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Abstract

Inferring the fine scale properties of a signal from its coarse measurements is a common

signal processing problem that finds a myriad of applications in various areas of experimental

sciences. Line spectral estimation is probably one of the most iconic instances of this

category of problems and consists of recovering the locations of highly localized patterns,

or spikes, in the spectrum of a time signal by observing a finite number of its uniform

samples. Recent advances have shown that convex programming could be used to estimate

the frequency components of a spectrally sparse signal. This thesis focuses on the total

variation (TV) approach to perform this reconstruction.

It is conjectured that a phase transition on the success of the total variation regular-

ization occurs whenever the distance between the spectral components of the signal to

estimate crosses a critical threshold. We prove the necessity part of this conjecture by

demonstrating that TV regularization can fail bellow this limit. In addition, we enrich the

sufficiency side by proposing a novel construction of a dual certificate built on top of a

so-called diagonalizing basis which can guarantee a prefect reconstruction of the spectrum

up to near optimal regimes.

Moreover, we study the computational cost of the TV regularization, which remains the

major bottleneck to its application to practical systems. A low-dimensional semidefinite

program is formulated and its equivalence with the TV approach is ensured under the

existence of a certain trigonometric certificate verifying the sparse Fejér-Riesz condition,

leading to potential order of magnitude changes in the computational complexity of the

algorithm.

This low dimensional algorithm is then applied in the context of multirate sampling

systems in order to jointly estimate sparse spectra at the output of several samplers. We

demonstrate the sub-Nyquist capabilities and the high computational efficiency of such

systems.
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Chapter 1

Introduction

1.1 Harmonic analysis and reconstruction

1.1.1 Time and frequency band limits

The continuous Fourier transform builds an isomorphism on the space of functions with
finite energy. The knowledge to the temporal information of a signal is enough to completely
characterize its spectrum, and reciprocally the knowledge of the spectrum determines a
signal in the time domain. Furthermore, the continuous Fourier transform is a non-local
operator, and temporal informations are spread in the whole spectrum and vice-versa. More
importantly, the notion of time and frequency are dual to each other, and exchangeable
within the definition of Fourier’s basis

ei2πft.

However, this interplay becomes more subtle whenever one has only a partial knowledge
of a signal. For instance, in practical scenarios, an experimenter will surely be limited to
acquire time-limited observations. Moreover, her measurement device might be constrained
by the law of physics to sense only a low-pass version, or a narrow-band version of the
ground truth signal, or both. This is typically the case in electromagnetic systems where
the transmission is limited in time and where the receiving antennas can only receive
fragments that lies within the spectral bandwidth they have been conceived to work on.
Those observation limits, and the non-locality properties of the Fourier transform induces
blurring and distortion in the dual domain. This phenomena can be explained by the
time-frequency analog of the well known Heisenberg uncertainty principle in quantum
mechanics [37] stating that a temporal event of finite temporal duration ∆t should have a
frequency spread ∆f verifying

∆t∆f ≥ 1
4π , (1.1)

highlighting the existence of a limit between the maximal observability in one domain
from limited temporal knowledge of its dual [41]. The Heisenberg’s relation (1.1) also
suggests that highly localized events in one domain might only be resolved by providing a

1



2 Chapter 1. Introduction

nearly complete observation of the dual domain. Finally, most of the modern measurement
systems are digital, and may only access punctual information of the signal they are
monitoring, adding an extra layer of distortions and ambiguities between the sampled data
and the ground truth.

Hence, measuring in one domain induces unavoidable uncertainties in the dual one,
and unveiling the properties in time or frequency from measurements in its dual is surely a
challenging task. This reconstruction problem is one of the core questions of harmonic
analysis, which was qualified by Fourier in his scientific manifesto [34] as

“[...] the ability of humankind to supplement the brevity of life and the
imperfection of the senses.”

Understanding the time-frequency relations and limits has become an even more important
concern with the raise of bandlimited communications, where a transmitter is constrained
to operate within a fixed spectral band of width ∆f and aims to maximize the amount of
information it can send within a finite time range ∆t. Modern development of this theory
had also crucial impacts in various areas of experimental and imaging sciences, such as
astronomy, crystallography, medical and magnetic resonance imaging, and optics. Despite,
its longevity, harmonic analysis remains, as of today, an active area of research filled with
unknowns and new potential applications.

1.1.2 Structured reconstruction

If the uncertainty principle (1.1) highlights the existence of ambiguities and draws a
statistical limit when trying to distinguish between any two bandlimited signals x1 and x2

from a time limited observation window, it doesn’t necessarily implies that any kind of
reconstruction is impossible. It is fairly well understood that the use of a prior knowledge
on the structure of the signal to reconstruct can avoid any reconstruction ambiguity.
The most common example consists in assuming that the continuous time signal x (·)
is spectrally bandlimited within the frequency range [−B,B], and the Nyquist-Shannon
sampling theorem [51], [59] ensures that x (·) can be fully determined by the observation
of a series of uniform temporal observations {yk}k∈Z acquired at a sampling frequency
Fs ≥ 2B through the relation

∀t ∈ R, x (t) =
∑
k∈Z

yksinc (π (Fst− k)) .

If the above theorem still requires to acquire an unlimited number of measurements to
guarantee a complete reconstruction, an other important line of work from Slepian, Pollak
and Landau studied the properties of temporal analog functions maximizing the energy
concentration within a fixed bandwidth [62]. This work led to the development of the
discrete prolate spheroidal wave functions, which are optimal digital waveforms on N points
maximizing the energy transmission within the reduced bandwidth W , and found great
applications in digital communications and filter design [61]. Slepian’s 2NW -Theorem
ensures that the set of discrete signals on N points guarantying zero spectral information
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leakage within a reduced bandwidth W tends to a linear space of dimension 2NW at a
linear convergence rate.

Many others structured prior models have been assumed and studied, and a compre-
hensive tour of modern reconstruction problems from discrete samples can be found in [31],
[73]. This thesis will focused on the reconstruction of signals that can be modeled in the
time or frequency domain by a stream of punctual events of negligible width (∆t = 0 or
∆f = 0) from observations in the dual domain. This model is often refereed as finite rate of
innovation or spikes model. Many algorithms [47], [74] are known to be able to reconstruct
the exact location of the events with infinite precision in absence of noise, although the
model clearly fails to meet the Heisenberg’s condition (1.1).

This work studies the reconstruction problem under the lens of convex optimization,
and in particular under the total variation (TV) regularization paradigm. We start by
discussing the resolution limits of this problem – the necessary minimal distance between
two events to guarantee a robust recovery – and review recent results related to this limit.
We later introduce the TV estimation, firstly proposed in [18], to tackle this problem. Novel
approaches to study the achievable resolution limits of TV regularization are proposed in
Chapter 2 and 3. The computational complexity of the TV regularization estimator is
explored in Chapter 4, and an equivalent low-dimensional convex formulation is guaranteed
provided the existence of a solution admitting a certain sparse sum-of-squares decomposition.
Chapter 5 focuses on the joint spectral estimation problem from the output of synchronized
samplers, and the TV regularization method is adapted to this extended problem. Finally,
Chapter 6 draws a conclusion and proposes further research directions and extensions of
the line spectral estimation problem.

1.2 Mathematical definitions and conventions

This section presents the mathematical conventions that will be used through this thesis.

Linear algebra Vector spaces of matrices are all endowed with the Frobenius inner
product denoted 〈·, ·〉 and defined by 〈A,B〉 = tr (A∗B), where tr (·) is the trace operator.
‖·‖∞ is used to denote the supremal norm in various normed spaces, while ‖·‖2 denotes the
usual Euclidean norm. The adjunction is taken respectively to the canonical inner product
associated with the Euclidean space.

A vector y belonging to an Euclidean space Cd with explicitly an odd dimension
d = 2m+ 1 is indexed in J−m,mK so that y = [y−m, y−m+1, · · · , ym]T.

Trigonometric polynomials The space of trigonometric polynomials of order m ∈ N
is denoted Tm. Trigonometric polynomials are assumed to be 1−periodic, so that any
element Q ∈ Tm writes under the form

∀ω ∈ T, Q (ω) =
m∑

k=−m

qke
i2πkω.
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for some coefficients vector q = [q−m, q−m+1 · · · , qm]T ∈ C2m+1 indexed in J−m,mK.

Toeplitz matrices The adjoint H∗
m of the canonical Toeplitz Hermitian matrix generator

in dimension m, denoted Hm, is defined in Page xviii is characterized for every matrix
H ∈ C(m+1)×(m+1) by

∀k ∈ J0,mK , H∗
m (H) [k] = 〈Θk,H〉 = tr (Θ∗

kH) ,

whereby Θk is the elementary Toeplitz matrix that is equal to 1 on the kth upper diagonal
and zero elsewhere, i.e.

∀ (i, j) ∈ J0,mK2 , Θk (i, j) =

1 if j − i = k

0 otherwise.

1.3 Line spectral estimation

1.3.1 Observation model and problem formulation

In its canonical formulation, the line spectral estimation problem aims to estimate the
parameters of a sparse measure µ ∈M (T) modeled as a stream of Dirac pulses placed at
unknown locations of the form

∀ω ∈ T, µ (ω) =
s∑

k=1
ckδxk

(ω) (1.2)

from its projection unto the first 2m+ 1 complex trigonometric moments y ∈ C2m+1 taken
by convention from the trigonometric order −m to the trigonometric order m. Namely,
the components of the observation vector y are given by

yk =
〈
ei2πkω, µ

〉
=
∫
T
e−i2πkωdµ (ω)

for |k| ≤ m. In the above, the finite subset X = {xk}sk=1 ⊂ T classically represents the
support of the frequencies to estimate and the vector c ∈ Cs contains the associated
complex amplitudes. The sparse measure µ is assumed to be unknown, meaning that both
X, c, and s are unknown parameters to be estimated. Similarly, the observation vector
y = [y−m, · · · , ym]T ∈ C2m+1 can be expressed under the integral representation

y =
∫
T
am (ω) dµ (ω), (1.3)

whereby each atom am (·) ∈ C2m+1 is the vector given by

∀ω ∈ T, am (ω) =
[
e−i2πmω, e−i2π(m−1)ω, · · · , ei2πmω

]T
. (1.4)

Recovering µ from the sole knowledge of y is obviously an ill-posed problem, since the
set of measures µ ∈M (T) leading to the same observation vector y under the consistency
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relation (1.3) forms an affine subspace of M (T) of uncountable dimension. In particular,
the discrete Fourier transform ỹ ∈ C2m+1 of the vector y can be interpreted as a sparse
measure µDFT of the form

∀ω ∈ T, µDFT (ω) =
m∑

k=−m

ỹkδ k
2m+1

(ω)

that satisfies y =
∫
T am (ω) dµDFT (ω) and therefore is a solution of Equation (1.3). However,

µDFT is unlikely to be an interesting representation on the studied reconstruction context,
since its support XDFT ⊂ T has, in the general case, a fixed cardinality 2m+ 1 no manner
the number of spikes s involved in the original definition of the measure µ.

In the parsimonious reconstruction paradigm, the line spectral estimation problem
aims to recover the sparsest measure µ0 ∈M (T), supported on a set X0 ⊂ T of minimal
cardinality, that is consistent with the measurements y under the observation constraint
described by Equation (1.3). Hence the optimal estimator for the line spectral estimation
problem can be formulated as the output of the abstract optimization program over M (T)

µ0 = arg min
µ∈M(T)

‖µ‖0 subject to y =
∫
T
a (ω) dµ (ω), (1.5)

whereby ‖·‖0 denotes the pseudo-norm counting the potentially infinite cardinality of a
complex Radon measure in M (T) given by

‖·‖0 :M (T)→ R+ ∪ {+∞} (1.6)

µ 7→ ‖µ‖0 =

card (supp (µ)) if supp (µ) is finite

+∞ otherwise.

One major particularity and difficulty of the line spectral estimation problem resides in
the fact that one seeks for a continuous reconstruction of the spikes locations, which can
be off the grid defined by the discrete Fourier transform of the samples. As a result, the
object that one aims to recover is a sparse measure, and not a sparse vector, which draws
a fundamental difference with the classic finite dimensional inverse problem framework.
The abstract formulation (1.5) of the optimal estimator µ0 has two drawbacks: The
‖·‖0 pseudo-norm used in the cost function of Program (1.5) is not continuous, and the
feasible set is, as discussed early, an affine subspace of M (T) of infinite and non-countable
dimension. As a result, Program (1.5) cannot be tackled directly via the mean of classic
descent algorithms and generic optimization solvers. Moreover, the abstract formulation
(1.5) do not give, at this point, any insight on how to algorithmically compute the optimal
estimator µ0.

1.3.2 Application range

Although the sparsity model described in Subsection 1.3.1 seems idealistic since very few
signals rigorously follow the spikes model (1.2), most of the natural signal can be assumed
to be compressible. More precisely, a wide range of those can be represented as a sum of a
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few number of highly localized patterns, obtained by convolving a stream of Dirac spikes
by a point spread function. When the point spread function is assumed to be known, the
presented model is particularly fit to reconstruct signals falling in this category, since a
simple prior equalization step is enough to transform the observation vector into a surrogate
one following the sparsity model described by Equation (1.2).

On the practical side, the applications of line spectral estimation are many. Applications
to the reconstruction of sparse spectra from time domain measurements includes radar
signal processing [35], cognitive radio [3], and spectrography. On the other hand, sampling
in frequency domain occurs in optical super-resolution [39], [48], magnetic resonance
imaging, and crystallography.

1.4 The spectral resolution limit

1.4.1 The Rayleigh principle

Measurement devices, whenever they are electromagnetic or optical are limited by diffraction
and aberrations resulting in the presence of distortions or blurring effects at their output.
This phenomenon was principally highlighted by Rayleigh in the beginning of the past
century by considering the diffraction patterns of two point sources passing though a
circular aperture [55]: Fraunhofer’s work on diffraction explains that the light intensity on
the observer’s screen can be modeled as the sum of the squares of two translated order-one
Bessel functions of first kind. The nominal width of the Bessel spread function is inversely
proportional to the width of the diffracting circular aperture. When the point sources
are far apart, they are easily identifiable by targeting the center of each of the diffraction
pattern. However, it becomes more complicated to distinguish the point sources when they
get closer to each other.

The Rayleigh limit characterizes the resolution of a measurement device, defined by
the minimum distance above which an observer is able to distinguish two objects of small
size. The notion of resolution of a system is quite different form the notion of the precision,
although often wrongly mingled, that refers to the estimation error of a measurement
device. If Rayleigh’s motivation were mostly empirical, recent lines of work in harmonic
analysis aim to prove the existence of a statistical limit under which it is impossible to
reconstruct of measure following a given observation model. In the case of the line spectral
estimation problem described in Section 1.3, the corresponding diffracting point spread
function can be assimilated to a Dirichlet kernel of order varying with the number of
measurements, and will be defined later. The rest of this section covers the literature
related to the resolution limits inherent to the line spectral estimation problem.

1.4.2 Coherence, Ingham inequalities, and minimal distance

There is a vast literature on the finite dimensional sparse inverse problem framework, which
consists in recovering a sparse vector x ∈ Cd from noisy observations y ∈ Cr, with r ≤ d
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acquired through a fat measurement operator M ∈ Cr×d of the form

y = Mx+ η, (1.7)

where η ∈ Cr is a noise vector. Generally, the robustness of the reconstruction of a sparse
vector x from the knowledge of the observations y is related to the restricted isometry
properties (RIP) [16], the randomness [20], or the incoherence properties [19] of the matrix
M. When letting by (m1, · · · ,mn) the columns of the matrix M, the coherence ξ (M) is
defined by

ξ (M) , max
i,j∈J1,dK

i 6=j

〈mi,mj〉
‖mi‖2 ‖mj‖2

.

It has been shown that the robustness of the sparse inversion (1.7) increases whenever
the measurement operator M satisfies a tighter RIP property, or whenever the coherence
ξ (M) decreases.

By opposition to the “classic” and well-explored finite-dimensional inverse problem
framework, one seeks, in the studied settings, to reconstruct continuously a measure
µ ∈M (T), instead of assuming that µ is supported on prior discrete set X ⊂ T guiding the
reconstruction. By a direct calculation, the coherence ξ (ω, ω + ∆ω) between two atoms
am (ω) and am (ω + ∆ω) defined in Equation (1.4) writes

ξm (ω, ω + ∆ω) , 〈am (ω) , am (ω + ∆ω)〉
‖am (ω)‖2 ‖am (ω + ∆ω)‖2

=
m∑

k=−m

ei2πk∆ω

= Dm (∆ω)

whereby Dm (·) denotes the Dirichlet kernel of trigonometric degree m defined by

Dm : T→ R

ω 7→
m∑

k=−m

ei2πkω = sin (2π (m+ 1)ω)
(m+ 1) sin (2πω) . (1.8)

Consequently, the coherence between two atoms tends to Dm (0) = 1 whenever ∆ω → 0,
and inferring on the joined presence of ω and ω + ∆ω in the support set X of the measure
to reconstruct will become a harder and harder task [48]. As a result, the dictionary used
for the inversion is always coherent, and one cannot directly rely on a notion of RIP or
incoherence to study the performance of an off the grid reconstruction estimator for the
line spectral estimation problem.

However, the atoms involved in the construction of the observations y can be incoherent
if one assumes the existence of a minimal separation between them. By analogy with the
finite dimensional case, one can conjecture that the reconstruction performances of the
support set X are driven by its minimal warp-around distance over the torus, denoted



8 Chapter 1. Introduction

∆T (X), and defined by

∀X ⊆ T, ∆T (X) , inf
x,x′∈X

x 6=x′

min
p∈Z

∣∣x− x′ + p
∣∣ . (1.9)

The necessity for such separation can be partially justified by the early work of Slepian
[61] on discrete prolate spheroidal sequences proving that a discrete signal of length 2m+ 1
cannot concentrate its energy in a bandwidth narrower than o

(
1
m

)
. Hence, a “reasonable”

separation condition should be at least of ∆T (X) = Ω
(

1
m

)
in the asymptotic regime.

This first intuition can be strengthen through the lens of Ingham inequalities [40], [50]: A
generalization of Perseval’s theorem to non-harmonic series within a time limit of the form

C1 (T, γ) ‖c‖22 ≤
∫ T

0

∣∣∣∣∣∣
∑
k∈Z

cke
i2πλkt

∣∣∣∣∣∣
2

dt ≤ C2 (T, γ) ‖c‖22 , (1.10)

whereby γ ∈ R+ is the minimal successive gap between two successive harmonics γ ≤
λk+1 − λk. It is known that the lower inequality of (1.10) holds for a value of C1 (T, γ)
verifying

C1 (T, γ) = 2T
π

(
1− 1

T 2γ2

)
,

provided that γ > 1
T , and that the left-hand side inequality of (1.10) breaks whenever

γ < 1
T . Ingham’s inequality (1.10) can be interpreted as an asymptotic for the minimal

distance of the line spectral problem whenever m → +∞ by rescaling the parameters
T = 2m, xk = λk

T . It comes that no Riesz basis, framing the energies of the samples
y ∈ C2m+1 and the norm of vector of the complex amplitudes c ∈ Cs can be found whenever
the measure µ as a support verifying ∆T (X) < 1

2m in the limit where m→∞.
A recent similar result, introduced and demonstrated in [49], states that the line spectral

estimation problem is statistically intractable whenever

∆T (X) < 1
2m, (1.11)

in the limit where m→ +∞, in the sense that one can always find another discrete support
set X ′ ⊂ T that can explain the observations y within exponentially small noise levels with
respect to the number of measurements m. Hence, under this critical resolution limit, X
and X ′ are statistically indistinguishable in the asymptotic regime, no matter the chosen
estimator. This result is explained by the presence of a phase transition on the behaviors
of the extremal singular values of Vandermonde matrices with collapsing nodes around the
unit circle, and is discussed in the next subsection.

1.4.3 Resolution and the stability of Vandermonde matrices

1.4.3.1 Relationship with Vandermonde matrices

Consider a system of noisy observations of the form
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y =
∫
T
am (ω) dµ (ω) + η (1.12)

where η ∈ C2m+1 is a noise term. Denote by X ⊂ T the discrete support set of the measure
µ ∈ M (T) following the spikes model (1.2), and assume that X has cardinality s. The
Vandermonde matrix Vm (X) ∈ C(2m+1)×s associated with X is defined by

∀X ⊂ T, Vm (X) =


e−i2πx1m e−i2πx2m · · · e−i2πxsm

e−i2πx1(m−1) e−i2πx2(m−1) · · · e−i2πxs(m−1)

...
... . . . ...

ei2πx1m ei2πx2m · · · ei2πxsm

 , (1.13)

the columns for Vm (X) correspond to the atom {am (x1) , · · · , am (xs)}, therefore one can
reduce Equation (1.12) to the bivariate problem

y = Vm (X) c+ η (1.14)

whereby c ∈ Cs is the vector of the associated complex amplitudes of the measure µ.

1.4.3.2 Performance limits of an oracle estimator

Consider an idealistic scenario where an oracle gives the exact value of the number of spikes
s and of the support set X ⊂ T containing the frequencies of the sparse measure µ to
reconstruct. The amplitude vector c ∈ Cs is therefore the only parameter that remains to
be estimated in order to fully characterize the measure µ. A possible and common approach
consists in estimating c by a least-square estimator ĉLS, which will also minimize the mean
square error, provided that the noise term η has independent and with zero mean entries.
The worst-case error in least-square estimation for a simple linear problem is highly related
to the condition number of the observation matrix κ (M) , σmax(M)

σmin(M) whereby σmax (M)
and σmin (M) respectively denotes the maximal and minimal singular values of M. The
following lemma provides a sharp bound on the error of the least square approach as a
function of the signal-to-noise ratio and the spectral condition number of the observation
matrix.

Lemma 1.1 (Worst-case bound for least-square estimation). Fix a full rank matrix
M ∈ Cr×d with r ≥ d and consider the inverse problem

y = Mx+ η (1.15)

where η ∈ Cr is a perturbation. Define the signal-to noise ratio in the sample domain as
SNR = ‖Mx‖2

‖η‖2
. The least square estimator x̂LS of x given the observation y as in (1.15)

verifies
‖x− x̂LS‖2 ≤

κ (M) ‖x‖2
SNR , (1.16)

whereby κ (M) is the spectral condition number of the matrix M. Moreover, the bound
(1.15) is sharp in the sense that there always exists a choice of η and x for which the
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equality case is achieved in (1.16).

Proof. Denote by M† = (M∗M)−1 M∗ the left Moore-Penrose pseudo-inverse of M, we
have that

x̂LS = M†y = M†Mx+ M†η

= x+ M†η.

Hence, it is possible to bound the quadratic error as follows

‖x− x̂LS‖2 =
∥∥∥M†η

∥∥∥
2

≤ 1
σmin (M) ‖η‖2 (1.17)

≤ σmax (M) ‖x‖2
‖Mx‖2

× 1
σmin (M) ‖η‖2 (1.18)

= κ (M) ‖x‖2
SNR .

We conclude on the sharpness of the result by noticing that the equality case can be
achieved in (1.17) for a choice of η in the left singular-space of M associated to the smallest
singular value, while equality in (1.18) can also be achieved for a choice of x in the right
singular-space of M associated to the maximal singular value. �

1.4.3.3 The condition number of Vandermonde matrices

Lemma 1.1 and the reformulation (1.13) of the line spectral estimation problem, suggests
that the robustness of the observation model (1.3) is intimately linked to the behaviors of
the condition number of Vandermonde matrices with collapsing nodes around the unit circle.
The existence of a phase transition on the conditioning of such matrices is highlighted in
[49] and sharper and extended bounds are proposed in [2] whenever the minimal separation
of the support set X crosses the threshold ∆T (X) = 1

2m . The main bounds are recalled
from [2], [49] in the following proposition.

Proposition 1.1 (Condition number of Vandermonde matrices). For any X ⊂ T and any
m ∈ N, if ∆T (X) > 1

2m then the following inequalities hold

σmin (Vm (X)) ≥
√

2m−∆T (X)−1

σmax (Vm (X)) ≤
√

2m+ ∆T (X)−1. (1.19)

Moreover, denote by s = |X| the cardinality of X. If s = Ω (lnm) then there exists a
set X ⊂ T with minimal distance ∆T (X) < 1−δ

2m for some δ > 0 for which the following
inequalities hold

σmin (Vm (X)) ≤ 2−Ω(δs)

σmax (Vm (X)) ≥
√

2m. (1.20)



1.4. The spectral resolution limit 11

The approach introduced in [49] to demonstrate the stability bounds (1.19) consists
in relating the extremal singular values of Vm (X) with the existence of a preconditioner :
A surrogate continuous function used to bound the Rayleigh quotient of a matrix. The
Beurling-Selberg extremal functions, denoted cT (resp. CT ) may serve as optimal precon-
ditioner in the studied case. They correspond to the functions in the Bernstein space of
bandlimited functions B1 realizing the best one-sided approximation from below (resp.
from above) of the indicator function ξT of the interval [−T, T ] ⊆ R for the L1 distance.
The Beurling-Selberg minorant can be defined as the solution of the convex program

cT = arg min
f∈B1

∫
R

(ξT (u)− f (u)) du

subjet to f (t) ≤ ξT (t) , ∀t ∈ R

while the Beurling-Selberg majorant can be view as a solution of

CE = arg min
f∈B1

∫
R

(f (u)− ξT (u)) du

subjet to f (t) ≥ ξT (t) , ∀t ∈ R

The extremal functions cE and CE were initially studied for their implication in number
theory [45], and have well known series representations [1]. More importantly, Selberg
demonstrated that cT and CT achieves the same minimal distance to the indicator function
ξT in the L1 sense, no matter the value of the time limit T , so that

∀T ∈ R,
∫
R

(ξT (u)− cT (u)) du =
∫
R

(CT (u)− ξT (u)) du = 1. (1.21)

This fundamental property (1.21) leads to a direct and elegant way to bound on the
condition number of a Vandermonde matrix Vm (X) whenever ∆T (X) > 1

2m . A partial
proof of Proposition 1.1 is recalled from [2], [49].

