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Abstract: Urban traffic pattern reflects how people move and how goods are transported, which is 

crucial for traffic management and urban planning. With the development of sensing techniques, 

accumulated sensor data are captured for monitoring vehicles, which also present the opportunities 

of big transportation data, especially for real-time interactive traffic pattern analysis. We propose a 

three-layer framework for the recognition and visualization of multiscale traffic patterns. The first 

layer computes the middle-tier synopses at fine spatial and temporal scales, which are indexed and 

stored in a geodatabase. The second layer uses synopses to efficiently extract multiscale traffic 

patterns. The third layer supports real-time interactive visual analytics for intuitive explorations by 

end users. An experiment in Shenzhen on taxi GPS trajectories that were collected over one month 

was conducted. Multiple traffic patterns are recognized and visualized in real-time. The results 

show the satisfactory performance of proposed framework in traffic analysis, which will facilitate 

traffic management and operation. 

Keywords: traffic pattern; pattern recognition; visual analytics; traffic perception and exploration 

 

1. Introduction 

Understanding urban traffic dynamics facilitates the lives of urban residents, the operations of 

transport managers, and the alleviation of air pollutions. With the development of information and 

communication technology (ICT), the Internet of things (IoTs), and the global positioning system 

(GPS), vehicle GPS trajectories have been widely collected in many cities [1–3]. As vehicles, especially 

taxis, move around the city, their GPS trajectories become important data sources for advanced traffic 

information systems and advanced traffic management systems [4,5]. Currently, raw GPS data are 

processed for real-time traffic monitoring or vehicle dispatching when they are streamed in. 

Sometimes, these data are stored for an additional 2 to 6 months or discarded directly. Due to the 

large volume of vehicle GPS data, it is difficult to process massive GPS data to perceive and explore 

the hidden traffic patterns in real-time. Consequently, it is essential to develop a new approach that 

has low storage and computing costs for exploring citywide traffic patterns. 

Many studies have been conducted on the extraction of transport information. Several transport 

attributes have been recognized from various data sources, for example, road network [6], travel 

speed [7], travel volume [8], and traffic congestion [9]. A set of effective approaches has been 

developed for analyzing road traffic, which includes statistics-based methods [10–13] and clustering-

based methods [14–16]. For example, Zou et al. [17] examined road traffic using long-term vehicle 

trajectories and identified the spatial dependency of the traffic state via spatial autocorrelation. Guo 
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et al. [18] developed an effective computing system for investigating regular and abnormal traffic 

flow patterns at road intersections. These studies provide an effective analysis of traffic at various 

places. However, these methods are computation-intensive and, thus, have difficulty in real-time 

exploration analysis. In addition, due to the cascaded nature of urban traffic [17], congestion at an 

intersection may produce a vehicle queue at another road. The exploration of multiscale urban traffic 

patterns from one road to the city area is expected. 

Meanwhile, due to its satisfactory performance on big data computing and prediction, machine 

learning methods have been applied in transport data analysis, such as tensor factorization [19], 

artificial neural networks [20], and graph neural networks (GNNs) [21]. Although complex traffic 

patterns have been extracted, a gap between the computed results and the associated human 

understanding remains. A more friendly interactive tool for the intuitive illustration of urban traffic 

is needed to enable users to understand citywide traffic efficiently. 

We present a three-layer interactive framework for the exploration of multiscale traffic patterns 

leveraging massive GPS trajectory and the intuitive visualizations for effective perception. We 

propose a middle-tier data structure, namely, the synopses, which connects the data processing layer 

and the pattern recognition layer to increase the efficiency to enable real-time traffic exploration 

analysis. According to the end users’ interests, multiple traffic patterns are effectively recognized. In 

the visual analytic layer, a web-based system is designed to facilitate end users visualizing, 

perceiving, and exploring citywide traffic dynamics in real-time. Finally, using GPS data that were 

collected in Shenzhen City over one month, we conducted an experiment to evaluate the performance 

of the proposed framework. 

The main contributions of this study are summarized as follows: 

 A three-layer framework is proposed for real-time interactive traffic pattern exploration analysis 

on massive GPS trajectories. 

 The synopses are proposed to constitute a middle-tier data structure to accelerate pattern 

recognition and support real-time exploration. 

 A friendly interactive visual analytics system is developed for exploring urban road traffic 

dynamics intuitively. 

The remainder of this article is organized as follows: Section 2 reviews the related literature. 

