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Abstract: Measuring and testing association between categorical variables is one of the long-standing
problems in multivariate statistics. In this paper, I define a broad class of association measures for
categorical variables based on weighted Minkowski distance. The proposed framework subsumes
some important measures including Cramér’s V, distance covariance, total variation distance and a
slightly modified mean variance index. In addition, I establish the strong consistency of the defined
measures for testing independence in two-way contingency tables, and derive the scaled forms of
unweighted measures.
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1. Introduction

Measuring and testing the association between categorical variables from observed data is one
of the long-standing problems in multivariate statistics. The observed frequencies of two categorical
variables are often displayed in a two-way contingency table, and a multinomial distribution can
be used to model the cell counts. To be specific, let X and Y be two categorical random variables
with finite sampling spaces X and Y (|X | < ∞, |Y| < ∞, where | · | stands for the cardinality of
a set), and a simple random sample of size N can be summarized in a |X | × |Y| table with count
Nxy in cell (x, y). Let f (x, y), f (x), and f (y) be the joint and marginal probabilities of X and Y,
i.e., f (x, y) = P(X = x, Y = y), f (x) = P(X = x), f (y) = P(Y = y), then the statistical independence
between X and Y can be defined as f (x, y) = f (x) f (y) for any (x, y) ∈ X ×Y , i.e., all joint probabilities
equal the product of their marginal probabilities. Pearson’s chi-squared statistic,

X2 = ∑
x∈X

∑
y∈Y

( fN(x, y)− fN(x) fN(y))2

fN(x) fN(y)/N
,

where fN(x, y) = Nxy/N, fN(x) = ∑y∈Y Nxy/N, and fN(y) = ∑x∈X Nxy/N, has been widely used
to test independence in two-way contingency tables. Under independence and sufficient sample
size, X2 approximately follows a chi-squared distribution with d f = (|X | − 1)(|Y| − 1). However,
for insufficient sample size (e.g., minx,y Nx+N+y/N < 5, where Nx+ = ∑y∈Y Nxy, N+y = ∑x∈X Nxy),
the chi-squared test tends to be conservative. Zhang (2019) suggested a random permutation test
based on the test statistic

D2 = ∑
x∈X

∑
y∈Y

( fN(x, y)− fN(x) fN(y))2,

which is derived from the squared distance covariance, a measure of the dependence between two
random vectors of any type (discrete or continuous) [1,2]. The D2 statistic is closely related to
Pearson’s chi-squared statistic, both measuring the squared distance between f (x, y) and f (x) f (y),
(x, y) ∈ X ×Y . In the numerical study of Zhang (2019), the distance covariance test was evaluated in
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terms of the statistical power and type I error rate under various settings (see Figures 1–3 in [1]). It is
found that for relatively large sample sizes, the distance covariance test performs similarly well as
Pearson’s chi-squared test. However, for relatively small sample sizes, the distance covariance test is
substantially more powerful and it controls the type I error rate at the nominal level. For small sample,
Pearson’s chi-squared test exhibits substantial conservativeness, in the sense that the type I error rate
is much lower than the nominal level and it fails to reject many false hypotheses. For instance, in a
simulation setting with 20 by 20 table and only 50 samples, the statistical power and type I error rate
are both close to zero by Pearson’s chi-squared test, indicating an extreme conservativeness.

Although the distance covariance test has better empirical performance than Pearson’s chi-squared
test, especially for small sample size, its theoretical properties have not been investigated. In addition,
Zhang (2019) only studied two alternative measures, including distance covariance and projection
correlation, but there are many other association measures in the literature remaining unexplored.
To name a few, Goodman and Kruskal (1954) introduced two association measures for categorical
variables, namely the concentration coefficient and the λ coefficient [3]. Cui et al. (2015) developed a
generic association measure based on a mean-variance index [4]. Theil (1970) proposed measuring
the association between two categorical variables by the uncertainty coefficient [5]. McCane and
Albert (2008) introduced the symbolic covariance, which expresses the covariance between categorical
variables in terms of symbolic expressions [6]. In addition, Reshef et al. (2011) proposed a pairwise
dependence measure called maximal information coefficient (MIC) based on the grid that maximizes
the mutual information gained from the data [7].

