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The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot
research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph
partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better
performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during
streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning
method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm.
After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding
window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices
should be distributed is decided.We compare its performance with a set of streaming graph partitionmethods andMETIS, a widely
adopted offline approach.The results show that our solution can partition graphs with hundreds of millions of vertices in streaming
setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

1. Introduction

With the rapid development of Internet, huge amounts of
graph data are emerged every day. For example, the Linked
OpenData Project which aims to connect data across the web
published 149 billion triples till 2017 while 31 billion triples
were published in September 2011 [1]. In addition, dynamic
real-world graphs include social networks. The dynamicity
of graphs stems from either the world-wide hot events or
updates of the web contents [2]. Thus, the rapid explosion
of data volume and dynamicity urgently necessitates large
scale graph analysis applications which can handle these
dynamic workloads. To achieve a desirable performance in
big dynamic graph analysis, streaming graph partitioning
algorithms, which give a guarantee of scalability by distribut-
ing a streaming graph tomultiplemachines, will be employed
inevitably.

In fact, graph partitioning problem has received a lot
of attention over the last years. The existing algorithms
may be grouped in two divisions: edge cut algorithms and
vertex-cut algorithms. The majority of distributed graph
engines adopt edge-based hash partitioning [3–6] as the
data partitioning solution. Edge-based hash partitioning is
a vertex-cut approach which distributes edges across the
partitions by computing the hash keys of vertices and allows
edges to span partitions. For example, Pregel [7] uses a special
hash function to distribute the vertex. The principle of this
approach is to collect those edges which share the same vertex
and distribute the vertices to different computing nodes.
Hence, this approach can obtain goodperformance for simple
graph operations, such as answering star queries. Although
hash approach generates a balanced number of vertices across
distributed computing nodes, it entirely ignores the graph
structure. As a result, many messages have to be sent across
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the nodes when executing graph operations. It leads to heavy
communication traffic. All in all, this approach has extremely
poor locality, which means that the complex graph query
operations may incur frequent cross-node interactions and
intermediate result exchanging. Consequently, the benefit of
distributed and parallel processing of the big graph data is
lost or significantly reduced due to the high communication
overhead incurred by hash partitioning scheme. Wu et
al. proposed path partitioning for scalable SPARQL query
processing over static RDF graphs [8]. Path partitioning
approach does not divide a graph into a set of independent
edges or vertices but sets of paths. Thus, the approach can
largely reduce the cost of distributed joins over the large RDF
dataset.

In this paper, we propose an association-oriented par-
titioning approach for streaming graphs. Our approach is
based on one important observation: in order to minimize
the interactions among partitions, we need to consider the
associations among vertices when we assign vertices and
edges to partitions. The main contributions of the paper
are twofold. First, for a streaming situation in which large
scale graph data arrives fast and continuously, we propose
an association-oriented partitioning approach.The approach
considers the association among recent arriving graph data
which falls in a sliding window. The approach first computes
rank scores of vertices in the sliding window and then
clusters the vertices and edges according to the rank values
of vertices and associations between vertices. By partitioning
the big graphs into multiple partitions with this approach,
we reduce interactions among partitions and the cost for
internode communication. Second, we evaluate our approach
in labeled and unlabeled streaming graphs through exten-
sive experiments. The experimental results show that our
approach outperforms HASH approach and METIS [9]. The
reason is that our approach reduces the interactions between
partitions. The results also show that our approach is capable
of handling incrementally generated streaming data.

2. Preliminary

In this section, we will present the concepts used in the
paper. Our approach can handle both directed and undi-
rected graphs. In addition, labeled and unlabeled graphs
can be processed, too. Since undirected graph can be easily
transformed into directed graph by adding another edge
between two connected vertices, the following discussion
mainly focuses on directed connected graph defined in
[5, 6].

Generally, the edges or vertices, or both, of a graph are
assigned labels. A graph with labeled vertices is named as a
vertex-labeled graph. Similarly, in an edge-labeled graph each
edge has a label. In a directed edge-labeled graph, the label of
an edge indicates the relationship between its source vertex
and target vertex. An edge with its two vertices (𝑎 𝑏󳨀→ 𝑐) can be
represented as a triple (𝑎, 𝑏, 𝑐). In RDF (Resource Description
Framework) graph (e.g., Figure 1(b), a fragment from LUBM
[10]), 𝑎 is called subject and 𝑐 is the object of the triple. Label𝑏 on the edge is the predicate of the triple. In the following,
labeled graph will be defined formally.

Definition 1 (association of vertices). Regarding a graph𝐺(𝑉, 𝐸), the association between handling 𝑢 and V is defined
as 𝐴(𝑢, V); min(mvn) is the minimal number of vertices on a
path that connects the two vertices:

𝐴 (𝑢, V) =
{{{{{{{{{{{

1 directly connected

1
min (mvn) + 1 indirectly connected

0 unconnected.
(1)

A graph partitioner assigns vertices or edges to 𝑘 parti-
tions.The associations of the partitions should be low in order
to reduce the interactions among partitions. Here we define
the association of two clusters.