Section 3 introduces the study area and the dataset. In Section 4, we describe the proposed framework 

and method in detail. Section 5 reports a case study and presents several examples. In Section 6, we 

discuss the performance of the developed system. Finally, we present our conclusions in Section 7. 

2. Related Work 

2.1. Data-Driven Traffic Monitoring 

Traffic monitoring has been a popular topic as it facilitates transport management and planning. 

Due to the advantage of passive sensing, increasingly many sensors are being used in the transport 

sector, such as probe vehicles, loops, and cameras [22–25]. These sensors produce abundant data that 

capture the urban traffic status, thereby enabling traffic monitoring. Consequently, data-driven 

methods are widely developed for monitoring traffic attributes, such as the speed, the flow, the 

occupancy, and the travel time [22,26–28]. These results are useful for forecasting traffic status, 

detecting traffic incidents, and planning transportation facilities [29–32].  

Data-driven traffic monitoring studies contain two main parts: real-time traffic sensing and 

traffic pattern extraction. Real-time traffic sensing processes massive sensed data and produces traffic 

information for travelers and transport managers [30,33]. The main challenge is to infer the accurate 

traffic status despite the inhomogeneity and the sparseness of the sensed data.  

Traffic pattern extraction is another task of data-driven traffic monitoring. Three categories of 

methods have been developed for this task: probability-based methods, clustering methods, and 

neural network (NN) methods. The probability-based methods compute traffic properties such as 

speed and flow [10,13,34]. The distribution, randomness, and relationship among these properties 
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are used to estimate parameters that describe the traffic patterns [11,12]. The clustering methods 

group road links according to their similarity in terms of traffic properties. The clustering methods 

have wide applications in traffic pattern extraction as they can consider various traffic features [14–

16]. To obtain more accurate results, several NN methods are applied in traffic data analysis, such as 

local artificial neural networks [20], fuzzy neural networks [8], and sequence graph neural networks 

[21]. However, these methods focused mostly on fixed temporal and spatial scales; hence, they cannot 

explore dynamic traffic intuitively.  

Road traffic changes with space and time. Several studies represented road traffic as time-series 

sequences and examined the trends and recurrent patterns using the autoregressive integrated 

moving average model (ARIMA) and the Markov model [15,35–37]. Furthermore, spatial 

autocorrelations and cross-correlations are computed to generate relationships among road links 

[17,38,39]. Overall, these advanced studies have demonstrated the spatial-temporal variation of road 

traffic in the city. This study developed an efficient computing framework for supporting friendly 

and intuitive traffic exploration using massive GPS trajectories. 

2.2. Traffic Visual Analytics 

The revealed traffic patterns are typically complex; thus, they are difficult for users to 

understand. Recently, visual analytics of temporal, spatial, numerical, and categorical properties 

were presented for facilitating the interpretation of complex results by users [40]. Vehicle trajectories 

are represented as dots or polylines on a map [41,42]. Traffic visualization techniques are categorized 

into three main groups: direct depiction, derived data visualization, and extracted pattern 

visualizations [43]. For example, in combination with typical two-dimensional spatial maps, studies 

modeled the temporal dimension as the z-axis to depict the temporal properties [44,45]. The novel 

route-zooming technique [46] embeds the spatiotemporal information into a map, to avoid the visual 

clutter that arises in direct depiction, which enables us to display spatial information and attributes 

at the same time. For visualizing derived data, aggregation is a popular approach. Kernel density 

estimation is mostly used to derive the density of trajectories [47]. The hotspot map is another tool 

for indicating significant places behind massive traffic data [48]. By bundling massive vehicle 

trajectories, the changing flow visualization is proposed for mapping massive mobility flows [49]. 

Furthermore, studies have focused on the visualization of traffic patterns. For example, the 

propagation of a traffic jam is displayed on a spatial map to show how the traffic jam evolves from 

one road to another [50].  

Visualization depicts the results using various visualization forms, whereas visual analytics 

focuses on methods “for an effective understanding, reasoning and decision making” [51]. Visual 

analytics is a useful and powerful analysis method for big data due to the advantage of combining 

human intelligence and machine computing. Various studies have proved the performance of visual 

analytics on transport problems. For example, a friendly trip visualization system, namely, TripVista 

[18], was developed for examining the movement behaviors at intersections, such as the object types, 

travel speeds, and travel directions. Traffic events are detected and displayed, such as traffic jam [50] 

and human gathering activities [52]. Visual analytics on the route diversity facilitate the 

determination of the usages of urban roads [53,54]. These studies of visual analytics enable the 

intuitive exploration of massive transport data. Following this direction, we put forward the mission 

designing visual analytics with knowledge of urban traffic to develop a data-driven interactive visual 

analysis system for exploring traffic pattern friendly and intuitively.  