The purpose of this paper is to extend my previous work [1] to a broad class of association
measures using a general weighted Minkowski distance, and numerically evaluate some selected
measures from the proposed class. The proposed class unifies many existing measures including φ

coefficient, Cramér’s V, distance covariance, total variation distance and a slightly modified mean
variance index. Furthermore, the strong consistency of the independence tests based on these
measures was established, and the scaled forms of unweighted measures were derived. The proposed
class provides a rich set of alternatives to the prevailing chi-squared statistic, and it has many
potential applications. For instance, it can be applied to the correlation-based modeling, such as
correlation-based deep learning [8]. As enlightened by a reviewer, the proposed method may also be
applied to the pseudorandom number generator tests, and may improve some existing chi-squared
based tests including the poker test and gap test [9].

The remainder of this paper is structured as follows: In Section 2, I introduce the defined class
of association measures, and study some important special cases. The scaled forms of unweighted
measures are also derived. Section 3 compares the performance of selected measures using simulated
data. Section 4 discusses some extensions including the application to ordinal data and conditional
independence test for three-way tables.

2. Methods

2.1. A Class of Association Measures for Categorical Variables

As the strength of association between two categorical variables can be reflected by the
distance between f (x, y) and f (x) f (y), here I define a class of measures based on the weighted
Minkowski distance

Lr,ω(X, Y) =
{

∑
x∈XXX

∑
y∈YYY
| f (x, y)− f (x) f (y)|rωr(x, y)

} 1
r

, (1)

where r ≥ 1, ω(x, y) > 0, and ω(x, y) only depends on the marginal distributions of X and Y.
For 0 < r < 1, the defined distance violates the triangle inequality therefore it is not a metric.
However, r = ∞ is allowed, and I denote by L∞,ω(X, Y) the maximum norm. It can be proved
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that L1,ω(X, Y) ≥ L2,ω(X, Y) ≥ ... ≥ L∞,ω(X, Y) for a given weight ω(x, y). Throughout this paper,
I denote by Lr(X, Y) the unweighted measures, i.e., ω(x, y) = 1. The defined class is quite broad and
I begin with some important special cases.

Firstly, most of the chi-squared-type measures belong to the defined class. For instance, the φ

coefficient for 2× 2 tables, i.e., |X | = |Y| = 2,

φ(X, Y) =
{

∑
x∈XXX

∑
y∈YYY

| f (x, y)− f (x) f (y)|2
f (x) f (y)

} 1
2

,

is a special case of L2,ω(X, Y), where ω(x, y) = { f (x) f (y)}−1/2. Extensions of φ(X, Y) to I × J tables
including Cramér’s V and Tschuprow’s T [10,11],

V(X, Y) =
{

∑
x∈XXX

∑
y∈YYY

| f (x, y)− f (x) f (y)|2
f (x) f (y)

} 1
2
{

1
min(|X | − 1, |Y| − 1)

} 1
2

,

T(X, Y) =
{

∑
x∈XXX

∑
y∈YYY

| f (x, y)− f (x) f (y)|2
f (x) f (y)

} 1
2
{

1√
(|X | − 1)(|Y| − 1)

} 1
2

,

are also special cases of L2,ω(X, Y), where ω(x, y) = { f (x) f (y)min(|X | − 1, |Y| − 1)}−1/2 for
Cramér’s V, and ω(x, y) = { f (x) f (y)

√
(|X | − 1)(|Y| − 1)}−1/2 for Tschuprow’s T.