Partial proof of Proposition 1.1. Denote by v ∈ C2m+1 the vector with rth entry vr =∑s
j=1 cke

i2πxkr for every r ∈ J−m,mK. Let T = m∆T (X), for all c ∈ Cs one has

‖V c‖22 =
m∑

r=−m

‖vr‖22 =
∑
r∈Z

ξT (∆T (X) r) ‖vr‖22

≤
∑
r∈Z

CT (∆T (X) r) ‖vr‖2

=
∑
r∈Z

CT (∆T (X) r)
s∑

k,k′=1
cjcj′ei2π(xk−xk′ )r.

=
s∑

k,k′=1
ckck′

∑
r∈Z

CT (∆T (X) r) ei2π(xk−xk′ )r

 .
Since CT is integrable over R, applying the Poisson summation formula on the inner sum



12 Chapter 1. Introduction

of the last equality yields

∑
r∈Z

CT (∆T (X) r) ei2π(xk−xk′ )r = ∆T (X)−1 ∑
r∈Z

ĈT

(
∆T (X)−1 (r − (xk − xk′))

)
= ∆T (X)−1 ĈT (0) δk−k′ ,

since supp
(
ĈT

)
= [−1, 1] by the assumption CT ∈ B1, and since ∆T (X)−1 (xk − xk′) > 1

whenever k 6= k′ by the minimal separation assumption on the support set X. Moreover,
one has that

∀T ∈ R, ĈT (0) =
∫ ∞

−∞
CT (u) du =

∫ ∞

−∞
ξT (u) du+ 1

= 2m∆T (X) + 1.

It comes that
∀c ∈ Cs, ‖V c‖22 ≤

(
2m+ ∆T (X)−1

)
‖c‖22

and one concludes that σmax (Vm (X)) ≤
√

2m+ ∆T (X)−1.
A similar reasoning can be followed to derive the desired bound on σmin (Vm (X)) by

introducing the Beurling-Selberg minorant cT .
The instability bounds (1.20) are proven by a direct construction of an X ⊂ T and of a

vector c ∈ Cs so that ‖V c‖22 can be made exponentially small. �

It comes from Proposition 1.1 that if {Xm}m∈N is a sequence of support with minimal
distance verifying ∆T (Xm) ≥ α

m for α > 1
2 , then the spectral condition number κ (Vm (X))

of the matrix Vm (Xm) will be bounded by

κ (Vm (X)) ≤
√

2α+ 1
2α− 1

which is independent of the value of m. Hence, from Lemma 1.1, the least square estimator
on a support given by an oracle described in Subsection 1.4.3.1 will return an estimate
ĉ

(m)
LS of the complex amplitudes verifying

∥∥∥c(m) − ĉ(m)
LS

∥∥∥
2
≤
√

2α+ 1
2α− 1

∥∥∥c(m)
∥∥∥

2
× SNR−1,

for any sequence
{
c(m)

}
m∈N

of complex amplitudes associated with the sequence of supports.
On the other hand if {Xm}m∈N is a sequence of support with poorly separated minimal
distance verifying ∆T (Xm) < 1−δ

2m with |Xm| = Ω (lnm), then by Lemma 1.1, one can have

‖cm − ĉLS‖2 ≥ 2Ω(δs) ‖cm‖2 SNR−1

≥ 2Ω(δ ln(m)) ‖cm‖2 SNR−1

for some choices of complex amplitudes cm ∈ Cs. Therefore, even with the knowledge of the
support set, the Euclidean distance between the least-square estimator and the coefficient



1.5. Estimating the line spectrum 13

vector can diverge when m grows large, even under exponentially small signal-to-noise
ratios. One concludes on the statistical intractability of the line spectral estimation problem
below the resolution limit 1

2m when m tends to infinity.

1.5 Estimating the line spectrum

There is a rich literature on spectral estimation. The continuous reconstruction imposed by
the line spectral estimation framework requires to look for algorithms that are discretization
free in order to avoid the inherent risk of basis mismatch and of discretization artifacts. A
review of the main existing estimators is provided in this section. The existing techniques
can mostly be classified into two mains categories. One the one hand, subspace based
methods aim to build a matrix out of the observation vector y in such a way that the
parameters of the measure µ ∈ M (T) to reconstruct are related to the algebraic and
spectral properties of this matrix. The spectral properties of the involved matrices are
known to be robust up to certain levels of noise which varies with the separation of the
measure [68], [77]. On the other hand, optimization based methods seek to propose convex
alternatives to the optimal estimator defined by Program (1.5), either by relaxing the
consistency constraints and the cost function, or by adding a data fidelity term to perform
a reconstruction while denoising the signal.

1.5.1 Subspace based methods

Prony’s methods [9], [53] also known as annihilating filter methods use the auto-
regressive structure of the observation vector y ∈ C2m+1 in order to ensure the existence of
a vector h ∈ Cm+1 solution of the linear system

H (y)h = y|0..m. (1.22)

The solution h can be read as an annihilating polynomial whose roots are on each of the
elements of the support set X. A Cadzow’s denoising step [13] can be added to ensure
robustness in noisy environments. Prony’s method can also be used to reconstruct sparse
signals under the wider finite rate of innovation framework [26], [74].

Multiple subspace classification (MUSIC) is a popular algorithm coming in several
variants. The single snapshot case [58], closer to the problem exposed in Section 1.3 aims
to build a rectangular tap-delayed Hankel matrix H ∈ Cl×(2m+1) out of the observation
vector y for a fix integer l ∈ N with s ≤ l ≤ 2m + 1. The spectral properties of Hankel
matrices [21] ensure the existence of a decomposition of the data matrix under the form

H = Vm (X) DVm (X)∗ , (1.23)

whereby Vm (X) is the Vandermonde matrix defined in Equation (1.13). Computing this
factorization leads directly to an estimate of the set X. The MUSIC algorithm is known
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to be robust to noise under the condition that ∆T (X) ≥ 1
m whenever the number of spikes

is small [47].

Modified matrix pencil (MMP) is a reconstruction method proposed in [49] that
relies on the algebraic properties of the solution of the generalized eigenvalue problem

T0u = λkT1u

whereby (T0,T1) are two delayed version of the Toeplitz data structure H (y) used in
Equation (1.22). It can be shown that the generalized eigenvalues λk are complex numbers
whose arguments verify arg (λk) = −2πxk, leading again to an algorithm estimating the
support set X. Robustness up to the resolution ∆T (X) ≥ 1

m is ensured [23]. This
method can also be extended to reconstruct a stream of spikes affected by multiple known
convolution kernels {gl}Ll=1 so that the signal to reconstruct may read

∀t ∈ R, y (t) =
L∑

l=1
(gl ∗ µl) (t) .

1.5.2 Convex based methods

Low rank Hankel reconstruction is a method that can be seen as a convex lifting of
the MUSIC algorithm, and consists in optimizing on the set of Hankel matrices with a rank
constraint instead of building the matrix H in Equation (1.23) directly from the sampled
data [14]. The rank constraint can classically be relaxed into a nuclear norm minimization
program leading to

H? = arg min ‖hankel (u)‖∗ s.t. ‖u− y‖ ≤ δ,

whereby ‖·‖∗ denotes the nuclear norm and whereby δ reflects the noise level. The
parameters of the measure can be reconstructed from the output H? using the Vandermonde
decomposition (1.23).

Total variation norm minimization (TV regularization) is another convex ap-
proach to the line spectral estimation introduced in [18] and will be the main focus of this
thesis. A wider background on TV regularization is given in Section 1.6.

1.6 Background on the total variation regularization

1.6.1 Definitions and properties

In the recent years, a growing enthusiasm has been placed in tackling the line spectral
estimation problem though the lens of convex optimization after the pioneer work [17],
[18] demonstrated that convex programming could recover any sparse measure having
a support with minimal distance verifying ∆T (X) ≥ 2

m in absence of noise, and for
sufficiently large values of the trigonometric order m. By analogy with the successful
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`1-minimization approach to solve finite dimensional linear inverse problems [15], [19], the
authors’ original idea consists in swapping the cardinality counting pseudo-norm in (1.5)
by the total variation norm, also often referred as total mass of a measure, and denoted
|·| (T). The total variation norm is formally defined as the dual norm associated to the
infinite norm ‖·‖∞ for the weak-∗ topology. Its rigorous definition is given as follows

|·| (T) :M (T)→ R+

µ 7→ |µ| (T) = sup
f∈C(T,C)
‖f‖∞≤1

<
[∫

T
f (ω)dµ (ω)

]
. (1.24)

Since a minimal separation of the form ∆T (X) ≥ α
m of some α > 0 will be assumed in this

thesis on the measures µ ∈M (T) to reconstruct, the supremum in Expression (1.24) will
always be reached for a function of C (T,C) of bounded variation, and the definition of the
total variation norm may always be reduced to

∀µ ∈M (T) , |µ| (T) =
∫
T

d |µ| , (1.25)

which is lighter and easier to deal with. In particular, if µ ∈M (T) is a s-sparse measure
of the form (1.2) for some complex vector c ∈ Cs and X = {x1, . . . , xs} ⊂ T, one has

|µ| (T) = ‖c‖1 .

Consequently, it is easy to interpret the total variation norm as an extension of the finite
dimensional `1-norm to the set of Radon measures. Moreover, it is interesting to notice
that the total variation ball BTV (T), defined by

BTV (T) = {µ ∈M (T) : |µ| (T) = 1} , (1.26)

= conv ({δω : ω ∈ T})

is the smallest possible convex set containing every possible 1-sparse measure of M (T).
Hence, by analogy with `1-minimization, one can conjecture that any regularization based
on the total variation norm might have a high sparsity promoting power [22]. Finally,
the so-called total variation regularization of the combinatorial Program (1.5) is simply
obtained by changing the original cost function for its convex surrogate

µTV = arg min
µ∈M(T)

|µ| (T) subject to y =
∫
T
a (ω) dµ (ω), (1.27)

which leads to a well-defined convex program over the space of measure M (T).

The total variation approach to line spectral estimation is a canonical example of the
wider theory of convex regularization of linear inverse problems defined over the set of
measures. More generic aspects and extension of this theory are discussed in [5], [24], [28].
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1.6.2 Lagrangian duality and certifiability

1.6.2.1 Duality and polynomial representations

A classic argument in convex optimization consists in studying the associated Lagrangian
problem in order to derive properties on the primal solution [12], [38]. In particular, it is
shown in [22] that the Lagrangian dual of Program (1.27) writes

q? = arg max
q∈C2m+1

<(〈q, y〉)

subject to |〈am (ω) , q〉| ≤ 1, ∀ω ∈ T, (1.28)

which is a semi-infinite program [60]: An optimization program involving variable from
finite dimensional spaces over a set defined by infinitely many constraints. It is worth
noticing the constraints of Program (1.28) can be reduced to

∀ω ∈ T, 〈am (ω) , q〉 =
m∑

k=−m

qke
i2πk(−ω) = Q (−ω) ,

whereby Q ∈ Tm is the trigonometric polynomial with coefficient vector q ∈ C2m+1. Hence,
one might rewrite the semi-infinite program as

q? = arg max
q∈C2m+1

<(〈q, y〉)

subject to ‖Q‖∞ ≤ 1. (1.29)

1.6.2.2 Dual certifiability

One of the principal question arising from the convex reformulation of the problem is
to understand whether the TV regularization (1.27) is tight or not. In other words, one
need to establish under which conditions it is possible to guarantee that the output µTV

of Program (1.27) is equal to the output µ0 of the optimal estimator (1.5). There is an
extensive literature on the certifiability of the TV regularization approach for a broad class
of sparse linear inverse problems over the set Radon measures [4], [5], [28]. In particular,
the success of an instance of TV regularization is known to be conditioned by the existence
of a so called dual certificate: A continuous function representing the values of the optimal
dual Lagrange variables of Program (1.27) and satisfying some extremal interpolation
properties. The existence of such certificate is enough to guarantee both the tightness of
the relaxation and the uniqueness of the output of the convex program. In our setting of
interest, the specific geometry of the dual constraint of Program (1.29) enforces the dual
certificate to be an element of Tm. The following theorem, recalled from [18], provides the
complete statement of the dual certifiability conditions. We will make an extensive use of
this fundamental result in the rest of this thesis.

Theorem 1.1 (Dual certifiability). The output µTV of the convex optimization program
(1.27) is equal to the ground truth measure µ? =

∑s
k=1 ckδxk

if there exists a complex
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trigonometric polynomial Q ∈ Tm satisfyingQ (xk) = sign (ck) , ∀k ∈ JsK

|Q (ω)| < 1, ∀ω /∈ X.
(1.30)

Conversely, if µTV = µ? then there exists a complex trigonometric polynomial Q ∈ Tm

verifying

Q (xk) = sign (ck) , ∀k ∈ JsK

|Q (ω)| ≤ 1, ∀ω ∈ T.
(1.31)

Therefore, the previous theorem links to reconstruction problem under the TV norm
constraint to an interpolation problem for the infinite norm on its dual space. Figure
1.1 provides a visual representation of Conditions (1.30) and (1.31). It is particularly
interesting to study this theorem under the light of the early work of Landau in sampling
theory on the critical density of balayage and interpolation by entire functions [42]. This
work highlights similar relations linking the existence of balayages for the p-Schatten norm
to the feasibility of an interpolation problem for the dual norm.

1.6.2.3 The spectral resolution conjecture

Although Theorem 1.1 reduces the reconstruction guarantees to an apparently simple
interpolation problem over the set of trigonometric polynomials, it is highly non-trivial,
and still an open research topic, to understand the exact conditions on the support X ⊂ T
and the coefficients c ∈ Cs of a measure to guarantee the existence of an element Q ∈ Tm

verifying the condition (1.30). Chapters 2 and 3 will seek to give necessary and sufficient
conditions for the existence of such trigonometric polynomials.

Experimental results provided in [17], [32] suggest the existence of a phase transition
on the capability of Program (1.27) to recover a sparse µ ∈M (T) in terms of the minimal
separation of the elements of its discrete support X. The expected phase transition is
formulated in the following conjecture.

Conjecture 1.1 (Spectral resolution limits via TV regularization). Let X ⊆ T be a subset
of the torus. Denote by y (µ) ∈ C2m+1 the vector of the first trigonometric moments of µ
up to the order m obtained through the relation (1.3).

The TV regularized program (1.27) with input y (µ?) has for unique output µ? for every
measure µ? ∈M (X) if and only if

∆T (X) ≥ 1
m

+ o

( 1
m

)
(1.32)

in the asymptotic regime where m→ +∞.

1.6.3 The Fejér-Riesz theorem and semidefinite representations

Although the associated dual Program (1.28) is a convex program, its semi-infinite nature
does not immediately guarantee that its output µTV can be computed in a finite time



18 Chapter 1. Introduction

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.1: A representation of the dual certificate conditions.
Top: The candidate trigonometric polynomial (blue) interpolates the sign pattern of the
the sparse measure (in red) while having a modulus bounded by 1 around the torus, and
hence is a dual certificate for Theorem 1.1.
Bottom: Any trigonometric polynomial interpolating the sign pattern of the sparse measure
fails to meet the extremal condition |Q (ω)| ≤ 1 for every ω ∈ T, hence TV regularization
will fail in this setting.
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by an algorithm. If gridded approximation of the dual TV problem have been studied in
a wider framework to approach the optimal [10], [30], [66], they cannot handle the full
complexity of the constraint, leading to provably unfeasible solutions.

Instead, one would like to determine whether the infinitely many dual constraints,
compacted under the relation ‖Q‖∞ ≤ 1, can be verified by a finite number of inequations.
To this aim, one can make use of the Gram parametrization theory of trigonometric
polynomials [27], [44], which aims to build relationships between trigonometric inequalities
and the positivity of certain associated Hermitian matrices. This theory finds many useful
applications in signal and data processing, including the design of finite and infinite response
filters, and the sum-of-squares relaxation via the use of Lasserre hierarchies [43]. Most of
the results within this line of work rely on a very fundamental factorization theorem from
Fejér and Riesz [78], recalled in the following.

Theorem 1.2 (Fejér-Riesz theorem). A trigonometric polynomial R ∈ Tm takes real and
positive values on the torus, i.e.

∀ω ∈ T, R (ω) =
m∑

k=−m

rke
i2πkω ≥ 0

for some coefficients vector r ∈ C2m+1, if and only if there exists a half-degree trigonometric
polynomial P̃ of the form P̃ (ω) =

∑m
k=0 p̃ke

i2πkω such that

∀ω ∈ T, R (ω) =
∣∣∣P̃ (ω)

∣∣∣2 .
We continue by introducing a brief review of the Gram parametrization theory of

trigonometric polynomials. It is easy to verify that a trigonometric polynomial R ∈ T
takes real values around the unit circle for all ω ∈ T, if and only if its coefficients vector
r ∈ C2m+1 satisfies the Hermitian symmetry condition

∀k ∈ J0,mK , r−k = rk. (1.33)

Let by am,+ (·) ∈ Cm+1 the positive atomic vector defined by am,+ (ω) =
[
1, ei2πω, · · · , ei2πmω

]
for all ω ∈ T. Every element R ∈ Tm can then be associated with a subset of matrices of
C(m+1)×(m+1), called Gram set of R, as defined below.

Definition 1.1 (Gram set). A complex matrix G ∈ C(m+1)×(m+1) is a Gram matrix
associated with the trigonometric polynomial R ∈ Tm if and only if

∀ω ∈ T, R (ω) = am,+ (ω)∗ Gam,+ (ω) .

Such parametrization is, in general, not unique and we denote by G (R) the set of matrices
satisfying the above relation. G (R) is called Gram set of R.

The next proposition recalled from [27] characterizes the Gram set of a complex
trigonometric polynomial taking real values on the unit circle via a simple linear relation.
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Proposition 1.2 (Gram’s condition). Let R ∈ Tm be a complex trigonometric polynomial
taking real values around the unit circle, and let G ∈ C(m+1)×(m+1). G ∈ G (R) if and only
if the relation

H∗
m (G) = r+

holds, whereby r+ = [r0, . . . , rm]T ∈ Cm+1 is the vector containing the coefficients of R
corresponding to its positive exponents.

Finally, the previous considerations allow to show the equivalence between the semi-
infinite dual program (1.28) with a finite dimensional convex program involving the
maximization of the linear cost function onto a spectrahedra: A convex set defined by
linear matrix inequalities. This category of convex program, extending linear programs
(LP), quadratic programs (QP), and second order cone programing (SOCP) are referred as
semidefinite program (SDP).

Proposition 1.3 (Semidefinite equivalence). The dual problem (1.28) is equivalent to the
semidefinite program

(q?,H?) = arg max
q∈C2m+1

< (〈q, y〉) (1.34)

subject to
[
H q

q∗ 1

]
� 0

H∗
m (H) = e0.

Proof. Since the cost function is unchanged, it is enough to show that the constraint
‖Q‖∞ ≤ 1 of Program (1.29) is equivalent to the semidefinite constraints of Program (1.34).
This can be done by firstly considering the equivalence

‖Q‖∞ ≤ 1⇐⇒ ∀ω ∈ T, 1− |Q (ω)|2 ≥ 0. (1.35)

Since 1 − |Q|2 ∈ T2m is positive, the Fejér-Riesz theorem ensures the existence of a
trigonometric polynomial P ∈ Tm such that

|P (ω)|2 =
∣∣∣e−i2πmωP̃ (ω)

∣∣∣2
=
∣∣∣P̃ (ω)

∣∣∣2
= 1− |Q (ω)|2 ,

whereby P̃ (ω) = ei2πmωP (ω) is the half-degree trigonometric polynomial of degree 2m
obtained by translating the coefficients of P . Letting by p = [p−m, · · · , pm] ∈ C2m+1 the
coefficients vector of P , and realizing that P (−ω) = 〈am (ω) , p〉 for all ω ∈ T, one can
rewrite the inequalities in (1.35) as

‖Q‖∞ ≤ 1⇐⇒ ∃p ∈ C2m+1,∀ω ∈ T, 1 = 〈am (ω) , p〉2 + 〈am (ω) , q〉2

⇐⇒ ∃p ∈ C2m+1,∀ω ∈ T, 1 = am (ω)∗ (pp∗ + qq∗) am (ω) .
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Denoting by H ∈ C(2m+1)×(2m+1) the rank 2 matrix H = pp∗ + qq∗, we conclude on the
existence of a matrix in C(2m+1)×(2m+1) verifying H − qq∗ � 0. Furthermore, a simple
Schur complement argument yields [

H q

q∗ 1

]
� 0.

Finally, since H is a Gram matrix of the trigonometric polynomial reaching a constant
value equal to 1 everywhere on the torus, Proposition 1.2 ensures that the linear constraint
H∗

m (H) = e0 holds, concluding on the statement of the proposition. �

1.6.4 Spectral estimation from the dual space

Whenever the relaxation (1.27) is tight, it is possible to relate the support X0 ⊂ T of the
output µ0 ∈M (T) of Program (1.5) with the output of the dual trigonometric polynomial
Q? ∈ Tm returned by Program (1.28). Indeed, a strong duality argument detailed in [18]
guarantees that the modulus of the polynomial Q? must reach a value exactly equal to 1
at the location of the spikes in X0, whenever tightness holds between the Programs (1.5)
and (1.27). Hence it is possible to recover X0 by looking at the roots of the polynomial
R ∈ T2m given by,

∀ω ∈ T, R (ω) = 1− |Q (ω)|2 .

Once the support set X? is estimated, the associated complex amplitudes c0 ∈ Cs can be
recovered from a simple least square approach.

c? = Vm (X?)† y,

whereby Vm (X?) is the Vandermonde matrix defined in (1.13). To summarize, the primal
optimal µTV can be reconstructed directly from the solution of the dual problem using
Algorithm 1.1. The binary operator p� q defined for any two vectors p, q ∈ C2m+1used in
the algorithm is defined by

∀l ∈ J−2m, 2mK , hl = (p� q) [l] =
∑
j∈Z

p̄jqm−l+j ,

so that the product H = P × Q ∈ T2m of two polynomials P,Q ∈ Tm as for coefficients
vector h ∈ C4m+1 satisfying h = p� q.

Algorithm 1.1 Frequency recovery from the dual space
q? := Solution of the dual SDP (1.34)
r := e0 − q � q
X? := Roots of R of modulus 1
c? := Vm (X?)† y
µTV :=

∑s
k=1 ckδxk



22 Chapter 1. Introduction

1.6.5 Spectral estimation in noise

Up to here, only the case of noise-free spectral estimation has been considered. However,
in most of the practical applications, the observations y ∈ C2m+1 are noisy, and the noise
vector η ∈ C2m+1 is often assumed to additive and i.i.d. The noisy counterpart of the
observation model (1.3) writes

y =
∫
T
am (ω) dµ (ω) + η.

The Beurling-LASSO estimator [24], also known as atomic soft thresholding (AST) algo-
rithm was introduced in [64] to denoise the spectrum of the observation vector y while
promoting a sparse prior structure. The primal AST estimator is defined as follows

µTV (τ) = arg min
µ∈M(T)

|µ| (T) + 1
2τ

∥∥∥∥y − ∫
T
am (ω) dµ (ω)

∥∥∥∥2

2
, (1.36)

where τ ∈ R+ acts as a regularization parameter, drawing a trade-off between the sparsity
of the solution (τ → 0) and the fidelity of the solution to the observation (τ → +∞).
Moreover, a direct analysis ensures that the corresponding dual Beurling-LASSO (or dual
AST) program can also be formulated as a semidefinite program of the form

(q? (τ) ,H?) = arg max
q∈C2m+1

< (〈q, y〉)− τ

2 ‖q‖
2
2 (1.37)

subject to
[
H q

q∗ 1

]
� 0

H∗
m (H) = e0.

The output of the primal and dual programs are still linked by the locations of the roots of
the optimal dual polynomial 1− |Q? (τ)|2 in a similar manner than in Section 1.6.4.

Whenever the noise vector η ∈ C2m+1 is assumed to be drawn according to the spherical
2m+ 1 dimensional complex Gaussian distribution N

(
0, σ2I2m+1

)
, it is shown in [6] that

a choice of regularization parameter τ = γσ
√
m logm, for some γ > 1, is suitable to

guarantee a consistent recovery of the spectral distribution µ0 in the asymptotic regime
where m→ +∞ and under fixed signal-to-noise ratio, while providing accelerated rates
of convergence. More recent results, studying the robustness of the TV regularization
approach (1.37) in the non-asymptotic regime were given in [46]. In particular, a tradeoff
between the resolution ∆T (X) and the robustness of the convex estimator to Gaussian
noise was drawn. Under a minimal separation constraint on the ground truth support set,
it is certified that

• The `2 distance between the ground truth signal y0 =
∫
T am (ω) dµ0 (ω) and the

estimate y? is a bounded function of the SNR and the dynamic range of the complex
amplitudes c0 ∈ Cs.

