
Architecture for a Fully Decentralized Peer-to-Peer
Collaborative Computing Platform

by

Dany Wilson

A thesis submitted in conformity with the requirements
for the degree of Master of Computer Science
Graduate Department of Computer Science

University of Ottawa

c© Dany Wilson, Ottawa, Canada, 2015

Abstract

We present an architecture for a fully decentralized peer-to-peer collaborative comput-
ing platform, offering services similar to Cloud Service Provider’s Platform-as-a-Service
(PaaS) model, using volunteered resources rather than dedicated resources. This thesis
is motivated by three research questions: (1) Is it possible to build a peer-to-peer col-
laborative system using a fully decentralized infrastructure relying only on volunteered
resources?, (2) How can light virtualization be used to mitigate the complexity inherent to
the volunteered resources?, and (3) What are the minimal requirements for a computing
platform similar to the PaaS cloud computing platform?

We propose an architecture composed of three layers: the Network layer, the Virtual
layer, and the Application layer.

We also propose to use light virtualization technologies, or containers, to provide a
uniform abstraction of the contributing resources and to isolate the host environment
from the contributed environment. Then, we propose a minimal API specification for
this computing platform, which is also applicable to PaaS computing platforms.

The findings of this thesis corroborate the hypothesis that peer-to-peer collaborative
systems can be used as a basis for developing volunteer cloud computing infrastructures.
We outline the implications of using light virtualization as an integral virtualization prim-
itive in public distributed computing platform. Finally, this thesis lays out a starting
point for most volunteer cloud computing infrastructure development effort, because it
circumscribes the essential requirements and presents solutions to mitigate the complex-
ities inherent to this paradigm.

ii

Acknowledgements

I would like to thank my supervisor, Professor Stéphane Somé, for his continuous support
throughout the different stages of this research effort, and for his patience while reading
the various drafts. Thank you.

I would also like to thank the Professor Gilbert Arbez, for the sound advice on
pursuing graduate studies, and ultimately for making this opportunity a reality.

I owe special thanks to the DLPS team at IBM Canada, especially Gordon McDonald,
Jeff Jobb, Glynn Kneebone, and Eric Teutsch; for providing me with excellent learning
experiences and numerous research opportunities, as part of the MITACS Accelerate
Program.

Je voudrais remercier mes parents, Guy Wilson et Lucie Dupelle, ainsi que mon frère
Jeff, pour avoir cru en moi et m’avoir soutenu malgrés les multiples délais. Je vous dédie
cette monographie, car sans vous elle n’aurait pas été possible.

Me gustaría dar las gracias a mi novia por todo el apoyo y la comprensión. Estoy
eternamente agradecido, Nina.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivations . 1
1.2 Problem Definition . 3
1.3 Contributions . 4
1.4 Main Assumptions . 4
1.5 Outline . 5

2 Background 7
2.1 Collaborative Systems . 7

2.1.1 SETI@Home . 8
2.1.2 BOINC: Berkeley Open Infrastructure for Network Computing . . 9

2.2 Cloud Computing . 10
2.2.1 Deployment Models . 11
2.2.2 Service Models . 11
2.2.3 Volunteer Cloud Computing . 13

2.3 Peer-to-Peer Computing . 13
2.3.1 Overview . 13
2.3.2 Overlay Networks . 14
2.3.3 Structured Overlay Network . 15
2.3.4 Unstructured . 16
2.3.5 Slicing . 17
2.3.6 Comparison . 19

2.4 Virtualization Technologies . 20
2.4.1 Overview . 20

iv

CONTENTS v

2.4.2 Full Virtualization vs. Light Virtualization 21
2.4.3 Containers . 23
2.4.4 LxC . 23
2.4.5 Docker . 24

3 Related Work 26
3.1 Evaluation Framework . 26
3.2 Cloud@Home . 28

3.2.1 Architecture . 29
3.2.2 Evaluation . 30

3.3 Peer-to-Peer Cloud System . 33
3.3.1 Architecture . 34
3.3.2 Evaluation . 36

3.4 Discussion . 39

4 Architecture 42
4.1 Overview . 42
4.2 Network Layer . 43

4.2.1 The Ring . 45
4.2.2 The Fellowships . 47

4.3 Virtual Layer . 49
4.4 Application Layer . 51

4.4.1 Overview . 52
4.4.2 Databases and Storages . 53
4.4.3 Communication and Networking 55
4.4.4 Load Balancing and Scalability 56
4.4.5 Security . 58
4.4.6 Application Deployment and Management 60

4.5 Component Interaction . 62
4.6 Discussion . 64

4.6.1 Collaborative Peer-to-Peer System Framework Implementation . . 64
4.6.2 Research Requirements . 67

5 Implementation 70
5.1 Technology Used . 70
5.2 Constructs . 73

5.2.1 Task . 73

CONTENTS vi

5.2.2 ApplicationNode . 75
5.2.3 The Ring . 76
5.2.4 The Fellowships . 76
5.2.5 Conclusions . 77

5.3 Workflows and Protocols . 77
5.3.1 Initializing a Node . 78
5.3.2 Fellowship’s Protocol . 78
5.3.3 Web Protocol . 79
5.3.4 Error-Handling . 80

5.4 Proof of Concept: Calculator . 81
5.4.1 Overview . 82
5.4.2 Application Deploying Node . 82
5.4.3 Contributing Node . 83

5.5 Conclusion . 84

6 Case Study: Multi-Document Text Summarization using Genetic Al-
gorithms 86
6.1 Problem at Hand . 87

6.1.1 Automatic Summarization . 87
6.1.2 Genetic Algorithms . 88
6.1.3 Extensions Proposed for MDTS 88

6.2 Translation of the Problem for this Architecture 90
6.3 Implementation Details . 94

6.3.1 Application Deploying Node . 94
6.3.2 Data Node . 96
6.3.3 Worker Node . 98

6.4 Experimentation . 100
6.5 Conclusions . 102

7 Discussion 104
7.1 Positioning of the System . 104
7.2 Problems Encountered . 106

8 Conclusion 110
8.1 Requirements Fulfilled . 110
8.2 Contributions . 112
8.3 Future Work . 113

CONTENTS vii

Appendices 115

A API Specification 115

B Code Samples 118
B.1 Configuration Files . 118

B.1.1 Architecture Configuration File 118
B.1.2 Docker Configuration File . 119

B.2 Calculator . 120
B.2.1 Web Server . 120
B.2.2 Web Protocol . 122

B.3 Multi-Document Text Summarization . 124
B.3.1 Web Server . 124
B.3.2 Web Protocol . 126

List of Figures

2.1 Ontological Representation of Cloud [YBDS08] 11
2.2 Cloud Services Separation of Responsibilities [Lew11] 12
2.3 Example of Overlay Network Virtual Connections. 15
2.4 VM vs. Containers [DlRB14] . 22

3.1 Framework for Peer-to-Peer Resource Collaboration Problem [BJ13] . . . 27
3.2 Cloud@Home Architecture . 29
3.3 Cloud@Home Infrastructure Middleware [AAC+11] 31
3.4 Peer-to-Peer Cloud System Architecture [BJ13] 34

4.1 Overview of the Proposed Architecture. 43
4.2 Network Layer Overview . 44
4.3 Abstract Representation The Ring. 45
4.4 Fellowship Abstraction. 47
4.5 API Specification Overview . 52
4.6 Proportional-Integral-Derivative (PID) Controller [GSL14] 57
4.7 Advertise and Discover Phases Sequence Diagram. 66
4.8 Selection and Match Phases Sequence Diagram. 66

5.1 Comparison between Programming Models. [MF13] 71
5.2 Graphical Representation of a Deferred. [MF13] 72
5.3 The Fellowship Protocol . 79
5.4 Web Request Translation into Task(s). 80
5.5 Calculator’s Web Interface . 82
5.6 Application Deployer Node as part of the Calculator Application. 83
5.7 Contributing Node as part of the Calculator Application. 84
5.8 Calculator Application Architecture Overview. 85

6.1 Event Flow: Incoming Request. 92

viii

LIST OF FIGURES ix

6.2 Event Flow: Processing a Request. 93
6.3 Event Flow: Returning a Response. 93
6.4 MDTS: General Workflow. 94
6.5 Application Deployer Node as part of the MDTS Application. 95
6.6 MDTS Application’s Web Interface . 96
6.7 Data Node as part of the MDTS Application. 97
6.8 Files table schema. 97
6.9 Results table schema. 98
6.10 Worker Node as part of the MDTS Application. 99
6.11 MDTS Application Heap Memory Profile. 101

List of Tables

3.1 Summary of the Solutions and the Requirements 41

6.1 First 8 Snapshots: Heap Memory Usage Peaking at Snapshot 8. 100
6.2 Memory Statistics Before Container Creation and Execution. 102
6.3 Memory Statistics After Container Creation with Active Container. . . . 102

x

Acronyms

API Application Programmable Interface. 15, 24, 45–47, 50, 54, 62–64, 66, 68–70, 79,
80, 120–122

CPU Central Processing Unit. 35, 58, 60

CSP Cloud Service Providers. 14, 15, 23, 24, 39, 41, 43, 63, 64, 66, 67, 72

DHT Distributed Hash Table. 28, 57, 76, 121, 126

DNS Domain Naming System. 117, 118

EDA Event-Driven Architecture. 74, 100, 101

GA Genetic Algorithm. 96, 98, 99

HTL Hops-To-Live. 29

HTTPS HyperText Transfer Protocol Secure. 70

IaaS Infrastructure-as-a-Service. 24, 25, 39, 44, 45, 49–51, 62, 65, 122

LxC Linux Containers. 32

MAC Mandatory Access Control. 70, 79

MADQ Multi-Attribute Dominated Query. 29, 116

NIST National Institute of Standards and Technology, U.S.A.. 22

OS Operating Systems. 14, 24, 32–35, 60–62, 78

P2PCS Peer-to-Peer Cloud System. 44, 50, 51, 53, 55, 62

xi

Acronyms xii

PaaS Platform-as-a-Service. 14, 24, 25, 39, 44, 50, 51, 62, 63, 65, 68, 71, 80, 115, 120,
122, 123

PID Proportional-Integral-Derivative. 68, 121, 123

PKI Public-Key Infrastructure. 60

QoS Quality of Service. 39, 41, 44, 50

RDBMS Relational DataBase Management System. 64, 65

REST REpresentational State Transfer. 66

SaaS Software-as-a-Service. 23–25, 39

SADQ Single-Attribute Dominated Query. 29

SLA Service-Level Agreement. 39, 41, 42, 44, 68, 78

SLO Service-Level Objective. 68, 69

SOA Service Oriented Architecture. 22, 101

SSL Secure Sockets Layer. 69, 70

SSO Single-Sign-On. 70, 71

TTL Time-To-Live. 29

UC Utility Computing. 14

URL Uniform Resource Locator. 66

VM Virtual Machine. 33–35, 40, 43–46, 48, 50, 51, 61, 62, 110

Chapter 1

Introduction

This thesis presents an architecture for a fully decentralized computing infrastructure
built using volunteered resources. This computing infrastructure is composed of a col-
lection of geographically distributed commodity devices (personal computers) connected
over the Internet. The applications deployed to this computing infrastructure are hosted
by volunteered resources, resulting in a computing platform similar to the Platform-as-
a-Service (PaaS) offered by Cloud Service Providers (CSP).

In this chapter we present the motivations that drove this research effort and a defini-
tion of the problem we are addressing in this thesis. Then, we outline our contributions,
and present our main assumptions. Finally, we present the content of the different chap-
ters included in this thesis.

1.1 Motivations

In this section we present the motivations that drove our research effort, including the
current state of CSP and the current state of independent web communities.

Cloud Service Providers
CSP offer one of the most prominent computing platform online to develop and deploy
applications. Cloud computing is characterized by its service provisioning model, of-
fering to the consumer a seemingly "infinite pool" of resources that can be contracted
and released instantly to mitigate the fluctuations in the workload. Using a business
model centered around consumption-based pricing, known as Utility Computing (UC),
it provides to the consumer a wide selection of service models to choose from depending
on their needs. Service models vary in proportion to the management responsibilities
outsourced to the CSP, from completely outsourced software to hardware infrastructure
capable of hosting a whole Operating Systems (OS), effectively reducing the cost of the

1

Chapter 1. Introduction 2

on-premise IT infrastructure. But some security concerns still persist, impeding this
paradigm shift despite its popularity. Privacy is a prime concern, because for a consumer
to use the cloud computing infrastructure they must migrate their software assets and
data to this CSP. This migration implies establishing a trust relationship between the
consumer and the CSP, which includes their employees having (in)direct access to the
physical infrastructure. Malicious administrators (insiders) is the other major security
concern. An Orwellian example of this security concern is the CSP potential to exercise
(in)direct censorship, either out of strategic positioning or as a tyrannical authority. This
is extreme, but not completely farfetched.

For example: two applications providing similar services are hosted on the same CSP,
if one of them can persuade (by any means) the CSP to favor its application, then the
provider can (in)directly exercise censorship against the other application. For instance,
it could prioritize the traffic of that application, or deprioritize the other application
access to the computing resources (or Application Programmable Interface (API)).

Consequently, the benevolence of the individuals employed by this provider is blindly
assumed by the consumers, because nothing forces these providers to be completely trans-
parent in their operations anymore than any other private service providers. This is due
to the private nature of these CSP, because they are not providing public services they
are not legally bound to reveal any of their mechanisms and/or protocols enforcing the
security and privacy within their organization.

Web Communities and Communities in General
Local and Web Communities are supported by a small core of dedicated individuals,
and usually host applications including discussion forums, image boards, and websites.
Normally, these communities rely on donations to sustain their activities, including the
fees incurred to host their applications. Given that all the members of these communities
possess a personal computer with Internet access, to access the application. Can their
operation costs be reduced, taking into account the increase in domestic bandwidth of
Internet Service Providers (ISP) and the increase of performance of personal computers?

Another interesting example of commmunities is the education system, where differ-
ent school boards form micro-organizations grouping multiple schools together. These
micro-organizations are equipped with computing resources, primarily composed of per-
sonal computers and usually accessed during office (school) hours. In some cases they
remain idling through the night, or are simply turned off. Could recycling these resources
effectively reduce the cost of operations, either by generating income and covering their

Chapter 1. Introduction 3

initial purchase cost; or by extending their usefulness?

A commonality is shared within these two examples of communities, a potential desire
to recycle their computing resources to mitigate their cost of operation; or to extend the
usefulness of their resources. Recycling computing resources exhibits many incentives,
including financial restitution of the investment to acquire the resources. But more impor-
tantly, in this era of consumerism, prolonging their usefulness is an important incentive,
especially given the eventual scarcity of the resources used for mass production. In a
similar line of thought, recycling computing resources can help intellectual advancement
by offering them to different scientific enterprises to run experiments or computationally
intensive tasks. There are benefits to provide to smaller communities the technology
allowing them to recycle their computing resources and make them profitable, for them-
selves or for the greater good. We also see potential benefits in solutions catering to all
types of requirements, be it in terms of privacy and data ownership or simply to enable a
private organization to be part of a fair competitive market and avoid possible censorship
from a tyrannical oligarchy.

1.2 Problem Definition

In this section we present the definition of the problem addressed in this thesis. We
define this problem by formulating a series of requirements that a solution should fulfill.

From the motivations, presented in the previous section, we can define a list of essen-
tial requirements for a candidate solution:

Requirement 1 Given a collection of heterogeneous commodity personal com-
puters, we need to be able to use this system to deploy an application or multiple
applications.

Requirement 2 Using this system should not force any third-party to provide
services (except domain hosting, everything else should be accomplish by the col-
lection of contributing resources), and thus be self-contained as much as possible.

Requirement 3 The system should be resilient to resources failing, and/or leav-
ing. Thus, it should be fault-tolerant and should not introduce a single point of
failure, for security purposes to resist DoS type of attacks and possible censorship.

Requirement 4 The system should not require from its user to acquire any spe-
cial (or dedicated) equipment, but rather recycle the current resources available.

Chapter 1. Introduction 4

Sub-Requirement 4.1 The memory footprint should be small, as to be
able to construct this system from lower-end devices.

Requirement 5 The system should be able to provide scalability to the appli-
cation deployed, or the ability to dynamically adjust the amount of resources
available and account for the fluctuation in demand. As a consequence, it must
provide dynamic membership capabilities to all applications.

1.3 Contributions

Within the context of this thesis we propose a solution for this problem in the form of
an architecture and with this proposition we make the following contributions:

Contribution 1 Propose a fully-decentralized collaborative system that provides
a web computing platform.

Contribution 2 Propose a candidate API that addresses the minimal require-
ments of this computing platform, but more generally one that is suitable for
(PaaS) Platform-as-a-Service.

Contribution 3 The system we propose make use of light virtualization to ab-
stract the specificities of the contributing resources and to isolate the hosting
environment from the contributing environment.

Contribution 4 The system that we propose is minimally intrusive and leaves
a small memory footprint, enabling it to be used with lower-end computers and
even micro-computers.

1.4 Main Assumptions

In this section we present the main assumptions made in the context of this research
effort. We present the implications of these assumptions in terms of the privacy of the
system and its users; of the data integrity and the obvious threats.

Our most important assumption is the semi-trusted environment in which the sys-
tem is designed to operate. In the context of this research we define a semi-trusted
environment as follows:

Chapter 1. Introduction 5

A semi-trusted environment requires both parties (consumer and contributor)
to know and trust each other a-priori, but they are required to communicate
over an untrusted network infrastructure, i.e., the Internet.

This assumption relaxes the requirements to maintain the system and the user’s
privacy, but operating using public untrusted communication medium still poses possible
threats. The threats do not originate from the users themselves, rather it originates
from the possible man-in-the-middle attack, or intercepting and tampering of the data.
We will discuss how to ensure privacy using security mechanisms and privacy enhancing
technologies in Section 4.4.5.

This assumption has consequences with respect to the data integrity, which relates
to preserving and verifying the consistency of the data, as well as its accuracy. In the
context of this system, the users are responsible to maintain and verify data integrity
at the application-level, which simplifies this infrastructure from a design perspective
but also provides a flexible solution that can be tailored to any required level of data
integrity. For example, an application may require to verify the computation for possible
(in)voluntary data corruption, i.e., bit rot or computation cheating, whereas another
may only require to verify the content of a message. In the former case, it is possible
to resort to sophisticated solutions tailored to a specific problem domain [?]; the latter
may only require a simple error-correction code, given that the message is certified and
signed (using a Public-Key Infrastructure (PKI)).

Finally, this system operates in an environment for which the trust-relationship be-
tween the consumer and contributor is previously established, but still it requires diligence
from the application developer to ensure that the data transported using the Internet,
as a communication medium, was not tampered with. We designed this architecture to
provide a flexible solution that can be easily adapted to suit various degrees of security
and privacy requirements.

1.5 Outline

In this section we present the outline of this thesis and the content of each chapters.

Chapter 2 Background
This chapter presents the background material concerning Collaborative Systems,
the basics of Cloud Computing, the basics of Peer-to-Peer technologies, and cur-
rent Virtualization technologies.

Chapter 1. Introduction 6

Chapter 3 Related Work
This chapter presents two similar systems, namely Cloud@Home and P2P Cloud
System. It present an evaluation of these systems with respect to our requirements
and the framework proposed by [BJ13] for peer-to-peer collaborative systems.

Chapter 4 Architecture
This chapter presents the architecture we designed and the design decisions for
each layer of this architecture, namely: the Network Layer, the Virtual Layer and
the Application Layer.

Chapter 5 Implementation
This chapter presents the current implementation of our architecture and the
technologies used. We then discuss the implementation-choices and the relevant
underlying mechanisms that provides the functionalities requested in the require-
ments. We conclude with the presentation of a proof of concept: a calculator.