3. Study Area and Datasets 

We conducted this study in Shenzhen, China. Shenzhen is one of the most developed cities in 

southern China. It covers a total area of approximately 2000 km2. After fast development over the 

past forty years, Shenzhen has become a global city with 20 million residents and 3.4 million vehicles. 

Daily traffic has become a challenging issue for transport management and operations. We 

considered two categories of data: road network and vehicle GPS records. The road network of 

Shenzhen was provided by the Transport Commission of Shenzhen Municipality. The road network 
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is represented by a graph of interconnected lines and points, in which lines denotes road links and 

points denotes the intersections of road links. The road links also contain several attributes, such as 

the name, the level, and the local administrative region. The road network is organized according to 

the topology.  

The vehicle GPS records were also provided by the Transport Commission of Shenzhen 

Municipality. This dataset contains the GPS records of 14,692 taxis from January 2015. It was collected 

by GPS modules that were equipped in the taxies. The total number of GPS records is approximately 

5.5 billion, which require storage of up to 100 G. The vehicle GPS records are described in Table 1. 

Each GPS record includes six fields: vehicle ID, time stamp, longitude, latitude, speed, and 

occupation status.  

Table 1. Description of the raw taxi GPS data. 

Attribute  Description Example 

Vehicle ID Unique identifier of the vehicle 117376 

Time stamp Recording time, with an accuracy of one second 2015-01-11 00:00:10 

Longitude Longitude when recorded 114.124967 

Latitude Latitude when recorded 22.610739 

Speed Instantaneous velocity when recorded 72 

Occupation 

status 
Whether passengers are in the taxi 

1 

4. Methodology 

We propose a three-layer framework for extracting and exploring traffic patterns, which is 

illustrated in Figure 1. In the first data processing layer, raw GPS records are processed to produce 

the synopses, which constitute a middle-tier data structure that represents traffic states of fine-

grained road segments. In the second traffic pattern recognition layer, typical traffic patterns are 

recognized. The visual analytic layer provides interactions and intuitive visualization for the real-

time exploration of traffic patterns. These layers are described in detail below. 

 

Figure 1. Workflow of the proposed framework. 

4.1. Data Processing 
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Due to the dynamic nature of traffic, the traffic state varies over space and time. Instead of 

extracting traffic patterns from raw GPS records directly, we process raw GPS data into middle-tier 

synopses to accelerate the subsequent exploration. Formally, the synopsis is a traffic state description 

of a road segment during a period. The synopsis can be defined as a quadruples M = {p, t, P, s}, where 

p is the road segment, t is the time, P is the set of GPS records within the road segment p, and s is the 

corresponding traffic state. The length of the road segment and the time interval of the sequential 

synopsis are important as the fine-grained spatial and temporal units will significantly increase the 

required data storage. According to the first law in geography, “near things are more related than 

distant things” [55]. Traffic states on shorter road links are more homogeneous. Therefore, we 

segmented long road links into shorter segments. Similarly, a smaller time interval is also suggested. 

After intensive experimentation, we set the maximum length of a road segment to 200 m. If the length 

of a road link exceeds 200 m, we divide it to several segments. We set the time interval to 15 min, 

which is a typical value in transport studies and applications [56,57]. Regarding the set of GPS 

records, P, we filter the related records of a synopsis by the location of road segment p and the time 

t. Noted that taxis travel slowly or stop while looking for passengers, which will underestimate road 

traffic. Thus, we firstly filter out GPS records with the occupation status un-occupied. Raw GPS data 

are then related to the corresponding road segment by map-matching. As the used parallel map-

matching method [7] is very fast, we can produce the synopsis on-the-fly when GPS records are 

streamed into the taxi monitoring system or with the post-processing mode.  

We regard the average travel speed as the traffic state. The value of the traffic state s can be 

computed using the velocity vector s = [𝑣1, 𝑣2, … , 𝑣𝑛], as in Equation 1, where 𝑣𝑖 is the traffic speed 

from the GPS records, and n is the number of matched records. It is also essential to evaluate the 

reliability of the synopsis. Here, we present the variance of the speed to indicate the trustworthiness 

of the traffic state value, which is calculated via Equation (2). A large variance indicator suggests high 

uncertainty in the value of the traffic state. If no record is available, we set the value to “–1”, and the 

road link cannot be sensed during the corresponding 15 min using taxi GPS data. 