Definition 2 (association of clusters). Assume two clusters
(partitions) 𝐶𝑎 and 𝐶𝑏. 𝑒𝑎, 𝑒𝑏 are the exemplars of clusters 𝐶𝑎,𝐶𝑏. Exemplar is found by randomly choosing an initial subset
of data points and then iteratively refining it. The association𝐴(𝐶𝑎, 𝐶𝑏) between cluster 𝐶𝑎 and cluster 𝐶𝑏 is defined as
follows:

𝐴 (𝐶𝑎, 𝐶𝑏) = {{{
𝐴 (𝑒𝑎, 𝑒𝑏) 𝑒𝑎, 𝑒𝑏 are connected

0 otherwise. (2)

Graph partitioning approach should distribute vertices to
each cluster uniformly. It is also critical that the total number
of cross-partition edges is small, in order to minimize the
communication cost between different partitions.

Definition 3 (edge cut). Assume graph 𝐺(𝑉, 𝐸), where 𝑉 is
the set of vertexes in the graph and 𝐸 is the set of edges in
the graph. Assume a partition of 𝐺 consists of 𝑃1, 𝑃2, . . . , 𝑃𝑛.
Namely, 𝑃1 ∪ 𝑃2 ∪ ⋅ ⋅ ⋅ ∪ 𝑃𝑛 = 𝐺. For partition 𝑃𝑖, ∀V ∈ 𝑃𝑖,

ec (V) = {{{
1 ((V, 𝑡) ∈ 𝐺 ∨ (𝑡, V) ∈ 𝐺) ∧ 𝑡 ∉ 𝑃𝑖
0 otherwise; (3)

the edge cut of 𝑃𝑖 is ec(𝑃𝑖) = ∑V∈𝑃𝑖 ec(V). The edge cut of the
partition is ∑0≤𝑖<𝑛 ec(𝑃𝑖).

Minimizing the number of edge cutsmay not be the only
goal for partitioning approaches, as the cost of processing
graphs is determined by not only the network communica-
tion but also the size of the messages, although each message
typically is small and contains a little information. So it is
not enough to minimize the total number of edges crossing
different partitions. Minimizing the communication volume
across computing nodes is also a goal.

Definition 4 (communication volume). Assume𝑃1, 𝑃2, . . . , 𝑃𝑛
is a partition of graph 𝐺(𝑉, 𝐸). 𝑃1 ∪ 𝑃2 ∪ ⋅ ⋅ ⋅ ∪ 𝑃𝑛 = 𝐺.
Communication volume cv(𝑃) is positive correlation with
edge cut.
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Figure 1: Example of unlabeled and labeled graph.

3. Association-Oriented Streaming
Graph Partitioning

In this section, we present our association-oriented approach
for streaming graph partitioning. Streaming graph parti-
tioning tries to distribute nodes and edges into multiple
machines, while it should keep the data balance and the
communication volume minimal. The streaming partitioner
receives graph data and then decides where the nodes of the
graph data should be distributed. Our approach first orders
each vertex in partitions and then computes the association
between a newly arrived vertex and other vertices which are
distributed in a partition. Then we follow the rank values
of vertices to merge the newly arrived vertices with other
vertices.The rank values of vertices indicate the step in which
vertices will be merged with others. At last, we use a variant
of affinity propagation to cluster nodes. Thus, it faces two
challenges. The first challenge is how to order the vertex that
needs to be merged in the merging steps, as it may lead to
extremely skewed data distribution if the order is not good
enough. At the same time, both space and time complexity
of association partitioning are high when the number of
merging steps is large. More merged vertex means fewer
replicas and higher intra-association. However, it leads to a
skew in data distribution since there may be some very large
clusters, which are undesirable. Consequently, we present
an approach to keep the data distribution balanced. These
techniques are discussed in terms of the light-weight AP-
based stream graph clustering and association partitioning
algorithm in following. More importantly, the processor will
use some optimization strategies such as using start vertices
instead of all vertices in the clustering process.

3.1. Hybrid Approximate PageRank Computation. Since the
associationmerging is tomerge vertices in each step, we need
to order vertices first. The reason is to enable the vertices
with a higher score to be merged later, because merging

these vertices first may result in very large clusters. PageRank
score of vertices can be used to rank vertices. At the same
time, we have to group similar vertices by their PageRank
score in order to simplify the computation. More specifically,
for vertex V, we use a term 𝐿𝑒V𝑒𝑙 (𝐿) to indicate the level
of the start vertices of each cluster that has the maximum
association with vertex V, denoted by 𝐿(V) = 𝑛, 𝑛 ∈ N+.
Generally, the level starts from 1 and the level of the root is
1. Here, since our approach merges vertices from down to
top, the level of leaves which is the deepest is 1. Namely, the
level of a node is defined by the depth of the tree minus the
number of connections between the node and the root. Sets
of vertices which have similar PageRank values may have the
same 𝐿 value 𝑛, which exactly will be merged at the step 𝑛.
By using 𝐿 as the criterion for merging clusters, the number
of steps in processing association partitioning can be reduced
substantially.