Distance covariance for categorical variables also belongs to the defined class. Distance covariance
is a measure of statistical dependence between two random vectors X and Y. It is a special case
of Hilbert-Schmidt independence criterion (HSIC) [12]. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three
independent copies of (X, Y), the distance covariance between X and Y is defined as the square root of

dCov2(X, Y) = cov(‖X1 − X2‖, ‖Y1 −Y2‖)− 2cov(‖X1 − X2‖, ‖Y1 −Y3‖), (2)

where ‖ · ‖ represents distance between vectors, e.g., Euclidean distance. An alternative definition
of distance covariance is given in Sejdinovic et al. (2013) [12], which only uses two independent
copies of (X, Y). A proof of the equivalency between the two definitions is provided in Appendix A.1.
One property of distance covariance is that dCov2(X, Y) = 0 if and only if X and Y are statistically
independent, indicating its potential of measuring nonlinear dependence. Zhang (2019) studied the
distance covariance for categorical variables under multinomial model. Define ‖X1 − X2‖ = 0 if
X1 = X2 and 1 otherwise, one can show that

dCov(X, Y) =
{

∑
x∈XXX

∑
y∈YYY
| f (x, y)− f (x) f (y)|2

} 1
2

, (3)

and it is easy to see that dCov(X, Y) = L2(X, Y). A detailed proof of Equation (3) is provided
in Appendix A.2.

Another special case is total variation distance, which is defined as the largest difference between
two probability measures [13]. Let µ0(·) and µα(·) be the measures under independence and
dependence respectively, the total variation distance between µ0 and µα can be used to measure
the dependence between variables X and Y

δ(µ0, µα) = max
S⊂X×Y

|µ0(S)− µα(S)|. (4)
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In the case of discrete sampling spaces, let S+ = {(x, y), s.t., f (x, y) > f (x) f (y)} and S− =

{(x, y), s.t., f (x, y) < f (x) f (y)}, then we have

δ(µ0, µα) = |µ0(S+)− µα(S+)| = |µ0(S−)− µα(S−)| =
1
2 ∑

x∈X
∑

y∈Y
| f (x, y)− f (x) f (y)|, (5)

therefore δ(µ0, µα) = L1,ω(X, Y), where ω(X, Y) = 1
2 .

In addition, I pointed out that the mean variance index (MV) recently developed by Cui et al. [4]
also belongs to our defined class, subject to some slight modifications. The MV between two variables
X and Y is defined as MV(X|Y) = EX(VY(F(X|Y))), where F(x|y) stands for conditional distribution
function. It can be proved that MV(X|Y) = 0 if and only if X and Y are independent. The MV measure
is originally developed for continuous variables. To make it suitable for categorical variables while
maintaining the main theoretical property, I slightly modified the definition of MV. First, I replaced
the conditional c.d.f. F(x|y) with conditional p.m.f. f (x|y). Second, as the MV measure is generally
asymmetric, i.e., MV(X|Y) 6= MV(Y|X), I considered a symmetric version of the index, MV(X, Y) =
1
2 (MV(X|Y) + MV(Y|X)). With the two modifications, one can prove the following result (a detailed
proof is provided in Appendix A.3)

√
MV(X, Y) =

{
∑

x∈XXX
∑

y∈YYY

1
2
| f (x, y)− f (x) f (y)|2

(
f (x)
f (y)

+
f (y)
f (x)

)} 1
2

,

therefore
√

MV(X, Y) = L2,ω(X, Y), where ω(x, y) =

√
1
2
( f (x)

f (y) +
f (y)
f (x)

)
. As 1

2
( f (x)

f (y) +
f (y)
f (x)

)
≥ 1,

we also have
√

MV(X, Y) ≥ L2(X, Y).
Similar as the MV index, the symmetric version of some other directional association measures

(e.g., the concentration coefficient [3]), are also the special cases of Lr,ω.