𝑠 =
1

𝑛
∑𝑣𝑖

𝑛

𝑖=1

 (1) 

S = √
1

𝑛 − 1
∑(𝑣𝑖 − 𝑠)2

𝑛

𝑖=1

 (2) 

 

Finally, after computing all synopses, we can represent road traffic dynamic with a sequence of 

synopses. We stored all synopses in a geodatabase for the subsequent traffic pattern recognition, 

visualization, and exploration. Considering the imbalance of the GPS records, we created the spatial 

index and temporal index on synopses to accelerate the data query and retrieving.  

4.2. Pattern Recognition 

We use time sequential synopsis to evaluate the dynamic variations of road traffic. Similarity 

measures have been widely used in pattern recognition, such as the Manhattan distance and the 

Pearson distance. Here, an algorithm, named "Trend and Value Distance (TVD)", is presented for 

evaluating the similarity of road traffic sequence. In contrast to many similarity measures that 

consider only the numeric values or the sequence order, the presented TVD algorithm integrates both 

to examine the similarity of two sequences. For a specified road and a time period from 𝑡𝑝 to 𝑡𝑞, let 

𝑆𝐸𝑄{𝑝,𝑡𝑝,𝑡𝑞} = < 𝑠{𝑝,𝑡𝑝}, 𝑠{𝑝,𝑡𝑝+1}, … , 𝑠{𝑝,𝑡𝑞} > be the sequential synopses. The TVD is described in detail 

in Algorithm 1. The numeric differences between two sequential synopses are firstly computed (Lines 

6 to 13). The Pearson distance is calculated and used to examine the similarity of trends (Line 15). 

These are combined as the final TVD result (Line 16). The value of the TVD ranges from 0 to 1. The 

larger the TVD value, the higher the similarity of two synopses. Here, the TVD is used to evaluate 
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the similarity of traffic dynamic of one road link between periods. It is also used to evaluate the 

similarity of the traffic dynamic of multiple road links. 

 

 

Algorithm 1 TVD 

Input: 

𝑆𝐸𝑄1, 𝑆𝐸𝑄2: two time sequential synopses 

μ: adjusting parameter 

Output: 

𝑇𝑉𝐷: distance value 

1:  Length of sequential synopses: 𝑛 =  𝑆𝐸𝑄1. length 

2:  Manhattan distance of 𝑆𝐸𝑄1 and 𝑆𝐸𝑄2: 𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 =  0 

3:  Maximum Manhattan distance: 𝑚𝑎𝑥 =  0 

4:  Vector of the difference of 𝑆𝐸𝑄1 and 𝑆𝐸𝑄2: 𝑑𝑖𝑓𝑓⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

5:  𝑒 , where 𝑒𝑘 = 1, 𝑘 ∈ [1, 2, … , 𝑛] 

6:  for i in n do 

7:     𝑎𝑏𝑠𝑖 = 𝑀𝑎𝑡ℎ. 𝑎𝑏𝑠(𝑆𝐸𝑄1𝑖 − 𝑆𝐸𝑄2𝑖) 

8:     𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛+=  𝑎𝑏𝑠𝑖  

9:     𝑑𝑖𝑓𝑓𝑖 = 𝑆𝐸𝑄1𝑖 − 𝑆𝐸𝑄2𝑖  

10:    if 𝑎𝑏𝑠𝑖 > 𝑚𝑎𝑥 then 

11:       max =  𝑎𝑏𝑠𝑖  

12:    end if 

13: end for 

14: 𝐷𝐼𝑆𝑣𝑎𝑙𝑢𝑒 = 1 −
𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛

𝑛∗𝑚𝑎𝑥∗𝜇
 

15: 𝐷𝐼𝑆𝑡𝑟𝑒𝑛𝑑 = 𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑑𝑖𝑓𝑓⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑒 ) 

16: 𝑇𝑉𝐷 =  𝐷𝐼𝑆𝑣𝑎𝑙𝑢𝑒 ∗ 𝐷𝐼𝑆𝑡𝑟𝑒𝑛𝑑  

17: return 𝑇𝑉𝐷 

 
For a road segment, if the similarity of two sequential synopses exceeds a threshold, it indicates 

a possible regular traffic pattern. We develop another algorithm, namely, “Traffic Regular Pattern 