The vertex rank-based grouping approach is to order the
vertices in ascending order by their PageRank score. The
PageRank for a directed graph can be seen as a way of ranking
the entire distribution of the degree of each vertex. We first
calculate the PageRank score for each vertex.

An important point to note is that it is not possible to
access all the information in a streaming graph, in particular
when the data are arriving continuously; that is, the volume of
data is increasing. On the other hand, since arrived data has
been distributed to storage nodes, it is difficult to analyze all of
the data due to its excessive volume as well as the cost for data
transmission. It is desirable if we can estimate the PageRank
of some selected nodes quickly.

To address this problem, we approximate the PageRank of
each vertex from its in-degree [11]. Equation (4) shows that
the average PageRank of nodes 𝑘 is proportional to its in-
degree:

𝑝 (𝑘) = 𝑑𝑁 + 1 − 𝑑𝑁 𝑘in⟨𝑘in⟩ . (4)
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Table 1: Proportion of each predicate in LUBM.

Predicate Type Name teacherOf worksFor memberOf Advisor
Proportion 20.0402% 15.4818% 1.5641% 0.5209% 7.5539% 2.9666%

Data web

Queue Sliding window

· · ·· · ·

Source
vertex vertex

DestinationEdge

Cluster

Figure 2: Sliding window.

Generally, PageRank algorithm does not consider the
difference between edges. However, in labeled graphs, they
may be different, which requires considering the edge weight.
For example, in Figure 1(b), each triple in the RDF graph can
be treated as a direct edge whose subject as a source points
to object as a destination and the predicate as a label for the
edge.The proportion of same predicates in triples is different.
Experimental results show that the total number of predicates
in LUBM[10, 12] is 18, and the selected six predicates inTable 1
show that each𝑝𝑖 has a relatively stable proportion to the total
in a data set.

Suppose edge points from 𝑠sub to 𝑜obj with label 𝑝𝑖; the
PageRank of 𝑜obj contributed from 𝑠sub is computed as

PR (𝑠sub 󳨀→ 𝑜obj) = 𝑤𝑝𝑖∑
∀𝑠:𝑠
𝑝󳨀→𝑜obj 𝑤𝑝

PR (𝑠sub) , (5)

where 𝑤𝑝𝑖 is the percentage of 𝑝𝑖 in total number of 𝑝:

𝑤𝑝𝑖 =
󵄨󵄨󵄨󵄨𝑝𝑖󵄨󵄨󵄨󵄨∑𝑗<‖𝑃‖ 󵄨󵄨󵄨󵄨󵄨𝑝𝑗󵄨󵄨󵄨󵄨󵄨 , (6)

and the sum of 𝑤𝑝𝑗 is the total percentage of 𝑝 that 𝑠sub has.
The quotient means the weight of 𝑝𝑖 assigned by the subject𝑠sub. Multiplication by PageRank of 𝑠sub is the contribution
that 𝑠sub gives to 𝑜obj.

Then a hybrid approximate algorithm for computing the
PageRank score quickly in the sliding window is as follows:

PR𝑜obj = 𝛼PRInDeg + (1 − 𝛼) ∗ PR𝑤𝑝 , (7)

where PRInDeg is the PageRank value approximated by the in-
degree value of vertex 𝑜obj and PR𝑤𝑝 is the total contribution
that comes from all 𝑠sub pointing to 𝑜obj. 𝛼 ∈ (0, 1). 𝛼 is
a hybrid factor that needs to be trained by some heuristic
algorithm like simulated annealing. Using (4) and (5) we can

get the following expression. With the expression, we can
compute PageRank values more quickly:

PRoobj = 𝛼 [ 𝑑𝑁 + 1 − 𝑑𝑁 𝑘in⟨𝑘in⟩] + (1 − 𝛼)

∗ [ 𝑤𝑝𝑖∑𝑗:𝑗∈𝑠𝑘→∀𝑝 𝑤𝑝𝑗 PR (𝑠sub)] .
(8)

3.2. Sliding Window Based Streaming Model. The original
implementation of graph partitioner partitions graphs, which
are stored in local files, into several parts. The vertices of
graph 𝐺 arrive in a stream with the set of edges. As vertices
arrive, a partitioner decides to place the vertex on one com-
puter of multiple machines.The partitioner can distribute the
nodes randomly.The hash partitioningmay lead to data skew
and bad locality. If the partitioner can scan many nodes of
the streaming graphs, it can process nodes in a batch and
place nodeswith closer relationship together. Inspired by this,
we extend the model by implementing a buffer so that the
partitioner may decide to place any node in the buffer, rather
than the one at the front of the stream.The buffer is named as
window (Figure 2). The window determines the boundary of
the nodes that partitioner can process now.Once the nodes in
the window are processed, the window slides by the window
size. The sliding window ensures that partitioner processes
nodes in a batch, instead of one node each time. Furthermore,
in order to give the partitioner more flexibility, we allow it to
access to the statistics of previous entire partitions.