2.2. Sample Estimate and Independence Test

Given a simple random sample of size N, one can estimate Lr,ω,N(X, Y) using sample quantities

Lr,ω,N(X, Y) =
{

∑
x∈XXX

∑
y∈YYY
| fN(x, y)− fN(x) fN(y)|rωr

N(x, y)
} 1

r

, (6)

where fN(x, y), fN(x) and fN(y) represent the maximum likelihood estimates of joint and marginal
probabilities, respectively, i.e., fN(x, y) = Nxy/N, fN(x) = ∑y∈Y Nxy/N, and fN(y) = ∑x∈X Nxy/N.
The following theorem establishes the strong consistency of the independence test based on
Lr,ω,N(X, Y) (a detailed proof is provided in Appendix A.4):

Theorem 1. Assume that the estimated weights are bounded above by a constant C > 0, i.e., supx,y ωN(x, y) =

C, then for any r ≥ 1 and ε > 0, we have P
(
Lr,ω,N(X, Y) > ε

)
< (2|X ||Y| + 2|Y| + 2|X |) exp(−Nε2/18C2)

under independence. The inequality also holds for maximum norm L∞,ω,N(X, Y).

It is noteworthy that the asymptotic null distribution of Lr,ω,N(X, Y) is impratical to derive.
The theorem above provides a simple way to compute the upper bound of p-value, however, the
bound (2|X ||Y| + 2|Y| + 2|X |) exp(−Nε2/18C2) is generally not tight, thus the p-value could be
largely overestimated. Here, I suggest a simple permutation procedure to evaluate the significance.
One can randomly shuffle the observations of X (or equivalently, the observations of Y) for M times,
and compute the test statistic Lr,ω,N(Xperm, Y) for each permuted dataset. The permutation p-value
can be computed as the proportion of Lr,ω,N(Xperm, Y)’s that exceed the actually observed one. I used
the permutation p-value to evaluate statistical significant in our simulation studies.
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2.3. Scaled Forms of Unweighted Measures

Motivated by the classic correlation coefficient, I define the following scaled form for unweighted
measure Lr(X, Y):

L∗r (X, Y) =
Lr(X, Y)√

Lr(X, X)
√
Lr(Y, Y)

, (7)

where Lr(X, X) =

{
∑x∈XXX ∑x′∈XXX | f (x, x′)− f (x) f (x′)|r

} 1
r

, f (x, x′) = f (x) if x = x′ and f (x, x′) = 0

otherwise.
The term Lr(X, X) can be written as

Lr(X, X) =

{
∑

x∈XXX
| f (x)− f 2(x)|r + ∑

x∈XXX
∑

x′∈XXX\x
| f (x) f (x′)|r

} 1
r

,

and as examples, the explicit expressions for L1(X, X), L2(X, X), and L∞(X, X) are given below

• L1(X, X) = ∑x∈XXX
[

f (x)− f 2(x)
]
+ ∑x∈XXX ∑x′∈XXX\x

[
f (x) f (x′)

]
= 2

[
1−∑x∈XXX f 2(x)

]
• L2(X, X) =

{
∑x∈XXX f 2(x)

[
∑x∈XXX f 2(x) + 1

]
− 2 ∑x∈XXX f 3(x)

} 1
2

• L∞(X, X) = maxx∈XXX
[

f (x)− f 2(x)
]
∨maxx∈XXX ,x′∈XXX\x

[
f (x) f (x′)

]
= maxx∈XXX

[
f (x)− f 2(x)

]
It can be seen that L∗2(X, Y) is same as the distance correlation between X and Y [1], therefore

0 ≤ L∗2(X, Y) ≤ 1, where L∗r (X, Y) = 0 if and only if X and Y are independent. In fact, for any
1 ≤ r < ∞, if f (x) > 0, f (y) > 0 for x ∈ X , y ∈ Y , it can be proved that 0 ≤ L∗r (X, Y) ≤ 1, where
L∗r (X, Y) = 0 if and only if X and Y are independent, and L∗r (X, Y) = 1 if and only if X and Y
have perfect association, i.e., |X | = |Y| and for any x ∈ X , there exists a unique y ∈ Y , such that
f (x, y) = f (x) = f (y).