(TRP)”, for identifying the hidden pattern, which is presented as Algorithm 2. There are three steps 

in TRP. Parameter duration determines the period of interest. The parameter type filters the days of 

the specified type during the period. In our system, there are three types to be used: workday, weekend, 

and all (workday and weekend). The first step (Lines 1–8) is to retrieve sequential synopses from the 

geodatabase according to the temporal query conditions that are specified by the end users. For 

example, the setting duration = “From 2015-01-01 to 2015-01-31” and type = “weekend” specifies that 

the synopses of all the weekends in January will be used to recognize a potential traffic pattern. The 

second step (Line 9) is to evaluate whether the traffic dynamics of a road in the specified period are 

a regular traffic pattern. We use DBSCAN [58] to cluster the sequential synopses. The TVD value is 

used to measure the similarity of two sequences. There are two parameters, namely, “eps” and 

“minpts”, in DBSCAN. The parameter “eps” is set according to experimentation. "Minpts" is not a 

constant; it is related to sequences that are filtered by parameters duration and type. The third step is to 

generalize a typical traffic pattern for each cluster from the sequential synopses (Lines 10–-21).  

 

 
Algorithm 2 TRP 

Input: 

𝑎𝑙𝑙𝑆𝑦𝑛𝑜𝑝𝑠𝑒𝑠: All synopses 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛: Specified temporal type 

𝑒𝑝𝑠: Parameter ‘eps‘ in DBSCAN 

Output: 
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𝑇𝑅𝑃: Collection of traffic patterns recognized 

1:  Collection of daily traffic state sequences: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = ∅ 

2:  All days during the period of 𝑎𝑙𝑙𝑆𝑦𝑛𝑜𝑝𝑠𝑒𝑠: 𝑑𝑎𝑦𝑠 

3:  for each 𝑑𝑎𝑦 in 𝑑𝑎𝑦s do 

4:      if 𝑑𝑎𝑦 within 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 and 𝑑𝑎𝑦 in 𝑡𝑦𝑝𝑒 then 

5:          Push states of synopses on 𝑑𝑎𝑦 into 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   chronologically 

6:      end if 

7:  end for 

8:  Push every 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   into 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

9:  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = DBSCAN(𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑒𝑝𝑠) 

10: for each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖  in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do 

11:     𝑠𝑢𝑚 = 0 

12:     Traffic pattern recognized of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 : 𝑇𝑅𝑃𝑖 = ∅ 

13:     The number of sequences in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 : 𝑁 =  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 . 𝑙𝑒𝑛𝑔𝑡ℎ 

14:     for 𝑘 in 𝑁 do 

15:         for each 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖  do 

16:             𝑠𝑢𝑚+=  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑘 

17:         end for 

18:     end for 

19:     𝑇𝑅𝑃𝑖[𝑘] =  𝑠𝑢𝑚 𝑁⁄  

20:     Push 𝑇𝑅𝑃𝑖[𝑘] into 𝑇𝑅𝑃 

21: end for 

22: return 𝑇𝑅𝑃 

 

4.3. Interactive Traffic Pattern Explorative Analysis 

A web-based visual analytics system is developed for the real-time exploration of traffic patterns 

by end users. The interface is designed to comply with the classic visual exploration mantra, 

“Overview first, zoom and filter, details on demand” [59]. As illustrated in Figure 2, the designed 

interface consists of views (a, b) for global spatial and temporal pattern overview and views (c, d) for 

detailed exploration of roads of interest.  

For the overview navigation, a map view (a) is presented in the top left, with a digital map as a 

spatial reference to illustrate traffic state and traffic patterns by coloring the roads. Conventional map 

operations such as zooming and dragging are supported. End users can click or box select roads in 

the map view and set time conditions (i.e., duration, type, etc.) by the time components at the right-

bottom of the map view to interactively explore traffic patterns of various roads according to their 

individual interests. Parameters used in the traffic pattern recognition layer are also set by end users. 

The extracted traffic patterns with high frequency are enumerated in the pattern view on the top-

right (b) to show the typical cases of how the traffic state of a road segment changes over time. End 

users can click a pattern and observe its spatial distribution in the map view. The developed system 

also enables end users to add their patterns of interest as the target patterns by clicking on the roads. 