• The distance between any spike of the ground truth support set X0 and its estimation
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X? are bounded by the same parameters.

• There is no spurious estimated spike.

1.6.6 Relationship with the atomic norm

1.6.6.1 Atomic norm minimization

There is a vast literature on the reconstruction of a non-negative combination of a few
number of elements drawn from a continuous dictionary [7], [22], [24], [25], [57]. One
assumes to dispose of observations y ∈ E belonging to some normed vectorial space E of
the form

y =
s∑

k=1
ckak, ak ∈ A, ck ≥ 0 (1.38)

where A ⊂ E is called the atomic set, and acts as a dictionary of potentially infinite
cardinality for guiding the reconstruction of the atoms {ak}sk=1 building the observa-
tion vector y. One of the most popular instance of this settings is the compressive
sensing problem, whereby A is assumed to be the set of 2n signed canonical vectors
{e1,−e1, e2,−e2, · · · ,−en} in of Rn and y ∈ Cr will be a s−sparse vector of Cr. Low-rank
matrix reconstruction is another well studied example that can be modeled by choosing
A ∈ Cn×n to be the set of matrices with rank one.

Denote by conv (A) the convex hull of the atomic set A, if A ⊂ E is symmetric and
homogeneous, i.e. if the condition

∀a ∈ A,∀θ : |θ| = 1, θa ∈ A (1.39)

is verified, the gauge function or Minkowski functional GA of A defined by

GA : E → R+

x 7→ inf {t > 0 : x ∈ tconv (A)}

is a norm on the vectorial space E. This norm is referred as the atomic norm of the set A
over E, and is often denoted ‖·‖A. This associated dual norm ‖·‖∗A is defined by

‖·‖∗A : E → R+ (1.40)

q 7→ sup
‖x‖A≤1

|〈q, x〉| .

It is interesting to notice that the atomic ball BA defined by

BA = {y ∈ E : ‖y‖A = 1}

= {y ∈ E : y ∈ conv (A)}

= conv (A) (1.41)

is by construction the smallest convex set that contains all the atomic elements, and shares
the same geometric properties than the TV ball given in Equation (1.26). The atomic
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norm minimization (ANM) program was proposed in [22] as a convex approach to solve a
wide range of linear inverse problems of the form

find y such that ỹ = y + η and y∼(1.38)

where η ∈ E if a noise term. The atomic norm minimization consists in computing

yA = arg min
x∈E
‖y‖A + 1

2τ ‖ỹ − y‖
2
2 , (1.42)

whereby τ ∈ R+ is a parameter to choose adequately. However, one of the major downside
of the program (1.42) is that it requires to numerically evaluate to atomic norm of an
arbitrary vector y ∈ Cn, which can be numerically costly and unstable under classic
numerical precision depending on the complexity of the atomic set A to denoise.

1.6.6.2 Equivalence between atomic norm minimization and TV regulariza-
tion

In the case of line spectral estimation, one seeks to reconstruct a sparse measure µ ∈M (T)
following Model (1.2). The observation vector y ∈ C2m+1 can be reformulated

y =
∫
T
am (ω) dµ (ω)

=
s∑

k=1
ckam (xk) , (1.43)

for some complex amplitude stacked in the vector c ∈ Cs, and for some support X =
{xk}sk=1 ⊂ T. Since, the atomic norm framework (1.2) requires each atom to be associated
with a positive coefficient, one can turn expression (1.43) into a well defined atomic
representation by decomposing complex amplitudes under the modulus/phase product
ck = c̃ke

i2πφk whereby c̃k ∈ R+ and φk ∈ T yielding

y =
s∑

k=1
c̃ke

i2πφkam (xk)

=
s∑

k=1
c̃ke

i2πφkam (xk, 0)

=
s∑

k=1
c̃kam (xk, φk) ,

by introducing the atomic set A =
{
am (ω, φ) : (ω, φ) ∈ T2} parametrized by the two

elements (ω, φ) ∈ T2 whereby each atom am (·, ·) ∈ C2m+1 reads

am (ω, φ) =
[
ei2π(−mω+φ), ei2π(−(m−1)ω+φ), · · · , ei2π(mω+φ)

]
.

It is straight-forward to verify that that the set A verifies the homogeneity condition
(1.39), therefore its Gauge function induces an atomic norm over C2m+1. In particular, if a



1.6. Background on the total variation regularization 25

measure µ ∈M (T) follows the spike model (1.2) for s ≤ 2m, then the atomic norm of the
observation vector (1.43) reads

‖y‖A =
∥∥∥∥∥

s∑
k=1

c̃kam (xk, φk)
∥∥∥∥∥

A

=
s∑

k=1
c̃k =

s∑
k=1
|ck|

= |µ| (T) ,

and one concludes on the equivalence between the atomic norm minimization (1.42) and
the Beurling-LASSO (1.36).

1.6.6.3 The moment curve and primal semidefinite representability

When φ is equal to 0, the set {am (ω, 0) : ω ∈ T} forms a one-dimensional variety of C2m+1

called moment curve of order m. It is well understood that the convex hull of the moment
curve is a body that can be parametrized by a set of linear matrix inequalities [56]. We
recall the following result from [67, Proposition II.1] that gives a semidefinite representation
of the atomic norm for the set A.

Proposition 1.4 (Semidefine representation of the atomic norm). Let y ∈ C2m+1, one has

‖y‖A = inf
u∈Cm+1

t>0

{
1

2m+ 1tr (Hm (u)) + 1
2 t :

[
Hm (u) y

y∗ t

]
� 0

}
.

The above proposition and the equivalence between ANM and the Beurling-LASSO
provides a SDP representation of the primal program (1.36) of the form

yTV = arg min
y∈C2m+1

u∈Cm+1

1
2m+ 1tr (Hm (u)) + 1

2 t (1.44)

subject to
[
Hm (u) y

y∗ t

]
� 0

whereby yTV and µTV are linked by the linear integral relation (1.3).
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Chapter 2

A tight converse to the spectral
resolution limits of TV
regularization

2.1 The necessary separation for TV regularization

2.1.1 Previous results

It is shown in [29], [57] that the total variational framework discussed in Subsection 1.6.6 can
succeed without the need of assuming any kind of separation between the spikes to recover
for a wide range of measurement operators, provided that the measure to reconstruct is
positive-valued. However, the picture looks different when considering the reconstruction
of complex-valued (or signed) Radon measures, and TV regularization is known to fail to
reconstruct complex measures if certain minimal separation criteria are not met. Necessary
conditions illustrating this fact were given in [65] for a wide range of inverse problems using
the compacity properties of the derivation operator over certain associated dual spaces
of functions. In particular, if the dual space D defining the dual norm (1.40) verifies a
Bernstein type inequality of the form

∀q ∈ D,
∥∥q′∥∥

L∞
≤ C (D) ‖q‖L∞

(2.1)

for a Bernstein constant C (D) > 0, any certificate satisfying the property ‖q‖L∞
≤ 1

will have a derivative bounded in modulus by C (D). One may concludes that a minimal
distance ∆D of at least ∆D ≥ 2

C(D) is necessary to interpolate two spikes with antagonists
signs, e.g. 1 and −1.

This chapter focuses on tightening the necessary minimal separation ∆T (X) for the
success of the TV regularized Program (1.27) in the line spectral estimation framework
defined in Section 1.3. In our settings, the dual space is the space of trigonometric
polynomials of bounded degree D = Tm, which is a Bernstein space for the constant
C (Tm) = 2πm. One can apply the generic result [65] and conclude that (1.27) can fail
whenever ∆T (X) < 1

πm . However, this result is clearly suboptimal, since there is no

27
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trigonometric polynomial other than the null polynomial that can effectively saturate the
bound (2.1) everywhere on the torus.

The necessary separation was sharpened to ∆T (X) < 1
2m in [28], which constituted

the best result before the introduction of Theorem 2.1. The proof technique relies on
an argument from Turán on the decay rate of trigonometric polynomials around their
supremal values [72], whose statement is recalled in the following.

Lemma 2.1 (Turán ’46). Let Q ∈ Tm be a trigonometric polynomial of degree m whose
modulus achieves its maximal value at the point x0 ∈ T. We have that

∀ε ∈
[
− 1

4m,
1

4m

]
, |Q (x0 + ε)−Q (x0)| ≤ |Q (x0)| |sin (2πmε)| , (2.2)

moreover equality can be achieved in (2.2) if and only if Q is a monomial of degree m, i.e.,
if and only if Q writes

∀ω ∈ T, Q (ω) = A cos (2πmω) +B sin (2πmω)

for some (A,B) ∈ C2.

Lemma 2.1 guarantees that no trigonometric polynomial can interpolate two nodes
with opposite signs when their minimal distance is smaller than 1

2m , leading to the desired
conclusion.

2.1.2 Main statement

Theorem 2.1 proposes an improvement of the previous results by showing the existence
of measures having a minimal separation asymptotically close to 1

m for which the convex
approach fails. This tight result validates one side of Conjecture 1.1 on the achievable
spectral resolution limit through TV regularization. Moreover it constitutes a significant
step towards a complete understanding of the predicted phase transition.

Theorem 2.1 (Necessary separation for TV regularization). For every real δ > 2, there
exists Mδ ∈ N, such that for every m ≥ Mδ, there exists a set Xm =

{
x

(m)
k

}sm

k=1
⊂ T

verifying ∆T (Xm) ≥ 1
m−

δ
m2 and a measure µm =

∑sm
k=1 c

(m)
k δ

x
(m)
k

for some c(m) ∈ Csmsuch
that the solution of Program (1.27) is not equal to µm.

The demonstration of this result is provided in Section 2.3, and is based on a construction
of a specific sequence of measures {µm}m∈N for which we show the non-existence of an
associated dual certificate. To reach this result, we introduce in Section 2.2 the notion of
bounded diagonalizing families of trigonometric polynomials and highlight their relationships
with the existence of dual certificates. Theorem 2.2 states that such families cannot exist
if the support set is not separated enough.

2.1.3 Impact of the second order term

Figure 2.1 presents sufficient values of the parameter Mδ defined in Theorem 2.1 for
different choices of the second order term δ. Those results are a by-product of the analysis
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Figure 2.1: Upper bound on the minimal number of observations Mδ requested by Theorem
2.1 against the second order term δ . The curve admits a vertical asymptote of equation
log (Mδ) = Θ

(
(δ − 2)−1

)
at δ → 2.

(2.12) in the proof of Theorem 2.2, and are presented for illustration purposes. However,
the present curve has a priori no reason to act as a sharp bound on the minimal achievable
value of Mδ.

2.2 Diagonalizing families of trigonometric polynomials

In this section, we introduce an intermediate notion of diagonalizing families of trigonometric
polynomials. A graphical representation of diagonalizing polynomials is provided in Figure
2.2. The structure and factorization properties of those polynomials are highlighted in
Lemma 2.2. It will be shown in Section 2.3 that such objects play an important role on
the existence of dual certificates for the line spectral estimation problem, and will be used
to construct a new family of dual certificates in Chapter 3. We start by introducing the
following definitions.

Definition 2.1 (Diagonalizing family). Let X = {xk}sk=1 be a finite subset of T. A first
order diagonalizing family of X over Tm is a set of s elements PX = {Pl}sl=1 of Tm satisfying

∀ (l, k) ∈ JsK2 ,

Pl (xk) = δl=k,

P ′
l (xk) = 0.

(2.3)

Definition 2.2 (Bounded diagonalizing family). A first order diagonalizing family PX =
{Pl}sl=1 of X is said to be bounded if and only if ‖Pl‖L∞

= 1 for all l ∈ JsK.

Lemma 2.2 (Factorization lemma). Let P = {Pl}sl=1 be a first order diagonalizing family
of trigonometric polynomials of a set X of cardinality s over Tm. If s ≤ m, then any
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Figure 2.2: A sparse measure (in black), and one element of a diagonalizing trigonometric
polynomial for this measure (yellow curve). The trigonometric polynomial has a modulus
bounded by 1.

element Pl ∈ P can be factored under the form

∀ω ∈ T, Pl (ω) = ZX,l (ω)Rl (ω) , (2.4)

whereby ZX,l ∈ Ts−1 is the minimal annihilating polynomial on X\ {xl} defined by

∀ω ∈ T, ZX,l (ω) =
∏

1≤k≤s
k 6=l

sin2 (π (ω − xk))
sin2 (π (xl − xk))

, (2.5)

and whereby the second factor Rl ∈ Tm−s+1 must satisfy the interpolation conditions
Rl (xl) = 1

R′
l (xl) = −2π

∑
1≤k≤s

k 6=l
cot (π (xl − xk)) .

(2.6)

Proof. Since, the lth element Pl ∈ Tm of the diagonalizing family P = {Pl}sl=1 has roots
with multiplicity two at each of the locations xk for k 6= l, Pl can be factorized in the
complex plane under the form

∀ω ∈ T, Pl (ω) =
∏

1≤k≤s
k 6=l

(
ei2πω − ei2πxk

)2
× R̄l (ω)

=
∏

1≤k≤s
k 6=l

4 sin2 (π (ω − xk))× R̄l (ω)

whereby R̄l is a trigonometric polynomial. The left hand side of the factorization is a
product of exactly s−1 trigonometric polynomial of degree 1, hence R̄l has a trigonometric
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degree that cannot exceed m− s+ 1. One obtains the desired factorization by rescaling
the factor R̄l into Rl as follows

∀ω ∈ T, Rl (ω) = 4s−1 ∏
1≤k≤s

k 6=l

sin2 (π (xl − xk)) R̄l (ω) .

It remains to prove that Rl satisfies Equation (2.6). Since Pl is a first order diagonalizing
polynomial of the support set X, Pl verifies by assumptions Equation (2.3), yielding

1 = Pl (xl)

= ZX,l (xl)Rl (xl) = Rl (xl) .

Secondly, a direct calculation of the derivative of ZX,l at the point xl leads to

Z ′
X,l (xl) = 1∏

1≤k≤s
k 6=l

sin2 (π (xl − xk))
×

∑
1≤k≤s

k 6=l


2π cos (π (xl − xk)) sin (π (xl − xk))

∏
1≤p≤s

p 6=l
p 6=k

sin2 (π (xl − xp))


= 2π

∑
1≤k≤s

k 6=l

cos (π (xl − xk))
sin (π (xl − xk))

= 2π
∑

1≤k≤s
k 6=l

cot (π (xl − xk)) .

Furthermore, by assumptions (2.3), the derivative of Pl must cancel at xl, leading to

0 = P ′
X,l (xl) = ZX,l (xl)R′

l (xl) + Z ′
X,l (xl)Rl (xl)

= R′
l (xl) + 2π

∑
1≤k≤s

k 6=l

cot (π (xl − xk)) ,

which concludes on the statement of the lemma. �

2.3 Proof of Theorem 2.1

2.3.1 Relationship with diagonalizing families

We first start by demonstrating the following lemma, which draws an important connection
between the existence of a dual certificate for a measure µ and the existence of a bounded
diagonalizing family on its support.

Lemma 2.3. Let X = {xk}sk=1 be a discrete subset of T with cardinality s ≤ m. Suppose
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that for every u ∈ Us, there exists Qu ∈ Tm such thatQu (xk) = uk, ∀k ∈ JsK

|Qu (x)| < 1, ∀x /∈ X,
(2.7)

then X admits at least one first order bounded diagonalizing family over Tm.

Proof. First for all, if s = 2, the diagonalizing family PX = {P1, P2} can be trivially built
by considering an appropriate linear combinations of the polynomials Q[1,1] and Q[1,−1].
The rest of the proof details the more complicated case where s 6= 2.

Denote by U =
{
u(k)

}s

k=1
⊂ Us the set of vectors defined by

∀k ∈ JsK ,

u
(k)
k = 1

u
(k)
l = −1, ∀l 6= k.

By assumption, there exists a family Q = {Qu(k)}sk=1 ⊂ Tm of trigonometric polynomials
satisfying the properties of (2.7) for each u(k) ∈ Cs. Moreover, since the vectors

{
u(k)

}s

k=1
are real, and noticing that

∀u ∈ Cs,∀ω ∈ T, |< (Qu (ω))| ≤ |Qu (ω)| ,

the family of real trigonometric polynomials Q̄ =
{
Q̄u(k)

}s

k=1
= {< (Qu(k))}sk=1 also verifies

the properties of (2.7) for each u(k) ∈ Cs. In the rest of the proof, we aim to build a
bounded diagonalizing family PX of X lying in the span of the family Q̄. Namely, we
construct

∀l ∈ JsK , Pl =
s∑

k=1
a

(l)
k Q̄u(k) ,

whereby
{
a(l)
}s

l=1
⊂ Cs are coefficients to be determined.

Let Us be the matrix Us =
[
u(1), · · · , u(s)

]
∈ Cs×s. One can equivalently write

Us = 2Is − Js,

whereby Is,Js ∈ Cs×s denote respectively the identity and the all one matrix of size s.
Furthermore, the matrix Us is invertible for every s 6= 2 and one has

∀s ∈ N\ {2} , U−1
s = 1

2Is −
1

2 (s− 2)Js. (2.8)

Hence, the matrix Us is full rank, and the s polynomials Q̄ =
{
Q̄u(k)

}s

k=1
are linearly

independent and span a subspace of Tm of dimension s. Each vector a(l) is the unique
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solution of the linear system

∀l ∈ JsK , δk=l = Pl (xk) =
s∑

k=1
a

(l)
k Q̄u(k) (xl)

= a
(l)
l −

∑
k 6=l

a
(l)
k ,

which reformulates for every l ∈ JsK under the matrix form Usa
(l) = el, whereby el is the

lth vector of the canonical basis of Cs. Consequently one has a(l) = U−1
s el for every l ∈ JsK,

and each polynomial Pl reads

∀l ∈ JsK , Pl = 1
2

(
1− 1

(s− 2)

)
Q̄u(l) −

1
2 (s− 2)

∑
k 6=l

Q̄u(k) . (2.9)

The constructed family PX = {P1, · · · , Ps} ⊂ Tm verifies by construction the first condition
of Equation (2.3).

Next, since
∣∣∣Q̄u (xk)

∣∣∣ = |uk| = 1 and
∣∣∣Q̄u (ω)

∣∣∣ < 1 for every element ω lying in a small
open ball centered on xk, one may conclude that Q′

u (xk) = 0 for all k ∈ JsK. Hence, by
linearity, Pl also satisfies P ′

l (xk) = 0 for all k ∈ JsK. The second condition of (2.3) is
verified and PX is a first order diagonalizing family for X over Tm.

Furthermore, one proves that the familyPX is bounded by applying the triangular
inequality to Equation (2.9)

∀ω ∈ T, |Pl (ω)| ≤ 1
2

(
1− 1

(s− 2)

) ∣∣∣Q̄u(l) (ω)
∣∣∣+ 1

2 (s− 2)
∑
k 6=l

∣∣∣Q̄u(k) (ω)
∣∣∣

≤ 1
2

(
1− 1

(s− 2)

)
+ s− 1

2 (s− 2)
= 1,

which ensures that ‖Pl‖L∞
≤ 1. Finally, since |Pl (xl)| = 1, one has ‖Pl‖L∞

= 1, and the
boundedness property of PX follows. �

2.3.2 Existence of bounded diagonalizing families

It is worth noticing that, by a classic linear algebra argument, any set X ⊂ T with
cardinality s ≤ m admits infinitely many diagonalizing families. However, the existence of
a bounded one is not necessary guaranteed. Theorem 2.2 states that there exist sequences
of sets with asymptotic minimal distance 1

m that do not admit a bounded diagonalizing
family over Tm. Its demonstration is delayed to Section 2.4 for readability.

Theorem 2.2 (Non-existence of a bounded diagonalizing family). For every real δ > 2,
there exists Mδ ∈ N, such that for every m ≥Mδ, there exists a set Xm =

{
x

(m)
k

}sm

k=1
⊂ T

such that ∆T (Xm) ≥ 1
m −

δ
m2 and there is no bounded diagonalizing family of X over Tm.
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2.3.3 Conclusion on Theorem 2.1

We now have all the elements to complete the proof of Theorem 2.1. Let δ > 2 and m ∈ N
with m ≥Mδ so that one can pick a subset Xm = {xk}sm

k=1 ⊂ T as in Theorem 2.2. Using
the contraposition of Lemma 2.3 on Xm, there must exist one sign pattern u ∈ Usm such
that there is no trigonometric polynomial verifying the condition of Theorem 1.1. Consider
a measure µm of the form µm =

∑sm
k=1 τkukδxk

, whereby {τk}sm
k=1 is a set of strictly positive

reals. One has sign (τkuk) = uk, and we conclude using the negation of Proposition 1.1
that the measure µm is not solution of Program (1.27). �

2.4 Proof of Theorem 2.2

Let m ∈ N , and let X = {xk}sk=1 be a subset of T with cardinality s. We aim to construct
a well-separated subset X(m) =

{
x

(m)
k

}s

k=1
⊆ T for which every diagonalizing family PX

on the support set X is not bounded in the sense of Definition 2.2. More precisely, the
goal is to prove that every family PX should have at least one element Pl ∈ PX so that∥∥∥P (m)

l

∥∥∥
∞
> 1.

For convenience, we restrict our analysis to odd trigonometric degrees m = 2K + 1, and
claim that the result is also extendable for even values of m. Let the parameter αm ∈ (0, 1)
be such that αm

m+1 , 1
m −

δ
m2 for some δ > 1 and consider a subset X(m,δ) =

{
x

(m,δ)
k

}K

k=−K
of m equispaced elements of the form

∀k ∈ J−K,KK , x
(m,δ)
k ,

kαm

m+ 1 .

It is clear that for every m the minimal distance of X(m,δ) reads

∆T
(
X(m,δ)

)
= αm

m+ 1 = 1
m
− δ

m2 .

We show that the element P0 ∈ Tm associated with the element x(m)
0 = 0 can be

unstable for a large enough value of the parameter δ. By Lemma 2.2, P0 can be factorized
under the form P0 = Zm,δ ×R0, where Zm,δ , ZX(m,δ),0 ∈ Tm−1 is the minimal polynomial
(2.5) that vanishes on X(m,δ)\ {0} and whereby R0 ∈ T1 verifies the conditions (2.6). By
symmetry of X(m,δ) around 0, R′

0 (0) = 0 and every trigonometric polynomial of degree 1
satisfying (2.6) can be written under the form

∀ω ∈ T, Rγ (ω) , (1− γ) + γ cos (2πω) , (2.10)

for some γ ∈ C. Hence P0 must have a factorization of the form

P0 = Pm,δ,γ , Zm,δ ×Rγ

for some γ ∈ C.
It remains to show that if δ is large enough (αm small enough), every polynomial of
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the form Pm,δ,γ verifies ‖Pm,δ,γ‖L∞
> 1. Formally, we aim to lower bound the quantity

L (m, δ) , inf
γ∈C
‖Pm,δ,γ‖L∞

= inf
γ∈C

sup
ω∈T
|Pm,δ,γ (ω)|

away from 1 for small enough αm. Intuitively, we expect Zm,δ to reach large values far
away from its roots, at ω ' 1

2 , and expect that the restrictive structure (2.10) on Rγ will
not leave enough freedom to drag the product Zm,δ (ω)Rγ (ω) below 1.

For ease of calculation, we introduce the translated polynomials Z̃m,δ (ω) = Zm,δ

(
1
2 − ω

)
and R̃γ (ω) = Rγ

(
1
2 − ω

)
for all ω ∈ T, and let Ωm =

[
− αm

m+1 ,
αm

m+1

]
⊂ T. The two following

key lemmas, demonstrated in Section 2.5, provide lower bounds on Z̃m,δ (ω) and R̃γ (ω)
over the set Ωm.

Lemma 2.4 (Bound on Z̃m,δ). Let Ωm =
[
− αm

m+1 ,
αm

m+1

]
⊂ T whereby αm

m+1 = 1
m −

δ
m2 for

some δ > 1. There exists a constant C (δ) > 0 such that

∀m ∈ N, ∀ω ∈ Ωm, Z̃m,δ (ω) ≥ C (δ) (m+ 1)2(δ−1) .

Lemma 2.5 (Bound on R̃γ). Let Rγ ∈ T1 be has in (2.10), then for all ωmax ∈
[
0, 1

2

]
one

has
inf
γ∈C

sup
ω∈[−ωmax,ωmax]

∣∣∣R̃γ (ω)
∣∣∣ = sin2 (πωmax)

1 + cos2 (πωmax) . (2.11)

One may lower bound the quantity L (m, δ) by controlling the infimum of each of the
factor of Pm,δ,γ . Applying Lemma 2.4 and Lemma 2.5 leads to

L (m, δ) = inf
γ∈C

sup
ω∈T
|Zm,δ (ω)Rγ (ω)|

= inf
γ∈C

sup
ω∈T

∣∣∣Z̃m,δ (ω) R̃γ (ω)
∣∣∣

≥ inf
γ∈C

sup
ω∈Ωm

∣∣∣Z̃m,δ (ω) R̃γ (ω)
∣∣∣

≥ inf
ω∈Ωm

Z̃m,δ (ω)× inf
γ∈C

sup
ω∈Ωm

∣∣∣R̃γ (ω)
∣∣∣

= C (δ) (m+ 1)2(δ−1) ×
sin2

(
π αm

m+1

)
1 + cos2

(
π αm

m+1

)
≥ C (δ)π2α2

m

2 (m+ 1)2(δ−2)

= Θ
(
m2(δ−2)

)
, (2.12)

where we used the fact that sin2(πωmax)
1+cos2(πωmax) ≥

π2ω2
max

2 for ωmax ≤ 0.4 . Hence, if δ > 2,
L (m, δ) diverges when m grows large. Consequently, there must exist a value Mδ > 0 such
that, for all m ≥Mδ, one has ‖Pm,δ,γ‖∞ > 1 for every γ ∈ C. Concluding on the proof of
the theorem. �
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...
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...