Chapter 6 Use Case: Multi-Document Text Summarization using GA
This chapter presents a use-case, namely Multi-Document Text Summarization
using Genetic Algorithm, and how to translate it into a distributed web applica-
tion. We analyze the problem at hand, and walk-through the thought process of
re-factoring an existing application into a distributed version compatible with our
architecture.

Chapter 7 Discussion
This chapter presents the positioning of this system in the distributed computing
platform landscape and the main problems encountered throughout this thesis.

Chapter 8 Conclusions and Future Work
This final chapter assesses the extent to which we fulfill the research mandate, in
the scope of our requirements and contributions. It also present the future work
the areas to focus on from a short-term and from a long-term perspective.

Chapter 2

Background

In this chapter we present an overview of the material required to understand the context
of this thesis. We first present Collaborative Systems, then Cloud Computing, followed
by an overview of the current Peer-to-Peer technologies and we finish by glancing at the
latest technologies in terms of Virtualization.

2.1 Collaborative Systems

In this section we present collaborative systems and outline the differences between two
deployment models: public and private. Then we focus on public collaborative systems
and present an example, SETI@Home. We conclude this section with the presentation
of a middleware used to develop collaborative systems, namely BOINC.

Collaborative Systems can have different meanings in different contexts. For exam-
ple, in a Business context, they often refer to Groupware, or software enabling teams to
cooperatively work on a project. Where the word collaborative is used to describe the in-
teractions between the users of the system [CS99]. Whereas in the context of distributed
systems, collaborative systems refers to a system belonging to a sub-class of distributed
computing known as volunteer computing (or public-resource computing), for which a
collection of volunteered resources accomplishes a common task [AF06]. Here, the word
collaborative is used to described the compositional structure of the system, being com-
posed of disparate components collaborating together to perform a computational task.

In general, volunteer computing and public-resource computing are interchangeable
when referring to this sub-class of distributed computing. We prefer the latter over the
former, since it exhibits the public nature of this type of computing explicitly. It is possi-
ble to draw further distinctions between collaborative systems, especially in the context
of distributed systems, relating to the deployment model. A collaborative system that is

7

Chapter 2. Background 8

deployed on a grid or a cluster, has a private deployment model, hence it can be referred
to as a private collaborative system. Whereas a collaborative system deployed using pub-
lic resources can be referred to as a public collaborative system. Both types share some
similarities in structure, but public collaborative systems have different requirements re-
lated to the use of volunteered resources in their infrastructure, rather than dedicated
resources. We can formulate the differences as follows:

1. Resources are unreliable: they may leave or fail at any moment and the computa-
tions performed may be incorrect.

2. Quality of the resources are usually on the lower end of the spectrum (commodity
hardware), compared to high performance computing clusters.

3. Control over the resources is not centralized, and participation is incentive-driven.

These differences illustrate challenges that arise from leveraging volunteered resources
in a public environment and are not as present in a private (controlled) environment.
This is particularly relevant with respect to the types of problems applicable to public
collaborative system platforms, as we will illustrate in Section 2.1.1.

An extensive body of work already exists on the subject, for more information on
public collaborative systems in general see [And03] [AF06], and for more information on
private collaborative systems, but more specifically on grid computing see [BFH03].

2.1.1 SETI@Home

SETI@Home [ACK+02] is a notable example of a public collaborative system, built us-
ing the BOINC system framework [And04]. It is used to analyze radio transmissions for
extra-terrestrial intelligence across startling different frequency domains. Its architecture
consists of a central server which distribute work units to participants in order to perform
the computations, then the participants return the result to the server and request an-
other work unit. Due to the unreliability of the publicly volunteered computing resources
and the unreliability of the network supporting the communication, it is necessary for
the design to factor these in, as stated in Section 2.1.

1. Accuracy of the computations is ensured by dispatching the work units to several
different participants and by using a consensus mechanism in which a majority of
the results returned by the participants must agree.

2. The nature of the problem domain mitigates the unreliability of the network, be-
cause it has a high computation-to-data ratio. Work units are composed of small

Chapter 2. Background 9

data-pieces (350kb) providing considerable workload and yielding smaller result
data-pieces (1kb).

Consequently, this architecture minimizes the possibility of bottlenecks at the central
server while preserving a centralized structure.

This is one of the most successful project of this nature, in terms of aggregate com-
puting power achieving upwards of 660 teraFLOPs [Wik15]. The success lies in how
well their problem was tailored for distributed computations, or how easily paralleliz-
able it was. Generally speaking, problems for which the dataset can be segregated into
independent subsets of the problem are best suited for this paradigm.

2.1.2 BOINC: Berkeley Open Infrastructure for Network Com-
puting

BOINC [And04] is a middleware system that enables researchers, with limited com-
puter knowledge, to easily create and deploy public-resource computing projects such as
SETI@Home. A typical instance of a BOINC project, consists of 4 major components:

• Master URL of the project presents a landing page to register, contribute, and
track the progress of the project.

• Data Server is responsible for uploading and provisioning the data to and from the
participants.

• Scheduling Server is responsible for handling the incoming RPCs from the partici-
pants.

• Client Application enables the participants to connect to the server and request
work units, but it also offers a graphical interface to represent any progress made.

The ease of use lies in the abstraction of the underlying housekeeping mechanisms re-
quired to coordinate the agglomeration of contributing nodes. But also by abstracting the
underlying logic required to distribute work units and retrieve the results, and presenting
to the researchers a fill-in-the-blanks type of user experience.

The simplicity of setting up and understanding the infrastructure provided by BOINC
is the key to its success. Essentially every scientific enterprise resorting to public-resource
computing have similar requirements. By creating a middleware that fulfills these require-
ments out of the box, it enables the researchers to devote more time to significant research
problems rather than to computer-related technicalities.

Chapter 2. Background 10

More collaborative projects are created with ease every year using this infrastruc-
ture, and this renders the use of public-resource computing more apprehensible from a
non-technical standpoint. Ultimately, BOINC removes the technological and technical
barriers that possibly impedes scientific data crunching when resorting to public com-
puting resources.

2.2 Cloud Computing

In this section, we present the cloud computing paradigm, by identifying the different
deployment models and service models it offers. Then, we present volunteer cloud comput-
ing, which is the intersection between public-resource computing and cloud computing.

Cloud computing is the natural evolution of Service Oriented Architecture (SOA), the
Web 2.0 and the virtualization technologies, resulting in a paradigm using the network as
a platform to provide a variety of services directly to the users. This effectively reduces
the gap between content producers and content consumers, by augmenting the availability
of the services and reducing the cost of contracting such services. Cost reduction is the
result of offering services using a consumption-based pricing, or as a utility, completely
removing the cost of acquiring and maintaining the IT infrastructure required to provide
these services. A more formal definition of the characteristics of cloud computing is
provided by the National Institute of Standards and Technology, U.S.A. (NIST) [MG11]:

1. On-Demand Self-Service : provides the ability to a user to configure his services
automatically through the infrastructure portal by himself.

2. Broad Network Access : enables clients to connect to the cloud over the Internet.

3. Resource Pooling : provides the ability to clients to abstract the underlying
specificities of the resources, and to simply access an infinite pool of homogeneous
resources (virtual or physical).

4. Rapid Elasticity : provides the ability to augment the amount of resources to
respond to the fluctuations in the workload.

5. Measured Service : services can be measured or monitored in a manner that is
transparent to both the provider and the consumer.

Chapter 2. Background 11

2.2.1 Deployment Models

A cloud computing infrastructure can manifest itself using one of 4 different deployment
models [MG11]. A deployment model identifies the intended consumer and intended
producer of the services offered by the CSPs. Public clouds are the most popular deploy-
ment model, intended to be used by the general public they are offered by privately owned
companies, or CSP (like Google, or Amazon). Another popular deployment model, are
private clouds, and they are intended to be used exclusively by one entity or organization,
which maintain or not the cloud infrastructure, in which case they delegate to a 3rd-party
CSP. The two previous deployment models represent the extrema on the continuum of
possible deployment models. In the middle of these two lies a variant which provides ex-
clusive access to organizations sharing common interests, this deployment model refers to
community clouds. The fourth, and last deployment model, are hybrid clouds, where the
cloud infrastructure is composed of several sub-clouds, be it private or public. A common
use-case for this deployment model is an organization that requires the security provided
by private clouds and requires the scalability and availability of public clouds. Thus, the
organization can use a private cloud to store sensitive information and use a public cloud
to leverage a business intelligence application to manipulate their information, using a
Software-as-a-Service (SaaS).

2.2.2 Service Models

An ontological representation of cloud computing has been proposed [YBDS08], it rep-
resents a categorization of the services generally offered by CSP.

Figure 2.1: Ontological Representation of Cloud [YBDS08]

Chapter 2. Background 12

In Figure 2.1, several service models are presented for completeness, but within the
scope of our research only three service models are relevant, namely: Infrastructure-as-
a-Service (IaaS), PaaS and SaaS. The differences between each service model is better
understood when it is illustrated by the separation of responsibilities between the CSP
and the consumer.

Figure 2.2: Cloud Services Separation of Responsibilities [Lew11]

Figure 2.2 presents this separation of responsibilities for each of these service models.
The IaaS service model imposes the majority of the responsibilities above the virtual-

ization layer to the consumer, whereas the CSP is responsible for providing the physical
and virtualization layers. Compared to the other service models, it grants greater flexibil-
ity to the consumer, using a virtual machine image to encapsulate the complete executing
environment, from the OS to the applications and everything in between. An example
of such a service model is Amazon EC2 [Inc15a].

PaaS is not as flexible, but it is easier to configure and use. It provides a set of
abstractions (in the form of an API where only the Application layer and the Data layer
are presented) for the consumer to use to develop applications. The Google App Engine
is a popular example of PaaS [Inc14b].

Finally, SaaS consists of providing an application as a service, where everything else is
the responsibility of the CSP. Using this service model the consumer accesses a software
through the CSP, and is not required to own a copy, but rather leverages its functionalities
as services. An example of a SaaS provider is Salesforce, which offers a multitude of
business applications as SaaS [sal15].

Chapter 2. Background 13

2.2.3 Volunteer Cloud Computing

Volunteer cloud computing is an emerging paradigm. Conceptually, it is the intersection
of the public-resource computing paradigm and the cloud computing paradigm, it can also
be defined as the 5th deployment model of cloud computing. This new deployment model
consist of constructing a cloud computing infrastructure by relying solely on (volunteered)
public-resources. It is a fairly recent idea, as it is not mentioned in earlier publications
such as [RCL09], but it is in later publications such as [ZCB10].

This paradigm suffers from different challenges compared to the traditional cloud
computing paradigm [ASK15], which are similar to the challenges of public collaborative
systems. Volunteer cloud computing provides a cloud computing infrastructure built
using volunteered computing resources, whereas public collaborative systems provides an
infrastructure to perform distributed computationally intensive tasks. The dichotomy
of their purposes, is what really differentiates volunteer cloud computing from public
collaborative systems.

Many different research efforts that attempts to provide this type of infrastructure
exists with varying degrees of success, and adopting different approaches while address-
ing these challenges. Note that some research efforts, such as [CDPS10c], target the
full spectrum of service models: IaaS, PaaS, and SaaS. Whereas, other focuses on only
one service model, IaaS [BMT12] [CW09]. Finally, others adopt a completely different
approach, such as building a transparent infrastructure using peer-to-peer interception
techniques [MGLPPJ13].

2.3 Peer-to-Peer Computing

In this section we present an overview of peer-to-peer computing, we introduce the con-
cept of overlay networks, and then detail the differences between two types of topologies.
Finally, we present a comparative analysis of the topologies in the form of a summary
table.

2.3.1 Overview

Peer-to-peer computing has many different characteristics that makes it an interesting
network primitive for a public environment, such as the Internet, when constructing a
distributed system.

A system built using a peer-to-peer structure is referred to as a peer-to-peer system.
Essentially, peer-to-peer systems are defined as a distributed system where every node in

Chapter 2. Background 14

the system is at the same time, a consumer of the services offered by the system and a
producer, a server and a client (servent). The cost of operations is then amortized and
distributed among the participants, because every participant in the system assumes the
cost of operating their own computers, where the aggregate cost of operating the system
is the combination of all the costs incurred for operating the participants computers.
Peer-to-peer systems are generally decentralized, removing any single point of failure
and resulting in systems that are very resilient to the failures of the nodes composing
its infrastructure. Peer-to-peer systems are also scalable, inasmuch as more nodes are
available to join the system, theoretically ad infinitum. This underlines that there are
no explicit scalability limitations for this type of system, given that the business logic it
implements also does not explicitly prevents it (by design). The equality amongst nodes
is usually achieved by creating a decentralized network, where each node assume equal
responsibilities in terms of routing and discovery of other nodes within the network.
Generally, there are no central servers and all the nodes in the system are equal, but
practically some system relies on a bootstrapping server to ease joining new nodes to the
system, which is the case for mobile networks [Olk06].

In order to join a system, a node is required to know at least one other node in it.
Initially, if there are no other nodes in the system, the first node to join will become the
only node to contact to join this system. Subsequently, the next node that wishes to join
this system contacts this node, but the third node has the choice to contact either the
first or the second node, and so on. Once a node has joined the system, it usually has
only a partial view of the entire underlying network and in order to contact any node
not contained within this view, it must interact with neighboring nodes for indications
on how to proceed. This co-operative location mechanism differs in implementation, but
conceptually a node requires the assistance of the other nodes, in some ways, to navigate
the underlying network in its entirety. Consequently, peer-to-peer systems usually con-
struct a virtual overlay network on top of the physical underlying network, to mitigate
the complexities inherent to this decentralized architecture [MKL+02] [Bar01].

2.3.2 Overlay Networks

Overlay networks are a fundamental primitive for peer-to-peer systems and can be de-
fined as virtual networks superposed on a physical network (the Internet). The virtual
network represents virtual connections between the different nodes in the physical net-
work. It abstracts the underlying physical connections, and exposes the logical (virtual)
connections between the nodes of the system.

Chapter 2. Background 15

A B C D

A D

Figure 2.3: Example of Overlay Network Virtual Connections.

Figure 2.3 exemplifies the concept of virtual connections using an overlay network.
For example: If Node A is connected toNode B, which is connected toNode C, which
is finally connected to Node D in the underlying physical network topology. Then, it is
possible to express the indirect connection between Node A and Node D as a direct
virtual connection in the virtual overlay network. Not only, overlay networks abstract
away the details of the underlying network, but also allows nodes to communicate between
them using this virtual topology.

Overlay Network topologies are categorized relative to their structure [LCP+05]. In
the next sub-sections we present the distinction between a structured overlay network
and a unstructured overlay network respectively.

2.3.3 Structured Overlay Network

What characterizes the structured overlay networks is the fact that they are constructed
by organizing the peers into a structured graph.

An abstraction known as keyspace is used to organize the participating peers into a
structure. Each peer is assigned a portion of the keyspace and is responsible for locating
and indexing keys within it. Partitioning of the keyspace is done according to the keyspace
partitioning scheme, which dictates the structure of the resulting network. Some keyspace
partitioning schemes can produce a ring topology, see [SMK+01]; whereas others can
produce various different topologies, including a tree-based topology, see [JOV05]

As a consequence of its static structure, this type of overlay network is not suited
for complex multi-attribute queries. Because the organization of the keys is structured
according to a single metric, it only supports single-attribute dominated queries. These
queries are deterministic, because the attribute for which the queries are tested against
corresponds to the key and will return upon exact or partial match. Ultimately these
networks are built around the idea of being able to efficiently locate any key within the
network.

Chapter 2. Background 16

Distributed Hash Table (DHT) is a class of structured overlay networks. It consists
of creating an overlay network by dividing the keys of an associative array (hash table)
among the peers, then each peer is responsible for a portion of the associative array. A
key in this context represents either a node or an entry in the DHT. To retrieve a specific
key, a node queries the other nodes to find which one is responsible for this key, or finds
the node which is responsible for the portion of the associative array closest to the key.
If neither has the key, the query returns because there are no value associated with this
key, hence the deterministic nature of DHT. Many implementation of DHT exists [Sar10]
[LCP+05] [BJ13].

Structured overlay networks are constructed to fulfill a specific functionality, such
as storing data in a distributed fashion, and they are very good at it. But they are
not as versatile as their unstructured counterparts in terms of applications, resistance to
failures, and querying abilities [BJ13] [LCP+05].

2.3.4 Unstructured

Unstructured Overlay Networks differ with respect to their construction, resulting in a
unstructured topology, namely a flat or hierarchical random graph. More importantly,
there are no relations between the topology and the partitioning of the keyspace, since
technically the keyspace is irrelevant in this context.

Rather than utilizing a sophisticated partitioning mechanism for the graph, each
peer connect to another peer in the network, and by performing cyclic exchanges of
information among them (generally in pair-wise fashion) they update their views of the
network. Peers only have a local view of the overlay network, but they perform cyclic
exchanges to achieve local convergence between their views of the network, resulting
in global convergence of the network topology. As a result of global convergence (or
network-wide convergence), several self-* properties emerges such as: self-configuring, self
stabilizing and self-healing properties [JVG+07] [Bir07]. Self-configuration refers to the
ability to autonomously configure the deployment of a system, or to respond to changes in
the topology of the composing components [KC03] [BG09]. The self-stabilization property
refers to the ability for a system to start in any arbitrary configuration and eventually
converge to a desired configuration [BG09] [Dol00]. Whereas, the self-healing property
provides autonomous detection, diagnosis and repair of localized problems [KC03], but
also autonomous component-level failure recovery [BG09]. Maintaining the overall health
of the system, can be referred to as the survivability, which is the prime objective of self-
healing components [PD11] [GSRU07]. Given the emergence of these properties, this type

Chapter 2. Background 17

of overlay network is very robust in highly dynamic environments, such as the Internet
[Bir07].

Generally, the routing is done by performing random-walks or flooding the network,
and consequently querying is not deterministic. Since the structure of the graph, or the
lack thereof, is not dependent on any particular arrangement of the peers, the network
supports complex queries because of the arbitrary nature of the routing mechanism,
which can reinterpret the network accordingly. This is commonly referred to as slicing
and we present it in the following subsection.

Because of the routing mechanism, location of specific data managed by a peer in
the network is rather difficult if it has not been replicated on several nodes. Replication
schemes usually target the most popular data in the network, and replicates it across
several nodes to ensure availability. Thus, rarely queried data is unlikely to be found
by queries if it is managed by a single or very small collection of peers. Because queries
generally have a Time-To-Live (TTL), which can be represented in terms of hops or
Hops-To-Live (HTL), after which the query will simply be dropped and no result will be
returned.

Examples of unstructured overlay networks are usually based on epidemic protocols,
or gossip-based protocols [RV11], for which a peer joins the network and periodically
exchange its local view of the network with another, randomly selected, peer.

For more information on overlay networks, and comparisons on the different types see
[LCP+05] and [BJ13].

2.3.5 Slicing

Slicing is a primitive in distributed systems, which dictates the querying abilities of the
underlying network structure. The ability and degree to which the system can perform
slicing, is relative to the complexity of the queries it supports. It can be formulated as
the following:

Given a graph, representing a network of peers, can we partition it according
to a set of node local-attribute(s).

Several techniques exists to solve this problem as depicted in [JK06] and [PMRS14].
Techniques varies in terms of the type and number of attributes considered, and consists
of ordering the nodes according to these attributes providing different perspectives of the
same collection of nodes.

Based on this definition of the slicing problem, we can now formulate the differen-
tiation between Single-Attribute Dominated Query (SADQ) and Multi-Attribute Domi-

Chapter 2. Background 18

nated Query (MADQ). The distinction arises from the ability to query resources, accord-
ing to the specifications of their attributes, whether it support querying a single attribute
per query or multiple. Or we can also distinguish the two, based on the ability to slice
the current network into slices (partitions) according to the(se) attribute(s).

This problem helps deciding which topology of overlay network to use, because it
illustrate the querying ability provided by the different topologies.