Once traffic pattern of a specified road link has been interactively identified, it can be examined 

in detail from both the spatial and temporal perspectives. Spatially, the road traffic states of the 

adjacent 10 upstream links and 10 downstream links of the target link are displayed (c). Multiscale 

temporal dynamics of the road link are visually expressed by a line chart and radial charts (d). The 

line chart is able to better support numerical reading tasks, namely, users can easily perceive the 

speed at a time point. Radial charts are provided to support the cycle comparison tasks, e.g., over 

workdays or weekends. The radial layout is composed of several concentric rings, in which one ring 

displays one day traffic pattern in the clockwise direction. Examples with details will be presented in 

Section 5.  
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Figure 2. Interactive interface for exploring urban traffic pattern. (a) A map view that shows road 

links with the traffic state. (b) A pattern view for querying road links with similar traffic dynamics 

with a specified traffic pattern. By default, it gives the most typical road traffic patterns. (c) A spatial 

view that shows the traffic patterns of a selected road (with black frame in the middle) and its adjacent 

road links. (d) Temporal views that display the daily, weekly, and monthly traffic patterns in both a 

linear and radial diagram. 

5. Case Study 

We conducted an experiment to evaluate the performance of the developed system. When raw 

GPS data streamed in, the synopses were computed and stored in the MongoDB database. The visual 

analytic system was implemented in JavaScript as a web-based system. We ran the experiment on a 

Dell desktop PC with a 3.40 GHz CPU and 8 G of memory. We reported several user cases to 

demonstrate the exploration of urban road traffic patterns using the developed interactive 

visualization system. 

5.1. Regularity of Traffic States 

One function of the developed system is to reveal the highly frequent traffic patterns of road 

links. The first case adopts the Visual Information Seeking Mantra "overview–zoom/filter–detail" [59] 

as the exploration strategy. For one road link, the TVD indicator was calculated to evaluate the 

similarity of the daily sequential traffic states in the workdays and the weekends.  

Table 2 reports the descriptive statistics of road links with high self-similarity, which 

demonstrates the regularity of the road traffic dynamic. Figure 3 presents the spatial distribution of 

road links that differ in terms of self-similarity. The results demonstrate that 15,266 roads have a TVD 

indicator that exceeds 0.5, which cover 2294.2 km. These links cover most road links in the downtown 

areas, and main roads in the outer suburb. The TVD values were concentrated in the range of 0.8 to 

0.9, with 9000 road segments in the workday and 8098 road segments in the weekend, respectively. 

In section of 0.9–1.0, the weekend mode has more road links, and according to the figure, it has more 

light-blue links. From the spatial perspective, many road links with high self-similarity are located in 

the urban center. A few roads with low self-similarity are located in the east Shenzhen and north 

Shenzhen. These results indicate the regularity of the road link traffic state. Therefore, it is possible 

to extract regular travel traffic patterns from massive vehicle GPS trajectories. 

Table 2. Descriptive statistics of road segments with repeated traffic states. 
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Table 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 Total 

Workday 
Number of road links 5 207 2753 9000 3301 15,266 

Total length of road links (km) 1.0 37.4 454.1 1335.8 465.9 2294.2 

Weekend 
Number of road links 9 273 2148 8098 4738 15,266 

Total length of road links (km) 1.7 48.8 351.6 1208.9 683.2 2294.2 

 

 
Figure 3. Similarity of the traffic patterns of each road link. (a) Workday. (b) Weekend.  

5.2. Temporal Dynamic of Road Traffic 

We zoom-in on the road links to investigate the temporal dynamics of traffic patterns. Upon 

clicking a link of interest on the map, its daily, weekly, and monthly traffic patterns are shown in the 

temporal view. Figure 4 shows an example of road links with typical traffic states. These two-road 

links are located on the same road but correspond to opposite driving directions. Due to large 

commuting volume, the road traffic significantly deteriorates during rush hour. The line chart in 

Figure 4a demonstrates that the travel speed decreases from 58 km/h to 18 km/h. The concentric 

circles are used to display weekly and monthly traffic patterns. One circle represents the traffic 

dynamic in one day. For the weekly pattern, the inner circle corresponds to Monday and the outer 

circle to Sunday. For the monthly pattern, the inner circle corresponds to the first week and the outer 

circle to the last week. The traffic pattern of the road in Figure 4a is stable on workdays and weekends. 