For L∗∞(X, Y), by Cauchy-Schwarz inequality,

L∞(X, Y) = max
x∈XXX ,y∈YYY

| f (x, y)− f (x) f (y)|

= max
x∈XXX ,y∈YYY

|cov(I{X = x}, I{Y = y})|

≤ max
x∈XXX ,y∈YYY

√
V(I{X = x})V(I{Y = y})

= max
x∈XXX

√
V(I{X = x})max

y∈YYY

√
V(I{Y = y})

=

√
max
x∈XXX

[
f (x)− f 2(x)

]√
max
y∈YYY

[
f (y)− f 2(y)

]
=
√
L∞(X, X)L∞(Y, Y),

therefore 0 ≤ L∗∞ ≤ 1. However, in general, L∗∞(X, Y) = 1 does not imply that X and Y are perfectly
associated. I gave an example in Table 1, where L∗∞(X, Y) = 1 but X and Y are not perfectly associated.

Table 1. An example that X and Y are not perfectly associated, but L∗∞(X, Y) = 1.

Y = 1 Y = 2 Y = 3

X = 1 1/2 0 0
X = 2 0 1/8 1/8
X = 3 0 1/8 1/8
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3. Numerical Study

Two simulation studies were conducted to compare the performance of some selected measures
from our defined class. In both simulations, I set |X | = |Y| = 10 and varied the sample size from
25 to 500, so that the simulated contingency tables were relatively large and sparse (average count
N/|X ||Y| is between 0.25 and 5).

In the first simulation study, I considered the independence test based on different unweighted
measures, including L1, L2, L4 and L∞, under the following multinomial settings:

• Setting 1: f (x, y) = 0.05 for 10 randomly selected cells and f (x, y) = 0.5
90 for the remaining 90 cells

• Setting 2: f (x, y) = 0.08 for 10 randomly selected cells and f (x, y) = 0.2
90 for the remaining 90 cells

• Setting 3: f (x, y) = 0.1 for one randomly selected cell and f (x, y) = 0.9
99 for the remaining 99 cells

• Setting 4: f (x, y) = 0.2 for one randomly selected cell and f (x, y) = 0.8
99 for the remaining 99 cells

For each test, the p-values were computed based on 2000 random permutations. Figure 1
summarizes the empirical statistical power of the four tests under significance level 0.05. It could be
seen that, in settings 1 and 2, the L2 measure (Euclidean distance) performed consistently better than
the other three (comparable to L4). The maximum norm L∞ performs the worst in these two settings.
In settings 3 and 4, where a single cell accounts for most deviation from independence, the maximum
norm performs the best, while the L1 measure (Manhattan distance) gives the lowest power. Figure 2
summarizes the type I error rate, where it can be seen that all the four tests control the type I error
rates at the nominal level of 0.05.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setting 1

Sample size

P
ow
er

25 50 75 100 200 500

L1
L2
L4
L∞

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setting 2

Sample size

P
ow
er

25 50 75 100 200 500

L1
L2
L4
L∞

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setting 3

Sample size

P
ow
er

25 50 75 100 200 500

L1
L2
L4
L∞

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setting 4

Sample size

P
ow
er

25 50 75 100 200 500

L1
L2
L4
L∞

Figure 1. Empirical statistical power of four different measures including L1 (blue), L2 (red), L4 (black)
and L∞ (green), under settings 1–4. In each setting, sample sizes are n = 25, 50, 75, 100, 200, 500, and all
results were based on 1000 replications.
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Figure 2. Empirical Type I error rate of four different measures including L1 (blue), L2 (red), L4 (black)
and L∞ (green), under settings 1–4. In each setting, sample sizes are n = 25, 50, 75, 100, 200, 500, and all
results were based on 1000 replications.

