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Abstract In this chapter, we discuss selected applications of Machine Learning
(ML) algorithms to 5G systems. We follow a pragmatic approach, leveraging our
recent research work, which encompasses algorithms for energy efficiency, Quality
of Service (QoS) enhancements and the use of inference tools for the analysis and
prediction of context information (traffic, mobility, etc.). Our objective is to demon-
strate where (which applications), how (in combination with which techniques) and
why (the benefits) ML may be useful, with an emphasis on the how, i.e., what are the
usage models, and what they imply in terms of stability, convergence and optimal-
ity guarantees of the resulting control algorithms. Within our discourse, the use of
open vs closed control loop architectures and the role of supervised vs unsupervised
learning are emphasized.

1 Introduction

The design for machines able to perform human tasks with high precision and
reliability is a hot research topic across nearly all fields of knowledge. A large
amount of work is being carried out towards building computer programs that are
capable of processing complex and noisy data from the environment and that make
decisions autonomously, based on some extracted features or on statistical traits
of collected data samples/time series. The artificial intelligence (AI) field studies
the use of computers in tasks that require cognitive abilities like understanding,
reasoning and learning. Especially, machine learning (ML) is the branch of the AI
that investigates algorithms that are capable of learning and improving themselves

Paolo Dini
Centre Tecnològic Telecomunicacions Catalunya (CTTC), Barcelona, Spain e-mail:
paolo.dini@cttc.es

Michele Rossi
Department of Information Engineering, University of Padova, Italy, e-mail: rossi@dei.unipd.it

1



2 Paolo Dini, Michele Rossi

directly from data examples, without being explicitly pre-programmed through a set
of hard coded rules. So far, ML techniques have been successfully applied to diverse
applications like natural language processing, speech and handwritten recognition,
image classification, and financial trading.

A great deal of work is being carried out within the information and communi-
cation technologies (ICT) field, where new wireless radios and network protocols
are rapidly integrating new learning and adaptation capabilities. As for 5G, mobile
networks that learn and adapt their behavior to user data are expected to offer better
services to end users and are likewise appealing to network operators:

• End users are expected to benefit from the adaptation capabilities offered by
ML, by enjoining a higher quality of service (QoS), e.g., experiencing a higher
throughput, ultra-low latencies and seamless communications when on the move.

• Network operators can instead optimize the way in which they assign and use
their network resources (e.g., bandwidth and computation), with a subsequent
increment in the efficiency of the deployed communication (and computing)
hardware. Such efficiency enhancement may be in terms of: 1) an increase in
the energy efficiency of the whole network (e.g., energy spent per delivered
information bit) or 2) an increase in the network capacity, intended as the amount
of traffic or number of users that can be supported. Note that both 1) and 2)
entail a revenue for the operators, as for 1) smaller energy amounts have to
be purchased from the power grid and, for 2), more users can be supported,
or the same load can be supported at a reduced installation (hardware) cost. A
third major incentive towards integrating learning algorithms into 5G networks
is the possibility of offering new services, which will be enabled by the so called
“network intelligence”, i.e., by algorithms residing within the 5G network that
will be capable of monitoring user activities and processing end-user data to
enable advanced applications such as augmented reality in work environments,
amusement parks, libraries, museums, etc. Other applications that are expected
to benefit from high bandwidth, low delay and intelligent processing are virtual
reality, autonomous driving and industrial Internet of Things (IoT).

Many research papers are appearing on the use of machine intelligence in 5G
systems, protocols, and on the new applications that 5G networks are expected to
enable. The overall scenario is however still unclear, as many of such applications are
not yet available and the way in which they will be eventually implemented depends
on many factors, some of which are technological and some commercial. To keep
things concrete, in this chapter we discuss the main technical benefits that learning
may bring about by presenting some example applications of machine intelligence
from our own recent research work. The technical aspects that we address are:

1. Energy efficiency: using machine learning techniques to improve the energy
efficiency of 5G deployments. This is a benefit for the network operators and will
be addressed in Section 3;

2. Performance enhancements: using reinforcement learning to provide perfor-
mance improvements, either for 5G users or network protocols/procedures, see
Section 4;
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3. Context awareness: using machine learning to provide context awareness in 5G
networks. This is a new feature, enabled by learning algorithms, that may be
exploited to deliver new services to the end users and/or to enhance 5G network
procedures and protocols, see Section 5.