Chapter 2. Background 19

2.3.6 Comparison

We can summarize the advantages and disadvantages of the different types of overlay
networks according to different characteristics, inspired by [LCP+05] and [BJ13]:

Characteristics Structured Unstructured
Construction Generate abstract keyspace,

which is divided among the
peers. Topology results in a
structured graph.

Peers query a participating
node and retrieve informa-
tion about the network. Re-
peats periodically, results in
a flat or hierarchical random
graph.

Routing Key-based routing, each
node contacts the closest
node to the key (according
to its local view), and then
the closest node to this node,
and so on until the node
responsible for the key is
reached.

Perform a random-walk
through the network or using
flooding techniques. May
not return a result (query
could time-out).

Lookup Deterministic and has a
general time complexity of
O(logn), where n is the num-
ber of keys in the keyspace.

Non-deterministic and is gen-
erally a best-effort attempt
to locate data, popular data
can be easily located due
to replication. No defined
boundary in terms of time
complexity, uses a parameter
that represent the TTL, (in
seconds or hops).

Continued on next page

Chapter 2. Background 20

Continued from previous page
Characteristics Structured Unstructured
Join/Leave Join: Node contacts a live

node and a portion of the
keyspace is attributed to it,
according to its identifier (or
key). Leave: Node leaves,
eventually the keys will be
remapped to the neighboring
nodes in the network and all
the neighbors table will be
updated.

Join: Node contact an arbi-
trary live node and exchange
information, and repeats pe-
riodically forever achieving a
dynamic view of the network.
Leave: Node leaves, and
then since it won’t partic-
ipate in the periodic infor-
mation exchange, it will be
discarded from the dynamic
view of the network.

Reliability/Fault-
Tolerance

Resist churn and normal level
of node failures.

Highly resistant to churn and
very high level of node fail-
ures.

Slicing (SADQ) Single-Attribute
Dominated Queries

(MADQ) Multi-Attributes
Dominated Queries

Concluded

2.4 Virtualization Technologies

In this section we present a general overview of virtualization. We differentiate between
full virtualization and light virtualization. Then, we present what are containers, and
take a look a two different instances of it such as Linux Containers (LxC) and Docker
containers.

2.4.1 Overview

Virtualization provides the ability to allocate the physical resources needed to accomplish
a task prescribed by the software. It is generally achieved through the decoupling of
software from hardware [Tav12].

The simplest example of virtualization that is used by a majority of OS are processes
[Chi08]. Processes are isolated into virtual environments that exposes the resources as
if they are the sole consumer, by abstracting the other processes away and effectively
decoupling the software from the underlying hardware providing the computational re-
sources.

Chapter 2. Background 21

The concept can be extended to the virtualization of whole OSs. The interactions
from the OS with the physical hardware are done through a software abstraction layer,
the resulting machine is called a Virtual Machine (VM) [SPEW11].

Within the context of distributed systems, one type of virtualization pre-dominantly
exist, the full virtualization or desktop virtualization. Semantically it is different from
para-virtualization and both types shouldn’t be conflated. The latter requires modifica-
tion to the guest operating system to comply with the interface defined to access the
physical hardware. Whereas the former requires no such modifications, and the calls
from the operating system to the hardware can be interpreted directly [Tav12].

An emergent type of virtualization technology, known as light virtualization or operating-
system level virtualization, is gaining popularity. It is akin to the type virtualization used
processes. It is important to draw the differences between these two types of virtualiza-
tions, in order to understand which is best suited to fulfill our requirements. We neglect
para-virtualization in the context of this thesis since it is not as relevant for our research,
as we do not intend to impose any modification on the OS. For more details on the basics
of virtualization, see [Tav12] [BDF+03].

2.4.2 Full Virtualization vs. Light Virtualization

Several distinctions exist between full virtualization and light virtualization and some
are advantageous, others are disadvantageous in different contexts.

Full virtualization can be defined as a virtualization technique for which the entire
hardware is virtualized, providing an abstract computing base, as a software layer, on
which it is possible to execute a complete OS without any modifications [BDF+03].

The use of VM, rather than physical machines, offers several key features that are
desirable in the context of distributed systems. One of these features is the ability to
clone, which enables the replication of the complete execution environment with ease.
Another very desirable feature is the ability to test changes before applying them, and the
ability to migrate the VMs across different hardware, which can also be done without
much interruption of service. The penultimate feature of using VMs, as opposed to
physical machines, is undoubtedly the ability to execute multiple VMs in parallel on
a single physical machine. It grants the ability to have multiple different execution
environments without having to dedicate a physical machine to each. When applied to
servers, this feature is referred to as server consolidation [Tav12].

A VM is controlled by an hypervisor, which is responsible for orchestrating the VMs
access to the underlying physical resources of the host, and it is also known as Virtual

Chapter 2. Background 22

Machine Monitor (VMM). It is possible to distinguish between two types of hypervisors.
The distinction depends on whether or not there is an OS running the hypervisor (Type-
2) or if it is directly interfacing with the hardware (Type-1) [PG74].

VirtualBox [Wat08], is a prime example of Type-2 hypervisor. Figure 2.4 shows the
difference between full virtualization (on the left) and light virtualization (on the right).
It illustrates how each type of virtualization interacts with the hardware through the OS.

Figure 2.4: VM vs. Containers [DlRB14]

Light virtualization or operating system-level virtualization, does not attempt to ex-
ecute a complete OS on top of the current OS, but rather it shares the kernel and the
libraries to create fully self-contained environments through isolation mechanisms. As a
result, light virtulization technologies are generally referred to as containers.

These containers, benefits from similar advantages as their fully virtualized counter-
parts, such as the ability to be cloned, and the ability to run multiple instances on a
single hardware base. But the feature that sets them apart, is the ability to host much
more instances on a single machine. This feature is the result of using a non-redundant
virtualization scheme compared to a full virtualization redundant scheme (OS on top of
OS). This scheme grants a full order of magnitude of additional deployment to lightweight
virtualization, on identical hardware, from 10-100 VMs to 100-1000 containers [DlRB14].

Operating system-level virtualization originated from a desire to compartmentalize
different services within the OS, and one of the earliest example is FreeBSD Jails for the

Chapter 2. Background 23

FreeBSD OS [?]. Another notable example is the Solaris Containers for the Solaris OS
[?]; or for Linux, the Linux-VServer [?]. All of these examples offer virtualization mech-
anisms providing various capabilities, but recent and more capable light virtualization
technologies now exists, including Docker and LxC, both of which are presented in the
following subsections.

Contrary to full-virtualization, containers do not perform any emulation, but rather
through namespace isolation re-uses the libraries and kernel of the host operating system.
This makes it an interesting candidate when using low-end hardware, to maximize the
hosting capability. But from a security perspective, this entails that full-virtualization has
a software layer protecting the host OS from the VM, namely the hypervisor. Whereas,
light virtualization has no such layer to protect the host from the container, which has
access to the kernel interfaces.

2.4.3 Containers

In this subsection we present the technologies that make containers possible in Linux.
Introduced as a kernel patch [Men11], c-groups consists of an aggregation and partition
mechanism for groups of tasks, that contains (within those aggregations/partitions) all
their children. The central technology behind containers in Linux is c-groups, or control-
groups. A c-group allows different specialized behaviors to be explicitly defined, by
generating a hierarchy of groups. The strength of this concept lies in the ability for it to
be used with other Linux subsystems and to provide additional properties for groups of
processes. One example that illustrates the definition of specialized behaviors, consist of
pairing c-groups with the cpuset subsystem to restrict a group of processes to a specific
Central Processing Unit (CPU)-core. Through the c-groups technology, and by extending
the definition of the behaviors of processes in Linux, emerged the container technology.
We present in the following subsections two different implementations of Linux containers,
LxC and Docker.

2.4.4 LxC

LxC or Linux Containers, is an open-source implementation of the containerization tech-
nology for Linux. It focuses on providing the tools to facilitate the development of system
containers in a distribution agnostic fashion [Los15].

LxC leverages c-groups partitioning and aggregating capabilities to provide resource
and namespace isolation without any extra virtualization mechanisms, but rather by
using the Linux kernel native subsystems. Namespace isolation provides the ability to

Chapter 2. Background 24

isolate running applications completely from the operating system execution environ-
ment, albeit not an exclusive feature of LxC. A general example of namespace isolation
is the PID namespace, which provides the means to create sets of tasks such that each set
is completely independent from one another [EK07]. In other words two tasks belonging
to different set of tasks, can have identical ID without incurring any ambiguity as to
which task belongs to which set. Resource isolation provides the means (via cgroups) to
allocate system resources to different groups of tasks.

Thus, LxC provides capabilities analogous to an operating systems (filesystem, net-
work, processes) and dedicated access to the physical resources of its underlying host, in
a isolated environment in the form of a container [DlRB14].

2.4.5 Docker

Docker was released on March 2013 and is ever-growing in popularity. It already has its
own convention: DockerCon [Hyk14], which is endorsed by major technological companies
such as IBM, Microsoft, Google, and RedHat (to name a few).

Docker is open-source and provide means to automate deployment of applications
within containers. It provides a high-level interface to containers, by abstracting the
intricacies and specificities of the containers into an intuitive and easy to use high-level
API, providing management, configuration and monitoring capabilities.

Docker is not a replacement for LxC, rather it is an addition of high-level features,
on top of the containerization primitives (LxC) of Linux, to interact with containers. It
implements a custom version of these primitives, largely based on the LxC primitives. As
does LxC, Docker leverages namespace isolation and c-groups to provide isolation to the
container, but also uses union file-systems to provide a lightweight templating system,
known as images. Docker Images are used to specify the operating system environment
to be instantiated within the container [Hyk15].

The union file system is a Unix filesystem service, with which it is possible to create
virtual filesystems from separate filesystems through branching and layering. One of
the advantages of this service is the ability to update a filesystem by simply applying
the difference from the previous versions. In Docker’s context, this means the ability to
update a container by simply uploading the difference (or new layer) and applying it,
rather than uploading the entire container again [Hyk15].

Docker uses a client-server model to communicate between the container (client) and
the originator/deployer (server), which can reside on a single host or not. Easing the
workload for the client, because it is possible to offload computationally intensive tasks,

Chapter 2. Background 25

such as container construction, to more powerful machines while conserving lightweight
clients [Hyk15].

Chapter 3

Related Work

In the previous chapter we have presented the background information required to un-
derstand the following chapters and this information is useful to understand the context
in which we approach the following related works.

In this chapter we present the work that relates to our research, notably the two
most relevant projects: Cloud@Home and Peer-to-Peer Cloud System. But before, we
introduce a framework designed to evaluate collaborative systems [BJ13], and use it to
evaluate the two projects. Finally, we discuss how these solutions cater to our require-
ments and what is the scope of these projects.

3.1 Evaluation Framework

The framework aims at formalizing the requirements for peer-to-peer collaborative sys-
tems and it expresses the functional life-cycle of its participants. More specifically, this
framework circumscribes the resource collaboration problem, where each phase cover a
functional requirement [BJ13], as illustrated in Figure 3.1.

1. Advertise: Each node advertises its resources and their capabilities using formal
specifications defined over a set of attributes.

2. Discover: A mechanism to discover and keep track of the useful specification
advertised by the other participating nodes; it accelerates the querying mechanisms
and it preserves the inter-resource relationship information.

3. Select: A mechanism for a node to select a group of resources that satisfies the for-
mal specification of their requirements, defined in a query containing the attributes
and their respective domains.

26

Chapter 3. Related Work 27

Figure 3.1: Framework for Peer-to-Peer Resource Collaboration Problem [BJ13]

4. Match: A mechanism to formally specify, in the selection query, the inter-resource
relationship requirements and to ensure that the selected nodes satisfy them.

5. Bind: Provides a binding mechanism between the resources and the applications,
preventing two applications from selecting the same resources. It is useful to cope
with the dynamic nature of the peer-to-peer environment, because a node may not
(still) be available at the time of use, but it was at the time of selection.

6. Use: Utilize the best subset of available resources, from the resources acquired, to
execute the application (and all its tasks) while respecting the utilization agreement
between the application and the resources.

7. Release: Provides a mechanism that allows to release (some) resources in relation
to the application demand, and/or the contractual binding (if time-sensitive). This
mechanism can also provide the means to partially release a resource and to enable
that resource to collaborate with multiple applications simultaneously.

Thus, if one were to implement each one of these functional requirements into a

Chapter 3. Related Work 28

separate module, then the resulting system would be modular and would address the
resource collaboration problem. For more details on this framework and for an evaluation
conducted on different peer-to-peer collaborative systems using this framework, see [BJ13]
[BJ12].

For our purposes, this framework acts as a checklist to identify how each of the
functional requirements inherent to peer-to-peer collaborative systems are implemented
in the following two projects. Ultimately, we will use it in further chapters to assess the
fulfillment of these functional requirements in our own architecture.

3.2 Cloud@Home

Cloud@Home is a new paradigm which spawned at the intersection of two existing
paradigms: the public-resource computing paradigm and the cloud computing paradigm.
It is one of the earliest attempt to create a volunteer cloud computing infrastructure.
Over several publications, the authors have analyzed extensively the challenges relating
to volunteer cloud computing, [CDPS09b] [ABC+11] [AAC+11] [CDPS10a] [CDPS10b]
[DCP10] [CDPS10d] [CDP10] [DFP11] [DP12] [DPR+11].

Their vision is to offer a full-fledged cloud computing infrastructure constructed using
volunteered resources. Full-fledged, in this context, entails the provisioning of the fol-
lowing service models: IaaS, PaaS and SaaS. The Cloud@Home system aims at offering
performances and Quality of Service (QoS) similar to those offered by major CSP.

To fulfill the performance requirements, the authors focused on interoperability be-
tween CSP, providing a user with the ability to contract resources from commercial CSPs,
given that the volunteered resources available are insufficient or inadequate. Whereas to
fulfill the QoS requirements, they require that both parties negotiate the expected or
desired QoS contained in a Service-Level Agreement (SLA), created by the resource con-
sumer. In other words, the consumers provide their intended terms of use, relative to the
resources, and the providers can decide whether or not they accept the terms of use. In
case of disagreement with the SLA and the QoS it contains, the negotiation process is
aborted. For more details pertaining to the QoS and SLA in the context of this system,
see [DPR+11].

Contrary to the CSP, because Cloud@Home uses volunteered resources, the authors
were obligated to ponder on how to entice people to contribute their resources to this
infrastructure. They devised an incentive-based business model that offers financial resti-
tution to the users for their contributions. This model proposes to recycle current idling
resources into a utility that can be sold, with respect to the quality and capabilities of

Chapter 3. Related Work 29

(a) Overview [CDPS09a] (b) Functional Representation [DFP11]

Figure 3.2: Cloud@Home Architecture

these resources.
In the following subsections we will present and discuss the architecture proposed

for this solution, and discuss its conformance to our requirements and the evaluation
framework.

3.2.1 Architecture

The Coud@Home system architecture, shown in Figure 3.2a, is composed of three layers:
the Frontend Layer, the Virtual Layer and the Physical Layer. The functional repre-
sentation of the infrastructure, shown in Figure 3.2b is divided into the Management
Subsystem and the Resource Subsystem.

Starting by the architectural overview, the first layer or Frontend Layer, is responsible
for providing a high-level service-oriented point of view of the underlying infrastructure.
The relation between the Consumer Host1 and this layer is based on a client-server
relationship, providing a centralized point of access to the infrastructure.

The Virtual Layer provides a homogeneous perspective of a set of heterogeneous
resources, by means of virtualization. Because it uses virtualization, it is possible to
completely abstract the underlying hardware specificities of the different contributed
resources and to exploit them in a platform-agnostic way. This layer is further divided
into two services: the Execution Service and the Storage Service. The former enables
the consumers to host and execute VMs, according to their needs, providing a similar
service as the Infrastructure-as-a-Service model provides. Contributors are then assigned
an arbitrary virtual machine to host, or multiple VMs to host, relative to their intended

1Consumer Host, in this context, represents a consumer of the cloud service provider and not a
consumer of the application deployed in the cloud.

Chapter 3. Related Work 30

contributions. Whereas the latter provides a distributed storage facility by implementing
a distributed file system such as [GGL03]. Consumers can then mount locally a remote
disk that corresponds to a portion of the distributed file system. As for contributors,
they host an arbitrary portion of this distributed file system, relative to the amount of
disk space they wish to contribute, providing a unified view of the entire distributed file
system to the consumers.

The Physical Layer is responsible for connecting the contributing resources together
and providing means for communication. Negotiations for the resources between the
contributors and the consumers are performed at this layer. The negotiation process
consists of a request for resources, emitted by the consumer, followed by an attempt to
match the parameters of this request with the parameters of the volunteered resources
available. The authors specified several mechanisms to ensure and negotiate the Quality
of Service and Service-Level Agreements between consumers and contributors (or CSP)
[ABC+11][AAC+11].

The Management Subsystem translates the user’s requests into multiple sub-requests.
Whether it is possible for the requests to be satisfied, using volunteer resources or their
commercial resources, depends on the QoS specified by the user and if it is compatible
with the resources available. These request(s) are passed on to the Resource Subsys-
tem which binds and matches the resources to the user from which the(se) request(s)
originated. The Management Subsystem is centralized in order to manage the infras-
tructure, and to manage the QoS and the SLA of all the resources, but also to provide
dynamic provisioning. The authors claim that it is the only way to aggregate the global
information of the infrastructure and to provide a reliable perspective of it [CDPS10c].

Finally, the authors proposed a middleware that implements the ideas from the ar-
chitectural overview and the functional representation, covering the different goals posed
by the Cloud@Home paradigm. Figure 3.3 showcases the deployment middleware of the
Cloud@Home infrastructure.

In this overview, we have presented a simplification of the functionalities of the two
subsystems for more details consult [CDPS10c]. For more details on the different layers
composing its architecture consult [AAC+11], and finally, for more information on the
middleware consult [CDPS10a].

3.2.2 Evaluation

In this subsection we evaluate the system according to the evaluation framework that we
introduced in Section 3.1. Then, we evaluate the system against the functional require-

Chapter 3. Related Work 31

Figure 3.3: Cloud@Home Infrastructure Middleware [AAC+11]

ments that we have identified in Section 1.2.

Evaluation Framework

We use the evaluation framework from Section 3.1 to identify any functional deficiencies in
this system related to the essential requirements of peer-to-peer collaborative systems and
the resource collaboration problem. The implementation of these functional requirements
does not require mutual exclusion, and a subset of these requirements can be combined
into a single module.

As a matter of fact, such is the case for the first three phases. Advertise, Discover,
and Select are accomplished by the Management Subsystem. They are grouped together
to provide the ability to a user to enroll and advertise its resources, or to a consumer to
find resources that are available according to their needs.

It is also the case for the remaining phases, Match, Bind, Use, and Release, all
being accomplished by the Resource Subsystem. It provides the ability, given a request,
to match the resources which satisfies the request, then to allocate the resources to the
consumer in order to use them. Upon using the resources, it is possible to release or to
deallocate the resources when the consumer no longer requires them. As a consequence,
it provides dynamic membership capabilities to the resources, or it allows preemption of
the resources according to the SLA or the current workload.

Essentially all the functional requirements presented in the evaluation framework are
fulfilled in one way or another, directly or indirectly. As a consequence, this project is
appropriately devised to address the essential functional requirements of a peer-to-peer
collaborative system and the resource collaboration problem.

Chapter 3. Related Work 32

Functional Requirements

We now evaluate how this system addresses our functional requirements, as presented in
Section 1.2, enlightening us on how it could address the research questions presented in
this thesis.

Starting with the first requirement, which entails the use of commodity hardware to
form the infrastructure on which it is possible to deploy multiple applications. We can
assess that this requirement is completely satisfied, by leveraging public-resources as part
of the resources available to deploy an application, and by supporting the deployment of
multiple applications simultaneously.