In the second simulation study, I focused on L2,ω(X, Y) as it subsumes many popular measures.
In particular, I compared three different weight functions, including ω(x, y) = 1 (distance covariance),

ω(x, y) = { f (x) f (y)}−1/2 (Pearson’s chi-squared), and ω(x, y) =
√

1
2 (

f (x)
f (y) +

f (y)
f (x) ) (modified mean

variance index). Figure 3 shows the empirical statistical power of the three measures under settings 1
and 2, where it can be seen that the unweighted L2 compares favorably to the weighted ones.

Based on the simulation studies, I recommend to the unweighted Lr measures with a moderate
choice of r, for instance, r = 2, 3, 4 for large sparse tables, because they could give satisfactory and
stable statistical power in general scenarios. The maximum norm L∞ is not recommended, unless
one is very confident that there exist a very small number of cells that account for most deviation
from independence.
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Figure 3. Empirical statistical power of threeL2,ω measures including ω(x, y) = 1 (distance covariance),

ω(x, y) = { f (x) f (y)}−1/2 (chi-squared), and ω(x, y) =
√

1
2 (

f (x)
f (y) +

f (y)
f (x) ) (symmetric mean variance

index), under settings 1 and 2. In each setting, sample sizes are n = 25, 50, 75, 100, 200, 500, and all
results were based on 1000 replications.

4. Discussion

In this work, I proposed a rich class of dependence measures for categorical variables based on
weighted Minkowski distance. The defined class unifies a number of existing measures including
Cramér’s V, distance covariance, total variation distance and a slightly modified mean variance index.
I provided the scaled forms of unweighted measures, which range from 0 (independence) to 1 (perfect
association). Further, I established the strong consistency of the defined measures and suggested a
simple permutation test for evaluating significance. Although I have used nominal and univariate
categorical variables for illustrations, the proposed framework can be extended to other data types
and problems:

First, the proposed measures can be used to detect ordinal association by assigning proper weights.
Similar as Pearson’s correlation coefficient, one may assign larger weights to more extreme categories
of X and Y. To be specific, let d(x, x′) be the predefined distance between categories X = x and X = x′,
and d(y, y′) be the distance between y and y′, and one could apply the following weight function

ω(x, y) = E(d(x, X)d(y, Y)) = ∑
x′∈X\x,y′∈Y\y

d(x, x′)d(y, y′) f (x′) f (y′),

which assigns larger weights to cells in the corners but smaller weights to cells in the center of the table.
Second, my framework can be generalized to random vectors and multi-way tables. In the

case of three-way table (X, Y, Z), one can define the following Minkowski distance between f (x, y, z)
and f (x, y) f (z)

Lr,ω((X, Y), Z) =
{

∑
x∈XXX

∑
y∈YYY

∑
z∈ZZZ
| f (x, y, z)− f (x, y) f (z)|rωr(x, y, z)

} 1
r

,

which can be used to test the joint independence between (X, Y) and Z, or equivalently, to test the
homogeneity of the joint distribution of (X, Y) at different levels of Z. A similar permutation procedure
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can be applied to evaluate the statistical significance. One can also define the distance between f (x, y, z)
and f (x) f (y) f (z) to test the mutual independence of (X, Y, Z)

Lr,ω(X, Y, Z) =
{

∑
x∈XXX

∑
y∈YYY

∑
z∈ZZZ
| f (x, y, z)− f (x) f (y) f (z)|rωr(x, y, z)

} 1
r

,

Furthermore, the framework can be extended to conditional independence test in three-way tables [14],
by defining distance between conditional joint probabilities f (x, y|z) and the product of conditional
marginal probabilities f (x|z) f (y|z)

Lr,ω(X, Y|Z) =
{

∑
x∈XXX

∑
y∈YYY

∑
z∈ZZZ
| f (x, y|z)− f (x|z) f (y|z)|rωr(x, y, z)

} 1
r

.
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Appendix A. Technical Details