Before delving into the description of the above technical aspects, in Section 2 we
provide a primer on machine learning, through a brief taxonomy of the most popular
learning approaches and of their goals.

2 A primer on machine learning techniques

To start with, let us consider the task of training aML algorithm in a supervised fash-
ion. In a supervised setting we own a (possibly large) number of training examples
and, associated with each of them, we also own a label, which is either precomputed,
measured or assessed by a human expert. Supervised learning is probably the most
effective way in which we can teach an algorithm to perform a certain task. So far,
it has been the most successful and widely utilized approach, due to the existence of
powerful means for training (i.e., the backpropagation algorithm).

In its simplest form, a supervised ML framework is composed of a set of input
data examples X = [x1, x2, . . . , xN ], a ML algorithm, and a set of target data objects
(i.e., the labels), Y = [y1, y2, . . . , yK ]. Depending on the specific task that is to be
solved, the xi and the yi can be scalars, vectors or matrices, and K can be greater
than, equal to or smaller than N . The goal of a ML algorithm is to find a proper
way to automatically map each input sample xi into the corresponding target sample
yi . The process through which the algorithm learns the mapping is called training
and is executed using a set of training data. After the training process, the algorithm
can be applied to a new (never seen) dataset to perform the required task. The ML
algorithm is expected (and in fact required) to generalize to unseen data, which
usually occurs if the new samples that are inputted at runtime are sampled from
the same statistical distribution that generated the samples in the training set. For
this reason, the selection of an adequate training set is of vital importance, and it is
equally important to train the ML algorithm so as to avoid it to overfit the training
dataset, in which case it would fail to provide satisfactory answers on unseen data,
even if sampled from the same distribution.

Broadly speaking, a ML algorithm can learn through one of the following tech-
niques:

• Supervised learning. These algorithms require the knowledge of pairs (xi, yi),
for i = 1, 2, . . . , N . The learning is supervised because the output yi produced by
the algorithm when xi is applied as an input, is compared with the target value
yi , and a (user-defined) error is used to adjust the algorithm itself.

• Unsupervised learning. In this case, the algorithm is not provided with the target
data Y . The objective is therefore to learn the implicit structure of the data. Tech-
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nically, this amounts to automatically learning the subspace (the “manifold”) over
which the input data samples reside. Often, such manifold has a smaller dimen-
sionality than the data space itself and in this case the ML algorithm performs a
dimensionality reduction task. Classification of input samples, anomaly detection
or inference tasks are then performed using the acquired knowledge.

• Reinforcement learning.As with unsupervised algorithms setY is not provided.
However, with respect to unsupervised learning, the algorithm interacts with the
environment through the following cycle: 1)making decisions based on the current
knowledge about the environment, 2) implemented these decisions, acting on the
environment, 3) measuring the environment’s response, in the form of a reward,
3) updating the algorithm’s internal knowledge about the environment/problem
and repeating from 1). The goal of the learning process usually amounts to
maximizing the cumulative reward over some time horizon.

The last classification that we make is about what a ML algorithm is usually
good at solving. In fact, ML algorithms can be trained for regression or classification
tasks:

• Regression.The objective of regression is to predict the value of one or more con-
tinuous target variables yi , given the value of the input data samples xi . Using the
simplest regression model, linear regression, the algorithm learns a linear func-
tion to map each input to the corresponding output, e.g., y′i = f (xi) = w0 + xTi w,
where the function weights w0,w1 are tuned during the training process, so as to
minimize the error between the output y′i and the target yi .

• Classification. The goal of classification is to assign to each input sample xi one
out of K possible classes Ck , with k = 1, . . . , K . A simple method to classify
input samples into two classes consists of assigning class C1 to the xi for which
w0+ xTi w1 > 0 and class C2 to the others. Once again, the weights are all we need
to learn from the data to fully specify this simple classification algorithm.

