented.

Table 4 also shows the number of cycles necessary to
process one block and the reached processing rate in frames
per second considering 1080 p (1920 × 1080 pixels) and
QFHD (2160× 3840 pixels) resolutions.

Since the related works are focused in different technolo-
gies and using different algorithms, a fair comparison is not
easy. But the possible comparisons are presented in the next
paragraphs.

The work [6] presents a previous work about the
MPDS architecture. Comparing to [6], the area and memory
usage are the same and the main difference is the reached
operational frequency. However, the DMPDS architecture
presents an average PSNR improvement of 0.12 dB when
compared to [6].

The work [14] proposes a tree-engine architecture for
fractional motion estimation (FME) with a variable block
size (VBSME). The work [14] cannot process QFHD videos
in real-time. Our solution uses a bigger and well-organized
memory hierarchy to reach a better processing rate. DMPDS
architecture also uses less hardware resources, but this was
expected since it does not support FME and VBSME.

The work [15] performs the Dynamic Variable Step
Search (DVSS) fast ME. The architecture in [15] uses the
same block size of our work and it needs 467 cycles to process
a block, which is much more than our work. Comparing
the area results, the architecture presented in [15] uses less
internal memory. However, our solution can process QFHD
videos in real-time.

Table 3: DMPDS synthesis results.

Device
Frequency

(MHz)
Area

Memory bits
(K)

Register
(K)

Stratix 4 187.58
34.5 K
ALUTS

46.2 44.5

Virtex 5 294.00
56.3 K
LUTS

— 110.0

The architecture presented in [16] is a configurable ME
architecture and it performs the following algorithms: (1)
Hexagon-Based-Search (HEXBS), (2) Block Based Gradient
Descent Search (BBGDS), (3) Three Step Search (TSS)
algorithms. It needs 390, 437, and 680 cycles to process each
block with each algorithm, respectively. The DMPDS needs
fewer cycles to process a block than any configuration of [16].
Our work uses more hardware resources comparing to [16],
however, we are able to process QFHD videos while [16] can
only process 1080 p videos in real-time.

The work [17] presents the hardware architecture for
the Fast Top-Winners Search Algorithm. Our work uses
almost the double of the memory used by [17]. However, our
solution reaches a much better processing rate and it is able
to process QFHD videos in real-time, while [17] cannot even
reach real-time for 1080 p videos.

The work [18] presents an architecture for the Mul-
tiresolution ME Algorithm (MMEA). This solution can
process only 28 1080 p frames per second while our DMPDS
architecture can process 34 or 53.3 QFHD frames per second,
depending on the target FPGA. But, is important to notice
that this solution considers two reference frames in the ME
process, which improves the ME quality.

The work [19] presents the Adaptive True Motion
Estimation Algorithm (ATME) and it also uses techniques
for Frame Rate UpConversion (FRUP). It also evaluates the
algorithm for HD 1080 p videos. The hardware designed
in [19] processes a 16 × 16 block in 104 cycles, which is
less cycles than our architecture. However, our architecture
reaches a much better operating frequency, which causes a
final processing rate near to two-times higher than [19].

It is difficult to compare the quality results among the
related works, since almost none of them (except [6, 19])
evaluate their algorithms and architectures for HD 1080 p
videos. Also [14–18] do not mention any alternatives to
avoid local minima falls, so probably these architectures
will process high resolution videos with a worst quality if
compared with our work.

Finally it is important to emphasize that only our work
and the previous version of this work [6] are able to reach a
frame rate of 30 QFHD fps among all related works.

7. Conclusions

This paper presented a new ME search algorithm and
its hardware design. The Dynamic Multipoint Diamond
Search (DMPDS) algorithm was developed focusing on high
resolution videos.

An investigation about the traditional fast ME search
approach shows that this type of approach loses efficiency

International Journal of Reconfigurable Computing 11

Table 4: Synthesis results and comparisons.

Architecture Technology Frequency (MHz) Area Memory (K bits) Cycles per block 1080 p fps QFHD fps

Porto et al. [6] Stratix 4 199.2 34.5 KALUTS 46.2 170 144 36

Kao et al. [14] 180 nm 154 321 KGates 9.72 631 30 7.5

Tasdizen et al. [15] Virtex 5 130 2282 KCLBs 0.51 467 34 8.5

Vanne et al. [16] 130 nm 200 14 KGates 2.5 390/437/680 63/56/36 15.75/14/9

Lai et al. [17] 180 nm 83.3 26 KGates 28.7 1282 8 2

Yin et al. [18] 180 nm 200 260 KGates 11.3 872 28 7

Cetin and Hamzaoglu
[19]

90 nm FPGA 63 33 KLUTS 8 dual-port block RAM 104 (average) 74.7 18.7

DMPDS Stratix 4 187.58 34.5 KALUTs 46.2 170 136 34

DMPDS Virtex 5 294 56.3 KLUTs — 170 213.2 53.3

when the resolution is increased. The results of this investi-
gation is presented in this paper and shows that traditional
search algorithms like Diamond Search may loses more
than 3 dB in PSNR when compared to Full Search if high
resolution videos are considered. The explanation about why
this expressive quality loss occurs is also presented in this
paper where it is possible to conclude that the losses are
function of a fragility in the traditional search approach
which are willing to fall in a local minimum near to the search
area center without finding the global minimum.