Figure 2.3: A representaion of the parameter αm and of the associated offset factor βm.

2.5 Proofs of the auxiliary lemmas

2.5.1 Proof of Lemma 2.4

First of all, the roots
{
x̃

(m,δ)
k

}K

|k|=1
of Z̃m,δ are given by the relation

x̃
(m,δ)
k = 1

2 − x
(m,δ)
K−k+1,

and a direct calculation yields

∀k ∈ JKK ,

x̃k = βm + kαm
m+1

x̃−k = −βm − kαm
m+1

whereby βm , 1
2 (1− αm) > 0 is an offset factor. Figure 2.3 provides a graphical interpre-

tation of the quantities αm and βm for ease of understanding. Using Expression (2.5), one
may rearrange Z̃m,δ as follows

∀ω ∈ T, Z̃m,δ (ω) =
K∏

k=1

sin2
(
π
(
βm + kαm

m+1 − ω
))

sin2
(
π
(
βm + kαm

m+1 + ω
))

sin4
(
π kαm

m+1

) .

The polynomial Z̃m,δ has no root over the set Ωm, hence its logarithm z̃m,δ is well defined
over Ωm, and it yields

∀ω ∈ Ωm, z̃m,δ (ω) = −4 ln sin
(
π
kαm

m+ 1

)

+ 2
K∑

k=1
ln sin

(
π

(
βm + kαm

m+ 1 − ω
))

+ ln sin
(
π

(
βm + kαm

m+ 1 + ω

))
. (2.13)

We derive a lower bound on z̃m,δ over Ωm by using the two elementary lemmas.

Lemma 2.6. For any t, h ∈ R+ such that t+ h ≤ π
2 , one has

h cot (t)− h2

2 csc2 (t) ≤ ln sin (t+ h)− ln sin (t) ≤ h cot (a)
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Proof of Lemma 2.6. First for all, one has (ln sin)′ = cot and (ln sin)′′ = − csc2. Hence,
the function t 7→ ln sin (t) is concave on its definition domain, which is enough to prove the
upper inequality. Next, one can apply the fundamental theorem of calculus to derive the
lower inequality, which yields that for any t, h ∈ R+,

ln sin (t+ h)− ln sin (t) =
∫ t+h

t
cot (u) du.

Moreover, if t+ h ≤ π
2 then the function u→ cot (u) is convex over [t, t+ h], leading to

ln sin (t+ h)− ln sin (t) ≥
∫ t+h

t
cot (t)− u csc2 (t) du

= h cot (t)− h2

2 csc2 (t) ,

concluding on the desired result. �

Lemma 2.7. For all odd integer m ∈ N such that m = 2K + 1 and all α ∈ (0, 1), the
following inequalities hold

K∑
k=1

cot
(
πkα

m+ 1

)
≥ m+ 1

πα

[
ln (m+ 1) + γ + ln

( 1
π

)]
K∑

k=1
csc2

(
πkα

m+ 1

)
≤ (m+ 1)2

6α2 ,

whereby γ denotes the Euler-Mascheroni constant.

Proof of Lemma 2.7. We start by demonstrating the first inequality. One has

K∑
k=1

cot
(
πkα

m+ 1

)
=

K∑
k=1

m+ 1
πkα

+
K∑

k=1
cot

(
πkα

m+ 1

)
− m+ 1

πkα

≥ m+ 1
πα

HK + m+ 1
πα

∫ π
2

0

(
cot (u)− 1

u

)
du, (2.14)

whereby HK =
∑K

k=1
1
k is the Kth element of the harmonic series and by comparing the

second sum with a Riemann approximation of the integral of the function u→ cot (u)− 1
u .

Noticing that ∫ π
2

0

(
cot (u)− 1

u

)
du = ln

( 2
π

)
,

and using the fact that HK ≥ ln (K) + γ + 1
K for all K ∈ N, the inequality (2.14) reduces

to

K∑
k=1

cot
(
πkα

m+ 1

)
≥ m+ 1

πα

[
ln (K) + γ + 1

K
+ ln

( 2
π

)]
= m+ 1

πα

[
ln
(
m+ 1

2 − 1
)

+ γ + 2
m− 1 + ln

( 2
π

)]
= m+ 1

πα

[
ln
(
m+ 1

2

(
1− 2

m+ 1

))
+ γ + 2

m− 1 + ln
( 2
π

)]
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≥ m+ 1
πα

[
ln
(
m+ 1

2

)
+ γ + 2

m− 1 −
2

m+ 1 + ln
( 2
π

)]
= m+ 1

πα

[
ln (m+ 1) + γ + ln

( 1
π

)]
which concludes on the first inequality.

One can proceed on a similar way to prove the second inequality of Lemma 2.7.

K∑
k=1

csc2
(
πkα

m+ 1

)
=

K∑
k=1

(
m+ 1
πkα

)2
+

K∑
k=1

csc2
(
πkα

m+ 1

)
−
(
m+ 1
πkα

)2

≤ (m+ 1)2

π2α2

(
π2

6 −
1
K

+ 1
2K2

)
+ m+ 1

πα

∫ π
2

0

(
csc2 (u)− 1

u2

)
du

≤ (m+ 1)2

π2α2

(
π2

6 −
2

m+ 1

)
+ 2 (m+ 1)

π2α

≤ (m+ 1)2

π2α2

(
π2

6 −
2 (1− α)
m+ 1

)

≤ (m+ 1)2

6α2

whereby we used the fact that
∑K

k=1
1

k2 ≤ π2

6 −
1
K + 1

2K2 and where by viewed the second
sum as a lower approximation of the integral

∫ π
2

0

(
csc2 (u)− 1

u2

)
du = π

2 .

�

We can now combine the previous results to finish the proof of Lemma 2.4. Since
π
(

Kαm
m+1 + βm + |ω|

)
< π

2 for all ω ∈ Ωm, one can apply two times Lemma 2.6 to each term
of the sum (2.13), yielding

z̃m,δ (ω) ≥4πβm

K∑
k=1

cot
(
πkαm

m+ 1

)
− 2π2

(
β2

m + ω2
) K∑

k=1
csc2

(
πkαm

m+ 1

)

≥4βm (m+ 1)
αm

[
ln (m+ 1) + γ + ln

( 1
π

)]
− 2π2

(
β2

m + ω2
) (m+ 1)2

6α2

≥4βm (m+ 1)
αm

[
ln (m+ 1) + γ + ln

( 1
π

)]
− π2β

2
m (m+ 1)2

3α2

(
1 + α2

β2
m (m+ 1)2

)

≥2 (δ − 1)
[
ln (m+ 1) + γ + ln

( 1
π

)]
− π2 (δ − 1)2

3

(
1 + 4

(δ − 1)2

)

=2 (δ − 1) ln (m+ 1)− π2 (δ − 1)2

3 + 2 (δ − 1)
(
γ + ln

( 1
π

))
− 4π2

3 (2.15)

where we made use of Lemma 2.7, of the fact that |ω| ≤ αm
m+1 , and noticing that δ−1

2 ≤
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βm(m+1)
αm

≤ δ − 1 for all m ∈ N. Taking back the exponential in (2.15) leads to the desired
result whereby

C (δ) = e− π2(δ−1)2
3 +2(δ−1)

(
γ+ln

(
1
π

))
− 4π2

3

is the desired constant. �

2.5.2 Proof of Lemma 2.5

In the following, let ωmax ∈
[
0, 1

2

]
and Ω = [−ωmax, ωmax] ⊂ T, and define c = cos2 (πωmax) ∈

[0, 1] for convenience. We aim to find the value of γ ∈ C for which the supremum of
∣∣∣R̃γ (ω)

∣∣∣
is minimal over Ω. Noticing that

∣∣∣R̃γ (ω)
∣∣∣2 = (1− 2 |γ| c)2, the infimum in (2.11) is achieved

for some positive real γ, hence

κΩ , inf
γ∈C

sup
ω∈Ω

∣∣∣R̃t (ω)
∣∣∣ = inf

γ∈R+
sup
ω∈Ω

∣∣∣R̃t (ω)
∣∣∣ .

Moreover, for a fixed value of γ, the symmetry of the function
∣∣∣R̃γ (ω)

∣∣∣ and its monotonic
behaviors over [0, ωmax] imply that the supremum is reached either on 0 or on ωmax, leading
to

sup
ω∈Ω

∣∣∣R̃t (ω)
∣∣∣ = max

{∣∣∣R̃t (0)
∣∣∣ , ∣∣∣R̃t (ωmax)

∣∣∣}
= max {|1− 2γ| , |1− 2γc|} . (2.16)

Define the auxiliary function g over R+ as g (γ) = (1− 2γ)2 − (1− 2γc)2. g (γ) is positive
whenever the maximum (2.16) is reached at 0 and negative whenever it is reached at ωmax.
The auxiliary function is parabolic in γ and we have

g (γ) =
(
1− c2

)
γ2 − (1− c) γ,

which takes positive values for γ ≥ 1
1+c and negative values for γ ≤ 1

1+c . Hence it yields

sup
ω∈Ω

∣∣∣R̃γ (ω)
∣∣∣ =

|1− 2γ| if γ ≥ 1
1+c

|1− 2γc| otherwise.
(2.17)

The supremum in (2.17) is a piecewise monotonic function in γ. Thus, by similar argument

κΩ = min
{∣∣∣∣1− 2

1 + c

∣∣∣∣ , ∣∣∣∣1− 2c
1 + c

∣∣∣∣}
= 1− c

1 + c

= sin2 (πωmax)
1 + cos2 (πωmax) ,

concluding on the proof of the lemma. �
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Chapter 3

Sufficient separation conditions
and the diagonalizing certificate

3.1 The extremal interpolation problem

The fundamental dual certifiability Theorem 1.1 links the success or failure of the TV reg-
ularization approach to the sole existence of a dual certificate: A trigonometric polynomial
satisfying the conditions (1.30) of Theorem 1.1. Although the statement of this theorem is
simple and by many means elegant, it is absolutely not a trivial task to understand the
mechanics ruling the existence of such polynomial for a given measure µ ∈M (T).

If it is easy to understand that a dual certificate Q ∈ Tm should at least belong to the
linear subspace of dimension 2 (m− s) + 1 defined by the equations

∀k ∈ JsK , Q (xk) = wk (3.1)

∀k ∈ JsK , Q′ (xk) = 0,

whereby w ∈ Us denotes the sign pattern w = [sign (c1) , · · · , sign (cs)]T of the measure to
recover. The extremal constraint

∀ω /∈ X, |Q (ω)| < 1 (3.2)

is non-linear and hard to verify, since there is no close form expression linking the supremal
value of Q with its coefficients vector q ∈ C2m+1. As explained in Subsection 1.6.2.3, it is
still an open problem to determine precisely what are the exact conditions on the measure
µ ∈M (T) under which one can ensure the existence of a dual certificate. Conjecture 1.1
claims that a minimal distance of ∆T (X) > α

m on the support set X of the measure µ
should be asymptotically enough to guarantee the existence of such an element for every
α > 1.

In this chapter, we propose a novel constructive approach for such certificate Q. The
construction of Q is made on top of a certain diagonalizing family of trigonometric
polynomials which have been defined in Section 2.2. We demonstrate in Theorem 3.1 the
existence of a dual polynomial under near optimal regimes of the kind ∆T (X) ≥ αdiag

m−1

41
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for some αdiag > 1. Before going into the details of the proposed construction, we give a
review of the one existing in the literature, and provide insights and a justification of our
approach.

3.2 Previous results

3.2.1 Construction by translation

In their original analysis of the separation condition [18], the authors proposed a polynomial
construction of a certificate working up to twice the TV resolution conjecture ∆T (X) ≥ 2

m

and under proviso that m is large enough. This construction, summarized in the following,
assumes in a first step to fix a kernel Km ∈ Tm verifying the conditions

∀ω ∈ T, Km (ω) = Km (−ω)

sup
ω∈T
|Km (ω)| = Km (0) = 1,

and that decays “fast enough” as ω goes away from 0. The construction of the certificate
Q is done in the span of the translation of the kernel Km and of its derivative K ′

m at
the location of the spikes xk ∈ X to interpolate. Hence, the candidate trigonometric
polynomial can be written

∀ω ∈ T, Q (ω) =
s∑

k=1
αkKm (ω − xk) + βkK

′
m (ω − xk) , (3.3)

for some coefficients {αk}sk=1 and {βk}sk=1. Since Q must at least be a dual pre-certificate
in order to be a dual certificate for the desired problem, the coefficients {αk}sk=1 and
{βk}sk=1 in the construction (3.3) have to be solution of the linear system of 2s equations
(3.1), and summarized by the matrix expression

[
G0 G1

G1 G2

] [
α

β

]
=
[
ω

0

]
, (3.4)

whereby the symmetric matrices Gl ∈ Cs×s for l ∈ {0, 1, 2} have for generic term

∀ (i, j) ∈ JsK2 , Gl (i, j) = K(l)
m (xj − xi) .

The rest of the proof aims to demonstrate that if the kernel Km is “sharp enough” then
the linear system (3.4) is invertible and nearly diagonal so that α ' w and β ' 0. The last
step of the proof consists in using the approximate local expression of the pre-certificate
Q and ensuring that its modulus remains below 1. This is mostly done by proving two
different inequalities

• Near region bound: There exists C > 0 such that for all xk ∈ X, one has on an open
ball BT (xk, εnear) of large enough radius εnear

∀ε ≤ εmax, |Q (xk + ε)| ≤ 1− Cε2
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• Far region bound: For every ω /∈
⋃s

k=1B (xk, εmax) belonging to the complementary
set one has |Q (ω)| ≤ C ′ for some C ′ ∈ [0, 1)

which is enough to conclude on the desired result.
The performances guarantees obtained by this construction are heavily relying on the

initial choice of the kernel Km used as a building block for the construction of the certificate
Q. The initial proof presented in [18] made use of the Jackson kernel Jm ∈ Tm as a building
basis, and is defined for every odd trigonometric order m by

∀ω ∈ T, Jm (ω) =
sin4 (π

2 (m+ 1)ω
)

(m+ 1)4 sin4 (π
2ω
) .

This construction leads to the sufficient separation guarantee ∆T (X) ≥ 2
m under proviso

that m ≥ 128. This bound was later enhanced in [33] to ∆T (X) ≥ 1.26
m under the stronger

proviso that m ≥ 1000 by replacing the Jackson certificate in the previous construction by
a kernel Km built from the product of three Dirichlet kernels defined in Equation (1.8) of
different orders so that

∀ω ∈ T, Km (ω) = Dm1 (ω)Dm2 (ω)Dm3 (ω)

for some numerically tuned integers verifying the condition m1 +m2 +m3 = m so that
Km has a trigonometric degree equal to m.

There are several drawbacks that are inherent to the detailed construction per translation
of the certificate Q. First of all, the choice of the kernels is done on an arbitrary manner in
both of the discussed works [18], [33], and it is difficult to understand the relation that links
the kernel Km with the final achievable resolution limit α(Km)

m through this construction.
Secondly, both of the previous constructions cannot empirically explain the conjectured
phase transition, in the sense that experimental constructions of those certificates fail to
verify the supremal condition (3.2) for most of the measures µ with non-critically separated
support having minimal distance ∆T (X) ' 1.2

m . Finally, this type of construction require
to define the certificate Q as a solution of a linear system, which requires to approximate
the inverse of the matrix defined in Equation (3.4). Consequently the coefficients vector
q ∈ C2m+1 is not known under a closed form formula.

3.2.2 The Dirichlet certificate and robustness to small noise levels

Understanding the stability of the TV regularization approach in the context of line spectral
estimation requires understanding the performance limits of the Beurling-Lasso estimator
(1.36) defined in Subsection 1.6.5. Such analysis was presented in [28] for much broader
class of linear inverse problem by considering collapsing noise level and by letting the
regularization parameter τ of the Beurling-Lasso tend to 0.

Translated in our context, the authors have shown that the solution q? (τ) ∈ C2m+1 of
the dual Beurling-Lasso Problem (1.37) was converging towards a limit qDir ∈ C2m+1 when
τ → 0. Moreover, this limit is known to be the coefficients vector of the trigonometric
polynomial QDir ∈ Tm achieving minimal L2 norm over the space of dual pre-certificate,



44 Chapter 3. Sufficient separation conditions and the diagonalizing certificate

therefore solution of

qDir = arg min
q∈C2m+1

‖q‖2 (3.5)

subject to Q (xk) = wk, ∀k ∈ J1, sK

Q′ (xk) = 0, ∀k ∈ J1, sK .

Consequently, it is “enough” to verify that QDir is a valid dual certificate, i.e., to verify that it
satisfies the last extremal constraint (3.2) to conclude on the stability of TV regularization
to arbitrary small noise levels. Since, the optimal coefficients qDir are solution of the

simple quadratic program (3.5) with a linear constraint of the form Wq =
[
w

0

]
for some

W ∈ C(2m+1)×2s, a classic orthogonal projection argument ensures that qDir ∈ span (W∗).
Consequently, a direct calculation yields the existence of complex coefficients {αk}sk=1 and
{βk}sk=1 such that

∀ω ∈ T, QDir (ω) =
s∑

k=1
αkDm (ω − xk) + βkD

′
m (ω − xk) , (3.6)

where Dm ∈ Tm is the Dirichlet kernel defined in Equation (1.8).
It is worth noticing that the Dirichlet certificate QDir is itself a construction by

translation of the form (3.3). However, the generic recipe presented in Subsection 3.2.1 to
derive an associated minimal separation bound is not suited for the kernel Dm due to the
high non-locality. In particular, a major drawback for this kernel is that Dm

( ·
m

)
∼ sinc (·)

is not absolutely integrable on its definition domain.

3.3 The diagonalizing certificate

3.3.1 Motivations

A novel framework to construct a dual certificate verifying the conditions of Theorem 1.1 is
proposed in this section. The diagonalizing certificates are build upon a well-suited basis of
diagonalizing polynomials, whose definitions were discussed in Section 2.2. Diagonalizing
basis have the huge advantage of avoiding the tedious inversion step of the linear system
(3.4), which is one of the major flaws of the construction by translation presented in Section
3.2.1.

Denote by X = {x1, · · · , xs} ⊂ T the support, and by c ∈ Cs the complex coefficients of
the measure µ ∈M (T) to reconstruct. Moreover denote by w = [sign (c1) , · · · , sign (cs)]T ∈
Cs the sign pattern vector of µ. Denote by PX = {Pl}sl=1 a diagonalizing family for the
support set X. It is immediate to notice that the trigonometric polynomial Qw ∈ Tm

defined by

Qw =
s∑

l=1
wlPl, (3.7)

is solution of the system of equations (3.1), and therefore is a dual pre-certificate for the
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TV regularization problem. No inversion step of the form (3.4) is required to determine
the values of the coefficients of Qw. Once the basis PX has been chosen, the expression of
Q is given under the closed form (3.7) with respect to the sign pattern vector w.

It remains to show that Qw ∈ Tm has a modulus that remains bounded by 1 on the
torus to conclude on the tightness of the TV regularization. This chapter focuses on a
construction on a positive diagonalizing family PX for the support set X, and defined as
follows.

Definition 3.1 (Positive diagonalizing family). A first order diagonalizing family PX =
{Pl}sl=1 of X is said to be positive if and only if Pl (ω) ≥ 0 for all ω ∈ T.

As stated in the next proposition, the positivity assumption on PX allows to reduce
the verification of the extremal constraint (3.2) for any sign patterns w ∈ Cs to bounding
the sum of the elements of the family PX .

Proposition 3.1 (Universal certifiability on positive diagonalizing families). Let X ⊂ T
be a discrete subset of cardinality s. If there exists a positive diagonalizing family of
trigonometric polynomials PX = {Pl}sl=1 of degree m for the support set X verifying

∀ω ∈ T\X,
s∑

l=1
Pl (ω) < 1

then the polynomial Qw ∈ Tm defined in Equation (3.7) is a dual certificate for Theorem
1.1 for all ω ∈ Us, and the convex program (1.27) succeed to reconstruct any sparse
µ0 ∈M (X).

Proof. For a given sign pattern w ∈ Us, denote by Qw ∈ Tm defined in (3.7). Since Qw is
a dual pre-certificate for all w ∈ Us, it remains to show that |Q (ω)| < 1 over T\X, which
is an immediate consequence of the triangular inequality.

∀ω ∈ T\X, |Q (ω)| =
∣∣∣∣∣

s∑
l=1

wlPl (ω)
∣∣∣∣∣

≤
s∑

l=1
|wlPl (ω)|

=
s∑

l=1
|Pl (ω)|

=
s∑

l=1
Pl (ω)

< 1.

concluding on the desired result. �

3.3.2 Main result

We start by introducing the function h defined by
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h :
(7

4 ,+∞
)
→ R+

α 7→ lim
p→+∞


(
πα

2p

)4α−6 p∑
j=1

csc4α−6
(
π
jα

2p

) ,
which is well defined whenever α > 7

4 by a comparison argument with the Riemann zeta
function. And let ψ(1) be the first order polygamma function defined by

ψ(1) : R+ → R+

u 7→
∞∑

j=0

1
(u+ j)2 .

The function α 7→ ψ(1) (1 + α)α2 is a continuous increasing and unbounded function of
the variable α, and the function h is continuous decreasing with

lim
α→ 7

4

h (α) = +∞

lim
α→∞

h (α) = 1.

By a classic application of the mean value theorem, the equation

ψ(1) (1 + α)α2 = 2h (α) , (3.8)

has a unique solution αdiag on
(

7
4 ,+∞

)
. A numerical computation leads to the estimate

2.5682 < αdiag < 2.5683.
The next theorem states that it is possible to build a dual certificate for Theorem 1.1 of

the form (3.7) up to the near optimal separation condition ∆T (X) ≥ αdiag
m−1 . Moreover, the

theorem offers useful properties on the decay rate of the certificate around the interpolated
spikes and on its supremal value on the far region. The demonstration of this result
is provided in Section 3.5 after introducing the useful notion of saturated diagonalizing
families of trigonometric polynomials in Section 3.4.

Theorem 3.1 (Diagonalizing certificate). Let αdiag < 2.5683 be the unique positive solution
on
(

7
4 ,+∞

)
of Equation (3.8). If a support set X = {x1, · · · , xs} of cardinality s verifies

the separation condition ∆T (X) ≥ α
m−1 with α > αdiag, then the trigonometric polynomial

Qw ∈ Tm defined in (3.7) is a dual diagonalizing certificate for Theorem 1.1, and verifies
the decay conditions

∣∣∣Qw

(
xk + αε

m−1

)∣∣∣ ≤ 1−
(
ψ(1) (1 + α)α2 − 2h (α)

)
ε2 ∀k ∈ JsK ,∀ε ∈ [−1, 1]

|Qw (ω)| < 2h(α)
α2 ∀ω ∈ Γfar

(3.9)

for any sign pattern w ∈ Us, whereby Γfar = T\
{⋃s

k=1 B
(
xk,

α
m−1

)}
.
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3.3.3 Discussions

Theorem 3.1 can only certify that the diagonalizing pre-certificate verifies the dual certificate
conditions of Theorem 1.1 under a separation limit of the kind ∆T (X) ≥ 2.5683

m−1 , which is a
weaker result than the previous existing bounds in the literature. However, experimental
results shown in Figure 3.1 suggest that the proposed construction should remains valid
up to the resolution limit ∆T (X) = 1

m + o
(

1
m

)
, which is not the case of the Jackson

construction described in Subsection 3.2.1. We believe that the limit αdiag ≈ 2.5683 is
an unnecessary artifact of the technique used to demonstrate Theorem 3.1, and that this
analysis can be sharpened.

Moreover, the inequalities (3.9) provided in Theorem 3.1 provide bounds on decay
properties verified by the diagonalizing certificates. We believe that the provided bounds
can be helpful in a future analysis of the performance of the Beurling-Lasso estimator for
reconstruction in noisy environments in the same spirit than the one presented in [46].

3.4 Saturated diagonalizing families

If the support set X = {x1, · · · , xs} ⊂ T is of cardinality s ≤ m, then the space of all
the trigonometric polynomials Pl verifying the conditions (2.3) of the lth element of a
diagonalizing family is an affine subspace of Tm of dimension 2 (m− s). Among all those
possible elements, one seeks to find an adequate one for serving as a basis element on
which the dual pre-certificate Qw ∈ Tm defined by Equation (3.7) is going to be built. As
discussed in Subsection 3.2.1 a “good” interpolation basis for the extremal interpolation
problem should decay rapidly around its supremal value, while being bounded by a small
value far away from the central spike.