Appendix A.1. Equivalency between Two Definitions of Distance Covariance

• Definition by Szekely et al. (2007): dCov2(X, Y) = EX1X2Y1Y2(‖X1 − X2‖‖Y1 − Y2‖) +
EX1X2(‖X1 − X2‖)EY1Y2(‖Y1 −Y2‖)− 2EX1X2Y1Y3(‖X1 − X2‖‖Y1 −Y3‖)

• Definition by Sejdinovic et al. (2013): dCov2(X, Y) = EX1X2Y1Y2(‖X1 − X2‖‖Y1 − Y2‖) +
EX1X2(‖X1 − X2‖)EY1Y2(‖Y1 −Y2‖)− 2EX1Y1(EX2(‖X1 − X2‖)EY2(‖Y1 −Y2‖))

The first two terms are the same, and the equivalency between the two definitions can be showed
as follows:

EX1Y1(EX2(‖X1 − X2‖)EY2(‖Y1 −Y2‖))

=
∫

x1

∫
y1

[ ∫
x2

‖x1 − x2‖ f (x2)dx2

∫
y2

‖y1 − y2‖ f (y2)dy2

]
f (x1, y1)dx1dy1

=
∫

x1

∫
y1

[ ∫
x2

‖x1 − x2‖ f (x2)dx2

∫
y3

‖y1 − y3‖ f (y3)dy3

]
f (x1, y1)dx1dy1

=
∫

x1

∫
x2

∫
y1

∫
y3

‖x1 − x2‖‖y1 − y3‖ f (x1, y1) f (x2) f (y3)dx1dx2dy1dy3

= EX1X2Y1Y3(‖X1 − X2‖‖Y1 −Y3‖)



Entropy 2019, 21, 990 10 of 12

Appendix A.2. Derivation of Equation (3)

Following Zhang (2019), I rewrite categorical variables X and Y as two random vectors of
dimensions |XXX | and |YYY|, XXX = {I(X = x)}x∈XXX and YYY = {I(Y = y)}y∈YYY , where I(·) stands for the
indicator function. Let ‖XXX1 −XXX2‖ equal 0 if XXX1 = XXX2 and 1 otherwise. Let (XXX1,YYY2), (XXX2,YYY2), (XXX3,YYY3)

be three independent copies of (XXX,YYY). By Equation (2), the squared distance covariance can be also
expressed as

dCov2(XXX,YYY) = E(‖XXX1 −XXX2‖‖YYY1 −YYY2‖) + E(‖XXX1 −XXX2‖)E(‖YYY1 −YYY2‖)− 2E(‖XXX1 −XXX2‖‖YYY1 −YYY3‖).

Under multinomial sampling scheme, it is straightforward to show that

E(‖XXX1 −XXX2‖‖YYY1 −YYY2‖) = P(XXX1 6= XXX2,YYY1 6= YYY2) = ∑
x∈XXX

∑
y∈YYY

f (x, y)[1− f (x)− f (y) + f (x, y)],

E(‖XXX1 −XXX2‖)E(‖YYY1 −YYY2‖) = P(XXX1 6= XXX2)P(YYY1 6= YYY2) = [1− ∑
x∈XXX

f 2(x)][1− ∑
y∈YYY

f 2(y)],

E(‖XXX1 −XXX2‖‖YYY1 −YYY3‖) = P(XXX1 6= XXX2,YYY1 6= YYY3) = ∑
x∈XXX

∑
y∈YYY

f (x, y)[1− f (x)][1− f (y)].

Summarizing the results above, I have

dCov(X, Y) =
{

∑
x∈XXX

∑
y∈YYY
| f (x, y)− f (x) f (y)|2

} 1
2

.

Appendix A.3. Derivation of the Modified Mean Variance Index

The symmetric mean variance index is defined as

MV(X, Y) =
1
2
(MV(X|Y) + MV(Y|X)) =

1
2
(EX(VY( f (X|Y))) + EY(VX( f (Y|X)))).