3.3. Computing the Association between Vertices. For each
vertex V in the sliding window, Algorithm 1 searches all start
vertices in the sliding windowwhich V can be reachable from,
denoted by 𝑆(V). And for each start vertex 𝑢 ∈ 𝑆(V), we
compute the association value 𝐴(𝑢, V) for partitioning and
denote the maximum start vertex set with 𝐴(𝑢, V) for vertex V
as𝐴𝑆(V) = {𝑢}. All the edges of a particular vertex are inserted
into the sliding window at random order. Particularly, 𝐺𝑆
means the subgraph of graph 𝐺 made up by all vertices in
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Input:
subgraph formed through sliding window: 𝐺𝑆 = (𝑉𝑆, 𝐸𝑆)

Output:
start vertex set for each vertex {𝑆(V) | V ∈ 𝑉𝑆},
Association set {𝐴𝑆(V) | V ∈ 𝑉𝑆}

(1) startVertexSet {𝑠V1, . . . , 𝑠V𝑚}
(2) 𝑄𝑢𝑒𝑢𝑒 ← {𝑠V1, . . . , 𝑠V𝑚}

while Queue is not empty do
(3) V ← Queue.front(); Queue.pop();
(4) if V ∈ 𝑠𝑡𝑎𝑟𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝑆𝑒𝑡 do
(5) 𝑆(V) ← V; 𝐴𝑆(V) ← V;
(6) foreach 𝑟 ∈ 𝑒 = (V, 𝑟)
(7) if local indegree of 𝑟 > 0 and local outdegree of 𝑟 > 0
(8) Queue.push(𝑟);
(9) else
(10) foreach 𝑝 ∈ 𝑆(𝑢) (𝑢 ∈ edge (𝑢, V)), 𝑞 ∈ 𝐴𝑆(V) do
(11) if 𝐴(𝑝, V) > 𝐴(𝑞, V) do
(12) clean 𝐴𝑆(V), 𝐴𝑆(V) ← {𝑝};
(13) else 𝐴(𝑝, V) = 𝐴(𝑞, V) do
(14) update 𝐴𝑆(V), 𝐴𝑆(V) ← {𝑝};
(15) if 𝑠V𝐶𝑖 ∈ 𝐴𝑆(𝑢) and 𝑠V𝐶𝑗 ∈ 𝐴𝑆(𝑢) do
(16) 𝐶󸀠𝑖 ← 𝐶𝑖 ∪ 𝐶𝑗;

Algorithm 1: Retracing start vertex and computing association.
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Figure 3: Search start vertices and computing association.

the sliding window. 𝑉𝑆 means all vertices in 𝐺𝑆, 𝐸𝑆 means all
edges in 𝐺𝑆, and 𝑠V𝑐𝑖 means the start vertex of cluster 𝑐𝑖.

This algorithm is implemented by iteratively traversing
each vertex, which is similar to the breadth-first traver-
sal from each start vertex. Specifically, in 𝑖th iteration, it
processes the vertices which are an 𝑖-hop away from start
vertices and gets the start vertex set from the predecessor
of these vertices. It then computes 𝐴(𝑢, V) and updates 𝐴𝑆
according to start vertices. For example, in Figure 3, start
vertex set of V𝑖−1 is {𝑠V1, 𝑠V2}, 𝐴(𝑠V1, V𝑖−1) = 1/𝑛1, and𝐴(𝑠V2, V𝑖−1) = 1/𝑛2. Suppose 𝐴(𝑠V1, V𝑖−1) = 𝐴(𝑠V2, V𝑖−1); then𝐴𝑆(V𝑖−1) = {𝑠V1, 𝑠V2}. Vertex V𝑖−1 is the predecessor of vertex
V𝑖, and by definition of Association, 𝐴(𝑠V1, V𝑖) = 1/(𝑛1 + 1)
and 𝐴(𝑠V2, V𝑖) = 1/(𝑛2 + 1). The details are described in
Algorithm 1.

3.4. AP-Based Streaming Graph Clustering. After the PageR-
ank is computed, the vertices are divided into multiple
subsets by their PageRank score, each of which contains the
vertices that share similar PageRank scores. We use modified
affinity propagation to cluster nodes. Affinity propagation
[13] is an algorithm that takes input measures of similarity
between pairs of data points and simultaneously considers
all data points as potential exemplars. Unlike the clustering
algorithms such as 𝑘-means or 𝑘-medoids, the number of
clusters is not indicated for AP algorithm. AP algorithm also
finds exemplars which represent the clusters contained in the
input data, while 𝑘-medoids does the same thing. AP adopted
a message passing algorithm which is called akin belief
propagation. Messages are exchanged between data points
until a high-quality set of exemplars and corresponding
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Figure 4: Association clustering.

clusters gradually emerges. If a maximal number of iterations
are reached or the exemplars vary little within a fixed number
of iterations, the algorithm will stop.