To this end, the heuristic construction of saturated diagonalizing basis is introduced in
the following. The saturated polynomials are constructed by using that 2 (m− s) extra
degrees of freedom in such a way that the resulting roots of the polynomials are as evenly
distributed as possible around on the unit circle, which will guarantee a strong central decay
around xl, as well as a good control of the polynomial values away from xl.

For convenience and ease of notations, the rest of the analysis is restricted to odd
values of the trigonometric degree m = 2p + 1. Denote by S the subdivision S =
{S−p, · · · , S−1, S0, S1, · · · , Sp} of the torus T into m intervals of the form

S0 =
(
− α

2p ,
α
2p

)
Sj =

[
α
2p + (j − 1) β

2p ,
α
2p + j β

2p

)
∀j ∈ J1, pK

S−j = −Sj ∀j ∈ J1, pK

whereby β = β (α) is fully determined by the choice of α as follows

β = 1− α

p
< 1, (3.10)

so that α
m−1 + p β

m−1 = 1
2 , and the resulting subdivision S forms indeed a partition of the
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Figure 3.1: The Jackson pre-certificate (in blue), the Dirichlet pre-certificate (in red),
and the diagonalizing pre-certificate (in yellow) for m = 30. The support set is such that
∆T (X) = α

m−1 for three different values of α.
Top: α = 1.8 The three pre-certificate meets the dual certificate conditions.
Middle: α = 1.2 The Jackson pre-certificate fails to meet the dual certificate conditions,
while the Dirichlet and the diagonalizing construction validates certificates Conditions
(1.30).
Bottom: α = 1.05 The Jackson pre-certificate has a maximal modulus even larger than in
the previous settings, while the Dirichlet and diagonalizing construction are still meeting
the requirements.
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Figure 3.2: A representation of the α
m−1 -saturated extension of a set X0. The elements of

X0 corresponds to the blue diamonds. The additional elements of the saturated extension
X̃0 are represented by red circles.
Since X0 has no element in the bin S2, an additional one is added to the saturated
extension on the right boundary of S2. Similarly, since S−3 and S−2 contain no element of
X0, additional elements are added on their left boundary.

torus T '
[
−1

2 ,
1
2

]
.

Definition 3.2 (Saturated extension). Let X0 ⊆ T be a set verifying 0 ∈ X0 and with
minimal separation ∆T (X) ≥ α

m−1 . The α
m−1 -saturated extension X̃0 of the set X0 is the

unique subset X̃0 ⊆ T verifying

• X̃0 ∩ S0 = {0}

• For every j ∈ J1, pK if X0 ∩ Sj = ∅ then α+jβ
2p ∈ X̃0

• For every j ∈ J1, pK if X0 ∩ S−j = ∅ then −α+jβ
2p ∈ X̃0.

It is easy to see that by construction there is a unique element of X̃0 in each of the subset
Sj for j ∈ J−p, pK. The element of X̃0 ∩ Sj will be denoted x̃j so that X̃0 = {x̃s}ps=−p.
Figure 3.2 draws a representation of a set X0 and its saturated extension X̃0. The next
proposition provides bounds on the decay rate of at least one trigonometric polynomial
associated with the 0th root x̃0 = 0 of a positive diagonalizing family defined over the

α
m−1 -saturated extension X̃0 of X0.

Proposition 3.2 (Properties of the saturated polynomial). Let X0 ⊆ T be a set verifying
0 ∈ X0 and of minimal separation ∆T (X) ≥ α

m−1 . Denote by X̃0 the α
m−1 -saturated

extension of X0. There exists a positive diagonalizing polynomial P̃0 ∈ Tm for the set X̃0

verifying for all ε ∈ [−1, 1]
P̃0 (0) = 1

P̃0
(

αε
m−1

)
≤ 1− ψ(1) (1 + α)α2ε2

P̃0
(
x̃j + εα

m−1

)
≤
(

πα
m−1 csc (πx̃j)

)4α−6
ε2.

(3.11)

3.5 Proof of Theorem 3.1

Suppose that the support set X = {x1, · · · , xs} of cardinality s verifies the hypothesis
∆T (X) ≥ α

m−1 . Moreover assume without loss of generality that the points {x1, · · · , xs}
are in cyclic increasing order. First of all, one must fix the positive diagonalizing basis
PX = {Pl}sl=1 ⊂ Tm that will be used to build the attempted certificate Qw as in (3.7).
For every l ∈ J1, sK, denote by Yl = X − xl the translated support centered around xl.
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A family of diagonalizing trigonometric polynomials

Figure 3.3: Different trigonometric polynomials used as elements of the diagonalizing family
PX .

Since 0 ∈ Yl by construction, Yl admits an α
m−1 -saturated extension denoted Ỹl. Yl verifies

the hypothesis of Proposition 3.2 and we denote by P̃l ∈ Tm a polynomial verifying the
properties (3.11). Finally, we denote by

Pl (·) = P̃l (· − xl)

its translation. Pl vanishes on the support X\ {xl} up to the first order, and will be
used as the lth element of the positive diagonalizing family of trigonometric polynomial
PX = {Pl}sl=1. A graphic representation of the basis PX is given in Figure 3.3. We start
the demonstration by proving the first property of (3.9). For any k ∈ JsK, the constructed
certificate Qw ∈ Tm defined by Equation (3.7) verifies

∣∣∣∣Qw

(
xk + αε

m− 1

)∣∣∣∣ =
∣∣∣∣∣

s∑
l=1

wlPl

(
xk + αε

m− 1

)∣∣∣∣∣
≤

s∑
l=1

Pl

(
xk + αε

m− 1

)

=
s∑

l=1
P̃l

(
xk − xl + αε

m− 1

)
.

= P̃l

(
αε

m− 1

)
+

s∑
l=1
l 6=k

P̃l

(
xk − xl + αε

m− 1

)
. (3.12)

By construction, the elements xk − xl ∈ Yl for all k 6= l. Moreover, using the separation
constraint imposes that

|xl − xk|T ≥
α |l − k|
m− 1 ,

and a direct application of Proposition 3.2 on the elements of the sum (3.12) yields
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∣∣∣∣Qw

(
xk + αε

m− 1

)∣∣∣∣ ≤ 1− ψ(1) (1 + α)α2ε2 +
s∑

l=1
l 6=k

(
πα

m− 1 csc (π (xk − xl))
)4α−6

ε2

≤ 1− ψ(1) (1 + α)α2ε2 + 2
p∑

j=1

(
πα

m− 1 csc
(
π

jα

m− 1

))4α−6
ε2

≤ 1−
(
ψ(1) (1 + α)α2 − 2h (α)

)
ε2.

By assumption α > αdiag, and therefore one has

ψ(1) (1 + α)α2 − 2h (α) > 0.

Hence if ε 6= 0, one has∣∣∣∣Qw

(
xk + αε

m− 1

)∣∣∣∣ ≤ 1−
(
ψ(1) (1 + α)α2 − 2h (α)

)
ε2

< 1.

Consequently the constructed certificate will have a modulus strictly smaller than 1 on a
desired region around xk, proving the first inequality.

It remains to be shown that |Qw (ω)| is small in the far region. If ω ∈ Γfar, then for
every l ∈ JsK the translated point ω − xl belongs to some Sj for j 6= 0. Therefore ω can be
written x̃j + εα

m−1 for some ε ∈
[
−β

α ,
β
α

]
. Applying Proposition 3.2 yields

Pl (ω) = Pl

(
x̃j + εα

m− 1

)
= P̃l

(
x̃j − xl + εα

m− 1

)
≤
(
β

α

)2 ( πα

m− 1 csc (π (x̃j − xl))
)4α−6

,

≤ 1
α2

(
πα

m− 1 csc (π (x̃j − xl))
)4α−6

and one concludes in a similar way that for all α > αdiag

|Qw (ω)| ≤ 2
α2

(
πα

m− 1

)(4α−6) p∑
j=1

csc(4α−6)
(
π

jα

m− 1

)

≤ 2h (α)
α2

< 1,

concluding the demonstration of the theorem. �
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3.6 Proof of Proposition 3.2

3.6.1 Preliminaries

First for all, since P̃0 diagonalizes the set X̃0 and P̃0 (0) = 1, Lemma 2.2 ensures the
existence of a factorization under the form

P̃0 = Z0R0 (3.13)

such that Z0 is the first order annihilating polynomial on the saturated partition X̃0\ {0}
given by Equation (2.5). Moreover, Z0 is by construction a trigonometric polynomial of
degree exactly 2p, and R0 has to be of maximal degree 1. Denote by γX̃ the quantity

γX̃ =
2p∑

j=1
cot (πx̃j) , (3.14)

and choose R0 as follows

∀ω ∈ T, R0 (ω) =
(
cos (πω)− γX̃ sin (πω)

)2 (3.15)

= sin2 (πω − arccot
(
γX̃

))
sin2 (πarccot

(
γX̃

))
=
(
1 + γ2

X̃

)
sin2 (πω − arccot

(
γX̃

))
.

=
(
1 + γ2

X̃

)
sin2 (π (ω − rX̃

))
,

whereby πrX̃ = arccot
(
γX̃

)
∈ T is the unique root of R0. It is straight forward to verify

that the chosen R0 verifies the constraint given by Equation (2.6), that it is a positive
trigonometric polynomial of degree 1.

We introduce in the following the auxiliary function gω defined for every ω ∈ T as
follows

gω : T\ {0, ω} → R

x 7→ ln sin (π |ω − x|)− ln sin (πx) .

It is trivial to verify that the auxiliary function gω meets the following variational properties
on its definition domain:

• limx→0 gω (x) = limx→1 gω (x) = +∞

• limx→ω gω (x) = −∞

• gω is decreasing on (0, ω)

• gω is increasing on (ω, 1)

Since P0, Z0 and R0 are strictly positive nearly everywhere on their definition domains,
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one can define their logarithms p0, z0 and r0 so that

p̃0 (ω) = ln P̃0 (ω)

z0 (ω) = lnZ0 (ω)

r0 (ω) = lnR0 (ω)

for nearly everywhere on the torus. Finally, we assume without loss of generality on
ordering of the elements of X̃ such that

0 = x̃0 <
α

m− 1 ≤ x̃1 < · · · < x̃2p ≤ 1− α

m− 1 .

Subsection 3.6.2 shows the second inequality of (3.11), while Subsection 3.6.3 introduces a
demonstration of the third one.

3.6.2 Proof of the central decay

Since |ω| < α
m−1 ≤ x1 by assumptions, one can use Lemma 2.6 to bound the quantity

gω (x̃k) for every j ∈ J2pK as follows

gω (x̃j) = ln sin (π (x̃j − ω))− ln sin (πx̃j)

≤ πω cot (πx̃j)− π2ω2

2 csc2 (π (ω − x̃j)) .

The logarithm p̃0 (ω) can be upper bounded by

1
2 p̃0 (ω) = 1

2 (z0 (ω) + r0 (ω))

=
2p∑

j=1
gω (x̃j) + gω

(
rX̃

)

≤ πω

 2p∑
j=1

cot (πx̃j)− cot arccot
(
γX̃

)
− π2ω2

2

 2p∑
j=1

csc2 (πx̃j) + csc2 (arccot
(
γX̃

)) , (3.16)

whereby γX̃ is defined in Equation (3.14). Moreover, by definition of γX̃ ,

2p∑
j=1

cot (πx̃j)− cot arccot
(
γX̃

)
= 0,

and the expression (3.16) reduces to
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1
2 p̃0 (ω) = −π

2ω2

2

 2p∑
j=1

csc2 (πx̃j) + csc2 (arccot
(
γX̃

))
≤ −π

2ω2

2

 2p∑
j=1

csc2 (πx̃j) + 1


≤ −π

2ω2

2

 2p∑
j=1

inf
uj∈Sj

csc2 (πuj) + 1


= −π2ω2

 p∑
j=1

csc2
(
π
α+ jβ

2p

)
+ 1

 .
The above inequality can be further reduced using the fact that csc2 (u) ≤ 1

u2 for all
u ∈ [0, π], leading to

1
2 p̃0 (ω) ≤ −π2ω2

( 2p
πβ

)2
 p∑

j=1

1(
α
β + j

)2 + π2β2

2p


≤ − (2pω)2

 p∑
j=1

1
(α+ j)2 + π2β2

2p


≤ − (2pω)2

(
ψ(1) (1 + α)− 1

p
+ π2β2

2p

)
≤ − (2pω)2 ψ(1) (1 + α) ,

whereby we used the fact that

∀p ∈ N,
p∑

j=1

1
(α+ j)2 ≥ ψ

(1) (1 + α)− 1
p
.

One concludes taking back the exponential that

∀ |ω| ≤ α

m− 1 , P0 (ω) ≤ exp
(
−2 (m− 1)2 ψ(1) (1 + α)ω2

)
≤ 1− (m− 1)2 ψ(1) (1 + α)ω2. (3.17)

Substituting ω by αε
m−1 in inequality (3.17) leads to the desired result. �

3.6.3 Proof of the flatness properties

3.6.3.1 Preliminaries

This subsection aims to prove the flatness properties of P0 around its roots, which is
described by the third inequality of (3.11). The essential part of the demonstration aims
to bound each elements of the factorization (3.13), which is done in the following lemmas,
whose demonstration have been delayed in Subsections 3.6.3.2 and 3.6.3.3 for readability.
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Lemma 3.1. For all j ∈ J1, 2pK and all ε ∈ [−1, 1] one has,

Z0

(
x̃j + αε

m− 1

)
≤
(

πα

m− 1 csc (πx̃j)
)4(α−1)

×
(
m− 1
πα

)2
sin2

(
π

αε

m− 1

)
.

Lemma 3.2. Let R0 be the residual trigonometric polynomial of the factorization (3.13).
For all j ∈ J1, 2pK and all ε ∈ [−1, 1] one has,

R0

(
x̃j + αε

m− 1

)
≤ csc2

(
π

α

m− 1

)
sin2 (πx̃j) .

The conclusion on the desired result is immediate by making use of the previous lemmas

P̃0

(
x̃j + εα

m− 1

)
= Z0

(
x̃j + αε

m− 1

)
R0

(
x̃j + αε

m− 1

)
≤
(

πα

m− 1 csc (πx̃j)
)4α−6

×
(
m− 1
πα

)2
sin2

(
π

αε

m− 1

)
≤
(

πα

m− 1 csc (πx̃j)
)4α−6

ε2.

3.6.3.2 Proof of Lemma 3.1

We start by bounding the annihilating polynomial on the open interval Ij =
(
x̃j , x̃j + α

m+1

)
for j ∈ J1, 2pK. Next, since x̃l ∈ Sl for every l ∈ J1, 2pK, one can further bound the quantity
z0 as follows

1
2z0 (ω) =

2p∑
l=1

gω (x̃l)

=
j−1∑
l=1

gω (x̃l) +
2p∑

l=j+1
gω (x̃l) + gω (x̃j)

≤
j−1∑
l=1

sup
x̃l∈Sl

gω (x̃l) +
2p∑

l=j+1
sup

x̃l∈Sl

gω (x̃l) + gω (x̃j) .

=
j−1∑
l=1

gω

((α− β) + lβ

2p

)
+

2p−j∑
l=1

gω

(
1− (α− β) + lβ

2p

)
+ gω (ω − ε) . (3.18)

Define the intermediate variable tj for every j ∈ J1, 2pK to be such that

x̃j = α

2p + (j − 1 + tj) β2p. (3.19)

Since by construction of the saturated partition X̃0 the root x̃j belongs to Sj , one has the
guarantee that tj ∈ [0, 1]. Therefore, one can rearrange each of the first sum in the last
inequality of (3.18) as

j−1∑
l=1

gω

((α− β) + lβ

2p

)
=

j−1∑
l=1

ln sin
(
π

(
ω − (α− β) + lβ

2p

))
− ln sin

(
π

(α− β) + lβ

2p

)
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=
j−1∑
l=1

ln sin
(
π
tj + α+ (j − 1)β − (α− β)− lβ

2p

)

− ln sin
(
π

(α− β) + lβ

2p

)

=
j−1∑
l=1

ln sin
(
π
tj + lβ

2p

)
− ln sin

(
π

(α− β) + lβ

2p

)
. (3.20)

One could proceed on a similar way to obtain the corresponding equality on the second
sum

2p−j∑
l=1

gω

(
1− (α− β) + lβ

2p

)
=

2p−j∑
l=1

ln sin
(
π
β − tj + lβ

2p

)
− ln sin

(
π

(α− β) + lβ

2p

)
.

(3.21)

Making use of Lemma 2.6 and by comparing the integral of u→ cot (u) with a Riemann
sum in the middle, one can further bound the expression (3.20) as

j−1∑
l=1

gω

((α− β) + lβ

2p

)
≤ π (tj + β − α)

2p

j−1∑
l=1

cot
(
π

(α− β) + lβ

2p

)

≤ tj + β − α
β

∫ πxj

πα
4p

cot (u) du

= tj + β − α
β

(
− ln sin

(
πα

4p

)
+ ln sin (πx̃j)

)
, (3.22)

Following the same steps on Expression (3.22) leads to

2p−j∑
l=1

gω

(
1− (α− β) + lβ

2p

)
≤ π (2β − α− tj)

2p

2p−j∑
l=1

cot
(
π

(α− β) + lβ

2p

)

≤ 2β − α− tj
β

∫ π−πxj

πα
4p

cot (u) du

= 2β − α− tj
β

(
− ln sin

(
πα

4p

)
+ ln sin (πx̃j)

)
. (3.23)

One can inject the bound provided by the inequalities (3.22) and (3.23) into (3.18), which
yields

1
2z0 (ω) ≤ 3β − 2α

β

(
− ln sin

(
πα

4p

)
+ ln sin (πx̃j)

)
+ ln sin

(
π
ε

2p

)
− ln sin (x̃j)

≤ 3β − 2α
β

(
− ln

(
πα

2p

)
+ ln sin (πx̃j)

)
+ ln sin

(
π
ε

2p

)
− ln sin (x̃j)

≤ (3− 2α)
(
− ln

(
πα

2p

)
+ ln sin (πx̃j)

)
+ ln sin

(
π
ε

2p

)
− ln sin (x̃j) .

= 2 (1− α)
(
− ln

(
πα

2p

)
+ ln sin (πx̃j)

)
+ ln sin

(
π
ε

2p

)
− ln

(
πα

2p

)
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Taking back to exponential yields the desired result.

Z0 (ω) ≤
(

πα

m− 1 csc (πx̃j)
)4(α−1)

×
(
m− 1
πα

)2
sin2

(
π

ε

m− 1

)
.

�

3.6.3.3 Proof of Lemma 3.2

Since the elements x̃l are constrained to belong to the subset Sl, and noticing that cot (·) is
a positive function on the intervals {S1, · · · , Sp} and a negative function on {Sp+1, · · · , S2p}
one may provide the following bound on the quantity γX̃

∣∣γX̃

∣∣ ≤ p∑
l=1

sup
x̃l∈Sl

cot (πx̃l)−
2p∑

l=p+1
inf

x̃l∈Sl

cot (πx̃l)

=
p∑

l=1
cot

(
π
α− β + lβ

2p

)
− cot

(
π
α+ lβ

2p

)
= cot

(
π
α

2p

)
− cot

(
π

2

)
= cot

(
π
α

2p

)
.

Consequently, the root rX̃ of the polynomial R verifies

∣∣rX̃

∣∣ ≥ 1
π

arccot
(
γX̃

)
≥ α

2p,

and it comes that, for ε ∈ [−1, 1]

R0

(
x̃j + αε

m− 1

)
=
(
1 + γ2

X̃

)
sin2

(
π

(
x̃j + αε

m− 1 − rX̃

))
≤
(
1 + γ2

X̃

)
sin2

(
π

(
x̃j + αε

m− 1 −
α

m− 1

))
≤
(
1 + γ2

X̃

)
sin2 (πx̃j)

≤
(

1 + cot2
(
π

α

m− 1

))
sin2 (πx̃j)

= csc2
(
π

α

m− 1

)
sin2 (πx̃j) .

�
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Chapter 4

Dimensionality reduction for TV
regularization

4.1 The partial line spectral estimation problem

4.1.1 Definitions and problematics

We consider the problem of estimating a sparse measure µ ∈M (T) following the spikes
model (1.2) from r partial observations constructed linearly from the 2m+ 1 ≥ r outputs
of a uniform sampler. The partial observation vector z ∈ Cr is linked to the uniform
measurements y ∈ C2m+1 by the linear relation z = My whereby M ∈ Cr×(2m+1) is the
sub-sampling matrix of the system, which is assumed to be known.

Similarly to the full measurement case described in Chapter 1, the partial line spectral
estimation problem consists in finding the sparsest spectral measure µ ∈ M (T) that
matches the observations z. Due to the sub-sampling effect, the consistency constraint
linking the observations z and the measure µ to recover is slightly different than the one
presented before and writes

z =
∫
T

Mam (ω) dµ (ω). (4.1)

By analogy with the full measurement Program (4.2), the optimal partial line spectral
estimator can be written as the output of an abstract minimization problem for the L0

pseudo-norm defined in (1.6) over the set of Radon measures of the form

µM,0 = arg min
µ∈M(T)

‖µ‖0 (4.2)

subject to z =
∫
T

Mam (ω) dµ (ω).

Program (4.2) is expected to be hard to solve for a generic matrix M due to the combinatorial
search inherent to the minimization of the pseudo-norm ‖·‖0. Therefore, one can naturally
introduce the total variation counterpart to this problem in the same manner than what
was presented in Section 1.6, yielding

59
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µM,TV = arg min
µ∈M(T)

|µ| (T) (4.3)

subject to z =
∫
T

Mam (ω) dµ (ω).

This chapter discusses two fundamental issues arising from the formulation of the
convex formulation (4.3):

• Sampling complexity: How many measurements r do one need, and what properties
must be verified by the sub-sampling M in order to guarantee that the output of the
partial line spectral estimation problem µM,TV is the same as in the full measurement
case µTV?

• Computational complexity: Is there a convex algorithm returning the optimum µTV

in a time depending only in the number of observations r and not on the initial
dimension 2m+ 1?

4.1.2 Lagrangian duality

It has been shown in [67] that the primal problem (4.3) admits for a Lagrange dual problem
a certain semidefinite program when the sub-sampling matrix is a selection matrix CI .
This result easily extends in our context for any sub-sampling matrix M as stated by the
following lemma, whose immediate proof has been omitted.

Lemma 4.1 (Partial dual characterization). The dual feasible set DM of Problem (4.3) is
characterized by

DM =

v ∈ Cr,

q = M∗v

‖Q‖∞ ≤ 1

 ,
whereby Q ∈ Tm is the complex polynomial having for coefficients vector q ∈ C2m+1.
Moreover, the Lagrangian dual of Problem (4.3) is equivalent to the semidefinite program

(v?,H?) = arg max
v∈Cr

<(〈v, z〉) (4.4)

subject to
[
H q

q∗ 1

]
� 0

H∗
m (H) = e0

q = M∗v.

The next proposition provides a counterpart to the dual certifiability Theorem 1.1 in
the case of partial measurement, and can be seen as an extension to the previous result
proposed in [67] for generic sub-sampling matrices.

Proposition 4.1 (Partial dual certifiability). If there exists a trigonometric polynomial
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Q? ∈ Tm with coefficients vector q? ∈ C2m+1 satisfying the conditions
q? ∈ range (M∗)

Q? (xk) = sign (ck) , ∀k ∈ J1, sK

|Q? (ω)| < 1, ∀ω /∈ X

(4.5)

then the solutions of the Programs (1.5) and (4.3) are unique and one has µ0 = µM,TV.

Proof. Any polynomial Q? satisfying the conditions (1.30) maximizes the dual of Problem
(1.28) over the feasible set DIn , and qualifies as a dual certificate of the same problem.
Thus, the solution of Program (1.27) is unique and satisfies µ0 = µTV [18]. By strong
duality, the primal problem (1.27) and its dual reach the same optimal objective value,
denoted κ?.

By the first condition of (4.5), q? = M∗v? for some v? ∈ Cr. Since v ∈ DM ⇔M∗v ∈
DIn for all v ∈ Cr, v? is dual optimal for the partial problem (4.3) and reaches the dual
objective κ?. By strong duality, κ? also minimize the primal objective of (4.3). Finally,
every feasible point of (4.3) is feasible for (1.27). We conclude by the uniqueness of µTV

on the equality µ0 = µTV = µM,TV. �

Any polynomial Q? satisfying the conditions (4.5) will be called dual certificate for
the partial line spectral estimation problem. Finding meaningful sufficient conditions for
the existence of such dual certificate is a difficult problem in the general case. One might
expect their existence under two main conditions: The support set X of the measure µ
to reconstruct has to obey a minimal separability condition similar to the one stated in
Conjecture 1.1 (for a potentially different constant); The sub-sampling matrix M has to
preserve the geometric structures of the problem for an input y of the form (1.3).

Sufficient conditions for the existence of a dual certificate are recalled for some specific
categories of matrices in Subsection 4.2.1. Chapter 5 will provide a certifiability result for a
different class of operators. Generic certifiability results holding for arbitrary sub-sampling
matrix M are still lacking and remain as of today an open area of research.