Nowadays, the previous linear models are seldom used, as they are largely su-
perseeded by non-linear functions. These non-linear functions are implemented by
stacking layers of artificial neurons, which are the simplest block in any artificial
neural network (ANN) architecture. The use of stacked non linear architectures has
been found to be key to achieving unprecedented regression and classification perfor-
mance, and can be realized through a variety of architectural designs including feed
forward neural networks (FFNN), convolutional neural networks (CNN) or recurrent
neural networks (RNN).

An excellent text on FFNN and backpropagation is [1], whereas the reader is
referred to [2] for Deep neural networks designs. A primer on the use of machine
learning in communications systems is provided in [3].
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Fig. 1 Reference network scenario. Base stations are equipped with energy harvesting (solar panel)
and accumulation (battery) means. Energy can be sold to and/or purchased from the power grid
and can also be exchanged between base stations (red links represent electrical lines provided by
an electrical micro-grid infrastructure connecting the base stations).

3 Pattern learning and predictive control for energy efficiency

In this section, we discuss the use of learning (and control) techniques to increase the
energy efficiency of 5G networks. The reference scenario is shown in Fig. 1. Base
stations (BSs) have energy harvesting (e.g., a solar panel) and accumulation (e.g.,
a battery) capabilities. A micro-grid connects BSs so that they can exchange excess
energy among them (see the red links in the figure). Some of the BSs, referred to as
ongrid, are connected to the power grid and, in turn, can send excess energy to the
power grid or purchase energy from it, while offgrid BSs are not connected to the
power grid and can solely use the energy that they harvest locally or that they receive
from other BSs. With this setup in mind, we are concerned with the following facts,
informally stated in the following:

• To maintain the buffer levels Bn(t) at all the BSs n in the network as close as
possible to a given reference level Bref , at all times t.

• To minimize the frequency of energy outage events for the offgrid BSs, during
which they are unable to serve the local traffic due to energy scarcity.

• To prioritize the use of the energy harvested over that purchased.

In [4], these objectives are achieved through the combined use of machine learn-
ing andmodel predictive control (MPC) theory [5]. In the considered scenario, there
are two time varying exogenous processes: P1) the incoming energy from harvesting
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devices, P2) the traffic load from the connected users. Remarkably, ML tools are
not used to make decisions, but rather to solve an inference problem. Specifically,
ML algorithms are trained to act as predictors for the exogenous time series P1 and
P2, whereas standard control theory uses such predictions to make suboptimal, but
generally very good (close to optimal) decisions, through MPC based optimization.
We found this approach to be very pragmatic and effective, and as well applicable to
diverse settings. Also, it allows pluggingmachine learning algorithms into a standard
control architecture with tracking and stability guarantees.

ML algorithms are utilized as follows.

• P1 The amount of energy harvested can be independently measured by each BS
and stored into time series with a time granularity of, e.g., 30 minutes / one
hour. Such time series can be provided as input to machine learning tools such as
Gaussian processes [6] for time series analysis or RNNs [2]. These ML models
can be trained for each BS, based on its own historical energy harvesting data.
The learning objective amounts to predicting the harvested energy time series
within a certain prediction window into the future (W time slots). Usually, this
job is carried out excellently by the considered ML tools, especially because solar
energy time series have bell-shaped patterns (with a peak around midday and zero
energy income at night) with a high amount of temporal correlation, both within
a day and across days.

• P2 The second exogenous process that is to be estimated by the BSs is the
aggregated local traffic load. The same ML algorithms of above can be trained
to act as predictors, forecasting the (aggregated) load intensity over a prediction
horizon of W time slots. The forecasting performance for the load process is
usually lower than that achieved for energy harvesting time series, as the load
generally shows a higher temporal variability. However, we found the considered
ML predictors to be accurate enough to correctly track the general behavior of
the load process, i.e., whether it will be increasing, about constant or decreasing
within the prediction horizon. Remarkably, we found that when MPC algorithms
are used in combination with ML predictors, as we did in [4], even inaccurate
predictionsmay lead to nearly optimal results, as long as the general “direction” of
the forecast processes is guessed correctly (e.g., whether they will be increasing,
decreasing or about constant within the prediction horizon).