The DMPDS algorithm was developed focusing on high
quality when encoding high definition videos. The DMPDS
algorithm uses a multipoint approach to reduce the number
of local minima choices, in comparison with traditional fast
ME algorithms. To reach this objective, five DS instances are
started in different positions of the same search area. The
DMPDS is an evolution of a previous algorithm developed in
our group called MPDS. The main new idea of the DMPDS
is to dynamically adapt the distance of each DS core inside
a search area. This solution caused a PSNR gain of 0.12 dB
with a negligible impact in the number of calculations. The
DMPDS algorithm can reach a PSNR gain of 1.85 dB in
comparison with the DS algorithm and DMPDS reaches
a PSNR only 1.03 dB lower than that reached by FS. The
DMPDS algorithm is also able to reduce in more than 45
times the number of calculations when compared to FS, but
DMPDS used six-times more calculations than DS.

Some simplifications were inserted in the DMPDS algo-
rithm intending to reduce the cost of the hardware design.
These simplifications were the restriction in the number of
iterations and the use of subsampling. These simplifications
were evaluated and showed good results, with the DMPDS
algorithm increasing the PSNR gains and reducing the
complexity loses when compared to DS. These results are also
presented in this paper.

The DMPDS hardware design was focused on-high
throughput for high definition videos. To reach this perfor-
mance goal, five instances of a DS architecture were grouped
to work in parallel. Each DS architecture was designed using
an efficient memory hierarchy and a well-balanced pipeline,
intending to avoid unnecessary external memory accesses
and to provide a high throughput. The control efficiently
schedules the external memory accesses to allow a maximum

use of the five DS cores, allowing a very high processing
rate (similar to that obtained with a single instance of the
DS architecture). In the worst case, the DMPDS architecture
is able to process one block in only 170 clock cycles. The
DMPDS architecture was synthesized targeting an Altera
Stratix 4 and a Xilinx Virtex 5 FPGAs and the synthesis results
shows that the DMPDS architecture was able to process up to
53.3 QFHD frames per second. This is the highest processing
rates among all compared works and it is the function of the
low number of cycles used to process each block and also to
the high operation frequency reached.

References

[1] Y. S. Cheng, Z. Y. Chen, and P. C. Chang, “An H.264 spatio-
temporal hierarchical fast motion estimation algorithm for
high-definition video,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’09), pp. 880–883,
May 2009.

[2] I. Richardson, Video Codec Design: Developing Image and Video
Compression Systems, Wiley, 2002.

[3] ITU-T e ISO/IEC JTC1, “Generic coding of moving pictures
and associated audio information—Part 2: Video,” ITU-T Rec.
H.262 and ISO/IEC, 13818-2 (MPEG-2), 1994.

[4] T. Wiegand, G. Sullivan, and A. Luthra, Eds., Draft ITU-T
Recommendation and final draft international standard of
joint video specification (ITU-T Rec.H.264—ISO/IEC, 14496-
10 AVC), 2003.

[5] JCT, Working Draft 3 of High-Efficiency Video Coding,
JCTVC-E603, 2011.

[6] M. Porto, G. Sanchez, D. Noble, S. Bampi, and L. Agostini, “An
efficient ME architecture for high definition videos using the
new MPDS algorithm,” in Proceedings of the 24th symposium
on Integrated circuits and systems design (ACM SBCCI ’11), pp.
119–124, 2011.

[7] G. Sanchez, M. Porto, S. Bampi, and Agostini, “Real time
QFHD motion estimation architecture for DMPDS algo-
rithm,” in IEEE Southern Programmable Logic Conference,
2012.

[8] S. Zhu and K. K. Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Transactions on
Image Processing, vol. 9, no. 2, pp. 287–290, 2000.

[9] Altera Corporation, “Altera: The Programmable Solutions
Company,” http://www.altera.com/.

[10] Xilinx, http://www.xilinx.com/.

12 International Journal of Reconfigurable Computing

[11] Xiph.org: Test media, 2011, http://media.xiph.org/video/derf/.
[12] M. M. Corrêa, M. T. Schoenknecht, R. S. Dornelles, and

L. V. Agostini, “A high-throughput hardware architecture
for the H.264/AVC half-pixel motion estimation targeting
high-definition videos,” International Journal of Reconfigurable
Computing, vol. 2011, Article ID 254730, 9 pages, 2011.

[13] G. Sanchez, D. Noble, M. Porto, and L. Agostini, “High effi-
cient motion estimation architecture with integrated motion
compensation and FME support,” in Proceedings of the IEEE
2nd Latin American Symposium on Circuits and Systems
(LASCAS ’11), pp. 1–4, February 2011.

[14] C. Y. Kao, C. L. Wu, and Y. L. Lin, “A high-performance
three-engine architecture for H.264/AVC fractional motion
estimation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 4, pp. 662–666, 2010.

[15] O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynam-
ically variable step search motion estimation algorithm and a
dynamically reconfigurable hardware for its implementation,”
IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp.
1645–1653, 2009.

[16] J. Vanne, E. Aho, K. Kuusilinna, and T. D. Hämäläinen,
“A configurable motion estimation architecture for block-
matching algorithms,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 19, no. 4, pp. 466–476, 2009.

[17] Y. K. Lai, L. F. Chen, and S. Y. Huang, “Hybrid parallel
motion estimation architecture based on fast top-winners
search algorithm,” IEEE Transactions on Consumer Electronics,
vol. 56, no. 3, pp. 1837–1842, 2010.

[18] H. Yin, H. Jia, H. Qi, X. Ji, X. Xie, and W. Gao, “A
hardware-efficient multi-resolution block matching algorithm
and its VLSI architecture for high definition MPEG-like video
encoders,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, no. 9, pp. 1242–1254, 2010.

[19] M. Cetin and I. Hamzaoglu, “An adaptive true motion esti-
mation algorithm for frame rate conversion of high definition
video and its hardware implementations,” IEEE Transactions
on Consumer Electronics, vol. 57, no. 2, pp. 923–931, 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