4.2 The sampling and computational complexities of TV
regularization

4.2.1 Compressed sensing off-the-grid

The well explored theory of compressed sensing has shown that it is possible to reconstruct
sparse vectors from relatively few linear measurements, provided that the observation
matrix satisfies the restricted isometry property or some incoherence property [16], [20] or
whenever the matrix is drawn at random [20]. Moreover, a consequent part of the literature
focuses on establishing the minimal amount for measurements that is required for a random
operator to reconstruct a sparse signal with high probability or asymptotically almost
surely. This critical number of observations is often referred as the sampling complexity of
the problem.
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Recent advances were made to extend the theory of compressed sensing to inverse
problems defined on the continuum [70], [71]. In particular, it is shown in [67] that the
sampling complexity of random selection sampling for the partial line spectral estimation
problem can be made logarithmic in the number of initial measurements 2m+ 1 when the
support set X to reconstruct is of fixed size. The formal statement of this result is recalled
in the following.

Theorem 4.1 (Compressed sensing off the grid). Suppose that the observation set I ⊆
J−m,mK of size r is uniformly selected at random. Assume that the complex phase sign (ck)
are drawn i.i.d. uniformly at random over the complex unit circle and let δ > 0. If
∆T (X) ≥ 2

m , then there exists a constant C such that

r ≥ C max
{

log2 m

δ
, s log s

δ
log m

δ

}
suffices to guarantee that the output of Program (4.3) with associated subsampling matrix
M = CI is equal to µ0 with probability at least 1− δ.

The assumptions of the previous results were broaden to the wider framework of
subsampling operator with low coherence ξ (M) discussed in Subsection 1.4.2 in [36].

4.2.2 Geometry of inverse problems and computational cost

The computational complexity of a problem refers to the asymptotic amount of time and
memory that are requested by an algorithm in order to output the solution of a problem. If
there is no difference between the sampling and the computational complexity in the finite
dimensional inverse problem framework when seeking for a reconstruction using convex
`1-minimization techniques, the picture is rather different when dealing with reconstruction
over continuous spaces. Indeed, reducing the number of observations from an order of
magnitude to another does not necessarily implies the existence of an algorithm that will
output the desired solution in a time, or with memory usage, of the order of the reduced
observations. In order to illustrate this fact, an analogy with the finite dimensional `1
minimization is drawn in the following.

Consider a finite dimensional inverse problem where one seeks to reconstruct a sparse
vector x in dimension d through an observation matrix M ∈ Cr×d. One can approach this
classic inverse problem by minimizing the `1-norm among all possible x of the Euclidean
space Cd [15], leading to a linear program of the form

x? = arg min
x∈Cd

‖x‖1

subject to z = Mx. (4.6)

Observing the above program through the lens of the Lagrangian duality theory yields the
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following linear program

q? = arg min
q∈Cd
<〈q, x〉

subject to ‖q‖∞ ≤ 1

M∗q = 0. (4.7)

In geometric terms, the dual linear program (4.7) seeks to maximize a linear cost function
over the intersection of a polyhedron in dimension d (the unitary cube in Cd) and an
hyperplane of dimension r driven by the span of the matrix M∗. Since polyhedra are closed
under linear projections, this intersection is itself a polyhedron of dimension r, and one is
guaranteed that the output of Program (4.7) is equivalent to the following low dimensional
program

u? = arg min
u∈Cr

<〈u, z〉

s.t. ‖Mu‖∞ ≤ 1 (4.8)

which can be solved in a time driven by the actual number of samples r. Hence, in the
presented finite-dimensional framework, the computational complexity is always equal to
the sampling complexity.

However, the geometric picture is completely different when considering sparse recon-
struction over infinite-dimensional spaces. The feasible set of the dual program (4.4) is
given by the intersection of a spectrahedron – a set defined by linear matrix inequalities –
with an hyperplane defined by the two linear constraintsH

∗
m (H) = e0

q = M∗c.

However, spectrahedra are, in general, not closed under taking linear projection [8], [75],
implying that one cannot directly guarantee that the dual program (4.4) can be reformulated
as an SDP involving linear matrix inequalities of essential dimension driven by r. Hence, it
is not possible to conclude that reducing the number of samples will lead to a reduction of
the computational cost requested by the TV regularization to output an estimate of the
ground truth measure.

4.3 Low-dimensional semidefinite representations

4.3.1 Main result

A first approach to solve the partial line spectral estimation is to compute the output
v? ∈ Cr of the semidefinite program (4.4). One can then reconstruct the dual polynomial
Q? ∈ Tm, where q? = M∗v?, and run Algorithm 1.1 on q? in order to estimate the
parameters of the measure µ. However, this method is not satisfactory on a computational
point of view, since the SDP (4.4) involves linear matrix inequalities of dimension 2 (m+ 1),
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while the essential dimension of partial recovery problem (4.3) is equal r ≤ 2 (m+ 1).
We aim to study the existence of low-dimensional semidefinite programs that can output

a similar dual polynomial Q? ∈ Tm. It was discussed in Subsection 1.6.3 that the existence
of such semidefinite representations was closely related to the Gram parametrization of
trigonometric polynomials, who links the positive of polynomials with some sets of matrices.
As stated in Lemma 4.1, in the partial line spectral estimation context, the trigonometric
polynomials that need to be represented belong to a low dimensional structure characterized
by the sub-sampling matrix M ∈ Cn×m. Hence, finding compact Gram representations,
involving matrices of small dimensions is of crucial interest for building an equivalence
between the initial dual Problem (4.4) of dimension 2 (m+ 1) with a lower dimensional
semidefinite program.

We introduce in the following the definition of two new linear operators, that are
involved in the novel dimensional reduction approach proposed in Theorem 4.2. For any
matrix M ∈ Cr×(2m+1) of maximal rank r ≤ 2 (m+ 1), we define the adjoint of the partial
Toeplitz operator R∗

M (·) associated with the matrix M ∈ Cr×2(m+1) by

R∗
M : Cr×r → Cm+1 (4.9)

S 7→ R∗
M (H) = H∗

m (M∗SM) ,

whereby H∗
m (·) has been introduced in Section 1.2. Moreover, the matrix projection opera-

tor PM, which projects orthogonally the rows and column of a matrix H ∈ C(2m+1)×(2m+1)

in the span of M∗, is defined as follows

PM : C(2m+1)×(2m+1) → C(2m+1)×(2m+1) (4.10)

H 7→ PM (H) = M∗ (MM∗)−1 MHM∗ (MM∗)−1 M.

The next theorem states the conditions under which the dual semidefinite program
(4.4) is equivalent to a low-dimensional semidefinite program involving a matrix inequality
of size r + 1.

Theorem 4.2. Let M ∈ Cr×(2m+1) be a matrix of maximal rank with r ≤ 2 (m+ 1).
Suppose that there exists a pair of solution (v?,H?) of Program (4.3) so that the matrix
H? verifies the relation

PM (H?) = H?, (4.11)

then Program (4.4) is equivalent to the low-dimensional semidefinite program

(v?,S?) = arg max
v∈Cr

< (〈v, z〉) (4.12)

subject to
[

S v

v∗ 1

]
� 0

R∗
M (S) = e0,

in the sense that they reach the same optimal value κ? for at least one pair of solutions of
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the form (v?,H?) and (v?,S?), whereby

S? = (MM∗)−1 MH?M∗ (MM∗)−1 .

Proof. Denote by κ? and κ′
? the respective optimal values of Programs (4.4) and (4.12).

We start the demonstration by verifying that if (v,S) is in the feasible set of Program
(4.12) then there exists a matrix H so that the pair (v,H) is in the feasible set of Program
(4.4). If (v,S) is feasible for Program (4.12) one has, using a Schur complement argument

S− vv∗ � 0 =⇒ M∗ (S− vv∗) M � 0

=⇒ M∗SM− qq∗ � 0

=⇒
[
M∗SM q

q∗ 1

]
� 0.

Moreover, by assumption, one has R∗
M (S) = e0 and it comes that

e0 = R∗
M (S)

= T ∗
m (M∗SM) .

Hence the pair (v,M∗SM) belongs to the feasible set of Program (4.4). Moreover, since
the cost functions of the two programs are equal, one can conclude that κ′

? ≤ κ?.
Next, we show that if there exists a pair (v?,H?) solution of Program (4.4) verifying

the linear constraint (4.11), then the pair (v?,MH?M?) is feasible for Problem (4.12). We
start by verifying the inequality constraint. Since H? − q?q

∗
? � 0 is positive by assumption

where q? = M∗v, it yields

H? − q?q
∗
? � 0 =⇒ H? −M∗v?v

∗
?M � 0

=⇒ PM (H?)−M∗v?v
∗
?M � 0

=⇒M∗ (MM∗)−1 MHM∗ (MM∗)−1 M−M∗v?v
∗
?M � 0

=⇒M∗ (S? − v?v
∗
?) M � 0

=⇒ S? − v?v
∗
? � 0

=⇒
[
S? v?

v∗
? 1

]
� 0.

whereby we used the fact that M∗ has maximal rank in the fifth implication. It remains to
show that S? satisfies the linear constraint R∗

M (S?) = e0. One has

e0 = T ∗
m (H?)

= T ∗
m (PM (H?))

= T ∗
m

(
M∗ (MM∗)−1 MH?M∗ (MM∗)−1 M

)
= T ∗

m (M∗S?M)

= R∗
M (S?) ,



66 Chapter 4. Dimensionality reduction for TV regularization

which certifies that the pair (v?,MH?M∗) is feasible for Program (4.12). Finally, the
objective of Program (4.12) reaches a value κ? at point (v?,MH?M∗) hence κ′

? ≥ κ?.
It comes that κ′

? = κ?, and therefore that (v?,MH?M∗) is optimal for Program (4.12),
concluding the proof of the theorem. �

The linear constraint R∗
M (S) = e0 of Program (4.12) has an explicit dimension that

is still equal to 2m + 1. However, one can restrict its definition to the span of R∗
M (S)

which is of dimension at most equal to min
{
2m+ 1, r2}. An explicit characterization of

this constraint is provided in Section 4.3.3 whenever M = CI is a selection matrix.

4.3.2 The sparse Fejér-Riesz condition

One need to ensure the existence of dual optimal pair (v?,H?) of Program (4.4) with H?

lying on the span of the projection PM in order to conclude on the tightness of the low
dimension Program (4.12). It is shown in this subsection that this problem shares some
common roots with the Gram parametrization theory and presented in Subsection 1.6.3.

A novel criterion called sparse Fejér-Riesz condition is introduced in Definition 4.1.
Moreover Proposition 4.2 gives conditions on a dual certificate to ensure that the hypothesis
of Theorem 4.2 are met, and guarantying the tightness and the uniqueness of the solution
of the low-dimensional Program (4.12).

Definition 4.1 (Sparse Fejér-Riesz condition). Let M ∈ Cr×(2m+1) be a matrix of maximal
rank with r ≤ 2 (m+ 1). A positive trigonometric polynomial R ∈ T2m is said to satisfy
the sparse Fejér-Riesz condition for the matrix M if there exists {Pj}lj=1 ⊂ Tm for some
l ∈ N with respective coefficients vectors {pj}lj=1 ⊂ C2m+1 verifying

∀j ∈ J1, lK , pj ∈ range (M∗)

such that R can be decomposed as the sum of squares

∀ω ∈ T, R (ω) =
l∑

j=1
|Pj (ω)|2 . (4.13)

Proposition 4.2 (Low-dimensional dual certifiability). Let M ∈ Cr×(2m+1) be a matrix of
maximal rank with r ≤ 2 (m+ 1). If there exists a trigonometric polynomial Q? ∈ Tm with
coefficients vector q? ∈ C2m+1 satisfying the conditions (4.5) and such that the trigonometric
polynomial R? ∈ T2m defined by

∀ω ∈ T, R? (ω) = 1− |Q? (ω)|2 ,

verifies the sparse Fejér-Riesz condition for the matrix M then:

• The solutions of the Programs (1.5) and (4.3) are unique and one has µ0 = µM,TV.

• The vector q? can be written has q? = M∗v? whereby v? ∈ Cr is a solution of the
low-dimensional semidefinite program (4.12).
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Proof. The proof of the tightness of the primal problem is an immediate consequence of
Proposition 4.1. It remains to show the existence of a pair (q?,H?) that is solution of
the low-dimensional semidefinite program (4.12) with H? ∈ C(2m+1)×(2m+1) verifying the
relation (4.11). The conclusion follows via a direct application of Theorem 4.2. Since R?

verifies the sparse Fejér-Riesz condition, one can write

∀ω ∈ T, 1− |Q? (ω)|2 = R? (ω)

=
l∑

j=1
|Pj (ω)|2 ,

for some {Pj}lj=1 ⊂ Tm with respective coefficients vectors pj = M∗uj whereby uj ∈ Cr

for all j ∈ JlK. Noticing that |P (−ω)|2 = am (ω) pp∗am (ω) one has that

∀ω ∈ T, 1 = |Q? (−ω)|2 +
l∑

j=1
|Pj (−ω)|2

= am (ω)∗

q?q
∗
? +

l∑
j=1

pjp
∗
j

 am (ω)

= am (ω)∗ M∗

v?v
∗
? +

l∑
j=1

uju
∗
j

Mam (ω)

= am (ω)∗ M∗S?Mam (ω) ,

whereby S? =
(
v?v

∗
? +

∑l
j=1 uju

∗
j

)
. By Proposition 1.2 the matrix

H? = M∗S?M = q?q
∗
? +

l∑
j=1

pjp
∗
j (4.14)

verifies the condition Tm (H) = e0 and by construction one has

H? − q?q
∗
? =

l∑
j=1

pjp
∗
j � 0,

concluding on the fact that the construction pair (v?,H?) is in optimal solution of Program
(4.4).

Finally, it remains to verify that H? verifies the condition PM (H?) = H? in order to
conclude. This is immediate since

PM (H?) = PM (M∗S?M)

= M∗ (MM∗)−1 M (M∗S?M) M∗ (MM∗)−1 M

= M∗S?M

= H?.

�
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It remains, as of today, very challenging to understand the conditions for the existence
of a trigonometric polynomial verifying the conditions of Proposition 4.2. However exper-
imental results show that their existence should be verified with high probability when
considering a random selection subsampling scheme discussed in Subsection 4.2.1 if the
number of retained measurement r is large enough, and provided a large enough separation
condition. Figure 4.1 compares the performances of the low-dimensional SDP (4.12) with
the output of the full size Programs (1.34) and (4.4).

4.3.3 Characterization for the case of selection sub-sampling matrices

Selection matrices constitutes a interesting type of sub-sampling matrices, that arises in
many practical applications. They occur naturally in signal processing when dealing with
sampling models with missing entries. In this section, we highlight fundamental properties
of the partial line spectrum estimation problem from selection based sub-sampling. For
convenience, we shorten the notation RI = RCI and R∗

I = R∗
CI

of a selection matrix CI .
We start by recasting the linear constraint R∗

I (S) = r into a more friendly set of equations.

Proposition 4.3 (Properties of the linear constraint for selection matrices). Let I ⊂
J−m,mK be a subset of cardinality r and consider any selection matrix CI ∈ Cr×(2m+1)

for this subset. Define by J the set of its pairwise differences J = I − I ⊆ J−2m, 2mK,
and by J+ = {j ∈ J , j ≥ 0} its positive elements. There exists a skew-symmetric partition
of the set J1, rK2 into p = |J+| subsets {Jk, k ∈ J+} given by the support of the matrices
{CIΘkC∗

I}k∈J+
satisfying


Jk ∩ Jl = ∅, ∀ (k, l) ∈ J 2

+, k 6= l,

(i, j) ∈
⋃

k∈J+ Jk ⇔ (j, i) /∈
⋃

k∈J+ Jk, ∀ (i, j) ∈ J−m,mK2 , i 6= j,

(i, i) ∈
⋃

k∈J+ Jk, ∀i ∈ J1,mK ,

such that for every Hermitian matrices S ∈ Cr×r

R∗
I (S) =

∑
k∈J+

 ∑
(l,r)∈Jk

Sl,r

 ek, (4.15)

whereby ek ∈ C(2m+1) is the kth vector of the canonical basis indexed in J−m,mK.

Proof. Using the adjoint decomposition of the operator R∗
I on the canonical basis one has,

for every Hermitian matrices S ∈ Cr×r

R∗
I (S) =

m∑
k=−m

〈RI (ek) ,S〉 ek

=
m∑

k=−m

〈CIΘkC∗
I ,S〉 ek. (4.16)

Let by Mk ∈ Cr×r the matrix given by Mk = CIΘkC∗
I for all k ∈ J−m,mK. It remains

to show that the support of the matrices {Mk}k∈J−m,mK are forming the desired partition.
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Figure 4.1: Comparison of the outputs of the dual program (1.34) under full observations
(in blue), the full size dual program (4.4) under partial observations (in red), and the
low-dimension dual program (4.12) (in yellow). The trigonometric order is fixed to m = 32
and two different subsampling ratios are considered.
Top: When keeping 70% of the measurements, the three program return a dual polynomial
locating the frequencies.
Bottom: When keeping 50% of the measurements, the sparse certificate solution of the
full size program can still locate the frequencies of the measure to estimate, while the
sparse Fejér-Riesz certificate, solution of the low dimension program (4.12) fails to reach a
modulus equal to one at the correct frequencies.
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The general term of matrix Mk, obtained by direct calculation, reads

∀ (i, j) ∈ J1,mK2 , Mk (i, j) =

1 if I [j]− I [i] = k

0 otherwise,
(4.17)

for all k ∈ J−m,mK, whereby I [j] represents the jth element of the index set I for the
ordering induced by the matrix CI . The general term (4.17) ensures that

M0 (i, i) = 1, ∀i ∈ J1, rK∑m
k=−m Mk (i, j) = 1⇔

∑m
k=−m Mk (j, i) = 0, ∀ (i, j) ∈ J1,mK2 , i 6= j,

k /∈ J+ ⇔Mk = 0r, ∀k ∈ J−m,mK ,

where 0r is the null square matrix in dimension r. Since the matrices {Mk}k∈J−m,mK

have boolean entries, the two first assertions yields the set of supports {Jk}k∈J−m,mK of
{Mk}k∈J−m,mK forms a skew-symmetric partition of J1, rK2. The third one states that only
p = |J+| elements of this partition are non-trivial. After removing those null matrices, the
set {Jk}k∈J+

remains a partition of J1, rK2. We conclude using Equation (4.16) that, for
every Hermitian matrices S ∈ Cr×r,

R∗
I (S) =

∑
k∈J+

〈Mk,S〉 ek

=
∑

k∈J+

 ∑
(l,r)∈Jk

Sl,r

 ek.

�

This proposition highlights several major properties of the equation R∗
I (S) = u:

• The linear equation is solvable if and only if u is supported on the set J+, and since
M0 = Ir the component u0 has to be real.

• If so, the equation is equivalent to solve p = |J+| linear forms. Those p forms
are independent one from the other in the sense that they are acting on disjoint
extractions of the matrix S.

• The order of each of those forms is smaller that r, i.e., each form involves at most r
terms of S.

• The total number of unknowns appearing in this system is exactly r(r+1)
2 .

In Section 4.4, a highly scalable algorithm to solve the semidefinite program (4.12) for
selection matrices, taking advantage of the hereby presented properties, will be presented.
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4.4 Acceleration via the alternating direction method of
multipliers

4.4.1 Interior point methods and ADMM

Computing the solution of semidefinite program (4.18) using out of the box SDP solvers
such as SuDeMi [63] or SDPT3 [69] requires at most O

((
d2

lmi + dlin
)3.5) operations where

dlmi is the dimension of the linear matrix inequality, and dlin the dimension of the linear
constraints. For the dual-AST program (1.37) one has, dlmi = r + 1 and dlin ≤ r(r+1)

2 , and
approaching the optimal dual solution will cost O

(
r7) operations using those interior point

methods. It appears to be unrealistic to recover a sparse line spectrum that way when the
number of observations exceeds a few hundreds.

In the same spirit than in [64], we derive the steps and update equations to approach
the optimal solution via the alternating direction method of multipliers (ADMM). Unlike
the original work, we choose to perform ADMM on the dual space instead of the primal one,
and adjust the update steps in order to take advantage of the low dimensionality of (4.12).
The overall idea of this algorithm is to cut the augmented Lagrangian of the problem into
a sum of separable sub-functions. Each iteration consists in performing independent local
minimization on each of those quantities. The interested reader can find a detailed survey
of this method in [11].

We restrict our analysis to the case of partially observed systems where the subsampling
matrix is a selection matrix CI ∈ {0, 1}r×(2m+1) for some subset I ⊆ J−m,mK of cardinality
r. We will see that the properties of such matrices detailed in Section 4.3.3 will help
breaking down the iterative steps of dual ADMM on an elegant manner. Before any further
analysis, the low dimensional dual-AST has to be restated into a more friendly form to
derive the ADMM update equations. In our approach, we propose the following augmented
formulation

v? = arg min
c∈Cr
−< (〈v, z〉) + τ

2 ‖v‖
2
2 (4.18)

subject to Z � 0

Z =
[

S v

v∗ 1

]
∑

(i,j)∈Jk

Si,j = δk, k ∈ J+.

It is immediate, using Proposition 4.3, to verify that Problems (4.12) and (4.18) are actually
equivalent.

4.4.2 Lagrangian separability

We denote by L the restricted Lagrangian of the Problem (4.18), obtained by ignoring the
semidefinite constraint Z � 0. In order to ensure plain differentiability with respect to the
variables S and Z, ADMM seeks to minimize an augmented version L+ of L, with respect
to the semidefinite inequality constraint that was put apart. This augmented Lagrangian
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L+ is introduced as follows

L+ (P,S, v,Λ, γ) = L (P,S, v,Λ, γ) + ρ

2

∥∥∥∥∥P−
[

S v

v∗ 1

]∥∥∥∥∥
2

F

+ ρ

2
∑

k∈J+

 ∑
(i,j)∈Jk

Si,j − δk

2

,

whereby the variable Λ is an Hermitian matrix of dimension r + 1 and γ ∈ C|J+| denote
respectively the Lagrange multipliers associated with the first and the second equality
constraints of Problem (4.18). The regularizing parameter ρ > 0 is set to ensure a
well conditioned differentiability and to fasten the convergence speed of the alternating
minimization towards the global optimum of the cost function L+. For clarity and
convenience, the following decompositions of the parameters P and Λ are introduced

P =
[
P0 p

p∗ ζ

]
Λ =

[
Λ0 λ

λ∗ η

]
.

Moreover, for any square matrix A ∈ Cr×r, we let by AJk
∈ C|Jk| the vector constituted

of the terms {Ai,j , (i, j) ∈ Jk}. The order in which the elements of Jk are extracted and
placed in this vector has no importance, as long as, once chosen, it remains the same for
every matrix A. This allows to decompose the augmented Lagrangian into

L+ (P,S, v,Λ, γ) = Lv (p, v, λ) + Lγ (ζ, η) +
∑

k∈J+

Lk (P0,Jk
,SJk

,Λ0,Jk
) ,

whereby each of the sub-functions reads

Lv (p, v, λ) = −<
(
zTv

)
+ τ

2 ‖v‖
2
2 + 2 〈λ, p− v〉+ ρ ‖p− v‖22

Lγ (ζ, η) = 〈η, ζ − 1〉+ ρ

2 (ζ − 1)2

∀k ∈ J+, Lk (P0,Jk
,SJk

,Λ0,Jk
) = 〈Λ0,Jk

,P0,Jk
− SJk

〉+ γk

 ∑
(i,j)∈Jk

Si,j − δk


+ ρ

2 ‖P0,Jk
− SJk

‖22 + ρ

2

 ∑
(i,j)∈Jk

Si,j − δk

2

.

4.4.3 Update rules

The ADMM will consist in successively performing the following decoupled update steps:

vt+1 ← arg min
v
Lv

(
zt, v, λt

)
∀k ∈ J+, St+1

Jk
← arg min

SJk

Lk

(
Pt

0,Jk
,SJk

,Λt
0,Jk

)
St+1

j,i ← St+1
i,j , ∀ (i, j) ∈

⋃
k∈J+

Jk
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Pt+1 ← arg min
P�0

L+

(
P,St+1, vt+1,Λt, µt

)
Λt+1 ← Λt + ρ

(
Pt+1 −

[
St+1 vt+1

vt+1∗ 1

])

∀k ∈ J+, γt+1
k ← γt

k + ρ

 ∑
(i,j)∈Jk

St+1
i,j − δk

 .
Since the linear constraint R∗

I (S) = e0 has an effect limited to the subspace {RI (ek)}k∈J+
,

the third update step is necessary to maintain the Hermitian structure of the matrix St+1

at every iteration. The update steps for the variables vt+1 and
{

St+1
Jk

}
k∈J+

are performed
at each iteration by canceling the gradient of their partial augmented Lagrangian and
admit, in the presented settings, closed form expressions given by

vt+1 = 1
2ρ+ τ

(
z̄ + 2ρpt + 2λt

)
∀k ∈ J+, St+1

Jk
=
(

Pt
0 + 1

ρ
Λt

0

)
Jk

−

 ∑
(i,j)∈Jk

(
Pt

0 + Λt
0
ρ

)
i,j

−
(
δk −

γt
k

ρ

) j|Jk|

whereby jn is the all-one vector of Cn. The update Pt+1 reads at the tth iteration

Pt+1 ∈ arg min
Z�0

∥∥∥P−Yt
∥∥∥2

F

Yt =
[

St+1 vt+1

vt+1∗ 1

]
− Λt

ρ
,

which can be interpreted as an orthogonal projection of Yt onto the cone of positive
Hermitian matrices in dimension r + 1 for the Frobenius inner product. This projection
can be computed by looking for the eigenpairs of Yt, and setting all negative eigenvalues
to 0. More precisely, denoting Yt = VtDt Vt ∗ an eigen-decomposition of Yt, one get
Zt+1 =VtDt

+ Vt ∗ where Dt
+ is a diagonal matrix whose jth diagonal entry dt

+ [j] satisfies
dt

+ [j] = max
{
dt [j] , 0

}
.