As for the second requirement, which states that no third-party should be introduced
to provide any services, in order to maintain the self-containment property of the system.
We can only assess partial satisfaction of this requirement, because it is possible using this
system to rely exclusively on contributed resources, and not contract resources from any
commercial CSP. But in order to use this infrastructure, both consumers and contributors
are required to interface with the Management Subsystem, and to an extent this is a
third-party in relation to the consumer and contributor.

The third requirement, states that the system should be resistant to resource fail-
ures and should not introduce any single point of failure, for security purposes. The
Cloud@Home system focuses on creating a lightweight middleware built around the con-
cept of service migrations. Upon failure of any resources, the system can swiftly migrate
the corresponding workload to any other available resources, resulting in an infrastruc-
ture optimized for lightweight services and failure-resistant. Unfortunately, this system
is built around the concept that a central server is required to manage its infrastructure,
as stated previously in Section 3.2.1. Although, some fault-tolerant mechanisms are put
in place to mitigate this single point of failure, including redundant servers, and the
authors claim it is sufficient. Further tests and benchmarks are required to corroborate
their claims, in a realistic environment, and to satisfy this requirement.

The fourth requirement, states that no special equipment should be required to access
and participate in this system, but rather encourages resource recycling. Consequently,
it implies, as a sub-requirement, that the memory footprint should be small enough to
enable legacy, or lower-end, devices to participate in this system. Because this system
relies on full virtulization technology, it forces the contributing peers to host VMs in
order to contribute a computational resource. Thus, limited resources are expected to be
consumers rather than contributors, except in very specific cases where the application
lends itself to it. Such cases are when the limited resources are used for sensorial inputs,
such geo-location, accelerometers, barometers, and other various sensors that could be

Chapter 3. Related Work 33

used as a stream of information available to any applications in the cloud. These stream
of informations are analogous to nodes in a sensor network. It is clear to which extent the
memory footprint is small in the context of the proposed IaaS model, but not so much in
the context of the other service models. Cloud@Home offers PaaS capabilities by using
their SLA Engine, ensuring the availability and capacity of the resources, and CHASE
(Cloud@Home Autonomic Service Engine), which determines the optimal configuration
parameters for the service application using the current configuration of the cloud. Given
that this processing occurs at the centralized server, it shouldn’t incur a large memory
footprint on the contributing resources. But the contributing resources are still required
to host VMs. This requirement is not completely satisfied.

The fifth and final requirement, states that the system should provide dynamic mem-
bership capabilities to all applications, which means that for every application it should
provide means to scale according to the fluctuations in the workload. The Management
Subsystem enforces the resources SLA and guarantees the QoS, and consequently it will
preempt the necessary resources to ensure that they are only used to the extent prescribed
in their SLA. This system supports dynamic membership and provides scalability to the
applications deployed, resulting in the satisfaction of this requirement.

Out of the five requirements: one remains unsatisfied, three are partially satisfied
and one is completely satisfied. We can conclude that this system does not address our
research question sufficiently for it to be considered a viable solution, and thus we must
find a more adequate solution or create one.

3.3 Peer-to-Peer Cloud System

The Peer-to-Peer Cloud System (P2PCS), was developed as part of a doctoral thesis
[BMT12], and proposes a slightly different approach to volunteer cloud computing than
the previous system. One of the defining characteristic of this system is the fully decen-
tralized structure connecting the different peers, constructed using epidemic and gossip-
based protocols.

The authors propose an infrastructure with no centralized server(s) to manage the
resources, conversely to the Cloud@Home system. Rather each node interact directly
with the other nodes when performing any system operations. Consequently, the con-
sumer nodes interacts directly with the (potential) contributing nodes in order to select
the fittest candidates to host the application. Fitness of a candidate is evaluated using
the response of a specially defined query, which contains the desired criteria for candi-
date resources (e.g., 10 nodes with at least 8 gigabytes of RAM...). The collection of

Chapter 3. Related Work 34

nodes that fulfills these criteria are selected and forms a Slice. This slicing mechanism
is an attempt at solving the slicing problem presented in Section 2.3.5. The consumer
would communicate with this slice, or pool of nodes, via an API that is similar to what
current IaaS provider (Amazon EC2 or S3) uses. Using this API, the consumer is able
to instruct the contributing nodes when to start or stop the VMs according to the appli-
cation requirements. The authors present this system as a peer-to-peer cloud computing
architecture focused on providing only one service model, the IaaS.

In the following subsections we present the architecture of the system, and proceed to
evaluate the system against the evaluation framework and our functional requirements,
as we did for the previous system.

3.3.1 Architecture

The architecture is divided into 3 functional components, although the authors did not
explicitly use nomenclature to distinguish between correlated components, we do.

Figure 3.4: Peer-to-Peer Cloud System Architecture [BJ13]

Figure 3.4 presents the different components of this system. The authors distinguished
between what has been implemented (in gray) and what has been left as future work (in
white).

Using a top-down approach, we present the first component, representing the point
of access to the system. The Authentication/Authorization layer is where a user (con-
tributor/consumer) is required to identify themselves in order to access the system.

Chapter 3. Related Work 35

The second component represents the principal access point to the cloud for the
consumers, it is named the API layer. It is composed of three sub-components providing
different capabilities through various interfaces. The Instance Management API sub-
component provides an interface that circumscribes the possible interactions between the
consumer and the contributing nodes, with respect to the VM instances. Whereas, the
Monitoring API sub-component provides a visual representation of the slice topology,
and the Storage API sub-component provides the means to configure the distributed
storage system for the current slice.

The third component represents the Networking layer. This component is composed
of three sub-components, which in turns are composed of three or less components.

The first component of the Networking layer is composed of two services, which are
the Bootstrapping Service and the Peer Sampling Service. As it name implies, the former
provides the bootstrapping mechanism for a node to join this system. Whereas the
latter, provides a list of peers in the network to exchange messages with. The creation
and maintenance of the list is accomplished by creating and maintaining an overlay
network over all the peers in the system. This overlay network is created using a simple
gossip-based protocol as presented in [JVG+07].

The second component of the Networking layer is composed of three sub-components,
which are the Dispatcher, the T-Man and the Slicing Service. The Dispatcher sub-
component is responsible for the translation of the commands issued through the various
interfaces by the consumer into commands that are compliant with the gossip-based pro-
tocol(s) used in this system. The following sub-component, is T-Man, a gossip-based
protocol providing the ability to create and manage structured overlay networks, using
various topologies [JMB09]. Whereas the last sub-component, the Slicing Service, pro-
vides the slicing capabilities for this system, as presented in Section 2.3.5, by ordering the
nodes according to node-local attributes, then dividing the nodes according to various
thresholds. Previously, we have presented the slicing capabilities of this system as being
an attempt to solve the slicing problem because of how it is implemented. The (cur-
rent) implementation enables the creation of slices using only one metric, the number of
nodes a consumer wishes to contract, which is completely independent of any node-local
attribute.

The last component of the Networking layer is also composed of three sub-components,
the Monitoring System, the Aggregation Service and the Storage System. Through the
corresponding API, the Monitoring System provides to the consumer access to global
system information collected and computed by the Aggregation Service. The Aggregation
Service provides system-wide parameters to the peers of the system. These parameters

Chapter 3. Related Work 36

are computed by aggregating the various local parameters from each peer, through local
message exchange among peers. To accomplish this in a decentralized and dynamic en-
vironment, this service uses a push-pull gossip-based protocol, as presented in [JMB05].
The last sub-component is the Storage System. It provides the distributed storage capa-
bilities of this system and it is accessed through its Storage API.

From this overview of the architecture of this system, we can observe that gossip-
based protocols are prevalent, which is the defining characteristic of this system. These
protocols are praised for their ability to strive in highly dynamic and volatile environ-
ments, and a considerable amount of literature has been published on the subject. For
a discussion on the limitations inherent to these protocols, and its strengths see [Bir07].
For a more introductory approach to gossip-based and epidemic protocols in the context
of distributed systems see [Jel].

3.3.2 Evaluation

In this subsection we evaluate this system against the evaluation framework, as presented
in Section 3.1, then against our requirements, as presented in Section 1.2.

Evaluation Framework

Again, we rely on the evaluation framework to identify any functional deficiencies in this
system, with respect to the essential requirements of peer-to-peer collaborative systems
and the resource collaboration problem. As stated previously, the requirements of this
framework can be implemented alongside other functional requirements as part of a single
module.

The first two phases, Advertise and Discover, are coupled together within the
Peer Sampling Service. But they are not exhaustively implemented. We underline the
fact that the system provides no mechanism to advertise the resources a node has to
offer, to the network explicitly, either using formal specifications, as proposed in [BJ13],
or using any other strategies. Rather, this service presents a node to the other nodes
using a gossip-based protocol. We deem these functional requirements to be partially
fulfilled, because it is desirable to be able to advertise and discover resources based on
their capabilities.

The Select phase is accomplished by the Slicing Service. The authors designed this
system to use a gossip-based protocol to automatically partition the network into slices
according to a metric [JK06], but was not implemented and slices are created based on
the desired number of nodes. Thus, we deem this functional requirement to be partially

Chapter 3. Related Work 37

fulfilled, because it is not possible to select the resources according to their capabilities.
The Match phase is suspected to be realized by the Slicing Service, by furthering

the specification of the selection query. But the limitations of the gossip-based protocol
used are not clear, because the slicing mechanism proposed by the authors is based on a
utility function that describes the usefulness of a node with respect to the other nodes,
using node-local attributes; and to introduce additional dimensions to perform multi-
dimensional slicing using a utility function is not the best approach since it introduces all
sorts of statistical distortions [PMRS14]. Thus, we also deem this functional requirement
to be partially fulfilled, because support for multi-dimensional slicing is not explicitly
provided.

Bind, the fifth phase, is achieved using the T-Man gossip-based protocol. This
protocol is used to create a ring overlay of all the peers contained in a specific slice, 1
ring per slice, resulting in mutually exclusive slices. There are no indications on how
to cope with concurrent attempts to bind overlapping sets of resources, given that these
resources satisfies multiple selection queries. This is due to the fact that the slicing
mechanism uses a single metric, namely the number of requested nodes. Then instances
of the concurrent binding problem would only occur in very a specific case. Manifesting
itself in the form of two or more concurrent requests, for which the total requested
number of nodes combined exceeds the total number of available nodes, but the number
of nodes per request is inferior to the total available nodes. The problem then becomes,
which application is entitled to have their request fulfilled? Because no a-priori ranking
mechanism (or reputation mechanism) to decide which consumer should be favored is
provided, the behavior of the system in response to this characterization of the problem
is undefined. Again, we deem this functional requirement to be only partially fulfilled,
because of the lack of concurrent requests binding support.

The sixth phase, referred to as the Use phase, is satisfied by the Dispatcher. It
translates the higher-lever API requests into the appropriate low-level gossip protocol
commands to be sent to the nodes of the slice, resulting in the utilization of the resources.
This functional requirement is completely fulfilled, because this system provide the ability
to use the selected resources.

The last phase, Release, can be accomplished by the Instance Management API,
granting the ability to the consumer to control the VM instances it was assigned. The
automation of this phase would be the result of the co-operation between the Monitoring
System and the Aggregation Service, collecting global information about the system, such
as the current load in a slice, and acting on these results by preempting the necessary
amount of resources. This functional requirement is also completely fulfilled, because

Chapter 3. Related Work 38

using the Instance Management API in concert with the Monitoring System and Aggre-
gation Service provides the ability to release resources when they are no longer required.

According to the evaluation framework, this architecture exhibits some of the char-
acteristics that are essential in a peer-to-peer collaborative system. Only two out of the
seven functional requirements are completely fulfilled, and five are only partially fulfilled
either conceptually or because of the lack implementation. Nonetheless, this system
presents a solid foundation that could be extended to meet all the requirements, because
there are no apparent design decision that would explicitly prevent it.

Functional Requirements

We evaluate this system against our functional requirements, as defined in Section 1.2.
The first requirement, states that it should be possible for the infrastructure to be

constructed using only commodity hardware and that it should be able to host multiple
applications at once. By relying solely on user contributed resources and by providing
the ability, to the consumers, to create mutually exclusive slices for their applications,
this requirement is deemed to be completely fulfilled.

As for the subsequent requirement, which states that every services should be pro-
vided by the contributing resources, not 3rd-parties, we can conclude that it is fulfilled.
We arrive at this conclusion by observing that the proposed system relies solely on con-
tributed resources and does not introduce any 3rd-parties.

The following requirement states that system should not introduce any single point
of failure and the system should be (somewhat) resistant to ubiquitous failures. As a
consequence of being fully decentralized this architecture does not introduce any single
point of failure. Using gossip-based protocols to create and maintain the overlays, this
system is able to cope with a very dynamic networking environment. Failures or node
leaving/joining the network, are well supported by these protocols, thus we deem this
functional requirement to be fulfilled [BJ13].

The following requirement states that no special or dedicated hardware should be
necessary to participate in this system, and consequently that memory footprint should
be as low as possible as to enable a wider range of (weaker or lower-end) resources to
participate. Nothing requires from a participant to acquire any special or dedicated
equipment to participate in the system. For the IaaS model it is required to use full
virtualization technologies, increasing the memory footprint, and it is not clear as how it
would fare on lower-end resources. Thus we cannot deem this functional requirement to
completely fulfilled, because it uses full-virtualization technologies and the authors have
not shown the memory footprint to be small.

Chapter 3. Related Work 39

The last requirement states that the system should be able to provide scalability to
the applications deployed, and consequently provide dynamic membership capabilities.
As stated previously, the use of gossip-based protocols facilitate the support for dynamic
membership capabilities because of their resistance to failures and arrival/departure of
nodes. Consequently, this functional requirement is deemed to be fulfilled.

Ultimately, this system fulfills four out of the five functional requirements explicitly,
making it almost a viable solution, but not quite. We put the emphasis on the fact that
the system adopts sensible approach to solve our problem, but the limitations present
dissipates any hopes of redeeming it. To back these claims, we want to outline the fact
that a lot of the problems of providing a distributed computing platform are simply re-
layed to the end-user when adopting a IaaS model. Because it reverts the responsibilities
to mitigate the problems, back to the user, in the form of (proper) configuration of the
VM instances required for any applications. Thus, we think that this system does not,
and could not without substantial modifications, provide a PaaS computing platform or
a system capable of addressing our research requirements.

3.4 Discussion

In this section, we discuss the various details and implications of both projects, and
provide a reflection on what they accomplish from a high-level overview.

The Cloud@Home system offers a decent solution to the volunteer cloud computing
paradigm but also with respect to the functional requirements of peer-to-peer collabora-
tive systems. This solution trades off full decentralization and the capacity to leverage
lower-end resources for augmentation of performance and QoS. It introduces possible
third-parties, in order to provide these performance and QoS guarantees, and thus it
breaks our perspective of being fully self-contained with respect to the consumers and
contributors. It aims at providing a business model to transform current computing
resources into a utility that can be monetized.

In contrast, P2PCS provides an architecture that can transform a group of computing
resources into a application deployment platform, corresponding to the IaaS model. This
system provides the ability to leverage resources using full-virtualization, but it does not
provide a business model to justify the viability of the infrastructure, or to provide any
incentive to entice possible contributors. Like many open-source and community-driven
project it anticipates a self-policing behavior from the community. The API proposed
to interface with the resources is analogous to traditional IaaS APIs. The strength of
this system lies in the adoption of gossip-based protocols to accomplish the underlying

Chapter 3. Related Work 40

network creation and maintenance. Consequently, by using these protocols it mitigates
a lot of the complexities and difficulties of operating a distributed system over unreliable
network infrastructure, such as the Internet.

Both of these projects offer interesting architectures supporting a multitude of de-
sirable features for volunteer cloud computing and public-resource computing, but from
our perspective some key features are still missing. Notably the ability to leverage a
collection of commodity devices to provide a multi-application computing platform akin
to a PaaS model, by limiting the memory footprint. The PaaSe model has different
concerns compared to the IaaS model, with respect to security and isolation. The latter
uses VMs, to isolate the contributing environment from the hosting environment. And it
is not clear how this could be accomplished in either projects without resorting to VMs.
Consequently, providing a PaaS model, using the contributed resources rather than lever-
aging a commercial service provider, remains unresolved for P2PCS and problematic for
Cloud@Home when using lower-end resources.

Ultimately, due to the deficiencies outlined, we express the need of creating an archi-
tecture based on the observations we made while evaluating these projects. In Table 3.1
we present a summary of how well each project fared against the requirements and the
evaluation framework. For illustration purposes, we have included the rating for our
architecture, we will present and justify in the next chapter.

Chapter 3. Related Work 41

Cloud@Home P2PCS Our Architecture
Evaluation Framework
Advertise + + ++
Discover + + +
Select + + ++
Match + + +
Bind + + +
Use + ++ ++
Release + ++ +
Functional Requirements
Requirement 1 ++ ++ ++
Requirement 2 + ++ ++
Requirement 3 - ++ ++
Requirement 4 ++ ++ ++
Sub-Requirement 4.1 + + +
Requirement 5 ++ ++ ++
Legend:

++ = completely fulfilled
+ = partially fulfilled

- = not fulfilled

Table 3.1: Summary of the Solutions and the Requirements

Chapter 4

Architecture

In this chapter we present the architecture we have proposed, and illustrate the different
decisions that influenced our design. We designed this architecture based on the obser-
vations made in the related works, and our design takes into account our requirements,
as presented in Section 1.2, and the essential functional requirements for peer-to-peer
collaborative systems, as presented in Section 3.1.

The first section provides a high-level perspective of the architecture, whereas the
subsequent sections present and express the design rationale behind each layer. We
then present an exploration of the various components of this architecture and their
interactions. We conclude with a discussion of the requirements that were addressed by
designing this architecture.

4.1 Overview

We used a multi-tiered approach for the architecture, similar to Cloud@Home and P2PCS,
because it provides high modularity and loose coupling of the concerns addressed by each
tier. In this architecture we differentiate between 3 types of nodes, namely aWorker node,
a Data node and an Application Deployer node. A Worker node consists of a computa-
tional resource, executing tasks encompassing all the functionalities of the applications.
Whereas a Data node consists of a storage resource, performing all the database and stor-
age related tasks. The Application Deployer node, is the node that contracts contributing
nodes to host an application in this system.

Starting at the lowest-level of Figure 4.1, we have the Network Layer. It is re-
sponsible for all the network responsibilities including the creation and maintenance of
the overlays, the communication amongst the participants, and to provide the high-level
layers with an abstraction of the underlying physical network structure.

42

Chapter 4. Architecture 43

Figure 4.1: Overview of the Proposed Architecture.

On top of the Network Layer, we built the Virtual Layer. It is responsible for ab-
stracting the physical characteristics of each node and providing a homogeneous interface
to a collection of heterogeneous resources using virtualization technologies.

Finally, the top-most layer is the Application Layer. It exposes an API to the
consuming node used to build applications. This API is a minimal specification of the
services required to transform raw resources into a complete computing platform, similar
to PaaS computing platforms.

4.2 Network Layer

In this section we present the Network Layer and the rationale from which it originates.
As stated in Section 4.1, this layer is responsible for providing all the networking ca-
pabilities for the system. It accomplishes this using two abstractions, the Ring and the
Fellowship. We present the two abstractions and explain their relevance for this archi-
tecture.

When devising a distributed system, one is confronted with fundamental problems
such as: How can we connect a collection of computers, using the Internet, and maintain
connectivity among them? From what we have presented in Section 2.3.2, we can address

Chapter 4. Architecture 44

Figure 4.2: Network Layer Overview

this problem by creating an overlay network to connect a collection of computers and
maintain connectivity among them. But then the question becomes, which topology of
overlay network is best suited for our requirements, or is it not relevant in this context?