To quantify the benefits of the discussed predictive control approach, in Fig. 2 we
show the outage probability for two cases. “Optimal – myopic” implements an op-
timal energy allocation strategy, but without using pattern learning and predictions.
“Optimal –MPC” refers to the predictive control approach that was discussed above,
where pattern learning and predictions are utilized by an MPC-based controller. The
energy threshold η in the abscissa represents the ratio between the amount of energy
that each ongrid BS is allowed to purchase daily and the total amount of energy it
would require to serve a fully loaded scenario during a full day. Setting η amounts
to putting a daily limit on the total amount of energy that can be purchased by the
network of base stations. As can be seen from this plot, the use of predictions allows
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Fig. 2 Outage probability for a network with 18 base stations. “Optimal – myopic” refers to an
optimal allocation of energy resources in each time slot, with no ML-based forecasting. “Optimal
– MPC” refers to the optimal predictive based control strategy exploiting ML-based forecasting of
harvested energy and load.

a substantial reduction of outage events (the two curves are computed accounting
for the same traffic load and energy harvesting processes). A similar comparison,
performed removing the limit on the energy that can be purchased reveals that, for
the same value of outage probability, the total energy amount that is acquired by the
power grid is reduced by at least 35% in the worst case and up to 70% in the best
one, depending on the distribution of load across the BSs, see [4] for details.

Further developments. This research line is further explored in [7], where a similar
problem is tackled using RNN for pattern forecasting and additionally accounting
for hourly energy prices into the optimization problem. Another example is pro-
vided by [8], where the authors propose a layered learning mechanism for massive
deployments of 5G small base stations powered by solar energy: in the first layer,
BSs locally decide upon ON/OFF policies accounting for the local energy income
and traffic demand through an accelerated reinforcement learning scheme (see Sec-
tion 4). In a second layer, an artificial neural network estimates the network load at
a global level, acting as a centralized controller to steer the decisions of the local BS
agents.

Observation. Notably, in [4, 7] ML tools were used within a closed loop MPC
decision making architecture. This makes it possible to retain the convergence and
stability qualities of MPC control, while exploiting the excellent pattern learning and
forecasting capabilities of ML algorithms. Further control architectures that exploit
this approach are presented in [5].
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4 Reinforcement learning for 5G performance enhancement

Reinforcement learning (RL) [9] is an optimization technique for sequential decision
making, i.e., when actions have to be taken as time evolves to steer the behavior of
a certain stochastic system that we would like to control. RL has been developed to
overcome the limitations of Markov decision processes (MDP), where the system
model (the full statistical description of the system evolution) is to be known in
advance. The main advance of MDPs is that they compute optimal policies, but this
comes at the costs of

• C1 – knowing exactly the Markov chain describing the system evolution;
• C2 – running optimization algorithms that iteratively compute Bellman equations

across all system states and all actions.

In some cases, C1 is a major problem as the system is not entirely known to
the designer. This especially applies to complex 5G systems, for which an exact
derivation of the involved transition probabilities is difficult to carry out, e.g., due
to the lack of an appropriate statistical description of the exogenous processes that
interact with the decision making algorithm (the controller). Moreover, MDPs are
usually formulated considering discrete state spaces by quantizing the involved vari-
ables into a number of levels. Due to C2, the complexity entailed in searching for an
optimal solution usually grows exponentially with the number of states. This fact is
known as the curse of dimensionality, and often prevents the applicability of MDP
to real world problems where the number of states is considerable.

RL was developed as a solution to C1 and C2, providing the following benefits

• RL is said to be model free, as the probability distribution of the underlying
Markov model that describes the problem at hand is not explicitly used. Instead,
the system behavior is captured by an action-reward mapping, which is iteratively
learned through a trial-and-error approach, i.e., interacting with the environment
and measuring its response;

• the full exploration of the state space is not needed. Only relevant states (and
actions) will be visited and used to update the internal knowledge of the decision
maker (the action-reward maps): this considerably reduces the complexity of the
search for optimal policies.