4.4.4 Computational complexity

On the computational point of view, at each step of ADMM, the update vt+1 is a vector
addition and performed in a linear time O (r). On every extractions St+1

Jk
of St+1, the

update equation is assimilated to a vector averaging requiring O (|Jk|) operations when
firstly calculating the common second term of the addition. Since

⋃
k∈J+ Jk = r(r+1)

2 , we
conclude that the global update of the matrix St+1 is done in O

(
r2). The update of Zt+1

requires the computation of its spectrum, which can be done in O
(
r3) via power method.

Finally updating the Lagrange multipliers Λt+1 and γt+1 consist in simple matrix and
vector additions, thus of order O

(
r2).

To summarize, the projection is the most costly operation of the loop. Each step of
ADMM method runs in O

(
r3) operations, which is a significant improvement compared to
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the infeasible path approached used by SDP solvers requiring around O
(
r7) operations.



Chapter 5

Spectral estimation for multirate
sampling systems

5.1 Introduction to multirate sampling

5.1.1 Observation model

In this section, we consider the joint reconstruction problem of a continuous time signal x (·)
whose continuous Fourier spectrum is sparse on the real line from multiple synchronized
samplers. The generalized continuous Fourier transform µ̃ ∈M (R) of the time signal x (·)
is a Radon measure over the real line. The two quantities are linked by the linear relation

∀t ∈ R, x (t) =
∫ ∞

−∞
ei2πξtdµ̃ (ξ) . (5.1)

A multirate sampling system (MRSS) acting on a continuous time signal x (·) is defined
by a set A of p distinct grids (or samplers) Aj , j ∈ J1, pK. Each grid is assimilated to a
triplet Aj = (fj , γj , nj), where fj ∈ R+ is its sampling frequency, γj ∈ R is its processing
delay, expressed in sample unit for normalization purposes, and nj ∈ N the number of
measurements acquired by the grid. We assume those intrinsic characteristics to be known.
As a result, the output yj ∈ Cnj of the grid Aj sampling a complex time signal x reads

∀j ∈ J1, pK , yj = Lj (µ̃) , (5.2)

whereby Lj is the linear integral operator defining the effect of the generalized Fourier
spectrum on the measurement of the jth grid, and is given by

Lj :M (R)→ Cnj

µ̃ 7→
∫ ∞

−∞
ãj (ξ) dµ̃ (ξ) , (5.3)

whereby the atomic vectors ãj (·) ∈ Cnj associated with the jth array are given by

∀r ∈ J0, nj − 1K ,∀ξ ∈ R, ãj (ξ) [l] = e
i2π ξ

fj
(r−γj)

. (5.4)

75
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For ease of understanding, and calculations, the operators Lj can be expended as a
composition of two elementary operations as follows

∀j ∈ J1, pK , Lj = Fn,fj
◦ S γj

fj

, (5.5)

where Fn,f is the adjoint of the discrete time Fourier transform on n ∈ N data points and
at the sampling frequency f ∈ R+, defined by

Fn,f :M (R)→ Cn

µ 7→ y =
∫ ∞

−∞
ãn,f (ξ) dµ̃ (ξ) (5.6)

for atoms for the form ãn,f (ξ) =
[
1, ei2π ξ

f , e
i2π 2ξ

f , · · · , ei2π
(n−1)ξ

f

]
∈ Cn for all ξ ∈ R, and

whereby the operator Sτ , τ ∈ R denotes the temporal shift (or spectral modulation)
operator

Sτ :M (R)→M (R)

µ 7→ e−i2πτ Idµ (5.7)

Multirate sampling systems can be seen as a more generalist version of the coprime sampling
systems studied in [52], [54] in the sense that samplers are allowed to work at different
frequencies and different delays.

On the practical side, applications of the MRSS framework are numerous in signal
processing. It occurs when sampling in parallel the output of a common channel in order to
get benefits from cleverly designed sampling frequencies and delays; such designs occur, for
example, in modern digitalization with variable bit-rates and analysis of video and audio
streams, or whenever one seeks to expend the spectral range of an acquisition system while
limiting the total amount of samples acquired. The MRSS framework is also naturally fitted
to describe sampling processes in distributed sensor networks: each node, with limited
processing capabilities, samples at its own rate, a delayed version of a complex signal.
Collected data are then sent and merged at a higher level processing unit, performing a
global estimation of the spectral distribution on a joint manner. Figure 5.1 provides a
schematic representation of this application scenario.

5.1.2 Joint spectral estimation

The line spectral estimation problem will consist in the MRSS context in finding the
sparsest spectral density µ̃0 ∈ M (R) that jointly matches the p observation vectors yj

under the consistency constraint (5.2) for all j ∈ J1, pK. Using the same paradigm as the
one used to build the initial Program (1.5), one can formulate the optimal estimator as a
combinatorial minimization program involving the L0 pseudo-norm over the set of Radon
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Joint processing

Figure 5.1: Joint spectral estimation in a sensor network.

measure defined over R, leading to

µ̃0 = arg min
µ∈M(R)

‖µ‖0 (5.8)

subject to yj = Lj (µ) , ∀j ∈ J1, pK ,

and one can consider its convex relaxation for the total variation norm

µ̃TV = arg min
µ∈M(R)

|µ| (R) (5.9)

subject to yj = Lj (µ) , ∀j ∈ J1, pK ,

whereby the total-variation over the real line |µ| (R) is defined analogously to |µ| (T) by
integrating over R instead of T in the definition (1.25).

It is important to notice that two different grids Aj and Aj′ may sample a value of the
signal x (·) at the same time instant on the respective sampling indexes r and r′, enforcing
a relation of the kind yj [r] = yj′ [r′]. In the following we denote by ñ =

∑p
j=1 nj the total

number of samples acquired by the system A, and by n ≤ ñ the net number of observations
obtained after removing such sampling overlaps, so that n is the number of independent
observation constraints of the sampling system. The joint measurement vector is denoted
ỹ =

[
yT

1 , . . . , y
T
p

]T
∈ Cñ. Similarly, its net counterpart y ∈ Cn is obtained by discarding

the redundancies of ỹ, so that y = CAỹ for some selection matrix CA ∈ {0, 1}n×ñ. The
joint linear measurement constraint of Problem (5.8) can then be reformulated

y = L (µ) , (5.10)

whereby the operator L ∈ (M (R) 7→ Cn) admits the operators {Lj}j∈J1,pK as restrictions
on the p subspaces induced by the construction of the net observation vector y.
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5.2 Common grid expansion and SDP formulation

5.2.1 The common grid hypothesis

It is been shown in Chapter 4 that the dual problem can take the form of a low-
dimensional SDP (4.12) whenever the observation operator L can be written under the form
L (µ) =

∫
T Mam (ω) dµ for some low-dimensional measurement matrix M ∈ Cr×(2m+1), and

provided the existence of a solution satisfying the sparse Fejér-Riesz condition introduced
in Definition 4.1. This remarkable property is due to the polynomial nature of the adjoint
measurement operator L∗ allowing a semidefinite representability of the dual feasible set.
However, in the MRSS context, the dual observation operator, given by

∀v ∈ Cn, L∗ (v) =
m∑

j=1
L∗

j (vj)

does not take such polynomial form in the general case. A direct calculation reveals that
L∗ (v) is instead an exponential polynomial1 for all v ∈ Cn. Up to our knowledge, there is
no welcoming algebraic characterization for optimization purposes of the dual feasible set
DA = {v ∈ Cn, ‖L∗ (v)‖∞ ≤ 1}. Therefore, the theory of sum-of-squares and semidefinite
representations developed in Chapter 1 and Chapter 4 cannot be directly transcribed in
the MRSS framework.

To bridge this concern, we restrict our analysis to the case where the observation operator
admits a factorization of the form L (µ) =

∫
R Mãn,f (ξ) dµ for some n ∈ N, f ∈ R+ and for

a full row rank matrix M. The following aims to provide an algebraic criterion in terms of
the parameters {(fj , γj , nj)} of the sampling system A for this hypothesis to hold. We will
see that this extra hypothesis consists in supposing that the samples acquired by A can by
virtually aligned at a higher rate on others grids A+. Such grids will be called common
supporting grid for A, and are defined as follows.

Definition 5.1 (Common supporting grid). A grid A+ = (f+, γ+, n+) is said to be a
common supporting grid for a set of sampling grids A = {Aj}j∈J1,pK if and only if the set of
samples acquired by the MRSS induced by A is a subset of the one acquired by A+. In
formal terms, the definition is equivalent to,{

1
fj

(rj − γj) , j ∈ J1, pK , rj ∈ J0, nj − 1K

}
⊆
{ 1
f+

(r+ − γ+) , r+ ∈ J0, n+ − 1K
}
. (5.11)

The set of common supporting grids of A is denoted by C (A). Moreover, a common
supporting grid A� = (f�, γ�, n�) for A is said to be minimal if and only it satisfies the
minimality condition,

∀A+ ∈ C (A) , n� ≤ n+.

Finally, the equivalent observation set of the minimal common grid A�, denoted by I, is
the subset of J0, n� − 1K of cardinality m, formed by the l’s for which the time instants
1

f�
(l+ − γ�) for l� ∈ J0, n� − 1K are acquired by A.

1A function f of the complex variable z of the form f (z) =
∑m

k=1 ckzγk for some {γk}J1,mK ⊂ R.
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0 t
Figure 5.2: A representation of a multirate sampling system A composed of two arrays
(A1,A2), and its associated minimal common grid A�. Purple stars in the common grid
correspond to time instant acquired multiple times by the system A, and blank triangles
to omitted samples. In this example, the dimension of the minimal common grid is
n� = 13, The total number of observation of A, ñ = 5 + 6 = 11, and the net number
of observations is n = 9. Finally the equivalent observation set of the common grid is
I = {0, 1, 3, 5, 6, 7, 9, 11, 12}.

It is clear that if C (A) is not empty then the minimal common supporting grid for A
exists and is unique. For ease of understanding, Figure 5.2 illustrates the notion of common
supporting grid by showing a MRSS formed by two arrays and their minimal common grid.
Proposition 5.1 states necessary and sufficient conditions in terms of the parameters of A
such that the set C (A) is not empty. The proof of this proposition is technical and delayed
to Section 5.7 for readability.

Proposition 5.1 (Existence of common supporting grids). Given a set of p grids A =
{Aj = (fj , γj , nj)}j∈J1,pK, the set C (A) is not empty if and only if there exist f+ ∈ R+,
γ+ ∈ R, a set of p positive integers {lj} ∈ Np, and a set of p integers {aj} ∈ Zp satisfying
f+ = ljfj and γ+ = ljγj − aj for all j ∈ J1, pK. Moreover a common grid A� = (f�, γ�, n�)
is minimal, if and only if

gcd
(
{aj}j∈J1,pK ∪ {lj}j∈J1,pK

)
= 1

γ� = maxj∈J1,pK {ljγj}

n� = maxj∈J1,pK {lj (nj − 1)− aj} .

Although the conditions of Proposition 5.1 appear to be strong since one get C (A) = ∅
almost surely in the Lebesgue sense when the sampling frequencies and delays are drawn
at random, assuming the existence of a common supporting grid for A is not meaningless
in our context. By density, one can approximately align the system A on an arbitrary fine
grid Aε, for any given maximal jitter ε > 0, and perform the proposed super-resolution on
this common grid. The resulting error from this approximation can be interpreted as a
“basis mismatch”. The detailed analysis of this approach will not be covered in this work,
however, similar approximations can be found in the literature for the analogue atomic
norm minimization view of the reconstruction problem [6]. We claim that those results
extend in our settings and that the approximation error vanishes in the noiseless settings
when going to the limit ε→ 0.
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5.2.2 Relationship with partial line spectral estimation

Up to here, the formulation proposed to recover sparse spectra from multirate measurements
seems very different from the partial line spectral estimation problem exposed in Chapter
4. The major difference between the formulation of the total variation estimators (5.9)
and (4.3) resides in the definition domain of the measure to reconstruct. More specifically,
the Nyquist-Shannon sampling theorem [51], [59] ensures that the line spectral estimation
problem from the output of a single sampler can always be reduced to a reconstruction
problem over the torus T, since there is an aliasing ambiguity on the reconstructed spectrum
modulo the sampling frequency f ∈ R+. Hence, one can only estimate the true frequencies
within the quotient group R/fZ ' T.

The next proposition builds a link between the partial line spectral estimation problem
(4.3) and TV regularization for MRSS (5.9) whenever the sampling system A admits a
common grid in the sense of Definition 5.1. The proof of this proposition is detailed in
Section 5.5.

Proposition 5.2 (Equivalence with the partial line spectral estimation problem). Let
A = {Aj = (fj , γj , nj)}j∈J1,pK be a set of p arrays, and suppose that the net number of
observations n ∈ N of the array A is an odd integer. If the set C (A) is not empty then there
exists a subset I ⊆ J0, n�K and a selection matrix CI ∈ {0, 1}n×n� such that the output
µ̃TV of Problem (5.8) and the output µCI ,TV of Program (4.3) with partial measurement
matrix CI ∈ {0, 1}n×n� are equal up to an aliasing factor modulo f�.

5.3 Dual certifiability and sub-Nyquist guarantees

In this section, sufficient conditions are presented to ensure that the conditions of Propo-
sition 4.1 are fulfilled. Those conditions guarantee the tightness of the total variation
relaxation and the optimality and uniqueness of the recovery µ0 = µCI ,TV. In addition to
this result, it provides mild conditions to ensure a sub-Nyquist recovery of the spectral
spikes at a rate f� from measurements taken at various lower rates {fj}j∈J1,pK. The proof
of this result, presented in Section 5.6, relies on previous polynomial construction methods
presented in [6], [18], [67].

Theorem 5.1 (Tightness of TV regularization for MRSS). Let A = {Aj = (fj , γj , nj)}j∈J1,pK

be a set of sampling arrays. Suppose that C (A) is not empty, and denote by A� = (f�, γ�, n�)
the minimal common supporting grid of A. Assume that the system induced by A satisfies
at least one of the two following separability conditions,

• Strong condition:

∀j ∈ J1, pK ,

∆T
(

X̃
fj

)
≥ 2.52

nj−1

nj > 2000,
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• Weak condition:

∃j ∈ J1, pK ,


∆T

(
X̃
fj

)
≥ 2.52

nj−1

nj > 2000

n ≥ (lj + 1) s,

then there exists a polynomial Q? verifying the conditions (4.5) of Proposition 4.1 for a
subsampling matrix CI . Consequently µ0 = µCI ,TV. Moreover, µCI ,TV is equal to the
ground truth measure µ̃0 up to an aliasing factor modulo f�.

Remark 5.1. Under the weaker proviso nj > 256, the above results still hold in both cases
when X̃ satisfies the more restrictive separability criterion ∆T

(
X̃
fj

)
≥ 4

nj−1 .
The strong condition for Theorem 5.1 is restrictive and do not particularly highlight

any benefits from jointly estimating the spectral support compared to merging the p

spectral estimates obtained by simple individual estimation at each sampler. However,
the weak condition guarantees that frequencies of the time signal x can be recovered with
an ambiguity modulo f� when jointly resolving the MRSS, while individual estimations
would guarantee to recover them with an ambiguity modulo maxj∈JpK {fj} ≤ f�. The
weak condition requires a standard spectral separation assumption from a single array Aj ,
and sufficient net measurements n of the time signal. The extra measurements n − nj

corresponding to the other grids are not uniformly aligned with the sampler Aj . Therefore
the sampling system induced by A achieves sub-Nyquist spectral recovery of the spectral
spikes, and pushes away the classic spectral range fj from a factor f�

fj
= lj . Nevertheless,

the provided construction of the dual certificate results in a polynomial having a modulus
close to unity on the aliasing frequencies induced by the zero forcing upscaling from fj to
f�. Consequently, one can expect to obtain degraded performances in noisy environments
when the sub-sampling factor lj becomes large.

5.4 Benefits of multirate measurements

5.4.1 Frequency range and resolution tradeoff

Multirate sampling has been used in many applications arising from signal processing and
telecommunications in order to reduce either the number of required measurements or
the processing complexity [52]. There are three major benefits of making use of MRSS
acquisition in the line spectral estimation problem. One might just think MRSS has an
obvious way of increasing the number of samples acquired by system compared to a single
grid measurement Aj ∈ A. This naturally leads to an enhanced noise robustness. More
importantly, MRSS acquisition brings benefits in terms of spectral range extension, and
spectral resolution improvement. The spectral range extension (or sub-Nyquist) capabilities
have been described in Theorem 5.1. Also this topic will not be covered in this thesis, the
spectral resolution — the minimal distance on the torus between two spectral spikes to
guarantee their recovery —, is also expected to be enhanced in MRSS acquisition due to
the observation of delayed versions of the time signal x, which virtually enlarges the global
observation window.
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For the sake of clarity, Figure 5.3 proposes a comprehensive illustration of the tradeoff
between range extension and resolution improvement for a delay-only MRSS constituted
of two samplers A1 and A2. In Figure 5.3 (a), the delay between the two samplers is
such that the joint uniform grid A� has no missing observations with a double sampling
frequency. One trivially expects to recover the spikes locations of the measure µ̃ with
aliasing ambiguity modulo 2f . In Figure 5.3 (b), the delay of A2 is set such that the
resulting minimal common grid has a doubled observation window. A� fits again in the
uniform observation framework analyzed in [18], and the achievable resolution is expected
to be twice smaller. Finally a hybrid case is presented in Figure 5.3 (c), where one expect
to get some spectral range and resolution improvements from a joint recovery approach.

5.4.2 Complexity improvements

If the set C (A) is not empty, the joint spectral estimation can be done by solving the
semidefinite program (4.4) involving a linear matrix inequality of dimension of n� + 1. The
dimensional n� of the minimal common grid is fully determined by the observation pattern
induced by A, and reads

n� = max
j∈J1,pK

{lj (nj − 1)− aj} ,

whereby the parameters {(aj , lj)}j∈J1,pK are defined in Proposition 5.1. This is particularly
disappointing since n� grows at a speed driven by the product of the nj ’s, whereas the
essential dimension m of the problem is given by the number of net observations acquired
by the grid n ≤ ñ =

∑p
j=1 nj . We study the asymptotic ratio n

n�
when the number grids p

grows large in two different idealized instances of MRSS to illustrate that the reduced SDP
formulation (4.12) brings orders of magnitude changes to the computational complexity of
the line spectral estimation problem.

Suppose a delay-only MRSS, where A is constituted of p grids given by A1 = (f, 0, n0)
and Aj =

(
f,− 1

bj
, n0

)
for all j ∈ J2, pK. Moreover suppose that {bj}j∈J2,pK are jointly

coprime. It is easy to verify that C (A) is not empty in those settings, and that the minimal
common grid A� is given by A� =

((∏p
j=2 bj

)
f, 0,

(∏p
j=2 bj

)
n0
)
. One has n� = Ω (bpn0)

for some constant b ∈ R+, while n = pn0. The ratio m
n�

= o
( p

bp

)
tends to 0 exponentially

fast with the number of samplers m of the system.
On the other hand, suppose a synchronous coprime sampling system between the time

instants 0 and T , where Aj = (kjf, 0, kjfT ) for all j ∈ J1, pK with gcd {kj , j ∈ J1, pK} = 1.
Once again C (A) is not empty, and the minimal grid is characterized by the parameters
A� =

((∏p
j=1 kj

)
f, 0,

(∏p
j=1 kj

)
fT
)
. Consequently the ratio n

n�
=
∑p

j=1 kj∏p

j=1 kj
decreases in

o (k−p) for a judicious choice of the integers {kj}j∈J1,pK.

5.5 Proof of Proposition 5.2

We recall from equation (5.5) that for all µ̃ ∈M (R), one has,

∀j ∈ J1,mK ,∀rj ∈ J0, nj − 1K , Lj [k] =
∫
R
e

i2π ξ
fj

(rj−γj)dµ̃ (ξ) .
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0 t

0 t(b)

0 t
(a)

(c)

Figure 5.3: A representation of three delay-only MRSS in different settings. In (a), the
delay between the two samplers is exactly of half-unit, resulting in a doubled frequency
range in the joint analysis. In (b), this delay is such that the overall process equivalently
acquires samples on a doubled time frame, resulting in a doubled spectral resolution.
Sub-figure (c) represents an hybrid case where both resolution improvement and spectral
range extension are expected.
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Suppose that C (A) is not empty, so that the minimal common supporting grid A� =
(f�, γ�, n�) for A exists. It comes by equation (5.11) that

∀j ∈ J1,mK , ∀rj ∈ J0, nj − 1K ,∃r� ∈ J0, n� − 1K , Lj (µ̃) [rj ] =
∫
R
e

i2π ξ
f�

(r�−γ�)dµ̃ (ξ)

=
∫
R
e

i2π ξ
f�

r�d
(
e

−i2π
ξγ�
f� µ̃ (ξ)

)
= Fn� ◦ S γ�

f�
(µ̃) [k] .

Let I ⊆ J0, n� − 1K be the equivalent observation set of A� introduced in Definition 5.1
and consider a selection matrix CI ∈ Cn×n� for this set. The above equality ensures the
measurement operator admit a factorization of the form

L = CI

(
Fn�,f� ◦ S γ�

f�

)
. (5.12)

Next, let µ̃] ∈M (R) be the offset free surrogate of the measure µ̃ defined by

µ̃] = S
γ�−

n�−1
2

f�

µ̃,

which is a simple modulation of the complex amplitudes of the frequencies in the support
set X̃ of the measure µ. Furthermore, define by µ�, µ

]
�∈M (T) the respective f�−aliased

version of the real measures µ̃, µ̃] ∈M (R) given by

∀ω ∈ T, µ� (ω) =
∑
j∈Z

µ̃ (f� (ω + k)) ,

∀ω ∈ T, µ]
� (ω) =

∑
j∈Z

µ̃] (f� (ω + k)) .

It is enough to show that the consistency constraint L (µ̃�) can be written under the form
(4.1) with respect to the aliased version of the measure µ]

� to demonstrate this result.
Equation (5.12) leads to

z = L (µ̃)

= CI

(
Fn�,f� ◦ S γ�

f�
(µ̃)
)

= CI

(
Fn�,f� ◦ S− n�−1

2f�

(
µ̃]
))

= CI

∫ ∞

−∞
ã]

� (ξ) dµ̃] (ξ)

whereby the atoms associated to the common grid ã]
� (·) ∈ Cn� reads,

∀r� ∈ J0, n� − 1K ,∀ξ ∈ R, ã]
� (ξ) [r] =e

i2π ξ
f�

(
r�− n�−1

2

)
=an�−1

2

(
ξ

f�

)
.
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The primal consistency constraint of Program (5.9) writes

z = CI

∫
T
an�−1

2
(ω) dµ]

� (ω)

=
∫
T

CIan�−1
2

(ω) dµ]
� (ω)

which can be identified to the consistency constraint of the partial line spectral estimation
problem (4.1), concluding the proof of the proposition. �

5.6 Proof of Theorem 5.1

5.6.1 Preliminaries

In both strong and weak condition cases, the proof relies on previous works presented in
[18], [67], and is achieved by constructing a polynomial Q? satisfying the conditions (4.5).
For simplicity, it will be assumed that nj = 2mj + 1 for all j ∈ J1, pK and n� = 2m� + 1
are odd integers for simplicity purposes. We claim that this does not affect the generality
of the proof and free the following demonstration of the burden of considering half-integer
degree trigonometric polynomials. Since, it has been previously shown in Section 5.5 that
shifting the signal in the time domain leave the dual feasible set invariant, and we will
assume without loss of generality that γ� = m� so that

∀µ ∈M (T) , L (µ) = CIFn� (µ)

= CI

∫
T
am� (ω) dµ (ω) .

Before starting the proof, we introduce the notations

X� = X̃

f�
=
{
ξ

f�
, ξ ∈ X̃

}
∀j ∈ J1, pK , Xj = X̃

fj
=
{
ξ

fj
, ξ ∈ X̃

}

∀j ∈ J1, pK , X̃j =
{
ξ

f�
+ rj

lj
, ξ ∈ X̃, rj ∈ J0, lj − 1K

}
.

In the above, X� and Xj are the sets of the reduced frequencies of the spectral support X̃
of the measure µ̃ for the respective sampling frequencies f� and fj , while X̃j is the aliased
set of Xj resulting from a zero-forcing upsampling from the rate fj to the rate f�.

We recall from [67] Proposition II.4, using the improved separability conditions taken
from [33] Proposition 4.1, that if ∆T (Xj) ≥ 2.52

nj−1 , then one can build a polynomial
Pj,? ∈ Tmj satisfying the interpolating conditions

Pj,?