A case-study presented in [BJ13], outlines the difference between the various topolo-
gies an overlay network can have in the context of a peer-to-peer collaborative system.
The authors concluded that both topologies of overlay networks, structured and unstruc-
tured, exhibit different characteristics which can be desirable for peer-to-peer collabora-
tive systems, but none of the topologies provides a comprehensive solution addressing the
requirements identified by the authors. Consequently, we know that a single overlay net-
work will not address all our requirements of peer-to-peer collaborative systems. Before
proceeding further lets recall quickly what the two related projects have done to address
these requirements. If we look at the networking layer for both projects, Cloud@Home
and P2PCS respectively, we notice that the former favors a centralized management en-
tity. This entity is used as a central connection end-point, each node contacts this entity
to be part of the network, and this entity maintains the connectivity in the network. The
latter focuses primarily on epidemic and gossip-based protocols to generate the overlay
networks and to maintain them. Adopting a slightly different strategy, each applica-
tion generate and maintain their own overlay network (slices) resulting in a federated
management structure, where each slice is responsible for its nodes.

In order to respect Requirement 3, as presented in Section 1.2, we must not opt for
a centralized solution, because it introduces a single point of failure in the system. We
chose a structured overlay network topology for our first abstraction, the Ring, providing
the characteristics and features that are desirable for its intended purpose. For our second

Chapter 4. Architecture 45

abstraction, the Fellowships, we open the possibility to use any overlay network topology.
In the following subsections we present these abstractions, and we present the different

design decisions made and the rational behind them.

4.2.1 The Ring

We have created the Ring abstraction to separate the concerns of the publicly available
portion of the networking infrastructure from the privately available portion or the ap-
plication environment. In this subsection we present the design rationale, followed by
the conceptual manifestation of this abstraction and its implications for the architecture.

Figure 4.3: Abstract Representation The Ring.

The necessity of devising an abstraction to encapsulate the public environment in
which our architecture operates, is an attempt to provide a construct that exhibits some
of the desirable characteristics of a peer-to-peer collaborative system. We have identified
four distinct features that we deemed desirable for this construct:

1. Connecting the participants together in a public environment, such as the Internet,
resulting in a public meeting point.

2. The management responsibility should not be centralized, as to prevent a global
system failure occurring as the result of a(ny) subset of participants failing or
leaving.

Chapter 4. Architecture 46

3. Provide querying mechanism to publicly locate applications that are deployed using
this architecture, and ensure its reliability.

4. Any information that might be required by a(ny) participant to join an application
should be contained in this construct, and the consistency of the information should
be ensured to prevent malicious participants from corrupting the information and
paralyzing the system.

In order to provide the first feature, it is clear that an overlay network would suf-
fice, independent of its topology. We can use the same rational for the second feature,
because none of the topologies imposes the centralization of the management responsi-
bilities and they can operate in fully decentralized environments. In order to provide the
third feature, it is necessary to opt for a structured topology, rather than an unstructured
topology. Because, as we have presented in the Section 2.3.2, unstructured overlay net-
works do not provide a deterministic querying mechanism. Furthermore, the last feature
entails that this construct is fully self-contained and thus, it must possess some storage
capabilities to store the information.

Because of its storage capabilities, its deterministic querying mechanism and its fully
decentralized architecture we opted for a structured overlay network. As a matter of fact,
we are using Kademlia DHT, which provides the ability to locate any node, determinis-
tically, in a time complexity of O(logn) [MM02].

Using this DHT to store information is intuitive, but using this technology into the
context of this architecture imposes further constraints. We need to ensure that malicious
nodes cannot compromise the system by polluting or corrupting the information stored
in the DHT. This corresponds to a storage attack. Essentially, all DHT are inherently
vulnerable to this type of attacks, because the design assumes a cooperative environment,
where each node is benevolent and most implementations do not address this directly,
rather they leave it to the application developer. For an extensive survey of the security
techniques applicable to DHTs, see [UPS11]. Thus we require the following changes to the
DHT, to ensure consistency and correctness of the information stored in the DHT to an
acceptable degree. Restraining the writing access of the participants, to only those that
are application deployers1, reduces the threat model posed by possible storage attacks.

Then, the problem becomes: how can we ensure the benevolence of the application
deployers? It is not possible to ensure absolute benevolence, but it is possible to limit
the potential consequences of a storage attack by some malicious writer. We limit the
application deployers ability to write values, to only two keys. One of those keys is named,

1Further information on the types of participants is provided in Section 4.1.

Chapter 4. Architecture 47

Figure 4.4: Fellowship Abstraction.

the template key, and it corresponds to a public repository containing the attributes a
node can use to advertise its resources, be it dynamic attributes such as CPU usage,
or static attributes such as total amount of physical memory. Whereas the other key,
refers to the application deployed by the participant, and can only be written to by
this participant, but it can be read by all. It contains the list of nodes composing the
Fellowship, providing the ability to a node to reconnect to a previous application following
a failure by contacting any nodes in the list.

Ultimately, the implementation of the DHT remains unchanged, and we enforce these
restrictions in the interface defined for this layer2.

4.2.2 The Fellowships

This abstraction is responsible for the private portion of the networking infrastructure.
We use the word private to distinguish between publicly available networks, such as the
Ring, and privately available networks, such as the network of contributing nodes for a
single application. In this subsection we present the design rationale for this abstraction,
its conceptual manifestation, and its implications for this architecture.

We design this abstraction to have a clear separation between the nodes that are
contributing and the nodes that wishes to contribute, by segregating them into different
networks. This confers the private characteristics to this abstraction, and accentuates
the modularity of this architecture. Consequently, this abstraction needs to account for
the following essential features:

1. The ability to discriminate between contracted nodes and malicious nodes (pre-
2More information about the interfaces to the different layers in Chapter 5.

Chapter 4. Architecture 48

tending to be a contracted contributing node).

2. Allowing any nodes to join and leave in a graceful fashion, and consequently remove
any single point of failure.

3. Providing means for secure communications among the nodes contributing to the
same application.

The Fellowship consists of a private collection of nodes interacting together exclu-
sively. They are not required to interface with any public environment directly, in con-
trast to the Ring when new nodes are arriving.

Our primary focus, with respect to this abstraction, is the isolation of these private
application networks, by controlling which participant can join and which can’t, as ex-
pressed by the first feature. We can ensure this using a whitelisting mechanism. The
application deployer will create a list, by selecting candidate contributors, and will only
contract these contributors to host the application. This is especially useful in semi-
private or semi-trusted environments. A semi-trusted environment, is an environment in
which the different parties (i.e., contributors and consumers) are known to each other
a-priori, but are connected together through public networks, such as the Internet. If it is
impossible to establish a semi-trusted environment then other means of authentications
are required. In a fully untrusted environment, such as the open Internet, it is very
difficult to ensure the identity of a specific participant without resorting to any 3rd-party
acting as an authority. Although, we could mitigate this by implementing a reputation
system that would gradually increase the trust component for each participant as they
contribute [JC10], we leave it as future work.

For the second feature, we are inclined to implement a similar strategy as Peer-to-Peer
Cloud System did with the slices. Similarly, we suggest to create one overlay network
per application, and we do not impose any topology, but rather leave it as an application
dependent design decision. Since we are not restraining the topology of the overlay
network, we extend greatly the extensibility and flexibility of this architecture, because
depending on the application’s networking requirements a topology might present more
advantages over another topology. For example, if your application interacts with a
plethora of sensing devices distributed geographically, an unstructured overlay network
would provide the ability to aggregate the information while flooding or performing
random walks through the network, thereby providing the ability to perform complex
queries. Whereas, a structured overlay network would require multiple simple queries
and post-processing of the results in order to aggregate them, achieving similar results
less efficiently.

Chapter 4. Architecture 49

The last feature, can be provided by implementing a PKI, where the application
deployer is the certificate authority providing public keys to every node, given that their
identity has been verified by the registration authority, which can (and should) also
be the application deployer. Then, by using this technology we can ensure that the
communications are encrypted, certified, and secured.

Finally, this abstraction provides the ability to control which participant is allowed to
participate in the collaborative application, but also the ability to secure the communica-
tion channels using public-key cryptography. Depending on the networking requirements
of each application, it is possible to tailor the Fellowships structure to fulfill these re-
quirements.

4.3 Virtual Layer

In this section we present the Virtual Layer, defining its purpose and the implications
for this architecture. In other words, we present what this layer should provide for our
architecture and how should it provide it in order to respect and fulfill our requirements.
We then showcase how our approach differs from the previous approaches, used by the
two projects evaluated in the Chapter 3.

There are three essential features that this layer should provide. The first and fore-
most feature this layer should provide, is a security mechanism to isolate a dedicated
execution environment in a contributing host system. It should sandbox the contributed
resources from the contributors operating system, in such a way that no matter what
is executed within this sandbox, it can never access the OS hosting it or better yet, it
cannot know whether it is a virtualized resource or a physically dedicated resource.

Another important feature this layer should provide, is the ability to abstract the
resources from their underlying physical architectures. Using virtualization, it is possible
to abstract away the specificities of the underlying physical resource, and to present
all the resources, in an agnostic fashion, to the possible consumers. In other words, it
is possible to present two physically different resources, such as a computer using an
Intel CPU and a computer using an AMD CPU or even an ARM CPU, as identical
computational resources, distinguishing them solely based on their capacities rather then
their proprietary physical architectures.

The last feature this layer should provide, is the ability to control and restrict the
amount of resources contributed to the system. That is, a contributing node should
be able to restrict its contribution to a desired threshold. Consequently, when allowing
only a small percentage of the available resources to be contributed, the virtualization

Chapter 4. Architecture 50

technology should aim at minimizing its overhead memory footprint as to maximize the
usage of the contributed resources.

Then, the design question becomes, which virtualization technology offers these fea-
tures without compromising our initial research requirements, presented in Section 1.2.
Light virtualization technologies, are a potential solution to this design question, but let’s
examine to which extent they are different from full virtualization technologies.

As prescribed in the first feature, light virtualization provides the isolation required
to securely execute applications without interfering or compromising the host execution
environment. Due to their sandboxing properties, executions done inside a container
are opaque to the host OS, as would be the case with full virtualization technologies.
Thus both technologies, light and full virtualization, fulfills this requirement completely.
Same goes for the second feature, which is also provided by both types of virtualization
technologies. Because, both types provide homogeneous abstractions for the physically
heterogeneous computing resources, and both types present the physical resources in an
agnostic fashion. Still, both technologies are equally desirable in the context of the first
two features.

Now we need to look at whether or not it provides the ability to restrict the virtu-
alization to a subset of the available computational resources. Docker, one of the con-
tainerization technology presented in Section 2.4.5, offers this functionality using their
image system. Using the c-group technology, as presented in Section 2.4.3, users host-
ing containers are able to restrict the processes spawned within a container to only a
specific subset of the available resources. As for the full virtualization technologies, it
is also possible to restrict the amount of resources available to a VM, through various
configuration parameters. But a difference ultimately persist between the two types
of virtualization technologies. By using lightweight virtualization technologies, we can
leverage the libraries and the kernel of the host OS, reducing the possible redundancy of
the libraries and binaries to a minimum, as presented in Section 2.4. Whereas, using full
virtualization technologies, it is likely that some of the libraries and binaries are installed
twice, once in the VM itself and another copy could be installed on the host OS. This
outlines the major difference between full and light virtualization technologies. Because,
by design the overhead incurred by full virtualization, with the notion of a hypervisor
residing on top of the OS having to translate the requests and commands from the VMs
into intelligible commands for the OS, is far greater than by light virtualization. Be-
cause it removes the intermediate hypervisor, and instead uses namespace isolation and
resource isolation to access the resources directly.

We conclude that light virtualization technologies are more apt for limited-resources,

Chapter 4. Architecture 51

because they provide isolation as well as minimize their memory footprints, thereby ful-
filling the last requirement.

Using light virtualization technologies is justified due to our specialized requirements,
and in this interlude we examine how the previous projects (Cloud@Home and P2PCS)
addressed their virtualization requirements. If we recall what both projects proposed, we
can observe that both advocated the use of full virtualization technologies. It provides
the desired isolation properties, as well as possessing the abstractive capabilities necessary
for their architecture. In the context of IaaS, it is mandatory to resort to VMs in order
to provide the ability to host an entire OS on the resources, as advertised by this service
model.

We beg to differ with respect to full virtualization as being adequate for every ser-
vice model. For a service model akin to PaaS, VMs provide too much flexibility and
extensibility of configuration which complicates the application creation and deployment
process. It reduces usability by forcing the person writing the application to consider de-
tails about the configuration of the execution environment, across multiple layers rather
than only across the application and data layers as presented in Figure 2.2. Conflating
multiple concerns ultimately hinders the productivity and the usability of the comput-
ing platform. We believe that constructing an application using a computing platform,
such as a PaaS, where the platform is meant to abstract away the characteristics of
the underlying physical resources, enables the developer to write an application using
the interfaces provided independently of their underlying implementations. Whereas full
virtualization provides exactly the opposite experience, by exposing all the underlying
resources, it forces the user to decide which implementation to use and how the resources
should interact with each other at a lower-level.

Consequently, we choose to use operating system-level virtualization or lightweight
virtualization, because it satisfies our virtualization requirements, but also vastly im-
proves the usability of the system. To the best of our knowledge and in all humility
we believe to be the first proposing this type of virtualization as a integral part of a
distributed computing platform.

4.4 Application Layer

In this section we present the Application Layer, and we present how we devised this
minimal API specification, which reflects the essential features of distributed computing
platforms, such as PaaS.

Chapter 4. Architecture 52

Initially, we present the rationale behind this layer, and then proceed to present each
of the components composing this API: the Databases and Storages component, the Com-
munication and Networking component, the Load Balancing and Scalability component,
the Security component and the Application Deployment and Management component.

4.4.1 Overview

The purpose of this layer is to provide to the application developer the necessary building
blocks to develop a scalable distributed web application. We propose a minimal API
specification that provides these building blocks. It is minimal in the sense that it is
sufficient to develop most applications, but more features can be added to ease the
development process of more complex applications.

By definition APIs are extensible, since they provide interfaces to the functionalities
contained, while abstracting away the details of the implementations. Using an API to
develop applications provides greater modularity with respect to the underlying system,
because these applications will always be compatible with this system even if several
update occurs, as long as it respects the interface defined initially.

We have defined the essential components of this API by investigating the major CSP
that provides a PaaS service model, such as Google, Amazon, and Microsoft. For more
details on the different services offered by the major service providers, which served as
a basis for this proposed specification, and reproducibility’s sake please refer to [Inc14b]
[Inc15a] [Inc14c]. Then, we have identified the overlapping components, and eliminated
the redundant components. Figure 4.5 is a pictorial representation of the resulting API
specification.

Figure 4.5: API Specification Overview

The components identified by a solid box are those exposed to the application devel-
oper, and those identified by a grayed dashed box are integral parts of the distributed
computing platform. The division of concerns is not absolute, and we chose to provide

Chapter 4. Architecture 53

access to the components represented by a grey dashed box to the application developer
through configuration parameters rather than building blocks.

In the following subsections we discuss in further details each of the five components
identified, providing an overview of the functionalities they contribute to this architecture
and the reason of their inclusion. For more details about this API specification, see
Appendix A.

4.4.2 Databases and Storages

The first component of this API, is centered around the necessity to persist data or
information in the context of a distributed application. We have defined a taxonomy of
the primary storage services offered by the major CSPs, and then we discuss the concerns
relative to the provision of these services and its consequences on this architecture.

• Relational Databases: provides traditional Relational DataBase Management
System (RDBMS) facilities.

• Non-Relational Databases: commonly referred to as No-SQL, this type of
databases offers schemaless database facilities, such as key-value stores.

• Storage: provides all storage needs with larger space requirements per entry (up to
1TB) and for heterogeneous objects that usually are represented as a binary string
(for which the format and content are not relevant and all objects are represented
as the same type of object). A common way of using such storage components is to
pair it with a RDBMS, in which we store the meta-data for all the objects stored
in the data store. Then this meta-data is indexed and associated with a key that
represent the location of the actual data in the data store.

• Caching: provides caching capabilities for fast access to small chunks of data,
storing them in memory for future access.

Relational databases, non-relational databases and storage systems, in general, share
similar concerns about availability, reliability, and consistency in a distributed environ-
ment, and thus we can analyze them in parallel.

In all cases, due to the distributed nature of the underlying compositional resources,
there is a need to properly replicate the persistent data of the application, in order to
ensure consistency and availability of the data.

Were we offering a IaaS computing platform, we would extend concern about the
distributed nature of the system not only towards databases, but also towards file systems,

Chapter 4. Architecture 54

because each component host their own file system. Multiple solutions exists, one of
which is the distributed file system from Google, the Google File System3 [GGL03]. But
we are focusing on a computing platform that shares more in common with PaaS than
any other service models, and consequently within this context a file system is irrelevant
because it is too low-level. Our concerns with respect to the distributed nature of the
system persists, and reliability, availability and consistency must be ensured nonetheless.

We then resort to distributed databases, for which there exists different implemen-
tations4 that provides a plethora of features crossing the boundaries between relational
databases, non-relational databases and even storage type solutions. Distributed databases
provide the ability to adjust the availability of the data in response to the fluctuations
of the number of incoming requests, by adding more instances to the database clus-
ter. Distributed databases are devised around two important concepts: replication and
fragementation. The former represents the ability to replicate the data across several
instances, to ensure the availability and the consistency of the data. Whereas the latter
represents the ability to decompose the relations between schema entities into several
sub-relations and to distribute them across several instances. After which, it is possi-
ble to reconstruct the original relations using these sub-relations (or fragments), thus
balancing the workload across the instances. Much more information can be found on
distributed databases, and to provide an extensive overview of all the characteristics and
features of the many variations is out of the scope of this thesis, instead refer to [Lin76]
[DP80] [ÖV11].

Rather than committing this architecture to a single distributed database implemen-
tation, or even to an implementation for each of these three services (RDBMS, No-SQL,
and storage solutions), we opted for an extensible design. We provide an universal in-
terface5 to these database and storage systems, and thus if the solution provided doesn’t
suit their need it is possible to extend the interface to account for other functionalities.

The last service comprised in this component, is caching and it is useful in many
distributed web applications. Caching consists of a service that enables the application
developer to store data in a cache for faster future access. It is primarily used in database-
driven web applications, in order to reduce latency by keeping popular data in-memory,
and thus reducing the number calls to external or physical data sources. Memcached is
an example of a distributed caching mechanism, allowing to logically combine any unused
memory in servers to form a bigger unified cache [Fit11]. It is open-source, and we can

3As a matter of fact, this is exactly what Cloud@Home proposed to implement to offer distributed
file system capabilities within their infrastructure.

4We explore these a bit further when discussing the actual implementation in Chapter 5.
5We discuss this interface in greater details in Chapter 5.

Chapter 4. Architecture 55

provide it as a service without much problems.
In summary, we provide database and storage capabilities through the implementation

of an interface, enabling the application developer to quickly integrate any open-source
and readily available database or storage system implementation. We agree that caching
is important for data-intensive applications, but we leave the implementation of this
feature as future work due to the scope of this thesis.

4.4.3 Communication and Networking

This component is responsible for online accessibility, presentation of the information
using markup languages, and the communication interface between the user and the
application.

But, first, we need to underline that the problem of collaborative web hosting remains
an open problem in the context of the current Internet’s infrastructure. The problem
revolves around the ability to name the resources in a dynamic distributed environment,
but also how to provide searching and indexing capabilities in that same environment,
as well as ensuring content availability. An extensive reflection already exists about this
specific problem, and we diligently refer the reader to [AB14] for more information.

Therefore, we must assume that a domain is already hosted in order to access the ap-
plication using a Uniform Resource Locator (URL), or it is accessed using the IP address
directly. By supporting a web framework, we can provide a service to programmatically
present the information of the web application.

We provide a communication interface between the application and the end-user us-
ing REpresentational State Transfer (REST) based APIs, as a result of the unanimity
amongst the CSP investigated. REST, is a collection of design patterns and guidelines
to create scalable web services, and it uses HTTP as the underlying communication pro-
tocol. For a complete account of the guidelines and design patterns present in REST,
see [RR08].