On the other hand, RL has the main disadvantages that convergence to (nearly)
optimal solutions is only achieved asymptotically, upon completing a sufficient num-
ber of trial-and-error cycles, and that such convergence may be problematic if the
system behavior is non-stationary.

Optimization example – RL for video streaming performance enhancement.
In [10], we proposed an RL algorithm for the control of the quality of experience
(QoE) of mobile users connected to a Dynamic Adaptive Streaming over HTTP
(DASH) video service.
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The controller (decision maker) runs at the mobile device with the objective of
controlling the video quality of a DASH streaming service. This amounts to adapting
the video quality that is requested from the DASH server (within the 5G or Internet
network) at runtime, according to channel and video dynamics.

The learning cycle used to compute optimal policies is shown in Fig. 3. At
each time t a new action at is picked using the Q-table, Q(st, at ), which is imple-
mented by the neural network (labeled “Network”) in the diagram. The Q-table is
a function mapping the current state st into an output vector of long-term rewards,
one for each action a ∈ A(st ), where A(st ) is the feasible action set for state st .
The next action at is picked either using a softmax or an ε-greedy strategy. With
softmax, the next action a? is the one that maximizes the long-term reward, i.e.,
a? = maxa∈A(st ) Q(st, a). With ε-greedy, the next action is a? with probability ε,
and it is instead picked at random with probability 1− ε. This allows controlling the
exploration versus exploitation tradeoff: with probability ε we stick with what has
been learned so far, steering the search towards the best local direction (“exploiting”
the local gradient), whereas with probability 1 − ε we allow the solver to explore
new regions incurring a risk, but allowing the algorithm to escape local minima
(“exploration”). The action at is implemented and, in return, the environment will
return a reward rt and the state will advance to st+1.

Reward function. The reward function rt encodes our preferences: 1) the instan-
taneous picture quality, 2) the playout buffer state, which should ideally be above a
certain threshold, at all times, 3) the video quality stability, i.e., we would like to
avoid that the video quality changes sharply or oscillates noticeably.

System state. The state st encodes the channel capacity for the last n ≥ 1 seg-
ments, the buffer playout time for segment t (the lapse of time from the start of
the segment download and the time when its playout is due at the client) and the
re-buffering time for video segment t (greater than zero if the download time for the
current segment exceeds the buffer playout time).

Deep Q-learning. The adopted RL algorithm uses a Q-learning strategy. The
Q-table is represented by the neural network that, for each state st returns the list
of estimated long-term rewards Q(st, a) for all the actions a ∈ A(st ). Traditional
Q-learning uses standard memory tables to store the Q(st, a) long-term reward
estimates. However, when st is very large Q-learning suffers from the curse of
dimensionality problem, as the size of the tables is proportional to the cardinality of
the state space. Common approaches encode st into quantized values, by quantizing
the system variables, but this may imply a considerable loss in the quality of the
solution. The approach proposed in [10] solves this as a deep neural network (hence
the name “deepQ-learning”) is utilized in place of amemory table, with the following
advantages:

1. all variables in st can be kept continuous within a bounded set,
2. only a fine set of neural network parameters (the “weights”) are to be learned to

fully specify the mapping Q(st, a). If learning is carried out correctly, the neural
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Fig. 3 RL learning cycle. At each time t , st indicates the system state, the next action at is picked
using the Q-table (the block called “network” on the top), as a response the environment returns a
new state st+1 and a reward rt .

network table remains accurate (it “generalizes”) even for state-action pairs that
were not encountered during the training phase.

The trick of using a neural network as a mapping engine empowers RL algorithms,
allowing them to effectively cope with the curse of dimensionality problem. Other
subtleties, such as using a replay buffer and a clone neural network, are needed
to ensure a proper learning of the Q-tables (i.e., the eventual convergence to nearly
optimal policies). The reader is referred to [10] for additional implementation details.

As shown in [10], the results achieved with this RL approach greatly outperform
those obtained with standard Q-learning and with MPC-based algorithms both in
terms of convergence speed and quality of the solution (e.g., freezing prevention and
playout stability).