Here, the input data points for this algorithm are the
PageRank scores of all the vertices in the sliding window. We
use the Euclidean distance as the distance metric between
data points, that is, the absolute value of their numerical
difference. The affinity propagation algorithm then processes
the data by alternating message between data points itera-
tively until a high-quality set of exemplars and corresponding
clusters gradually emerges. Assume that the set of exemplars{ex1, . . . , ex𝑛} is in a monotonically increasing order by
PageRank score; that is, PR(ex1) < ⋅ ⋅ ⋅ < PR(ex𝑚); then the 𝐿
values for each exemplar are 𝐿(ex1) = 1 < ⋅ ⋅ ⋅ < 𝐿(ex𝑛) = 𝑚.
The 𝐿 values of data points in the corresponding cluster are
the same as their exemplar. An example is given in Figure 4;𝐿(4) = 𝐿(23) = 𝐿(26) = 𝐿(27) = 2 and ex2 = 4. Algorithm 2
shows the association clustering implementation.

To reduce the overhead of memory and storage and
speed up iterations, we simplify the association clustering
into start vertices clustering. Note that the start vertices have
a minimum 𝐿 value in vertex ordering strategies; that is,𝐿(𝑠𝑡𝑎𝑟𝑡V𝑒𝑟𝑡𝑒𝑥) = 1. Based on this, a start vertex can stand
for a cluster which contains all vertices at initial phase; for
example, vertex 9 can stand for a cluster that merges all
vertices with maximum Association from vertex 9, as shown
in Figure 4.

Specifically, let 𝑅𝑛 denote the clustering results at step 𝑛.
Since a start vertex can stand for the corresponding cluster
at initialization, obviously, 𝑅0 is the clustering result at algo-
rithmbeginning and each start vertex is a cluster, respectively.
The association clustering algorithm then iteratively groups

the start vertices step by step. In the iteration at the 𝑛th
step, for each pair of clusters in 𝑅𝑛−1, if the start vertices of
these two clusters have the same value of Association with
vertex 𝑢 and 𝐿(𝑢) = 𝑛, they will be merged into 𝑅𝑛. This
continues until any two sets in 𝑅𝑛 are disjoint. For example,
in Figure 4, the initial clustering result is 𝑅0 = {{9}, {22}}.
Since 𝐿(9) = 𝐿(22) = 1, 𝐴𝑆(9) = {9}, and 𝐴𝑆(22) = {22},
then 𝑅1 = {{9}, {22}}. Suppose that 𝐿(4) = 𝐿(23) = 𝐿(26) =𝐿(27) = 2, 𝐿(5) = 𝐿(6) = 𝐿(7) = 𝐿(8) = 3, and 𝐿(10) =4. At step1, 𝑅2 = 𝑅1 ∪ {𝐴𝑆(4), 𝐴𝑆(23), 𝐴𝑆(26), 𝐴𝑆(27)} ={{9}, {22}, {9}, {22}, {22}, {22}}. We convert 𝑅2 into a pairwise
disjoint set; then 𝑅2 = {{9}, {22}}. In similar way, 𝑅3 ={{9}, {22}}. At step3, 𝐴𝑆(10) = {9, 22}, 𝑅4 = {{9}, {22}, {9, 22}}.
Finally, 𝑅4 = {{9, 22}}.

As the iterations continue, the termination conditions
are a potential problem. In order to generate the final
results with acceptable redundancy, high intra-association,
and well-balanced distribution, the strategy for the choice of
termination conditions has to concentrate on two criteria:
the number of clusters remaining (i.e., |𝑅𝑛| at step 𝑛) and
the number of steps processed. Obviously, the more the steps
are processed, the less the replicas and the higher the intra-
associated partitioning results will be produced, but the fewer
the number of clusters that will be remaining. Usually, we
expect that the number of clusters remaining is larger than
the number of storage nodes, for example, 𝜆 times compared
with the number of storage nodes 𝑡.

After performing association clustering, we will assign
each cluster to one partition, concentrating on the criterion
which produces well-balanced data distribution. Meanwhile,
the number of iterations should be as large as possible. In
conclusion, the principle of determining the termination
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Input:
subgraph formed through sliding window: 𝑠𝐺 = (𝑠𝑉, 𝑠𝐸)

Output:
a 𝑘-way clustering result {𝑃1, . . . , 𝑃𝑘}

(1) 𝑅0 ← {{𝑠V1}, {𝑠V2}, . . . , {𝑠V𝑚}}, where 𝑠V𝑖 ∈ 𝑆𝑉𝑠𝐺;
(2) 𝑛 ← 0;
(3) repeat
(4) 𝑛 ← 𝑛 + 1;
(5) 𝑅𝑛 ← 𝑅𝑛−1 ∪ {𝐴𝑆(𝑢) | 𝐿(𝑢) = 𝑛, 𝑢 ∈ {𝑠𝑉 − 𝑠𝑉start}};
(6) foreach pair of 𝐶𝑖, 𝐶𝑙𝑢𝑗 ∈ 𝑅𝑛, 𝐶𝑖 ̸= 𝐶𝑗 do
(7) if 𝑠V𝐶𝑖 ∈ 𝐴𝑆(𝑢) and 𝑠V𝐶𝑗 ∈ 𝐴𝑆(𝑢) do
(8) 𝐶󸀠𝑖 ← 𝐶𝑖 ∪ 𝐶𝑗;
(9) 𝑅𝑛 ← 𝑅𝑛 ∪ 𝐶󸀠𝑖 ;
(10) 𝑅𝑛 ← 𝑅𝑛 − {𝐶𝑖} − {𝐶𝑗};
(11) until |𝑅𝑛| ≤ 𝜆𝑘 or 𝑛 > 𝐿max;
(12) foreach 𝐶𝑖 ∈ 𝑅𝑛−1 do
(13) 𝐶𝑖 ← ExtendByAssociation(𝐶𝑖);
(14) foreach 𝐶𝑖 do
(15) 𝑃𝑗 ← DataDistributing(𝐶𝑖);