I first derived the explicit formula for EX(VY( f (X|Y))):

EX(VY( f (X|Y))) = EXEY( f (X|Y))2 − EXE2
Y( f (X|Y))

= ∑
x∈X

∑
y∈Y

f 2(x, y)
f (x)
f (y)

− ∑
x∈X

f 3(x)

= ∑
x∈X

∑
y∈Y

f (x)
f (y)

( f 2(x, y)− f 2(x) f 2(y))

= ∑
x∈X

∑
y∈Y

f (x)
f (y)
{( f (x, y)− f (x) f (y))2 − 2 f 2(x) f 2(y) + 2 f (x, y) f (x) f (y)}

= ∑
x∈X

∑
y∈Y

f (x)
f (y)

( f (x, y)− f (x) f (y))2

Similarly, it can seen that EY(VX( f (Y|X))) = ∑x∈X ∑y∈Y
f (y)
f (x) ( f (x, y)− f (x) f (y))2, therefore

MV(X, Y) = ∑
x∈X

∑
y∈Y

1
2

(
f (y)
f (x)

+
f (x)
f (y)

)
( f (x, y)− f (x) f (y))2.
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Appendix A.4. Proof of Theorem 1

Because L1,ω,N ≥ L2,ω,N ≥ ... ≥ L∞,ω,N , I only need prove the strong consistency for L1,ω,N .
For categorical variable X, let f (x)x∈X be the probability mass function, N be the sample size, and
fN(x) be the sample estimate, Biau and Gyorfi (2005) [15] proved the following result

Lemma A1. For any ε > 0, P(∑x∈X | fN(x)− f (x)| > ε) < 2|X |e−
Nε2

2 .

As supx,y ω(x, y) = C > 0, I have

L1,ω,N(X, Y) ≤ C( ∑
x∈X

∑
y∈Y
| fN(x, y)− f (x, y)|+ ∑

x∈X
∑

y∈Y
| f (x, y)− f (x) f (y)|+ ∑

x∈X
∑

y∈Y
| fN(x) fN(y)− f (x) f (y)|).

Under independence, I have ∑x∈X ∑y∈Y | f (x, y) − f (x) f (y)| = 0. By Lemma A1, the first term
∑x∈X ∑y∈Y | fN(x, y)− f (x, y)| satisfies that

P
(

C ∑
x∈X

∑
y∈Y
| fN(x, y)− f (x, y)| > ε

3

)
< 2|X ||Y|e−

Nε2

18C2 ,

The third term can be bounded as follows:

∑
x∈X

∑
y∈Y
| fN(x) fN(y)− f (x) f (y)| ≤ ∑

x∈X
∑

y∈Y
| f (x) fN(y)− f (x) f (y)|+ ∑

x∈X
∑

y∈Y
| fN(x) fN(y)− f (x) fN(y)|

= ∑
y∈Y
| fN(y)− f (y)|+ ∑

x∈X
| fN(x)− f (x)|

By Lemma A1, I have

P
(

C ∑
y∈Y
| fN(y)− f (y)| > ε

3

)
< 2|Y|e−

Nε2

18C2 ,

P
(

C ∑
x∈X
| fN(x)− f (x)| > ε

3

)
< 2|X |e−

Nε2

18C2 ,

and summarizing the results above, I have

P
(
L1,ω,N(X, Y) > ε

)
≤ P

(
C ∑

x∈X
∑

y∈Y
| fN(x, y)− f (x, y)| > ε

3

)

+ P
(

C ∑
y∈Y
| fN(y)− f (y)| > ε

3

)
+ P

(
C ∑

x∈X
| fN(x)− f (x)| > ε

3

)

< 2|X ||Y|e−
Nε2

18C2 + 2|Y|e−
Nε2

18C2 + 2|X |e−
Nε2

18C2

= (2|X ||Y| + 2|X | + 2|Y|)e−
Nε2

18C2 .
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