Distributed RL for functional split control for 5G small cells. A distributed appli-
cation of RL is presented in [11], where the authors consider dense deployment of 5G
small cells powered by renewable energy sources. In this setup, they propose a novel
algorithm to handle the split of baseband processing functions between the BSs and
the central cloud, that can be hosted by a server facility within the network edge. As
radio cells become smaller and deployed in a densified manner, the energy consump-
tion associated with baseband processing takes a large share of the total BS energy
expenditure, so it becomes important to assess which baseband functions (or part of)
are to be executed locally, and which ones shall be offloaded to network servers to
strike the right balance between processing delay and overall energy consumption.
In [11], an energy minimization problem for the 5G small cell deployment is posed
and solved through two multi-agent RL techniques: distributed fuzzy Q-Learning
and Q-Learning online algorithms. Coordination among the distributed agents is
achieved by broadcasting system level information. The proposed algorithms bring
the following main benefits: 1) a continuous state-action representation is adopted,
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thus favoring convergence speed and generality of the approach, 2) the broadcast
information allows coordinating the distributed RL agents, leading to higher stability
and better convergence properties.

Concluding remarks about RL. Similarly to what presented in Section 3, neu-
ral networks are used in a closed control loop, empowering RL algorithms with
advanced mapping and generalization capabilities. Their use ameliorates the curse
of dimensionality problem, whereas the closed control loop allows retaining the
convergence and optimality properties of standard control algorithms. As for dis-
tributed RL, it is an open research field on its own, which needs further theoretical
developments to establish solid convergence and stability results, as well as viable
approaches to achieve coordination among the distributed agents. Most of the papers
in the literature that apply distributed RL to real world problems, and in particular to
networking problems, exploit heuristic approaches providing little theoretical guar-
antees in terms of optimality and convergence properties. Recent research moving
the first steps toward a mathematical theory of distributed RL is [12, 13].

5 Machine learning for context awareness

In this section, we elaborate on the use of machine learning to capture communica-
tions and mobility patterns in 5G systems. In the traffic case, load patterns represent
transmission flows whose behavior depends on the user applications. In the mobility
case, the patterns depend on the physical mobility of the users, as well as on the
physical topology of road links and on their morphology. Machine learning tools
appear to be good candidates to learn these user-generated patterns, possibly in an
unsupervised fashion, and then perform inference and classification to be used, e.g.,
to enhance network procedures or within new services. Below, selected applications
of machine learning to traffic and mobility traces are discussed, underlining the ML
tools that were used, the targeted applications/services and the obtained results.

Protocol level analysis of mm-wave energy traces [14]. The authors of [14] pro-
pose a ML-based processing pipeline to automatically infer the type of protocol
packets that are sent over the air by millimeter-ware radios, from narrowband (un-
dersampled) energy traces, and without requiring one to decode the transmitted
data flow. The simplest setup entails a transmitter-receiver pair, which communicate
over a millimeter-wave (“mm-wave”) wireless channel. A sniffer, equipped with an
omni-directional antenna, intercepts this communication channel and samples it at
a bandwidth that is much lower than that at which the signal was transmitted. In
Fig. 4, we show a portion of a sub-sampled mm-wave signal, referred to as channel
energy trace. Although decoding is not possible, an expert observer with knowledge
of mm-wave transmission standards can infer that this energy trace contains two
initial beacon packets, identifiable by their typical shape (peak at the beginning) and
duration (between that of DATA and ACKs), followed by a sequence of DATA pack-
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Fig. 4 Zoom of a portion of a mm-wave energy trace from a real measurement setup. Control
packets (beacons), data packets and acknowledgments can still be identified, although the trace is
subsampled and cannot be decoded to retrieve the original sequence of bits that was transmitted.

ets and acknowledgments (ACKs), discriminated by their duration (usually ACKs
are much shorter than DATA packets). Control (beacons, ACKs) and DATA packets
are separated by silence and noise is superimposed to all channel readings.