Algorithm 2: Association based clustering.

conditions is to merge as many clusters as possible on the
basis of keeping the number of remaining clusters larger than
times of the number of storage nodes.Hence, the problem can
then be formulated as

min {𝑛}
Subject to 󵄨󵄨󵄨󵄨𝑅𝑛󵄨󵄨󵄨󵄨 ≤ 𝜆𝑡. (9)

Then, the iteration of association clustering will stop at step𝑛 − 1, if |𝑅𝑛| ≤ 𝜆𝑡 or 𝑛 is larger than the maximal 𝐿
value, where 𝜆 is a user-specified parameter for controlling
the degree of data skew. For example, in Figure 4, supposing𝑡 = 1 and 𝜆 = 1, the iteration is stopped at step 2, in
which there are two partitions remaining. After that, each
final clusterwill be generated by extending each start vertex in
this cluster with all the vertices that have the best association
with this start vertex. Finally, the function 𝐷𝑎𝑡𝑎𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔
gives a novel strategy for selecting the partition to which the
cluster is assigned. This strategy aims at a strong association
and well-balanced distribution.

Association clustering generates clusters with different
scales. The overhead of processing a small cluster is the same
as that of a larger cluster. To avoid processing small clusters,
we set a scale threshold for the clusters. A cluster that does
not match this condition will be left behind in the sliding
window and be processed when new data arrive. As each
cluster may include one or more exemplars after association
clustering, we want a unique exemplar to represent each
cluster for data distributing. When one cluster has more than
one exemplar, we select an exemplar from these exemplars
through a secondary clustering: running AP again on these
exemplars. If the result still has more than one exemplar, we
choose the one with the maximum PageRank score. This can
guarantee that the new generated exemplar has a relationwith
other vertices. Moreover, it prevents choosing a vertex with a
large in-degree and results in skewed data placement.

Before the first bunch of data is processed, all storage
nodes are empty. We use a greedy strategy for selecting the
storage node towhich cluster is assigned.This strategy aims at
a well-balanced distribution. It sorts all clusters in decreasing
order by the number of vertices they obtain. Then it assigns
clusters one-by-one to minimal size partitions. It is notable
that this strategy only processes little parts of the streaming
graph and does not have effect over all distribution.

After initialization, the normal process of a cluster is
to decide which storage node is to be distributed. First
of all, we build an 𝐸𝑥𝐼𝑛𝑑𝑒𝑥 for each storage node, which
records each cluster’s exemplar that has been already stored
in the node in decreasing order by PageRank score, more
specific information including the in-degree of the exemplar
in order to approximate and update PageRank score. After
association clustering, for each cluster, we send the PageRank
of the exemplar PR𝑒 to each storage node by multithread and
compare the PageRank with the last one PR𝑖 in the 𝐸𝑥𝐼𝑛𝑑𝑒𝑥.
If PR𝑒 ≥ PR𝑖, we consider the cluster to be in association
with data in this storage node and search the 𝐸𝑥𝐼𝑛𝑑𝑒𝑥. If
this exemplar has already existed, we send a signal 𝑦 back
to the main node and otherwise 𝑛. According to all signals,
the main node decides how to distribute the cluster. If more
than one storage node sends 𝑦 back, the cluster will be sent to
the storage node with minimal storage capacity. If there is no
signal 𝑦, then other clusters are processed first and the cluster
is sent to the storage node with maximal storage space.

4. Experimental Evaluation

The experimental results are presented and analyzed in this
section. Regarding the quality of partitions, we use edge
cut (ec) size and communication volume (cv) with respect
to optimizing graph query responding time. In addition,
imbalance is also taken into consideration. We let imbalance
be the fraction which equals the quotient between the size
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Table 2: Statistics of real graphs.

Datasets Amazon EnWikt DBLP Yago
Vertices 735268 101355853 986285 2635316
Edges 5158014 4206756 6707236 5259414

Table 3: Edge cuts of real graphs.

Datasets Amazon EnWikt DBLP Yago
METIS 340163 30743970 1125114 1199683
HASH 5017956 95303805 6486516 4941314
DG 2254099 64543160 2918274 4674657
LDG 2204099 62750478 2663968 4239179
EDG 2252630 64543160 2958376 4614849
T 1292032 79535779 1292032 3388482
LT 1312032 79848943 1312032 3388662
ET 1310053 79624375 1310053 3388550
Assc 1113146 53410947 1154243 3254783

of the largest partition and the balanced (average) partition
size.

We set random hash method as upper bound with the
consideration that hash ignores both the structure of the
graph and the locality among the edges completely. As a
result, hash can achieve balanced partitions but incurs lots
of edge-cutting across these partitions. We also set METIS
as lower bound because it is an offline algorithm and can
obtain the whole information of the graph to generate good
partitions.