Ultimately, we provide the services for the end-user to communicate with the web
application using HTTP requests, and provide access to the underlying RESTful APIs to
the end-user to interact with the web application. A web server accessible using the cur-
rent Internet infrastructure receives these requests, providing means to programmatically
present the information of the application to the user.

Chapter 4. Architecture 56

4.4.4 Load Balancing and Scalability

It is common to conflate load balancing and scalability, because of their semantic similar-
ities relating to their purpose. In other words, both are concerned with optimizing the
performance of the system, but operates at different levels. Load balancing consists of
distributing the workload as evenly as possible across the different resources to optimize
the resource consumption. It can be achieved by using task queues as a service, as shown
by the CSP investigated. Whereas scalability differs in how it attempts to optimize the
performance of the system. Load balancing optimizes the system performance by devising
the optimal scheduling plan for the current workload. Conversely, scalability optimizes
the system performance by preempting resources to respond to the fluctuations in the
workload. The workload could diminish to a point that most of the resources are idling,
and enforcing scalability would preempt some of the resources in order to maximize the
utilization of the remaining resources, and vice-versa.

In this subsection we present task queues6, as a service or feature of a distributed com-
puting platform. Then we present one, out of many, applicable autonomous techniques
to achieve scalability in a distributed application.

Task queues are used to manage the work that happens outside of the normal request-
response cycle of web applications. Tasks that are queued are handled asynchronously,
in order to prevent interruptions or delays to the request-response cycle. Tasks can also
originate from other sources, such as time-consuming maintenance operations and long-
standing background processes. Here is a common workflow for using task queues within
the request-response cycle:

1. Define the maximum request-response interval your application tolerates.

2. Evaluate if a task will surpass the interval.

3. Given that it surpasses the interval, schedule it in the task queue.

4. Upon completion of the task, store the result using a cache mechanism.

5. Respond, when possible, by reading the value from the cache.

Combining such a workflow with the concept of independent computational entities,
such as worker nodes in a distributed system, monitoring the queues for any new tasks

6caveat lector : Since queues are a fundamental component of this architecture we will only address
task queues as a service or feature to build applications, and then we will discuss the details of this
architecture in further details in Chapter 5. Because it digresses too much from the service offered in
the context of the application layer.

Chapter 4. Architecture 57

to perform, is generally sufficient to distribute the workload across the different nodes
and to achieve decent load balancing.

These task queues are central to this architecture and this is why we do not pro-
vide them as a service in the application layer, because it would be redundant. When
explicitly necessary one could extend this architecture to incorporate any task queue
implementation of their choice. Although, we acknowledge that we can get into more de-
tails with respect to load balancing since sophisticated algorithms have been proposed to
handle different specific cases [APHB14] [KC12], we deem it to be application-dependent
and thus not as relevant for this minimal specification for an API.

The other aspect of this component is scalability, we rationalized scalability as be-
ing the ability to respond to the fluctuations in the workload, either manually or au-
tonomously. The PaaS providers we have investigated, offers the ability to the user to
specify static or dynamic policies. These policies usually are expressed in terms of SLA,
and ensure that the different Service-Level Objective (SLO) are respected by requesting
or returning resources accordingly. SLA are contracts that specifies the terms of a service
between the consumer and the producer, whereas the SLO are metrics used to measure
the service provisioning performance of a provider, preventing any misunderstanding
between both parties. There are many important characteristics when defining SLOs
and forming proper SLA, we focus on a slightly different approach to provide scalability
and thus we refer the reader to [KL03] [SMJ00], for more information on service level
management.

We provide scalability by implementing a decentralized autonomic controller for each
type of node7, based on [GSL14]. In order to achieve scalability, the application developer
will specify it’s policies with respect to the utilization of the two types of nodes, in the
form of a percentage. Using this policy we will attach an autonomic controller for each
type of node, and it will be used to monitor and make the appropriate adjustments in
response to the changes in the performance.

Figure 4.6: Proportional-Integral-Derivative (PID) Controller [GSL14]

The controller used is Proportional-Integral-Derivative (PID), shown in Figure 4.6,
and it operates as closed-loop control system. It computes the difference between the

7see Section 4.1.

Chapter 4. Architecture 58

desired performance USLO
i , described in the SLO for that type of node, and the perfor-

mance observed Ui, which is represented by e(t) in this figure. It will interpret the result,
e(t), according to this function and return the changes required to remain within the
USLO

i , denoted by u(t):

u(t) = KP e(t) + Ki

∫ t
0 e(t)dt + Kd

de(t)
dt

The first component of this controller, is known as the proportional component, and it
adjust the result in direct proportion of the delta between the desired performance level
and the observed performance level. The second component computes the integral of the
delta between the desired SLO performance and the observed performance, adjusting the
result with respect to the historical observations relative to the delta. The last component
computes the derivative of the delta between the desired SLO performance and the
observed performance, attempting to anticipate the upcoming performance level. Three
coefficients are specified to adjust the weight of each of those components, and regulate
the behavior of the controller. It is then possible for the application deployer to only
specified the desired utilization level for each types of nodes, and this autonomic controller
will adjust the resources to respond to the fluctuations in the workload autonomously.

Ultimately, using task queues as an integral part of this architecture and leveraging
decentralized autonomic controllers, we are able to provide autonomic scalability and
efficient load balancing. The load-balancing component is considered to be application-
dependent, because there are multiple factors to take into account and it poses a multi-
dimensional optimization problem which is not trivially solved. This optimization prob-
lem yields different solutions in different contexts, and different applications requires
different solutions. Thus, we provide some functionalities as intrinsic features of our
architecture, but we leave the more sophisticated functionalities to be provided by the
application developer.

4.4.5 Security

The Security component is concerned with providing means to establish/entertain secure
communication channels between the different nodes, but also between the end-user of
the application and the node responsible of handling the requests. Another major concern
is access control, including authentication of the end-user and providing multi-tenancy.
We present each of these concerns, and explain how they are accounted for in this API.

The first concern is to provide means for secure communication between the nodes.
It can be ensured using standardized technologies such as communicating over TCP/IP

Chapter 4. Architecture 59

using Secure Sockets Layer (SSL). SSL certificates are usually negotiated between a web
server and a client. In the context of this architecture the web server is (usually) hosted
on the application deployer node and the client is a candidate node. Consequently, a
candidate node would negotiate its certificate with the application deployer to establish
a secure communication channel between them. Upon successful negotiations, the node
and the application deployer are able to communicate securely using the SSL protocol.

The communications between the end-user and the web server can also be secured
using standardized protocols, by communicating using HyperText Transfer Protocol Se-
cure (HTTPS), which consists of using SSL on top of HTTP. The negotiation for SSL
certificates would be done between the web server and the end-user. We use well estab-
lished standard technologies (SSL, HTTPS, etc.), as would any other web application
when required to communicate over unsecured networks, such as the Internet.

Access control is another important security concern, controlling access to resources
based on various schemes, using authorization mechanisms and authentication mecha-
nisms. We can identify two basic types of accesses in our architecture: access from node
to node and access from end-user to the web application.

The first type of access is illustrated using this example. If we introduce a Byzantine
node, that is a node for which the requests or responses are incorrect, either because of an
error in the computations or by malicious intent, and it requests to drop all the tables in
the database. How do we differentiate between this request being erroneous or malicious
in intent, and a legitimate request to drop all the tables? There exists multiple schemes
and strategies to enforce various level of access control [Dar14] [Gol10], and depending
on the context in which the application is deployed it can vary substantially. Thus, we
implement a pragmatic strategy for access control, where only the application deployer
is allowed to perform administrative tasks. This is known as Mandatory Access Con-
trol (MAC) [NO95]. The identity verification is done using a simple challenge-response
between the nodes to assess the identity.

The second access type, refers to the authentication of the end-users interfacing with
the application deployed. Authentication, as a service for applications, can be provided
using Single-Sign-On (SSO) technologies. For example, incorporating hooks to the Google
SSO API provides the ability to the application deployer to offload the authentication
responsibilities, using a delegation protocol such as OAuth 2.0 [JH12], to a trusted third-
party. Upon authentication, the user will receive a OAuth token, also known as a bearer
token. When interacting with the application, the user presents this token to demonstrate
its identity as certified by the trusted third-party. These tokens are valid for a certain
period of time, after which the user is required the obtain a new token. The user will

Chapter 4. Architecture 60

also be able to maintain a session using this token. For more information on Google’s
SSO API, see [Dev15].

Authentication can be application dependent. Some prefer resorting to a 3rd-party to
provide authentication, whereas others may prefer holding the credential in a database
and enforcing authentication themselves. It really depends on the security requirements
of the application, and thus we leave the responsibility to the application developer to
provide control over this type of access.

This leads to the final portion of the security component, multi-tenancy, consisting
of the ability to provide parallel multi-user support for an application without provid-
ing each user with a dedicated instance of the application. Consequently, seasoned web
developers will find using this architecture very intuitive, because instead of forcing so-
phisticated design patterns, resulting in a steeper learning curve, we favor the use of
sessions to achieve multi-tenancy. By using one session per user, it is possible to encom-
pass all the information specific to this user in a self-contained web primitive.

Finally, we provide secure inter-node communication via SSL, whereas secure commu-
nication between the end-user and the web application via HTTPS. The access control
scheme provided is minimal and only the application deploying node has the ability to
perform administrative tasks. We provide multi-tenancy by maintaining parallel user-
sessions, which are provided using a SSO service from a trusted third-party or maintained
by the web server.

4.4.6 Application Deployment and Management

This component encompasses all that pertains to the administrative tools, used to manage
an application. Due to the distributed nature of our architecture, we are faced with a
challenge foreign to current PaaS providers and it is related to source-code distribution.
Every other service in this component, can be commonly found in most of the PaaS
providers, notably application configuration and various monitoring capabilities.

The distribution of the source-code of the application is a security concern. Because of
the distributed nature of the infrastructure it entails that a contributing node trusts the
application deploying node and the source-code distributed. Sophisticated schema exist
to reduce the trust-level assumed between parties, with regard to source-code distribution,
in a distributed context.

One example consists of creating bundles, or atomic units, of code and data, which
can then be distributed and executed [DKMyC04]. This deployment framework provides
authentication and authorization mechanisms, and certifying capabilities, creating a trust

Chapter 4. Architecture 61

environment where source code can be distributed and executed securely. An undesirable
consequence, is that it forces a complete deployment infrastructure into the architecture.
Applications are required to be designed respecting a set of guidelines, leaking into the
development process and impeding the flexibility of the architecture.

Instead, we propose a way of providing similar guarantees, that ultimately relies on
the users judgment and effectively removes any trust factor. Because we provide an
open-platform, we apply the same open-source principles8 to the application it hosts
by adopting a white-box approach. The workflow for source-code distribution can be
summarized as follows:

• Application deployer stores the source-code into a public or private repository sup-
porting any version control (git, mercurial, svn).

• Upon contracting a node for contribution, the application deployer provides the
location of the application repository to this node, and any credentials if necessary.

• The contributing node will then be notified of its content, by presenting the source-
code in a text editor or browser.

• The contributing node is then asked whether or not it accepts to execute this piece
of code (in a container).

• Finally, depending on the response, the code will or will not be downloaded into
the container (and all of its dependencies).

This workflow is designed to work in a fully untrusted environment. In a trusted or
semi-trusted environment (cluster or private network), we can simply turn this option
off and upon contracting a node for contribution the source-code is directly downloaded
into the container, implicitly assuming that the user accepts to execute its content.

The CSP investigated offers application configuration services using a web portal
that lets the user adjust the different configurable parameters of their application. The
configurable parameters varies depending on the CSP and are largely dependent on the
underlying proprietary technologies used. We offer application configuration using con-
figuration files. The configurable parameters includes: minimum number of nodes, per-
formance policies, type of environment deployed, any communication primitives and any
security primitives. Before the creation of a node instance, its configuration file is read

8By adopting a similar perspective to the Free Software Foundation, who promotes free software and
open source development, to ensure maximal transparency [inc14a].

Chapter 4. Architecture 62

and interpreted. This configuration mechanism is easily extensible and could compensate
for any other requirements.

Monitoring is an important feedback mechanism for the application deployer, it is
primarily used to anticipate possible bottlenecks or the track the resource consumption
of the application. We provide monitoring capabilities by implementing a heartbeat
mechanism, in which every node periodically sends information for a collection of (user-
defined) dynamic attributes. Then the information is collected and aggregated, present-
ing the result as system-wide monitoring information to the application deployer. This
mechanism provides a sufficient perspective of the application state, with respect to the
load-balancing and scalability mechanism presented earlier.

In summary, we provide a flexible workflow for code distribution adopting a white-
box approach. We provide the ability to statically configure an application through
various parameters. We provide monitoring capabilities using a heartbeat mechanism
that generates system-wide information, using locally available information from the
participants.

As future work, we intend to provide dynamic configuration capabilities, in which the
nodes will be able to modify the configuration parameters dynamically, when applicable.
Providing a visual representation of the data monitored, using graphs to represent the
topology and various metrics, would also be desirable from a user experience point of
view.

4.5 Component Interaction

In this section we present a way to reason about developing applications that is central
to this architecture, representing the main interactions between the different components
of a distributed application.

When creating an application using this architecture, it is fundamental to reason
about the problem at hand in terms of the request-response cycle, that is inherent to
web applications. This enables the developer to understand how to formulate a problem
into a compatible solution, using the different constructs available with this architecture.
We can reason about a distributed application as follows:

1. (Incoming Web Request) A user send a request to the web server.

2. (Generate HTTP Request for App.) Web server receives the incoming request,
then formulates a HTTP POST request using the content of the original request,
and sends it.

Chapter 4. Architecture 63

3. (Incoming RESTful API Request) A node receives a request from the web
server, using a web protocol.

4. (Create Task) It extracts the information from the request, creates a task and
queue it up.

5. (Task Available) Upon queuing the task, it becomes available for offloading. It
is then dispatched to any available nodes.

6. (Task Completion) Upon completing the task, the node sends the results to the
dispatcher of the task.

7. (Task Returns) Upon receiving the results, the original dispatcher of the task
uses a web protocol to formulate a HTTP POST request containing the results,
and sends it back to the web server.

8. (Result Returns) Finally, the web server receives the results and formulates the
appropriate response to present the information back to the user.

Writing applications for this architecture forces an event-driven programming model,
resulting in applications designed using the Event-Driven Architecture (EDA) approach.
For a distributed application, we can identify four logical event flow layers of any EDA,
as presented in [Mic06]:

• Event Generator is the source of (all) the events, it is the web server in the case
of web applications.

• Event Channel is the medium used to transport events from the generator(s) to
the event processing engine(s). In our architecture, the event channel corresponds
to a web protocol, where the incoming events from the generator are used to derive
the task(s) to be sent to the event processing engine(s). At a higher-level, we could
say that the application deployer itself is the event channel, but more precisely the
web protocol does the translation from raw events into events that can be processed
using this architecture.

• Event Processing is done by the event processing engines, taking the appropriate
actions in response to the events. In our architecture, the contributing nodes are
the engines and they process task(s), which are a derived form of events.

• Downstream Event-Driven Activity is the downstream activity initiated by
an event, and it occurs upon processing the event. In our architecture, it consists

Chapter 4. Architecture 64

of returning the results of the completed task to the node that dispatched it, and
can trigger a series of collateral events.

It is possible to distinguish between different types of event flow processing, either
simple, stream or complex. Some simpler problems impose only one event generator,
corresponding to simple event flow processing. Whereas, more complex problems incur
multiple event generators or introduce continuous streams of events, corresponding to
complex event flow processing and stream event flow processing respectively [Mic06].

Using this kind of reasoning, it is possible to effectively separate the presentation logic
from the business logic. We now have a clear understanding of the role of both types of
nodes: the application deployer will contain the event generator and will be responsible
to dispatch the events using the event channel. It will also use the event channel to
handle any downstream event-driven activities. Whereas the contributing nodes will only
serve as event processing engines. This rationalization of our architecture is crucial to
ensure: proper implementation of the problem domain, an appropriate separation of
the presentation logic from the application logic, and the avoidance of possible design
mistakes that could impede scalability.

4.6 Discussion

In this section we present a discussion of all the layers, and how they contribute in
fulfilling the requirements of both the evaluation framework, as presented in Section 3.1
and the requirements of this thesis, as presented in Section 1.2. The overall rating of the
system is summarized in Table 3.1, alongside the two related projects.

4.6.1 Collaborative Peer-to-Peer System Framework Implemen-
tation

Section 3.1, presents a framework that illustrates the essential functionalities required
for a peer-to-peer collaborative system to scale, by mitigating the complexities inherent
to these type of systems. This subsection aims at presenting the different mechanisms
implemented in our architecture to provide such functionalities.

If we recall, the framework is composed of 7 key phases relating to the life-cycle of
a participant in a peer-to-peer collaborative systems, which were: Advertise, Discover,
Select, Match, Bind, Use, and Release.

The first two phases, Advertise and Discover, which relates to the advertisement
and discovery of resources using a specification, are implemented as a best-effort mech-

Chapter 4. Architecture 65

anism, as presented in Figure 4.7. By this we mean that the newly arrived nodes create
a Resource Specification (RS) using a common template, and it can be represented as
follows:

RS(nodei) = [IPaddress, Port, SA, DA] where
SA = {StaticAttribute1, ..., StaticAttributen} and

DA = {DynamicAttribute1, ..., DynamicAttributen}

Note that the set of Static Attributes and Dynamic Attributes are extensible to ac-
commodate any desirable attributes, and are initially empty. Each application deployer
publish any desired attributes to a common repository (or in the context of a DHT, ap-
pend the values to a specific key used by all nodes to construct their resource specification
simply known as the template).

Upon creating their resource specifications, the nodes gather the list of application
deployers using the Ring, and periodically send candidacy messages, containing their
resource specification. We say best-effort, because the nodes send repeatedly their can-
didacy messages, until an application deployer contracts them for contribution.

Other solutions propose to publish the resource specifications to a repository where
it is possible for the consumer to query the repository for the most relevant resources
[BJ13]. These solutions are adequate if the repository is protected against possible storage
attacks against the resource specifications, this is not the case for DHTs [UPS11]. Our
mechanism enables us to mitigate the possible storage attacks, without having to resort
to centralized management of the repository, because we do not persist the information.

The Select phase relates to the selection mechanism offered to possible consumers
to query the resource specifications. In this architecture, in order to select a node, an
application deployer must open a TCP/IP server connection on a specific port, and
evaluate the upcoming candidacy messages individually by examining its content. As a
matter of fact, this selection mechanism resort to a publish-subscribe messaging pattern,
where the nodes are the publishers and the application deployers are the subscribers. The
application deployers are then allowed to subscribe only to a meaningful subset of the
attributes published as part of a resource specification, representing a topic. The nodes
use the concept of topics to publish the various attributes that compose the resource
specifications. Then, application deployers will do a tentative selection, notifying the
resources that it considers them as candidate resources. The selection is completed only
after all the required resources, to host the application, are tentatively selected. This
is a blocking operation and can be deferred to a background thread, and automated by

Chapter 4. Architecture 66

publish(template)

publish(template)

get(template)
template

getAppDList()
list

publish(RS)

publish(RS)

Node: Ring: AppD: AppD2:

loop
[pub-sub]

Figure 4.7: Advertise and Discover Phases Sequence Diagram.

defining a selection policy. This policy contains the desired values for the static attributes,
and the intervals of desired values for the dynamic attributes.

tentativelySelect()

evaluateSelection()
result

selected = False

selected = True

Node: AppD:

[result == ok]

alt
[result != ok]

Figure 4.8: Selection and Match Phases Sequence Diagram.

Chapter 4. Architecture 67

The next phase is Match, it encompasses the ability to formally specify the inter-
resource relationship requirements and to enforce them on the selection of resources, as
shown in Figure 4.8. As a consequence of using a best-effort mechanism, it is possible to
define these relationships as an integral part of the selection policy. For example, once a
group of resources is tentitavely selected, it is then possible to enforce these inter-resource
relationship requirements, and repeat the process until the tentative selection fulfills all
the requirements in the selection policy.