In [14], a ML-based algorithm is put forward to automatically extract and analyze
DATA bursts, i.e., sequences of DATA/ACKs. As a first step, correlation-based
template matching algorithms are used to mark the beginning of DATA bursts,
through the identification of the pair of beacons at their beginning. After that, a
dedicated algorithm exploiting Hidden Markov Models (HMM) [15] is trained on
experimental data to automatically classify DATA packets and ACKs, returning the
following pieces of information

1. identification of each protocol element, namely, Beacon, DATA packet, ACK;
2. start, end time and average energy level of each protocol element.

This amounts to performing a semantic protocol decoding of the mm-wave channel,
which may be useful to perform an automatic assessment on the status of the wireless
medium, e.g., presence of jammers, missing ACKs (which may indicate reception
problems such as antenna misalignment), analysis of per-packet energy levels (to
identify blockages/excessive channel interference, etc.).

To provide adaptability to varying channel conditions, the considered ML tech-
niques (HMM and its extended version, i.e., the Extended HMM) are combined with
K-means clustering. In this way, it is possible to adapt, on the fly, the proposed
HMM-based classification algorithm to the time varying energy levels of Beacons,
DATA packets and ACKs within each data burst. Finally, a technique is also pre-
sented to jointly process time synchronized traces collected by multiple sniffers.

Observation: HMM training is unsupervised as HMM parameters are tuned us-
ing the Expectation Maximization (Baum-Welch) algorithm [15], without the need
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to perform an a priori labeling of DATA packets and ACKs.

Mobile traffic prediction and urban anomaly detection [16, 17, 18]. The traffic
of a Long Term Evolution (LTE) mobile system is tracked by decoding the LTE
Downlink Control Channel (DCI), which is transmitted in clear text and can thus be
read without breaking any security/encryption layer. This allows the collection, for
each connected mobile user, of physical layer configuration parameters such as the
number of allocated resource blocks, the modulation order and the code rate (mod-
ulation and coding profile). From these pieces of information, the amount of data
transmitted in uplink and downlink directions can be retrieved, obtaining aggregate
traffic profiles for the monitored LTE radio cell(s). In [16], an urban anomaly detec-
tion system based on stacked Long Short-Term Memory (LSTM) neural networks is
designed and evaluated. The intuition behind this work is that the amount of traffic
within a certain city area is directly associated with the number of people within the
same space, and that mobile traffic can be used as a proxy to detect anomalous events
within an urban environment. To this aim, a stacked LSTM network is used due to
its capabilities of extracting the long-term temporal dependencies of complex time
series, embedding them into a suitable feature space of fixed dimension, where clas-
sification of traffic behavior should be much easier to carry out than working with the
original sequential data. The training of the LSTM network is supervised, with labels
specifying whether a particular event has occurred in the monitored area during a
certain time of the day, e.g., a soccer match, a fair, an exhibition, a concert, etc. The
authors have trained their LSTM-based algorithm using real data collected within
the city of Barcelona. Their results confirm that the approach, although preliminary,
shows promising results and that unusual events implying the gathering of people
may be detected reliably. This work has been extended in [18], where the authors
train LSTM-based algorithms in a semi-supervised fashion. This overcomes the im-
balanced data problem of a purely supervised learning approach, where anomalous
classes are often poorly represented with respect to the others, as anomalous events
are usually rare events [19]. As a result, the problem is no longer tackled as a clas-
sification task, but rather, the algorithms are designed to detect traffic anomalies
by learning from non-anomalous patterns. This training method makes the anomaly
detection framework applicable to a broader set of urban anomalies, including those
that are not known a priori. The prediction of mobile traffic is considered in [17]
where, based on the same DCI channel monitoring technique of [16], the traffic load
of LTE base stations is forecast from one to multiple Transmission Time Intervals
(TTIs) into the future. Several forecasting architectures are trained in a supervised
manner, including LSTM networks, Auto Regressive Integrated Moving Average
(ARIMA) filters and Feed Forward Neural Networks (FFNNs). Results obtained
with experimental traffic data show the sharp superiority of LSTM predictors.