However, the monthly variation demonstrates that the road traffic deteriorates since more hours 

correspond to low travel speed week by week. Figure 4b suggests that the traffic dynamics differ 

between road directions. Both the weekly and monthly traffic patterns change minimally. The traffic 

patterns show high self-similarity on workdays and weekends from the weekly perspective, and 

stable traffic patterns are observed from the weekly perspective. 



Sensors 2020, 20, 1084 10 of 16 

 

 

Figure 4. Temporal view of traffic patterns. (a) One road link. (b) Another road link located on the 

same road with opposite driving direction. 

5.3. Traffic Pattern of Local Road Networks 

We further examined the traffic pattern of local road networks. Upon clicking a road link, traffic 

patterns of its adjacent links from both upstream and downstream are visualized. Figure 5 shows an 

example and the associated daily traffic dynamic. At the selected road link, two roads (W and N) 

merge. The traffic patterns of adjacent road segments are similar on the long road, according to the 

traffic of the upstream and downstream roads. Furthermore, the topology influences the road traffic. 

Due to the merging of the travel flow at the selected roads, more vehicles gather at this intersection, 

thereby leading to changes in road traffic. According to the traffic of the downstream road in Figure 

5b, traffic in these segments is worse than in the upstream segments. This friendly interactive tool 

enables us to examine the traffic dynamics of local road networks of interest.  

 

 

Figure 5. Traffic patterns of adjacent road links. (a) The topology of local road links. (b) The traffic 

dynamics. 

5.4. Traffic Pattern Exploration 

The relationships of the traffic patterns among road links are also visualized. With the effective 

synopses, the proposed system supports efficient query of roads with similar patterns. Firstly, we 

answer the following question: “Which types of patterns are the most common?” We computed traffic 

pattern of each road link using one-month data and type “all”. Via the TRP Algorithm, the pattern of 

the largest cluster is identified, as shown in Figure 6a. This pattern, in which the speed fluctuates 
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around 30 km/h all day, is the most common pattern. According to the spatial view in Figure 6b, most 

of the roads are branch roads in the urban center (Futian, Luohu, and Nanshan) and subcenter (Baoan, 

Longhua, and Longgang), where the travel speeds are limited by the transport law or travel flow.  

 

 

Figure 6. Most common pattern of all road links during a month. (a) The most common traffic pattern 

and (b) the road links with similar patterns. 

Facilitated by the pattern view, the question of “which roads share a similar pattern?” is further 

answered. Here, due to the importance of rush hour in the transport domain, we selected the morning 

rush hour for case study. We selected one road link with one typical morning rush hour traffic state 

as the target and queried roads with similar patterns. By specifying various similarity degrees, we 

obtained various sets of road links. Figure 7 shows the roads that were returned in response to input 

TV distance values, of 0.88, 0.86, 0.84, and 0.82. The spatial view displays the distribution of roads 

that have similar patterns. As the similarity degree is relaxed, increasingly, many roads appear. 

Meanwhile, the temporal change of the traffic states is amplified. From the line charts in the figure, 

the duration and the drop extent of the morning rush hour differ, although the deterioration of the 

traffic state in the morning rush hour is maintained. 

  

 

Figure 7. Results of road links with a specified pattern for different TV distance values. The similarity 

indicator is (a) 0.88; (b) 0.86; (c) 0.84; and (d) 0.82. 

Next, we select patterns with “morning rush hour” and “evening rush hour” as the targets to 

explore roads that have similar patterns. Figure 8 displays the obtained results in the spatial view. 

According to Figure 8, many primary roads show the typical “morning rush hour” pattern, especially 

the main road in south Shenzhen. That is because many people who are living in north Shenzhen 

travel to work in the south. In contrast, the road with the evening traffic rush pattern is more spatially 

scattered.  
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Figure 8. Spatial distributions of links during traffic rush hours. Similarity is (a) the morning rush 

hour and (b) the evening rush hour. 

6. Discussion 

6.1. Computing Performance 

One of the key challenges in traffic pattern extraction is how to meet the need for real-time 

exploration leveraging accumulated big GPS data. Instead of processed massive GPS trajectories 

directly, the presented framework used the middle-tier synopses to extract traffic patterns for real-

time exploration. The synopses can be computed on-the-fly when GPS records are streamed in or in 

a pre-processing stage. Therefore, the computation in the data processing layer does not affect the 

performance of the proposed interactive visual analytics system. In terms of storage, if the total length 

of the road network is L meters, the finest spatial scale unit is m meters, and the finest temporal scale 

unit is n minutes, then the number of synopsis in one day is computed as 

𝑁𝑑𝑎𝑖𝑙𝑦 = (𝐿 𝑚⁄ ) × (24 × 60 𝑛⁄ ) (3) 

As m and n decreases, the number of synopses increases, and more storage space is needed.  