The Bind phase, is also best-effort, because of the mechanism in the Select phase.
The priority for an application to contract a specific node is determined with respect
to the time of the response to a candidacy message. In other words, applications which
responses were received first are given priority, by the contributing node, over applications
which responses were received later.

The Use phase states that it should be possible to use the resources contracted in
the previous phase to execute the tasks pertaining to the application. It is accomplished
by sending tasks to be executed after the enrollment process (selection, binding, hand-
shaking, initialization of the node) has completed.

The Release phase is concerned with providing the capability to release a resource
after contributing, either because its SLA prescribes it or because the workload has
diminished to the point that this resource is no longer needed. Depending on the SLA
between the application deployer and the contributing node (encompassed in a policy),
release will happen if possible. Releasing a contributing node consists of a node leaving
its current fellowship and returning to the ring, to advertise its resources again.

Future work includes providing more extensive functionalities for each of the phases.
We do not include extend these functionalities, because the mechanisms described above
are sufficient to operate the system efficiently.

4.6.2 Research Requirements

We now present how the research requirements were fulfilled in our architecture, and
present a very high-level recapitulation of the various layers.

Requirement 1 states that a collection of heterogeneous devices can use this archi-
tecture to deploy multiple applications simultaneously. It is satisfied by the design of
the Network layer, because we provide multi-application support using the Ring and we
do not impose any restrictions on possible contributors, as long as they meet the light
virtualization requirement of being able to host a container, which inherently all Linux

Chapter 4. Architecture 68

OS are capable of.
Requirement 2 states that this architecture should not impose third-parties to pro-

vide any of its services, and this architecture should be self-contained. It is partially
satisfied by the Application layer, because it does not introduce any third-parties9 to
provide any of the services described in the API. Then, we satisfy the remaining por-
tion of this requirement, by providing the desired self-containment properties using light
virtualization.

Requirement 3 states that this architecture should not introduce any single point
of failure and should be fault-tolerant to ubiquitous failures of different participants. The
security component10 of the API specification satisfies a portion of this requirement, by
providing secure communication channels and enforcing MAC to regulate and control
the administrative tasks. The Ring satisfies the remaining portion of this requirement,
because it provides the ability to create and maintain a decentralized structured overlay
network to connect the nodes.

Requirement 4 states that no special or dedicated equipment should be necessary
to participate in this system. It is satisfied because there are no explicit or implicit
restrictions on the intended hardware to be used with this architecture. Consequently,
recycling the currently available hardware is the most cost-efficient and eco-efficient,
ceteris paribus, alternative to participate in this system.

Sub-Requirement 4.1 states that the memory footprint should be sufficiently small
to allow lower-end devices to be an integral part of this architecture. It is satisfied to the
extent that it reduces the overhead induced by the virtualization technology to a smaller
footprint.

Requirement 5 states that this system should provide dynamic membership capa-
bilities as well as scalability to the applications that are deployed. This requirement
is satisfied using task queues as a foundational construct of this system, but also by
providing dynamic membership capabilities through the use of autonomic controllers to
regulate the load on the resources.

We can make the following observations concerning the Network layer. Using the Ring
and the Fellowship abstractions, we are able to separate the concerns of public-resource
pooling and resource provisioning. Furthermore, we are able to provide fully isolated
multi-application support using the Fellowships. Subsequently, the Network layer can be

9We do admit that web hosting has to be outsourced, but as we stated earlier in Section 4.4.3, it
remains an open-problem because of the underlying infrastructure of the Internet. For a more complete
presentation of the problem see Section 7.2.

10In no way is this component providing absolute security to this architecture, and more attack vectors
need to be analyzed to account for a realistic threat model.

Chapter 4. Architecture 69

easily adapted to different environments (cluster, grid, or open Internet) without incur-
ring any major changes, but by simply selecting which underlying networking primitive
is a better fit. As an example, when operating in a highly dynamic environment (In-
ternet), using a unstructured overlay network might be better to cope with the higher
churn rate, but when operating in a moderately dynamic environment (shared-cluster)
using the current DHT implementation would be more than sufficient to cope with the
moderate churn rate.

The Virtualization layer uses lightweight virtualization technologies to abstract the
resources from their underlying physical specificities, providing isolation guarantees simi-
lar to full virtualization technology. We can define the environment of an application and
all its dependencies using a single configuration file, easing the portability, and creating
a fully self-contained deployable construct. We are aware of the security concerns related
to lightweight virtualization technologies, especially because it has direct access to the
Linux Kernel’s system call interfaces. This means that if a vulnerability exists in one of
the system call interface, then it is possible to exploit it from within a container. This
can be addressed by applying security profiles, such as Linux’s seccomp, to restrict the
breadth of accessible interfaces to a selection of safe and tested system calls. Docker ap-
plies this approach to augment the security of its containers and encourage the developer
to be aware of these possible exploits [Inc15b].

The Application layer provides a minimal API specification for distributed computing
platforms, including PaaS platforms, by providing the essential components required to
develop distributed applications and an extensible API for all the other non-essential
components.

Chapter 5

Implementation

In this chapter we present an implementation of the architecture proposed in the previous
chapter. In order to provide context, we present the technologies used to implement the
architecture and how they influenced the design, when applicable. We then present
the central constructs of this architecture, followed by the algorithms and workflows
used to provide the underlying logic composing this architecture. Finally, we present a
very simple proof of concept that illustrates the orchestration of these constructs and
algorithms.

5.1 Technology Used

We have used different technologies in concert to provide the ability to develop applica-
tions that can be deployed using this architecture.

The code was written using Python and the Twisted Event-Driven Networking Frame-
work [Lef14]. We adopted an event-driven programming model, because it provides the
ability to reason about problems from a non-sequential perspective, which is useful when
implementing distributed applications.

Event-driven programming is conceptually single-threaded, although it supports multi-
threading it is offered as an extra feature and it is not required. The primary advantage
of using the event-driven programming model lies in its use of a single control thread
to interleave multiple tasks, resulting in an opportunistic execution scheme. Whereas,
a single-threaded program executes tasks sequentially, forcing the program to pause its
execution at every blocking operation, until their completion. This sequential program-
ming model effectively augments the total execution time, by introducing gaps in the
timeline spent waiting (idling) for a blocking operation to return. Thus, the event-driven

70

Chapter 5. Implementation 71

programming model reduces the complexity inherent to the development of distributed
applications, focusing on the possible events and their appropriate responses. Whereas
the multi-threaded programming model, consists of using a collection of threads to accom-
plish different tasks, in parallel, and requires complex concurrency and synchronization
mechanisms.

Ultimately, the event-driven programming model benefits from parallel execution of
tasks, similarly to the multi-threaded programming model, and it combines the simplic-
ity of the single-threaded programming model by resorting to a single control thread.
Figure 5.1 illustrates the distinction between these three programming models.

Figure 5.1: Comparison between Programming Models. [MF13]

Twisted leverages the event-driven programming model by inter-leaving multiple
blocking operations and responding to consequential events, such as completion or fail-
ure, using callbacks. A callback is a function to call upon the occurrence of an event to
handle the results. Twisted allows the developer to specify a callback to handle the suc-
cessful completion of an event, and a callback to handle the failure of an event; both are
encompassed into the Deferred abstraction, as shown in Figure 5.2. Twisted orchestrates
the callbacks, contained in different deferreds, by registering them with an event-loop,
called the Reactor. This event-loop controls the thread of execution, enabling operations
to block, and keeping track of which callback is associated with which operation. Upon

Chapter 5. Implementation 72

Figure 5.2: Graphical Representation of a Deferred. [MF13]

completion (or unblocking) of an operation the event-loop is notified and it passes the
result to the corresponding callback, to be processed. By chaining callbacks, it is possible
to achieve very complex asynchronous behavior in a cooperative fashion which is at the
heart of the philosophy of the Twisted framework. The concept of deferreds influenced
the design of the constructs composing this implementation of our architecture and their
interactions among each other.

The overlay-network used for to The Ring, is a Python implementation of the Kadem-
lia DHT using Twisted [Mul14]. Our decision was based on the fact that it was imple-
mented using Twisted, and it could be easily integrated to our architecture incurring
minimal disruptions. Another benefit, is to have uniformity in the programming-model
used throughout the architecture, by focusing on the event-driven programming model.

For the web server, we used CherryPy, a minimal Python Object-Oriented Web
Framework [Tea14], because of its simplicity and illustrative capabilities. It enables
us to use a web server, without any bloating features and focuses strictly on what is
necessary, easing the development of prototypes and proof of concepts. We can substi-
tute this web framework with a more complete web framework, incurring only minimal
changes by using our clearly defined interfaces.

To provide virtualization capabilities to the nodes we used Docker Containers [Hyk15].

Chapter 5. Implementation 73

Docker provides self-containing capabilities to each node, by specifying the dependencies
inherent to this architecture and the dependencies of the applications developed, using
DockerFiles. They act as configuration files, prescribing the requirements of the environ-
ment, all the dependencies, and the quantification of the resources available to execute
the containers.

Using these technologies we were able to quickly and efficiently create prototypes,
while constructing a solid foundation for our architecture. This foundation is the result
of creating well-defined interfaces between the various components, accentuating the
modularity and maximizing the extensibility of the architecture.

5.2 Constructs

In this section we present the fundamental elements of our architecture, namely the
Task, the ApplicationNode, the Ring and the Fellowships. We present each of the
elements and discuss their practical implementations.

5.2.1 Task

There is a need to represent a series of consequential actions resulting from an incoming
request, into an easily distributable and self-contained entity. This entity must provide
the ability to return a response to a requester, without any ambiguity regarding the
originator of the request in the presence of large amount of requests.

Tasks are heavily inspired by Twisted’s concept of Deferreds, because they make
similar promises. As we have shown earlier, a Deferred promises to eventually return
from a blocking operation with a result, and to apply a processing logic, in the form of
callbacks, to this result. Similarly, a task embodies this promise of eventual completion
and provides the ability to specify the result processing logic. As a matter of fact,
Deferreds are used to chain the various processing steps for any given task. Upon the
creation of a task, a Deferred is attached to it, consisting of the processing logic that
must be applied when this task is dispatched to a node. The principal function required
to process this unit of work, is the first callback to be chained in the callback chain of the
Deferred. Then, any subsequent post-processing function will be chained to that same
callback chain, representing the complete sequence of operations. A task corresponds to
an atomic unit of work in this system. Analogous to the database atomic transaction
property, a task can be in one of two states, processed or not processed. Task(s) are fully
self-contained and stateless in the sense that any task can be dispatched to any node,

Chapter 5. Implementation 74

without having to synchronize the states of the nodes, receiving the task is sufficient
to execute it, and carry out the corresponding sequence of operations. We distinguish
between two types of tasks, a Worker Task and a Data Task. The former consists of
ANY type of computational task, whereas the latter consists of task that pertains to
persistent data (either storing or retrieving data).

Task objects are simple constructs containing the parameters, the module and the
function names related to a unit of work. Once created they are dynamically linked to
the module provided and the corresponding function, shown here:

Task(operation)
new_task = Task("DB_STORE")

new_task.type = Task.Data

new_task._data = payload

create(module_name,
func_name, data)
where data represents the
task data , but includes also
any post−processing jobs as a
l i s t of : [module_name,
func_name] , data
new_task.create(’data_process’,

’save_file’,

[[’worker_process’,’retrieveData’], filename ,

’data\binary’,

self.db_name])

A task function takes 2 parameters: a task object and a list of arguments, where
the former is the instance of the task itself, and the latter is any parameters that are
necessary to execute this function. Thus, a normal function can be refactored into a task
function simply by modifying the signature of the function to take only the task object
and a list representation of all the (current) parameters; and include logic to extract the
parameters from the list.

Chapter 5. Implementation 75

Here is an example of a simple arbitrary function:

def arbitraryFunc(op1, op2):

return op1 + op2

And here is this function re-factored to be a task function:

def arbitraryFuncTask(taskObject , params):

op1 = params[0]

op2 = params[1]

taskObject.results = op1 + op2

taskObject.completed = True

return taskObject.completed

Developing applications by defining the business logic into self-contained units of
work, helps mitigate a large portion of the complexity inherent to distributed systems,
but imposes a fairly strict programming model on the developer. Such a programming
model may be difficult to abide to in some cases, notably where the services provided by
an application cannot be easily parallelized or exhibit inherent serial properties.

5.2.2 ApplicationNode

This construct represents any participating node in the network, and distinguishes be-
tween application deployers, and contributing nodes.

Application Deploying Nodes are the nodes contracting the contributing nodes
in order to host an application using this system. Hosting, in this context refers to the
ability to provide to a nodes the appropriate processing logic (according to their role) and
to dispatch the incoming workload to the nodes accordingly. The Application Deployer
is responsible for translating the incoming requests into tasks and for providing tasks to
the contributors. Then, once a response is formulated as the result of executing a series
of tasks, the Application Deployer returns the response to the originator of the request.

On the other hand, Contributing Nodes process the tasks assigned by the Appli-
cation Deployer. Similarly to the types of tasks, such a node can adopt one of two roles:
Data Node or Worker Node. The former is responsible for processing Data Task(s) and
the latter is responsible for processing Worker Task(s).

Chapter 5. Implementation 76

5.2.3 The Ring

This abstraction was presented in Section 4.2.1, and provides the ability to connect all
the participants in a public environment through a well-defined interface. It also enables
the application deployers to find potential contributing nodes, and it provides a public
repository for the common resource specification template. Using a DHT, we are able
to connect all the nodes together in a public environment, the Internet. This construct
serves as a public meeting space for contributing nodes and application deploying nodes.
In order for nodes to interact with(in) the Ring, we have defined a network interface that
declares the following functions:

• bootstrap(): defines the bootstrapping mechanism for the Ring allowing to con-
figure any newly arriving node.

• connect(): defines the connection procedure once a node has been configured, in
order to join the Ring.

• set(): defines how to store a value in the Ring.

• get(): defines how to retrieve a value from the Ring.

Application Deployers collectively define the Resource Specification (RS) template and
include any desirable attributes by appending them to the template stored in a public
repository. This public repository corresponds to the template key stored in the DHT
using set(). Contributing Nodes are then capable of advertising their resources according
to the template, by retrieving it from the DHT using get(). Upon contracting all the
necessary resources, the collection of nodes (including the application deployer) will form
a Fellowship.

We have decided to use a DHT, because of its storage capabilities. Although, as we
have presented in the previous chapter, we could supplant the DHT with any overlay
network of our choice to satisfy any (other) networking requirements, such as better
response to very dynamic networking environment by using an unstructured overlay
network [LCP+05]. This could be done utilizing the network interface we have defined,
and by redefining the mandatory functions.

5.2.4 The Fellowships

This construct provides the ability to connect the selected nodes with the application
deployer in a private networking environment. It ensures privacy for the data transmitted,
but also enforces any security policy between the nodes.

Chapter 5. Implementation 77

Currently we use a whitelisting mechanism to provide a private environment, meaning
that only the nodes contained in the list defined by the application deployer are allowed
to participate in this environment. This list is the result of selecting the resources, and
publishing the list of these resources under the application deployer’s corresponding key
in the DHT. Participating nodes are then able to retrieve this list, and use as a provision-
ary measure for validating incoming communications. More elaborate security schemes
can be devised to satisfy a variety of security requirements, such as implementing a
public-key infrastructure using a DHT [LLC11]. Due to time constraints, we have not
implemented this construct as a stand-alone overlay network as prescribed in Chapter 4,
and instead uses the whitelisting approach to security. As future work we would im-
plement Fellowships using a protocol similar to T-Man [JMB09], to provide an overlay
network; and we would explore more complete security schemes.

5.2.5 Conclusions

By using these constructs we enforce the adoption of a task oriented programming model
from the application developer’s perspective, which is fully compatible with the event-
driven programming model used to construct this architecture. We are required to have
centralized public point of access, due to the underlying Internet infrastructure, which
force us to distinguish between two types of nodes, Application Deploying nodes and
Contributing nodes. We are providing a flexible public networking platform using a
well defined interface, that provides the ability to change the peer-to-peer networking
primitive of the platform effortlessly. Finally, we are also providing a private networking
environment, in which the nodes hosting the deployed applications can communicate
between them, using a whitelisting mechanism.

5.3 Workflows and Protocols

In this section we present the procedure to initialize a node, and the protocol necessary
to interact and be part of this architecture. We present the initialization workflow of a
node, and illustrate the differences between the workflows of an Application Developer’s
node and a Contributing node. Then we present the protocol used by the nodes to
communicate within a Fellowship. We conclude with the presentation of the web proto-
col interfacing with the web server, followed by a brief discussion of the error-handling
capabilities of the various protocols.

Chapter 5. Implementation 78

5.3.1 Initializing a Node

A node follows a specific initialization procedure, which varies slightly depending on the
type of the node. We distinguish between the Contributing node’s workflow and the
Application Deployer’s node workflow.

A contributing node iterates through this progression of steps, forming a sequential
workflow:

1. Node creation.

2. Connect to the Ring.

3. Retrieve Resource Specification Template.

4. Initiate Advertisement mechanism, and wait until selected.

5. Start communication with the Fellowship.

Whereas the Application Deployer’s node workflow contains additional steps:

1. Node creation.

2. Connect to the Ring.

3. Read configuration file and update Resource Specification Template.

4. Initiate resource Seeking mechanism, and select adequate nodes.

5. Publish the list of nodes selected, to the Ring.

6. Start the web server, and start receiving requests.

7. Start communication with the Fellowship.

Using these two workflows we are able to create a node and successfully join the
system. We are also able to deploy applications, by selecting the nodes that satisfies our
requirements and joining them together to form a Fellowship.

5.3.2 Fellowship’s Protocol

The communications inside a Fellowship, are conducted according to the Fellowship’s
Protocol. This protocol defines 6 different actions, that can be taken. Similar to client-
server protocols, here we depict the contributing node as being a client and the application

Chapter 5. Implementation 79

Connect

Negotiate Role

Confirm Role

Send Available Task

Completed Task Returns

Contributing Node: AppD: Node:

loop
[Task Request-Response Cycle]

Figure 5.3: The Fellowship Protocol

deploying node as being a server1.

As illustrated in Figure 5.3, a Contributing Node connects to any node in the Fel-
lowship. After successfully connecting to the network, it will negotiate a role with
the Application Deployer, either this node will become a Data Node or a Worker Node.
Then, after confirming its role, the Contributing Node will begin the Task Request-
Response Cycle and it will become an active node of the Fellowship.

5.3.3 Web Protocol

TheWeb Protocol is used to translate incoming web requests into tasks, by implement-
ing a RESTful API between the application and the web server, which enables complete
separation from the web hosting and processing facilities.

Translation of web requests into tasks, consists of receiving a web request and then the
web server generates the appropriate RESTful request to be sent to the application. For
all intents and purposes, any web request is translated into a POST request containing
the information about the task, such as which module and function to call, and the
arguments to call it with. Upon receiving the request from the web server, the application
creates a task using the information contained in the request. When a task is completed,
the result is retrieved by the application deployer node, who formulates a HTTP POST

1The application deploying node is depicted as a server since it hosts the web server.

Chapter 5. Implementation 80

Figure 5.4: Web Request Translation into Task(s).

request using the web protocol and sends it to the web server. The web server then is
responsible to present the information back to the originator of the initial request.

The rationale behind this, is to completely decouple the presentation logic from the
application logic, thus maximizing extensibility and modularity. Any web framework
can be used with this architecture, and it can be hosted on any web service provider,
as long as it is able to emit/receive HTTP requests, it is compatible. It is possible to
have more elaborate web hosting scenarios, where multiple web servers are spun and
they all emit HTTP requests to a subset of nodes of an application to be translated into
tasks. Meticulous synchronization is required to ensure the responses are sent back to
the corresponding requesters in that case, but by using session primitives it is trivial to
locate the originating web server, and consequently the originator of the request.