Mobility-aware optimizations. A number of papers have appeared on the exploita-
tion of mobility patterns within 5G networks, which seems to be a promising re-
search direction. Reference [20] considers ultra-dense 5G deployments and proposes
a Semi-Markov model based algorithm to predict the next serving BS. The algorithm
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is trained on the sequence of past handover events and mobility predictions are used
to balance the load among the BSs. In this work, it is shown that such load balancing
leads to significant energy savings. The authors of [21] propose a very timely idea.
The rationale is that mobility predictions can be effectively exploited in 5G systems
to cache content to BSs in advance (referred to as “proactive caching”). Along the
same lines, the recent paper [22] proposes a resource management framework for
Multi-access Edge Computing (MEC), where mobility predictions are utilized to
decide about the assignment of computing tasks to distributed edge servers.

While the previously discussed research demonstrate the usefulness of mobility
predictions within several networking scenarios, they do not directly use ML, which
is instead exploited by the following (recent) papers. The authors of [23] consider
mobility prediction and ML based channel quality estimation jointly, to improve the
resource-efficiency of car-to-cloud data transfer by scheduling the transmission time
of the car data with respect to the anticipated behavior of the communication context
within a 5G network setup. This mobility/context-predictive approach is assessed
in a public mobile network scenario showing an increase of the average data rate
by up to 194% and a reduction of the average uplink power consumption by about
50%. Reference [24] considers mobility prediction as one of the key enablers of
(5G) Self Organizing Networks (SON). There, a comparative analysis is carried out
among four prediction algorithms: Deep Neural Network (DNN), Extreme Gradi-
ent Boosting Trees (XGBoost), Semi-Markov based, and Support Vector Machine
based (SVM). XGBoost is found as the clear winner among these techniques, with
a prediction accuracy as high as 90%.

The above are representative examples, which were selected to demonstrate the
broad range of cases where ML can be effectively used. ML is becoming a key tech-
nology for 5G systems, encompassing all components/sub-systems from physical
layer to network/mobility/energy management, resource allocation (e.g., function
placement), edge computing (e.g., scheduling of computing resources), etc. We ex-
pect many more applications of ML algorithms to emerge in the near future.

6 Concluding Remarks

Machine learning techniques are being massively utilized within many new designs
at nearly all layers of 5G networks. In this book chapter, we have discussed some
possible applications of such technology to selected networking problems, trying to
show whereML may be best exploited, how and why.

Our first take home messages are that, in our opinion,

1. ML can be effectively exploited within online learning and control mechanisms
for 5G protocols and networks.
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2. ML inference (mapping, forecasting) and classification (clustering) techniques
offer excellent performance, and we especially recommend their use within a
closed control loop architecture, for example as means to perform forecasting
(Section 3) or cost-to-go or action-reward mapping (Section 4). Well knownMPC
or RL techniques can then be used in conjunction withML to control the evolution
of 5G algorithms and procedures, providing stability and convergence guarantees,
as well as close-to-optimal solutions. Their use within open loop architectures is
not recommended as, to date, ML tools do not yet offer guarantees about whether
they are going to fail for certain input patterns/data.

A further take home message is that

3. there is still ample room for theoretical developments of distributed RL and
MPC (used in conjunction with ML techniques). 5G and wireless networking
offer nice setups for the design and validation of these new algorithms, whose
objectives include enabling fully distributed and stable control with guarantees
in terms of optimality and convergence speed.

Our last take home messages are

4. ML technology offers very effective means to learn patterns in complex 5G
systems (Section 5). These patterns, associated with user traffic, harvested energy,
mobility, etc., may be exploited to improve the performance of existing algorithms
and, most importantly, to spur the design of new applications and services.

5. Last but not least, learning so far has been carried out in a mostly supervised fash-
ion as, to date, this is the most effective approach to training ML algorithms, with
plenty of optimized software libraries available, e.g., Keras (https://keras.io/),
TensorFlow (https://www.tensorflow.org/), PyTorch (https://pytorch.org/), etc.
Nevertheless, obtaining labeled datasets is costly and, sometimes, impractical.
Unsupervised and semi-supervised approaches are expected to be very useful
and, in the near future, to become more important than their supervised counter-
part. As the authors of [25] state in their seminal paper: “we expect unsupervised
learning to become far more important in the longer term. Human and ani-
mal learning is largely unsupervised: we discover the structure of the world by
observing it, not by being told the name of every object”.
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