(
x̃k
fj

)
= sign

(
e

i2π
aj
lj

x̃k
fj ck

)
, ∀ x̃k

fj
∈ Xj

|Pj,? (ω)| < 1, ∀ω ∈ T\Xj

d2|Pj,?|
dω2

(
x̃k
fj

)
≤ −η, ∀ ξr

fj
∈ Xj ,

(5.13)
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provided that nj > 2× 103, for some η > 0 (η = 7.865 10−2 in the original proof presented
in [33]), and whereby {(aj , lj)}j∈J1,pK are the pairs of parameters defined in the statement
of Proposition 5.1 characterizing the expansion of the array Aj into the minimal common
grid A�. If the polynomial Pj,? exists, we further introduce the polynomial Qj,? ∈ Tm�

defined by
∀ω ∈ C, Qj,? (ω) = e−i2πajPj,? (ljω) . (5.14)

By construction, Qj,? is a sparse polynomial with monomial support on the equivalent
observation set I of the minimal common grid introduced in Definition 5.1. Its coefficients
vector qj,? satisfies the relation qj,? = C∗

Ivj,? for some vj,? ∈ Cn. It is easy to notice that
Qj,? is 1

lj
-periodic due to the upscaling effect ω ← ljω in equation (5.14). Consequently the

polynomial Qj,? reaches a modulus equal to 1 on every point of X̃j , with value satisfying

∀ω ∈ X̃j , Qj (ω) = Qj,?

(
x̃k

f�
+ rj

lj

)

= e
−i2πaj

(
x̃k
f�

+
rj
lj

)
Pj,?

((
lj x̃k

f�
+ rj

))

= e
−i2πaj

(
x̃k
f�

+
rj
lj

)
sign

(
e

i2π
aj
lj

x̃k
fj ck

)
= e

−i2πaj
rj
lj sign (ck) ,

whereby x̃k
f�
∈ X� and rj ∈ J0, lj − 1K. It comes that the constructed polynomial verifies

the interpolation conditions



Qj,? (ω) = sign (ck) , ∀ω ∈ X�

Qj,? (ω) = e
−i2πaj

rj
lj sign (ck) , ∀ x̃k

fj
∈ X̃j

|Qj,? (ω)| < 1, ∀ω ∈ T\X̃j

d2|Qj,?|
dν2 (ω) ≤ −ljη, ∀ω ∈ X̃j ,

(5.15)

where the second equality stand for some x̃k
f�
∈ X� and rj ∈ J0, lj − 1K such that x̃k

f�
+ rj

lj
∈

X̃j .
Under both strong and weak assumptions, we aim to build a sparse polynomial Q? ∈ Tm�

verifying the conditions (4.5). If the existence of such polynomial is verified Proposition
4.1 applies and the desired conclusion follows.

5.6.2 Construction under the strong condition

Suppose that ∆T (Xj) ≥ 2.52
nj−1 and nj > 2× 103, for all j ∈ J1, pK. As explained above, one

can find p polynomials Qj,? ∈ Tm satisfying the interpolation properties (5.15), and define
their mean by Q? ∈ Tm� such that

∀ω ∈ T, Q? (ω) = 1
p

p∑
j=1

Qj,? (ω) .
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It is clear, by stability through linear combinations, that Q? is still sparse and supported
over the subset I, ensuring the existence of an element v? ∈ Cn such that q? = C∗

Iv?.
Moreover, it is immediate to verify that Q? satisfies

|Q? (ω)| = 1⇔

ω ∈ p⋂
j=1

X̃j and ∀j ∈ J1, pK , Qj,? (ω) = u (ω)

 (5.16)

for some value u (ω) ∈ C of modulus 1, |u (ω)| = 1. Let us denote by Γ ⊂ T the set of
frequencies satisfying where Q? has a modulus equal to 1. From Equations (4.5) and
(5.15), Q? is a dual certificate if and only if Γ = X�. One has X� ⊆ Γ, thus it remains to
prove Γ ⊆ X� to finish the certificate construction under the strong condition. Using the
definition of X̃j and the interpolation properties (5.15), we have that ω ∈ Γ is equivalent to

ω ∈
p⋂

j=1
X̃j ⇐⇒ ∀

(
j, j′) ∈ J1, pK2 ,∃

(
k, k′) ∈ J1, sK2 ,∃rj ∈ J0, lj − 1K ,∃rj′ ∈

q
0, lj′ − 1

y
,

e
−i2πaj

rj
lj sign (ck) = e

−i2πaj′
rj′
lj′ sign (ck′) ,

leading to

ω ∈
m⋂

j=1
X̃j ⇐⇒ ∀

(
j, j′) ∈ J1, pK2 ,∃

(
k, k′) ∈ J1, sK2 ,∃rj ∈ J0, lj − 1K ,∃rj ∈

q
0, lj′ − 1

y
,

∃b ∈ Z, aj
rj

lj
+ arg (ck)

2π = aj′
rj′

lj′
+ arg (ck′)

2π + b. (5.17)

The equality in the RHS of Equatiton (5.17) may occur for all pairs (j, j′) ∈ J1, pK2 if and
only if k = k′, and the above reduces to

ω ∈
m⋂

j=1
X̃j ⇐⇒ ∀

(
j, j′) ∈ J1, pK2 ,∃r ∈ J0, lj − 1K ,∃r′ ∈

q
0, lj′ − 1

y
,

∃b ∈ Z,
ajrj

lj
= aj′rj′

lj′
+ b,

which holds if and only if

∀
(
j, j′) ∈ J1, pK2 ,∃rj ∈ J0, lj − 1K , lj | ajlj′rj .

Recalling from the minimality condition of the common grid A� detailed in Proposition 5.1
that gcd

(
{aj}j∈J1,pK ∪ {lj}j∈J1,pK

)
= 1, one derives by application of the Gauss theorem

∃j ∈ J1, pK , lj | rj .

Since rj ∈ J0, lj − 1K, one has rj = 0. We deduce that there must exists k ∈ J1, sK such
that ω = x̃k

f�
+ 0

lj
, thus ω ∈ X�. Consequently, Γ ⊆ X�, and finally one has Γ = X�, which

concludes the proof for the strong condition. �
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5.6.3 Construction under the weak condition

Suppose that ∆T (Xj) ≥ 2.52
nj−1 and nj > 2 × 103 for some j ∈ J1, pK, and define the

polynomial Qj,? ∈ Tm� as in equation (5.14). Moreover, we define by Hj (A, X�) the affine
subspace of elements v∈Cn such that q = C∗

Iv induces a sparse polynomial Q ∈ Tm�

supported by monomials taken over the subset I and satisfying the interpolation conditions
Q (ω) = sign (ck) , ∀ω ∈ X�

Q′ (ω) = 0, ∀ω ∈ X�

Q (ω) = 0, ∀ω ∈ X̃j\X�.

The subspace Hj (A, w) can be parametrized by the linear equality

Hj (A, q) = {v ∈ Cn,Vj (A, X�) C∗
Iv = w} ,

whereby w = [sign (c1) , . . . , sign (cs)]T ∈ Cs, and for some matrix Vj (A, X�) ∈ C(lj+1)s×n�

defining the interpolation conditions. Interpolation theory guarantees that Vj (A, X�) is
full rank, and therefore the subspace Hj (A, X�) is non-trivial with dimension n− (lj + 1) s,
provided that n ≥ (lj + 1) s. We fix an element t ∈ Hj (A, X�), and denote by R ∈ Tm�

the polynomial having for coefficients vector r = C∗
It. In the rest of this proof, we seek to

build a dual certificate Q? ∈ Tm� under the form of a convex combination between R and
Qj,? so that

Q? = βR+ (1− β)Qj,?, β ∈ [0, 1] .

First of all, by construction, R and Qj,? both interpolate the frequencies of X� with
values wk = sign (ck), and one has

∀ x̃k

f�
∈ X�, Q?

(
x̃k

f�

)
= wk. (5.18)

Consequently, it remains to derive sufficient conditions on β for the optimality condition
|Q? (ω)| < 1 to hold everywhere else on T\X� to conclude that Q? is a dual certificate. To
do so, we partition the set T into three non-intersecting sets T = Γnear ∪Γalias ∪Γfar, where
Γnear is a union of s open balls of small radii 0 < εnear centered around the frequencies
in X�, and where Γalias is an open set containing the elements of X̃j\X�. The set Γfar is
defined by the complementary of the two previous in T. The conditions on β for Q? to be
bounded away from 1 in modulus are derived independently on each of those sets.

We start the analysis on Γnear. For any complex polynomial Q, we respectively denote
by Q< (ν) = < (Q (ω)) and Q= (ν) = = (Q (ω)) for all ω ∈ T, its real and imaginary part
around the unit circle. Moreover, we recall that

d2 |Q|
dω2 (ω) = −(Q< (ω)Q′

< (ω) +Q= (ω)Q′
= (ω))2

|Q (ω)|3

+ |Q
′ (ω)|2 +Q< (ω)Q′′

< (ω) +Q= (ω)Q′′
= (ω)

|Q (ω)| , (5.19)
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for all ω ∈ T. By construction, the derivative of R and Qj,? cancels on X� and by linearity

∀ω ∈ X�, Q′
? (ω) = 0. (5.20)

Injecting equations (5.18) and (5.20) into (5.19) leads to

∀ω ∈ X�,
d2 |Q?|

dω2 (ω) = cos (wr)Q′′
∗< (ω) + sin (wr)Q′′

∗= (ω) .

Thus, the operator d2|·|
dω2 acts linearly on the polynomial Q? at the points in X�, and one

has

∀ω ∈ X�,
d2 |Q?|

dω2 (ω) = β
d2 |R|
dω2 (ω) + (1− β) d2 |Qj,?|

dω2 (ω)

≤ βd2 |R|
dω2 (ω)− (1− β) ljη,

using the interpolation properties of equation (5.15). The inequalities

∀ω ∈ X�,
d2 |Q?|

dω2 (ω) < 0

can be jointly satisfied, for a choice of β

β <
ljη

U ′′
� (R) + ljη

, (5.21)

where
U ′′

� (R) = max
ω∈X�

d2 |R|
dω2 (ω) .

Under the condition (5.21) , |Q?| − 1 has s non-nodal roots on X�, and by continuity of
Q? there must exist a radius 0 < εnear such that the inequality

∀ω ∈ Γnear\X�, |Q? (ω)| < 1

holds whereby Γnear =
⋃s

r=1 B
(

ξr

f�
, εnear

)
, whereby B (ω, ε) is defined on Page xvii.

We continue the proof by bounding |Q?| away from 1 on the set Γalias. Fix any
0 < δ < 1 and let Γalias = {ω, |R (ω)| < δ}. By continuity of R, Γalias is an open set
verifying

(
X̃j\X�

)
⊂ Γalias. Moreover one can impose Γalias ∩ Γnear = ∅ for a small enough

δ. The value of |Q?| over Γalias can be bounded by

∀ω ∈ Γalias, |Q? (ω)| ≤ β |R (ω)|+ (1− β) |Qj,? (ω)|

< βδ + (1− β) .

Consequently, |Q| is smaller than 1 on Γalias as long as β > 0.

It remains to prove that |Q| can also be bounded by 1 in the rest of the torus Γfar =
T\ (Γtrue ∪ Γalias). Let by Ufar (R) and Ufar (Qj,?) the respective suprema of R and Qj,?

over Γfar. Γfar is a closed set, and thus compact. It comes that the suprema of R and Q are
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reached in some points inside Γfar. Moreover introducing the suprema of Qj,? over this set

Ufar (Qj,?) = sup
ω∈Γfar

{|Qj,? (ω)|} < 1,

since X̃j * Γfar, leads to

∀ω ∈ Γfar, |Q? (ω)| ≤ β |R (ω)|+ (1− β) |Qj,? (ω)|

< βUfar (R) + (1− β)Ufar (Qj,?)

for all ω ∈ Γfar, and thus |Q? (ω)| < 1 can be achieved everywhere on Γfar provided a choice
of β verifying

β <
1− Ufar (Qj,?)

Ufar (R)− Ufar (Qj,?) .

We conclude that for any coefficient β satisfying

0 < β < min
{

ljη

U ′′
� (R) + ljη

,
1− Ufar (Qj,?)

Ufar (R)− Ufar (Qj,?)

}
,

the polynomial Q? meet the conditions (4.5) and thus qualifies as a dual certificate. �

5.7 Proof of Proposition 5.1

5.7.1 Existence of a common grid

Suppose that A+ is a common supporting grid for the set of arrays A. The relation (5.11)
ensures that

∀j ∈ J1, pK , ∀r ∈ J0, nj − 1K , ∃qj [r] ∈ J0, n+ − 1K s.t. 1
fj

(r − γj) = 1
f+

(qj [r]− γ+) ,

(5.22)
whereby each integer qj [r] represents the position of the rth samples of the jth grid in the
common grid. By subtracting two instances of (5.22) applied to the grid j and for the
samples of order r and r + 1 one gets

∀j ∈ J1, pK ,∀r ∈ J0, nj − 1K ,
f+

fj
= qj [r + 1]− qj [r] , lj ,

where {lj}j∈J1,pK are positive integers since qj is an increasing sequence for all j ∈ J1, pK. It
comes that {qj}j∈J1,pK are p arithmetic progressions with respective increment lj

∀j ∈ J1, pK ,∀r ∈ J0, nj − 1K , qj [k] = qj [0] + ljr.

Reporting those results in equation (5.22) leads to

∀j ∈ J1, pK , γ+ = qj [0] + ljγj .

Letting aj = −qj [0] for all j ∈ J1, pK proofs the necessity part.
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On the other hand, suppose now the existence of positive integers {lj}∈ Np and integers
{aj}∈ Zp such that the relations

f+ = ljfj , ∀j ∈ J1, pK

γ+ = ljγj − aj , ∀j ∈ J1, pK ,
(5.23)

hold for some f+ ∈ R+ and γ+ ∈ R. It comes that

∀j ∈ J1, pK ,∀r ∈ J0, nj − 1K ,
1
fj

(r − γj) = 1
fj

(r − ljaj − ljγ+)

= 1
f+

(ljr − aj − γ+) . (5.24)

Defining the quantitiesqj [r] = ljr − aj , ∀j ∈ J1, pK

n+ ≥ maxj∈J1,pK {qj [nj − 1]} ,
(5.25)

ensures that the grid A+ = (f+, γ+, n+) supports the system defined by A. This achieves
the sufficiency part, and thus the characterization of the existence of a common grid.

5.7.2 Conditions for minimality

Suppose that A admits a common grid, it is clear that exactly one element of C (A) reaches
the minimal order n�. Denote by A� = (f�, γ�, n�) this element. Moreover, denote by
{lj}∈ Np and {aj}∈ Zp the elements characterizing the grid expansion of A onto A�

defined in (5.23), and let δ = gcd
(
{aj}j∈J1,pK ∪ {lj}j∈J1,pK

)
. By equation (5.24), one has

∀j ∈ J1, pK ,∀r ∈ J0, nj − 1K ,
1
fj

(r − γj) = δ

f�

(
lj
δ
r − aj

δ
− γ�

δ

)
,

Thus the grid A� =
(

f�
δ ,

γ�
δ ,
⌈n�

δ

⌉)
supports A and belongs to C (A). My minimality of A�

one has
⌈n�

δ

⌉
≥ n� and we conclude that δ = 1. Moreover, the minimality implies that the

first and the last samples of the grid A� must be acquired by an element of A, otherwise
the shorter grids A� = (f�, γ� − 1, n� − 1), or A� = (f�, γ� + 1, n� − 1) would also support
A. Using the properties (5.25)

∀j ∈ J1, pK , γ� = ljγj − aj

∃j ∈ J1, pK , aj = 0

∀j ∈ J1, pK , aj ≤ 0,

which implies γ� = maxj∈J1,pK {ljγj}, ensuring that the conditions describing the minimal
grid stated in Proposition 5.1 are necessary.

For the sufficiency, consider the gridA� = (f�, γ�, n�) of C (A) where γ� = maxj∈J1,pK {ljγj}
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and with expansion parameters {lj}∈ Np and {aj}∈ Zp satisfying

gcd ({aj} ∪ {lj} , j ∈ J1, pK) = 1.

Let A′ = (f ′, γ′, n′) ∈ C (A) be any other grid and let by δ′ its corresponding greatest
common divisor. δ′ devises every integer linear combination of {aj} ∪ {lj}, and in partic-
ular every elements of the set {ljr − aj : j ∈ J1, pK , r ∈ J0, nj − 1K}. Therefore (f ′, γ′) is
identifiable to (δ′f�, δ

′γ� − b) for some b ∈ Z. Moreover since γ� is maximum, the grid A�

samples an element of A at index 0, and thus A′ ∈ C (A) if only and only if b ≥ 0. Finally
it comes from equation (5.25) that n′ must satisfy

n′ ≥ max
j∈J1,pK

{
q′

j [nj − 1]
}

≥ max
j∈J1,pK

{
δ′lj (nj − 1)− δ′ljaj + b

}
≥ max

j∈J1,pK
{lj (nj − 1)− aj}

≥ n�,

demonstrating the sufficiency part, and concluding the proof of Proposition 5.1. �



Chapter 6

Conclusion

6.1 Summary

The line spectral estimation problem is an inverse problem consisting in recovering a sparse
measure from the observation of its first trigonometric moments. This thesis aims to extend
recent advances related to the resolvability of the line spectral estimation problem via the
means of convex relaxations, and a principal focus is placed on the so-called total variation
(TV) approach.

Chapter 1 settles the context of this thesis. The line spectrum estimation problem is
defined in Section 1.3. The notion of statistical spectral resolution limit: the distance under
which two spikes cannot be distinguished, is discussed in Section 1.4 and formally stated
in Equation (1.11). The major existing algorithms to solve the line spectral estimation
problem are presented, and a comprehensive background on the TV regularization approach
is given in Section 1.6. A dual certifiability result, stated in Theorem 1.1, and linking the
success of TV regularization to output the sparsest possible measure with the existence of
a dual certificate is recalled from [18]. Moreover, the spectral resolution conjecture for TV
regularization is formulated in Subsection 1.6.2.3 and states that the method should be
successful to reconstruct any given sparse measure with support having a minimal distance
exactly twice larger than the theorized statistical resolution limit when the number of
measurement grows large. The semidefinite formulation of the TV approach is recalled in
Proposition 1.3 and finds its roots unto the Fejér-Riesz Theorem 1.2.

Chapter 2 discusses the necessary minimal separation that is requested by the total
variation approach in order to output the desired result. The previous existing bounds
are discussed in Section 2.1. A novel result, showing the existence of sparse measures
with minimal distance asymptotically close to twice the statistical resolution limit for
which TV regularization is guaranteed to fail is introduced in Theorem 2.1 and closes the
necessary side of the spectral resolution conjecture 1.1. The rest of the chapter aims to
provide a demonstration of this result. In particular, the proposed proof technique relies
on the introduction of an intermediate notion of diagonalizing families of trigonometric
polynomials, which are intimately linked with the existence of a dual certificate to the
convex problem, as stated in Theorem 2.2.

Chapter 3 focuses on the sufficiency condition of the spectral resolution conjecture.
Generic properties of the extremal interpolation problem that a dual certificate has to verify
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Tang ’14 [65] ∆T (X) > 1
πm

Duval, Peyré ’14 [28] ∆T (X) > 1
2m

Ferreira Da Costa, Dai ’18 ∆T (X) > 1
m −

δ
m2 and m ≥Mδ

Table 6.1: Review of the existing bounds for the necessary separation condition

Candès, Fernandes-G. ’12 [18] ∆T (X) > 2
m and m ≥ 128

Fernandes-Granda ’14 [33] ∆T (X) > 1.26
m and m ≥ 1000

Ferreira Da Costa, Dai ’18 ∆T (X) > 2.5683
m−1

Table 6.2: Review of the existing bounds for the sufficient separation condition

to guarantee the success of the convex approach are given in Section 3.1. A tour of the
existing constructions of such certificates is given in Section 3.2. A novel construction
of a diagonalizing certificate is proposed in Section 3.3 in order to overcome the flaws
of the previous constructions. The novel Theorem 3.1 guarantees that the diagonalizing
construction satisfies the hypothesis of the dual certifiability Theorem 1.1 under a mild
separation constraint on the spikes of the measure to reconstruct. Also Theorem 3.1
cannot guarantee the success of the proposed construction up to the limit stated in
Conjecture 1.1, empirical results highlights, unlike the previous existing constructions,
that the diagonalizing certificate can guarantee an exact reconstruction up to the phase
transition. The rest of the chapter proposes a proof of Theorem 3.1, which also has the
advantage to be much lighter and direct than previous results in the literature.

Chapter 4 introduces the partial line spectral estimation problem in Section 4.1, which
consists in projecting the moments into a low-dimensional subspace. It is shown in
Section 4.2 that the particular semidefinite geometry of the problem does not allow to
immediately conclude that a reduction of the number of observations implies a reduction of
the computation complexity of the problem. The novel Theorem 4.2 states the conditions
under which the partial line spectral estimation problem can be reformulated into a low-
dimensional semidefinite program whose dimension only depends on the actual number of
observations. Proposition 4.2 relates the tightness of this program to the existence of a
dual certificate satisfying the sparse Fejér-Riesz condition given in Definition 4.1. Section
4.4 proposes to further improve the computational efficiency of the problem by deriving
the steps of the scalable alternative direction method of multipliers in the case where the
subsampling operator is a selection matrix.

Finally, Chapter 5 discusses an extension of the spectral estimation problem to the
case of multirate sampling systems (MRSS), composed of multiple synchronized samplers
processing the time domain at different frequencies and with different delays. It is shown in
Section 5.2 that, if the samplers admit a common supporting grid introduced in Definition
5.1, spectral estimation can be jointly performed by solving a semidefinite problem similar to
the one analyzed in Chapter 4. Theorem 5.1 guarantees that sparse spectra verifying certain
separation conditions can be reconstructed at a sub-Nyquist sampling rate via the use of
MRSS. The benefits in terms of spectral resolution, noise robustness and computational
costs of the partial semidefinite approach are discussed in Section 5.4.
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6.2 Open problems in line spectral estimation

Closing the spectral resolution conjecture. If the diagonalizing certificate construc-
tion proposed in Chapter 3 appears to satisfy the dual certificate conditions of Theorem
1.1 up to the conjectured resolution limit ∆T (X) > 1

m , the demonstration provided for
Theorem 3.1 does not allow to conclude on the achievability of the limit. Instead, guarantees
are only provided for ∆T (X) > αres

m where αres ≤ 2.5683. Fixing this current gap, that
is believed to be artificial, is a problem of major interests, since it will fully close the
necessary side of the spectral resolution conjecture for the total variation approach.

The diagonalizing certificate and the resolution/precision tradeoff. A recent
analysis of the Beurling-LASSO estimator in noisy environments (1.36) presented in [46]
relates the precision of the reconstruction with the decay rate of the dual certificate at
the spikes locations and its flatness in the regions that are far away from any elements in
the support set X. As the analysis is conducted for the Jackson construction presented
in Subsection 3.2.1 and requires a tedious inversion step, one can wonder how the use of
the diagonalizing certificate could help to derive enhanced performance guarantees. In
particular, in the non-collapsing regime where ∆T (X) = ω

(
α
m

)
, the diagonalizing certificate

is excepted to be sharper than the Jackson one, yielding potentially better robustness
guarantees.

Compressed sensing and the sparse Fejér-Riesz condition. The sampling com-
plexity of the line spectral estimation problem discussed in Subsection 4.2.1 is proven in [67]
to be as low as logarithmic orders in the initial number of measurement without degrading
the resolution order when considering random subsampling. However, it is important to
understand up to which subsampling order the computational complexity can be reduced.
This requires to extend the initial proof in [67] and show whether there exists random dual
certificates verifying the sparse Fejér-Riesz condition introduced in Definition 4.1 with high
probability if the number of samples is large enough.

6.3 Beyond line spectral estimation

Statistical resolution limits from generalized measurements The proof of the
statistical resolution limit in the context of line spectral estimation was proven using the
help of extremal functions preconditioning the bandlimited spectra [2]. A natural research
direction would be to understand whether there is any possible extension of this theory to
a broader class of point spread functions to highlight the existence of resolution limits in
diverse sparsity models. In particular, a notion of generalized Vandermonde matrices can
be formulated for shift invariant point spread functions, splines models, and for T-systems
(e.g. Laplace measurements, Gaussian moments, Stieljies transform), which are used as
sparsity prior in various signal processing scenarios.
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Doubly gridless bilinear inverse problems The continuous blind gain phase calibra-
tion (BGPC) and the blind deconvolution (BD) problems are two instances of bilinear
inverse problems occurring in image and array processing characterized by bilinear obser-
vation maps of the form

y = BBGPC (X, u) = diag (u) FX, (BGPC)

y = BBD (X, u) = F∗diag (u) FX (BD)

whereby F is often assumed to be a discrete Fourier transform matrix, while X represents
the system inputs. One commonly assumes a subspace or low-rank prior on the inputs
to ensure the uniqueness of the solution up to some transforms. Recovery and robustness
guarantees by `1-minimization approaches have been provided for those discrete problems
[76]. One could study whether such results are extendable to the gridless case where X
becomes a finite set of functions lying in some Hilbert space (e.g. bandlimited functions),
F becomes a discrete-time Fourier operator, and tackle the problem though the lense of
TV regularization.
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