We also compare our solutions (short for Assc) to two
typical kinds of partitioning algorithms: METIS (𝑔𝑝𝑚𝑒𝑡𝑖𝑠
with default configuration) aswell as a collection of streaming
partitioning algorithms including hash and methods pro-
posed by Stanton and Kliot [14]. We also set the number of
storage nodes 𝑘 to a constant value equal to 16 and the value
of parameter 𝛼 to 0.5. We process unlabeled graphs with an
edge weight as a constant value of 1.

All experiments were performed on a single machine
which has a 16-core Intel Xeon CPU E7420 and 48GB
memory.

4.1. Real Graphs. We evaluate our approach over several real-
world datasets which is generated from the real streaming
case: Amazon, a symmetric graph describing the similarity
among books; English-Language Wiktionary, a collaborative
project to produce a free-content multilingual dictionary;
DBLP, a bibliography service from which an undirected
scientific collaboration network can be extracted; and Yago,
a huge semantic knowledge base, derived from Wikipedia,
WordNet, andGeoNames. Table 2 shows the basic information
of the real graphs.

Tables 3 and 4 show the quality of the partitioning for
the real-world graph. The quality is measured by ec and
cv, respectively. The results were obtained by running the
streaming partitioning methods and METIS. It is worth
noting that we do not present communication volumes of
other streaming graph partitioning methods in Table 4. As

Table 4: Communication volume situation of real graphs.

Datasets Amazon EnWikt DBLP Yago
METIS 407167 10021079 12227014 21026877
HASH 4316902 36827428 33183916 122343781
Assc 507354 14162380 15659341 15394621

mentioned above, METIS is an offline algorithm that obtains
the whole information of graph, whereas streaming graph
partitioning methods can only pick up partial knowledge of
the graph. It is reasonable that METIS surpasses streaming
graph partitioning methods which can be proved by Table 3,
so we omit cvs of other methods for succinctness.

Tables 3 and 4 give a close look at the edge-cutting
number of each partitioning approach. It is clear that our
solution produced partitions with significantly better quality
reaching up to 1.17x (from 1.04x) over all other streaming
partitioning methods, while METIS performs the best as we
expected. The results in Table 3 also show that our method
is comparable to METIS in terms of the number of edge
cuts. We omit the experimental results of imbalance, for the
reason that both our method and other competitive methods
generatedwell-balanced partitions over all the graph datasets.
It is worth noting that the maximal fraction represents
imbalance equal to 0.04. Sowe ignore the results for briefness.

4.2. Synthetic Graphs. With the purpose of determining how
effective our approach is in the context of graph query,
we choose LUBM dataset with embedded communities to
represent synthetic graphs. The LUBM dataset is widely used
by the semantic web community for benchmarking triple
stores. With the purpose of evaluating the scalability of our
partitioning approach, we used six datasets of varying sizes
generated by the LUBMdata generator.Those LUBMdatasets
contain 10M, 50M, 100M, 200M, 300M, and 500M triples,
respectively. We present the properties of these datasets in
Table 5.

According to the experimental results, our solutions
produced partitions with significantly better quality than
HASH and METIS in terms of communication. Our method
surpassesMETIS at least 20% over all the LUBMdatasets. For
a straightforward view, we convert the data in these tables to
Figure 5, which shows the communication traffic during the
graph query with our system TripleBit [15, 16]. For the reason
we explained above, we just present the results of METIS,
HASH, and our methods.

Considering METIS holds the full knowledge of the
graph, it is interesting that our method outperforms METIS
just with fragmentary graph information acquired in stream-
ing setting. It is worth noting that graph query is quite
different from some typical graph algorithms like PageRank.
It is the number of intrapartition edges and interpartition
edges that dominates the execution time of PageRank. In
this prerequisite, we can simply predict the performance of
a graph algorithm with the quality of partitions split by one
graph partitioner. However, graph query, unlike PageRank, is
a subgraph pattermatching problem. Its performance ismore
related to the distribution of subgraphs in each partition.
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Table 5: Statistics of synthetic graphs.

Datasets 10M 50M 100M 200M 300M 500M
Vertices 3303724 16439317 32905170 65764621 98640459 164416780
Edges 13409395 66751196 133613894 267027610 400512826 667592614
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Figure 5: Communication during graph query.

Although METIS can lead to more balanced partitions
with smaller fraction of edges cut, it ignores the subgraph
associated with answers to graph query. Our method brings
out larger number of edge cuts, admittedly. But by using
Association Based Clustering, our method can preserve more
subgraph pattern in each partition. In this way, when execut-
ing a graph query, a matched subgraph can be found within a
partition boundary more likely. So compared to METIS, the
communication traffic can be reduced by our method.

4.3. Discussion. METIS is based on a multilevel approach,
which consists of three phases: the coarsening phase, the ini-
tial partitioning phase, and the uncoarsening phase. Among
these three phases, coarsening phase plays a key role, which
relies on the efficient choosing of objective functions, and
for skewed graphs, many connected edges will be cut to
avoid extremely large clusters. METIS can obtain the whole
information of the graph structure and only the information
of structure. As a result, it can generate good partitions with
the cost of long execution time. As we explained above, in the
scenario of graph query, it performs worse than our method.