Table 3 presents an example of the storage space that is needed based on the road network data 

of Shenzhen City with various values of m and n. The raw GPS data size for this day is 3221 M. 

According to the table, if the spatiotemporal unit is "100 m and 5 min”, the storage space for the 

synopses is larger than that for the raw GPS data. Therefore, if the applications do not require the 

finest scale unit, the storage space will be reduced in most cases. 

Table 3. Required storage space of middle-tier data for various finest spatiotemporal scale unit for a 

dataset in 3221 M size. 

Spatiotemporal Scale 5 min 15 min 30 min 

100 m 3324 M 1108 M 552 M 

200 m 1424 M 474 M 238 M 

500 m 570 M 190 M 96 M 

 

The number of synopses does affect the performance of real-time exploration in the traffic 

pattern recognition layer and the visual analytic layer. The finer the spatial and temporal units are 

selected, the bigger the number of synopses is computed. For the traffic pattern recognition layer, the 

computation performance depends on the size of synopses. Based on end users’ interactive setting 

including roads, duration, and type in TRP, synopses are retrieved from the geodatabase. The 

retrieving performance is related to the database used. Because the time complexity of the filtering is 

O(1), retrieving time on large volume of data will not be very long. Suppose m road links and n days 

are filtered by the specified parameters. Line 9 in the TRP calls the DBSCAN algorithm, which has a 

time complexity of O((m*n)2). The time complexity of Lines 10–21 is also O((m*n)2). In conclusion, the 

time complexity of the presented method is O((m*n)2).  

In addition, both synopses computing in the data processing layer and in the traffic pattern 

recognition layer can be decomposed into independent subproblems, which can be solved by 
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advanced distributed computing. Therefore, more computing cells will further improve the 

computing performance. 

6.2. Scalability 

The presented framework can be reused and extended. First, the framework is general to GPS 

data collected by many types of vehicles. In the proposed framework, raw GPS data are processed 

into synopses according to the location (including longitude and latitude) and the recording time. 

Traffic state is denoted by travel speed. Therefore, any GPS data that contains the fields “longitude, 

latitude, time stamp, and speed” can be accepted. GPS trajectories of various vehicles including bus, 

logistics vehicles, and private vehicles are potential data sources. According to official statistics, by 

the end of December 2018, the number of motor vehicles in Shenzhen was about 3.35 million 

(http://sztqb.sznews.com/PC/content/201812/10/content_525436.html). It shows the great potential of 

our framework for better urban traffic understanding.  

Second, the interactive visual analytics system can be extended for other transport applications. 

Due to the efficient middle-tier synopsis, the developed framework integrates the machines’ 

computing ability and the end users’ experience, supporting real-time interactive urban traffic 

exploration analysis. Although this study focuses on traffic, the developed framework can be easily 

extended to other traffic applications, i.e., reconstructing the evolution of traffic in multiple road 

intersections, revealing the traffic pattern under events, etc. Furthermore, combined with 

professional models [60], the developed system can also support innovative transport tasks. For 

example, by introducing the vehicle emission model, the developed system can be used in fine-

grained transport carbon emission and air pollution analysis. 

7. Conclusions 

Understanding urban traffic patterns benefits traffic management and urban planning. This 

study proposes a three-layer interactive framework for the exploration of urban traffic patterns. 

Massive raw taxi GPS data are assigned to the synopses in the first data processing layer. The 

computed synopses are stored in geodatabase for quick retrieving to recognize traffic patterns in the 

traffic pattern recognition layer and the visual analytics layer. User-friendly interfaces are developed 

for the real-time exploration of complex urban traffic in a mega-city in the spirit of visual analytics. 

An experiment in Shenzhen was conducted using taxi GPS data that were collected over one month. 

Following end users’ interests, traffic patterns of both the specified area and the related period were 

computed and visualized in real-time. The proposed visualization interfaces show various traffic 

patterns in different forms intuitively, which facilitates comparison, perception, and understanding 

of citywide road traffic. The results demonstrate that the presented framework provides useful tools 

for road traffic analysis and future transport planning. 
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