Edge-based hash partitioning is a vertex-cut approach.
This approach performs poorly when the graph structure is
complex, which brings about the operations across partition
boundaries. This consequently incurs frequent cross-node
interactions coming with significant performance degenera-
tion.

Our method considers the weight of edges by calculat-
ing PageRank score, which enables the vertices with high

PageRank score to be merged late, giving a guarantee that
we can get a reasonable size for the cluster. With association
clustering, we can get high intra-associated clusters while the
relations among vertices are well reserved, which means less𝑒𝑑𝑔𝑒 𝑐𝑢𝑡 and 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 V𝑜𝑙𝑢𝑚𝑒.
5. Related Work

We survey related work on static and streaming graph clus-
tering from different angles. Regarding clustering problems,
multiple algorithms have been proposed. 𝐾-means [17] is a
simple and fast algorithmwhich often suffers from twomajor
drawbacks. Firstly, the performance of 𝐾-means is highly
related to the choice of the initial values which are treated
as the cluster centers. Secondly, the objective function of the𝐾-means is nonconvex coming with lots of local minima.𝐾-means++ [18] algorithm was proposed which presents
initialization procedure of cluster centers to overcome the
initial centers sensitivity problem of a standard 𝐾-means.
However, it also suffers from the local optimum problem.
To add the ability for 𝐾-means++ to update its clusters as
new points arrive from a data stream, StreamKM++ [19] was
developed. StreamKM++ introduces the concept of a core
set, and clusters are built on these core sets, which are good
approximation of the clustering of the original points.

Being different from 𝐾-means, density-based clustering
does not require the input of a predefined number of
clusters and can form clusters with arbitrary shapes. One
multiple stream density-based data processing algorithm
is DenStream [20], which applies a damped window to
DBSCAN [21]. DBSCAN is a popular density-based cluster-
ing algorithm with two simple parameters, which is effective,
but is not designed to handle dynamic data streams. By
extending the concept of core-objects to core-micro-clusters,
DenStream [20] is able to cluster in the data stream environ-
ment.

Hash partitioning is one of the dominating approaches
in graph partitioning. Lee and Liu present a novel semantic
hash approach that utilizes access locality to partition big
graphs across multiple computing nodes by maximizing the
intrapartition processing capability andminimizing the inter-
partition communication cost [22]. Huang et al. use a graph
partitioning algorithm instead of simple hash partitioning by
source vertex, destination vertex, and labeled or unlabeled
edge [23]. This allows vertices that are close together in the
graph to be stored in the same machine. Stanton and Kliot
proposed a weighted variant of the greedy algorithm for
streaming balanced graph partitioning [14], which has an
improvement over the hashing approach. Tsourakakis et al.
presented a framework which unifies two seemingly orthog-
onal heuristics [24]. They also developed a streaming graph
partitioning algorithm FENNEL based on this framework
whose performance can be comparable to METIS.
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Since each node in the graph has a natural PageRank
property that can be used as a measure, regarding the
computations performed over large graphs whose edges are
presented in a streaming order, Sarma et al. proposed algo-
rithms that require sublinear space and passes to compute
the approximate PageRank values of vertices in a large graph
[25]. Zhang et al. employed the affinity propagation algorithm
and extend to data streaming to solve a challenge: how to
cluster with the best representative [26]. Nguyen et al. present
an algorithm that adopts eviction strategy to evaluate the
likelihood of binding in terms of its contribution to a result
in contrast to using a fixed time window for shedding the
computation load [27]. Fischer et al. propose the use of graph
partitioning algorithms to optimize the assignment of tasks
to machines [28].

In order to process the growing data, many distributed
infrastructures such as Hadoop [29] have been developed.
Since Hadoop’s batch-oriented synchronous nature does not
satisfy the demand of real-time data processing, stream
processing approaches based on information-flow processing
have been proposed [28].

6. Conclusion and Future Work

In this paper, we propose a novel partitioning approach for
streaming graph query in a general-purposed distributed
storage system. Our approach, which is called association-
oriented partitioning approach, adopts a hybrid approximate
PageRank to retrace and compute associations between start
vertices and other vertices. It then uses a hybrid PageRank-
based affinity propagation clustering algorithm to generate
several clusters, each including an exemplar. Finally, this
method distributes different clusters with a brief strategy.This
strategy judges whether the clusters have an association with
the storage node. Extensive experiments conducted on these
graphs prove that our method is effective. In the scenario of
graph query, our method even outperforms METIS in terms
of communication traffic across different partitions.

Our streaming graph partitioning approach needs to
compute the rank values of vertices before distributing a
vertex into a partition. The computation of PageRank value
generally is a time-consuming step, although we have taken
some strategies, including sliding window and approximate
PageRank computation to improve the performance. Thus,
ourworkwill continue in twodirections.First, we areworking
on extending our approach to distributed computing archi-
tecture. Second, we are interested in exploring the querying
feature for labeled streaming graphs based our system.
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