This component is crucial to the claims of extensibility that this architecture makes.
It is also important in order to achieve scalability for the application deployed, where web
hosting can be an important bottleneck. Lastly, it provides the foundation to implement
robust web applications, and to provide fault-tolerant mechanisms, such as redundant
web servers, without incurring any major changes.

5.3.4 Error-Handling

In the various protocols presented above, we’ve omitted a crucial component, that is:
error-handling, which varies slightly from one protocol to another. This system being
implemented as a prototype, it does not cover the handling of every single error-case
nor of all the edge-cases, but rather covers the handling of the most obvious errors. As
part of the second iteration of the development lifecycle of this system, the protocols
will be implemented as finite state machines, but for illustrative purposes these verbose

Chapter 5. Implementation 81

protocols are sufficient to demonstrate the error-handling capabilities.
The first protocol covers the steps to initialize a node, be it a consumer or a con-

tributor, in both cases the obvious potential errors are: connection failures between
consumer/contributor and vice-versa. The connection failures could be relative to a
connection timeout, or a connection drop. To circumscribe these possible errors, both
parties define a timeout value and a maximum number of retries. Using the timeout
value a consumer or contributor can determine whether an error occurred, similarly for
the maximum number of retries, after a number of unsuccessful exchanges, consumer or
contributors can then deem this destination node to be in an error-state. Once a node
is deemed to be in an error-state, if it is the application deployer then it is necessary to
bring this node back to an error-free state in order to proceed with the deployment of
the application, whereas if it is a contributing node, then it is simply ignored and the
application deployer attempts to communicate with a different contributing node.

The Fellowship’s Protocol on the other hand is a bit more complex in terms of error-
handling, because it is also vulnerable to connection failures, but also to computation
failures. In this case computation failures refer to a completed task with erroneous
results, or an uncompleted task. The former can be handled by performing sanity checks
on the parameters, on the intermediate results and final results. All of which can be easily
integrated in the application development workflow using Twisted’s Deferreds, since every
deferred encompasses 2 chains of callbacks: callbacks and errbacks, see Figure 5.2. The
latter relates to the return of an uncompleted task, or the non-return of a completed task.
In the case of the return of an uncompleted task, it is possible to handle this error on the
application deployer side by enforcing mandatory sanity check(s) for all the completed
tasks, and if the check(s) fails simply re-queue the task in a best-effort fashion. If task
does not return in a timely manner (as prescribed by the application deployer), then it
is considered incomplete and it is re-queued.

Similarly for the Web Protocol, using Twisted’s Deferreds, it is possible to define the
appropriate behavior of the node to handle any error-cases. Again, this discussion about
error-handling is a preliminary discussion that paves the way to an exhaustive error-
handling analysis, which takes part in the next iteration of the development lifecycle of
this system.

5.4 Proof of Concept: Calculator

In this section we present our very first proof of concept application using this architec-
ture. We demonstrate how to create a sensible solution, by reasoning about the problem

Chapter 5. Implementation 82

at hand in terms of an Event-Driven Architecture (EDA) and illustrate the interactions
between the different components. We present the role of each type of nodes,their re-
sponsibilities, and present conclusions related to this proof of concept.

5.4.1 Overview

The application is a simple web-based calculator. It takes two operands, and using a
button signifying the operator to be applied, computes the result using the resources
available to the application (nodes). Four different operators are implemented: the
addition (+), the subtraction (-), the multiplication (*) and the division (/).

Implementing this application, we make the following assumptions:

• Web Hosting is the responsibility of the application deployer, thus it will host the
web server.

• No data is persistent, thus it will not require any Data Node(s) (or database).

• At least one Worker Node(s). The more nodes available, the more concurrent
requests can be satisfied.

We have implemented the web server, as mentioned previously, using CherryPy. We
present a minimalistic web interface that contains 2 fields for each possible operators, 8
fields in total and 4 buttons, as illustrated in Figure 5.5.

Figure 5.5: Calculator’s Web Interface

And the results are presented using a simple string, consisting of: "The result is :"
followed by the result of the computation.

5.4.2 Application Deploying Node

In this subsection we present the implementation of the Application Deploying Node for
the Calculator application.

Chapter 5. Implementation 83

Figure 5.6: Application Deployer Node as part of the Calculator Application.

This node encapsulate the sole event generator and the event channel of this applica-
tion. When an event is generated (from the web server), it is passed to the event channel
(web protocol) where it is translated into a task and then queued. Using the Fellowship
protocol, this node will dispatch the task(s) to the available nodes and collect the re-
sult(s) of the completed task(s). The results are extracted from the completed task(s),
and are presented to the end-user, using a HTTP POST, as a downstream event-driven
activity emerging from the processing of the event, as shown in Figure 5.6.

The application deploying node is responsible for the task queues in this specific
application, because we host the web server on that same node and there are little to no
value in distributing task queues among several nodes in such a simplistic example.

5.4.3 Contributing Node

In this subsection we present the implementation of a Contributing Node, and then the
logic necessary to process the tasks.

A contributing node receives a task from the application deployer node, executes it,
and returns the completed task to the application deployer node. All the communication
between the application deployer node and the contributing node is performed using the
Fellowship protocol.

In the context of this application, we have defined the logic to process the various tasks
into a module called worker process. It encapsulates all the logic necessary to perform
any operation on the two operands, and facilitates the addition of new operations, by
simply adding a new corresponding functions. It makes for a clear separation between the

Chapter 5. Implementation 84

Figure 5.7: Contributing Node as part of the Calculator Application.

application-dependent code and the architecture related code, and it augments portability
of the source code.

In order to execute a task, the contributing node will call the appropriate function
inside the module and pass it any parameters necessary using a list of parameters. The
contributing node will append the results to the task object, passed in parameters, and
reply to the application deployer with the completed task, as shown in Figure 5.7.

5.5 Conclusion

We can observe, in Figure 5.8, the rudimentary workflow of this architecture: receive a
request, translate it into a task, dispatch the task, execute the task, return the results,
and respond back to the originator of request. It exemplify the request-response cycle
perfectly, corresponding to an Event-Driven Architecture. Resorting to this way of rea-
soning is intuitive when developing web-applications. It is a central characteristic of this
system. This way of reasoning facilitates the development of new applications, but also
considerably reduces the effort required to translate an existing monolithic application
into a distributed application, as we will see in the following chapter.

Chapter 5. Implementation 85

Figure 5.8: Calculator Application Architecture Overview.

Chapter 6

Case Study: Multi-Document Text
Summarization using Genetic
Algorithms

In the previous chapter, we have introduced the technologies used and the fundamen-
tal constructs of this architecture. Then, we have presented as a proof of concept, a
calculator, in terms of our architecture and its implementation. In this chapter, we
are presenting an example case study for a more computationally intensive application.
Namely we present an adaptation1 of a system for Multi-Document Text Summarization
using Genetic Algorithms [QHH08].

In the following sections, we present the problem at hand and illustrate how a genetic
algorithm is capable of addressing it. We present how we extend the existing work on text
summarization using Genetic Algorithm (GA), in order to process multiple documents.
We then use an analysis-based approach to translate this problem into a distributed web
application. This analysis will serve as the foundation to devise an algorithm that is
compatible with an event driven architecture. Finally, we present the characteristics and
roles of each type of nodes, and we present a discussion of this implementation.

1By no means, is this an efficient multi-document text summarization system. But it embodies a
computationally intensive highly parallelizable problem which is appealing to showcase this architecture.

86

Chapter 6. Case Study: MDTS using Genetic Algorithms 87

6.1 Problem at Hand

In order to provide some context2, we present what Automatic Summarization is in
general. Then we present the characteristics of Multiple-Document Text Summarization,
followed by a high-level explanation on how to use Genetic Algorithms to solve this
problem.

This section demonstrates how to transform a monolithic serial program into a dis-
tributed web-based application, including all the steps required to rationalize the trans-
formation.

6.1.1 Automatic Summarization

To understand how to automate the summarization of documents, we must understand
what constitutes a summary. A summary can be defined as: the product of a reduc-
tive process to include salient statements of a source text, by selecting or abstracting
the original statements, forming a condensed representation of the argumentations and
conclusions drawn [J+99].

To generate a summary, one of the techniques that can be used relies on the extraction
of linguistic units from a document to represent the information conveyed in it. This
technique is known as extraction-based summarization. Another popular technique that
can be used to generate a summary, consists of abstracting the sections from a source
text and generate statements, using natural language generation techniques, that convey
the same information in a condensed form. This technique is known as abstraction-based
summarization.

For this case study, we are interested in extraction-based summarization, more specif-
ically we are interested in a technique called Sentence Extraction. Generally, this tech-
nique consists of scoring sentences in a text for a set of given metrics, and apply statistical
heuristics to filter superfluous or not-so relevant sentences.

Up until now, we have defined a summary has being derived from a single source text,
but what if we are presented with a set of documents on a single topic, can we summa-
rize the aggregation of all these texts into a single summary? Doing this will provide
the ability to aggregate all the different perspectives of each text, but also to reveal the
overlapping perspectives concerning a singular topic. This variation of automatic sum-

2Caveat lector: extensive literature has been written on both, Automatic Summarization and Evo-
lutionary Algorithms, and may be consulted for more information: see [MM99] as a starting point for
Automatic Summarization, and see [ES08] as an introduction to Evolutionary Algorithms.

Chapter 6. Case Study: MDTS using Genetic Algorithms 88

marization corresponds to Multi-Document Text Summarization (MDTS) [GMCK00].

6.1.2 Genetic Algorithms

The problem of creating a summary, using sentence extraction, can be defined as the prob-
lem of extracting the most salient sentences of a source text, and use them to generate a
summary of a given length. We can interpret this problem as an optimization problem
and apply an evolutionary algorithm to search the solution space for near-optimal solu-
tions, as proposed by the authors of [QHH08] for single document text summarization.

A genetic algorithm, is defined as an adaptative heuristic search algorithm inspired
by biological evolution processes, such as natural selection, mutations, cross-overs, etc.
[ES08]. A very high-level overview of the outline of a simple GA is presented in Al-
gorithm 1. There are several considerations to take into account while using GAs,

Algorithm 1 Genetic Algorithm: An Overview
1: procedure GA
2: Initialize population:
3: population = randomPopulation()
4: Evaluate Population:
5: fitness = fitnessFunction(population)
6: while fitness <= desired fitness do
7: Evaluate Population.
8: Select parents for next generation.
9: Perform Crossovers on the parents selected.
10: Perform Mutations on the resulting population.

especially on how to represent an individual in the population, which type of crossovers
should be applied, enforcing elitism or not in the selection process, the type of mutations
to apply and how to formulate a meaningful fitness function. But this digression is not
relevant in the context of this thesis and thus for more information see [ES08].

6.1.3 Extensions Proposed for MDTS

We have proposed extensions to the work of [QHH08], in order to provide multi-document
summarization capabilities. But first, we present a high-level overview of their procedure,
and then we present our proposed extensions.

Algorithm 2 is conceptually intuitive. The document is represented using a directed
acyclic graph to preserve the order of the sentences in the text. In this graph, the
sentences are the vertices and the similarity between two sentences is represented by a

Chapter 6. Case Study: MDTS using Genetic Algorithms 89

Algorithm 2 Automatic Text Summarization using GA: An Overview
1: procedure ATS-GA
2: Represent document as a Directed Acyclic Graph.
3: Compute similarity metrics and weight of the sentences.
4: Initialize population:
5: population = randomPopulation()
6: Evaluate Population:
7: fitness = fitnessFunction(population)
8: while fitness <= desired fitness do
9: Evaluate Population.
10: Select parents for next generation.
11: Perform Crossovers on the parents selected.
12: Perform Mutations on the resulting population.
13: Extract the summary from the graph.

directed edge from one sentence to another, where the direction of the edge corresponds
to the order of the sentences, ensuring a continuous progression in the traversal of the
graph. The problem then becomes finding a path that traverses the graph, containing a
number of vertices that corresponds exactly to the desired summary length, maximizing
the fitness function. Some difficulties can be encountered when tuning the parameters
of the genetic algorithm, but it is a problem inherent to GAs in general and not to this
specific problem of automatic summarization.

We propose to use this methodology integrally, and execute it in parallel on multiple
documents sharing a common topic in order to generate a collection of summaries. This
collection of summaries is then used as a corpus of salient sentences. Instead of using
the GA to find the final summary, we use a redundancy reduction function to remove
excessively similar sentences and to achieve the desired summary length. Thus, our
new and updated algorithm, able to summarize multiple document on a single topic is
presented in Algorithm 3.

The rationale for this extension is the following: given that the genetic algorithms
finds a near-optimal summary for each document independently, then by collecting all
of these summaries together we have the most salient sentences (in relation to the topic)
across all documents. Then, we remove the number of less salient sentences for which the
redundancy score was the highest. The score was computed with respect to the number
of overlapping words between two sentences, and the closeness to the topic.

Chapter 6. Case Study: MDTS using Genetic Algorithms 90

Algorithm 3 Multi-Document Text Summarization using GA: An Overview
1: procedure MDTS-GA
2: for each document in collection of documents do
3: Represent document as a Directed Acyclic Graph.
4: Compute similarity metrics and weight of the sentences.
5: Initialize population:
6: population = randomPopulation()
7: Evaluate Population:
8: fitness = fitnessFunction(population)
9: while fitness <= desired fitness do
10: Evaluate Population.
11: Select parents for next generation.
12: Perform Crossovers on the parents selected.
13: Perform Mutations on the resulting population.
14: while len(summary) > desired summary length do
15: Apply redundancy reduction algorithm on collection of summaries.
16: Extract the summary from the graph.

6.2 Translation of the Problem for this Architecture

In this section, we analyze the MDTS system, and translate it into a distributed appli-
cation for our architecture. First, we state the assumptions, then the node requirements.
Then we identify the logical event flow layers, and present the different possible event
flows. Finally, we present the resulting workflow of the application.

To start our analysis, we need to make the following assumptions:

• We need to persist (some) data. At least one Data Node is required.

• We require an arbitrary number of computational resources. At least one Worker
Node is required.

• Provide support for multi-tenancy.

Based on the assumptions above we can draft out the node requirements for a minimal
implementation of this case study: at least one Application Deploying Node, one Data
Node, and one Worker Node.

We can distinguish the two following alternatives: (1) The resulting EDA contains
the sole event generator, the web server; and (2) The resulting EDA contains two event
generators, the web server and the data node(s). The latter alternative distinguishes
between a HTTP request received from the web server, resulting in a data task to store

Chapter 6. Case Study: MDTS using Genetic Algorithms 91

its content, and the worker task created as a result of the completion of the data task.
Whereas, the former doesn’t, and rather it proposes to leave these subsequent tasks as
part of the downstream event-driven activities.

The second alternative conflates the definition bestowed upon an event in this archi-
tecture with a task or self-contained unit of work. In this architecture, an event incurs
the creation of a series of tasks representing the sum total of the work required to account
for this event. In the context of web applications, we can draw the following analogy
between the event and the request issued by the end-user: A request is received by the
web server and it must formulate a response to this request, either by executing a number
of operations or retrieving information from a data source. In this analogy the fashion
in which the response is formulated is irrelevant to the end-user, and it can be perceived
as a black-box, similarly for an event from the EDA’s point of view. Everything that
happens inside this black-box, as a result from this event, is irrelevant in terms of the
EDA. All that matters is that the action(s) taken in response to this events yields the
desired results, whether this chain of action is composed of an arbitrary number of links
it is still initiated by an event, and ultimately concludes by formulating the appropriate
system-response to this event. We can now position the concept of downstream event-
driven activities as the links in the chain of actions undertook to formulate a response
to this event, and thus these activities cannot originate from an event generator.

We can now appreciate why the first possible translation fits naturally within the
context of this architecture, because an event corresponds to a user request, or the
initiator of the chain of activities to be performed in order to formulate the appropriate
system-response to this request, and upon completion no other activities are generated
for this specific event, marking its termination. In more complex examples involving a
multi-layered SOA, it may be justified to further the categorization of events with exterior
events and interior events for this architecture. An exterior event is generated from an
event-source that is at the edge of the application, i.e., a web server. Whereas an interior
event originates from one service provider to another inside the SOA.

As a rule of thumb, one should always try to trace the computational steps of any
chain of activities and identify its origins. If the originator of the chain of activities is
a request from the end user, then it is safe to assume that any of the subsequent links
in this chain are downstream event-driven activities. Conversely, if the current step is
the originator, and tracing it back would take you outside the system, then it is safe to
assume that this is an event. Using this approach it is trivial to reason about what should
be an event generator, an event channel, an event processing engine and a downstream
event-driven activity.

Chapter 6. Case Study: MDTS using Genetic Algorithms 92

Now, we can identify the logical event flow layers according to our rationalization:

• Event Generator(s): in this case the initial events are generated by the web
server (incoming request(s) from the user(s)).

• Event Channel(s): the web protocol is the event channel.

• Event Processing Engine(s): events communicated through the web protocol
(event channel) are processed by a data node.

• Downstream Event-Driven Activities: once a data node completes the persis-
tence of the data relative to the user’s request, the application logic is applied as
downstream event-driven activities. This triggers the creation of a series of tasks
that will carry the execution of the application, involving data and worker nodes,
and finally returning the result to the web server.

We can distinguish between three event flows from these logical event flow layers: (1)
Incoming Request Event Flow, (2) Processing a Request Event Flow and (3) Returning a
Response Event Flow.

Figure 6.1: Event Flow: Incoming Request.

The Incoming Request Event Flow, as shown in Figure 6.1, embodies the logic
of receiving a request from a user, persisting the data (documents) of this request in the
database, and queuing up a processing task for this data.

The Processing a Request Event Flow, as shown in Figure 6.2, corresponds to
processing a task related to a document, which implies retrieving the data (documents)

Chapter 6. Case Study: MDTS using Genetic Algorithms 93

Figure 6.2: Event Flow: Processing a Request.

Figure 6.3: Event Flow: Returning a Response.

from the database, processing it using the genetic algorithm, and persisting the results
back into the database.

The Returning a Response Event Flow, as shown in Figure 6.3, consists of
monitoring the database for all the results to be persisted using a database trigger3 and
then creating and dispatching a task to process the results by applying the redundancy
reduction algorithm. Upon completion of the task, the results are sent back to the web

3This is not shown in the figure, the worker task has already been created and queued in the figure.

Chapter 6. Case Study: MDTS using Genetic Algorithms 94

server and it presents them to the end-user.
Based on this analysis we devise a general workflow that encompasses all the in-

teractions between the nodes and the end-user concerning a single request, as shown in
Figure 6.4. Multitenancy is provided through the use of sessions, and we use these session
primitives to organize the data in the database for each user.

Figure 6.4: MDTS: General Workflow.

6.3 Implementation Details

In this section we present the implementation details for each type of nodes. And we
outline the specificities of this particular application in the context of our architecture.

6.3.1 Application Deploying Node

The application deploying node is responsible for receiving the requests from the users
and translating them into initial data tasks. It is also responsible for the task queues,
because we host the web server on that same node and there are little to no value in
distributing task queues among several nodes in this example. Because we are using
data node(s) we need an additional task queue, thus we have one task queue for the
worker tasks and one for the data tasks. Ultimately, the application deploying node is

Chapter 6. Case Study: MDTS using Genetic Algorithms 95

Figure 6.5: Application Deployer Node as part of the MDTS Application.

responsible for dispatching any tasks contained in its queues, to any available nodes, as
shown in Figure 6.5. Another characteristic of this implementation of the application
deploying node, is the task creation logic resulting from a completed data task. As
part of the core logic of this architecture, when a data task completes the data node can
specify a post-processing task to be scheduled as the result of this data task. We leverage
this capability to generate the downstream event-driven chain of activities, representing
the application logic. We have implemented the web server, as mentioned previously,
using CherryPy. In Figure 6.6, we present a minimalistic web interface, where the users
can upload their files, specify the different parameters of the genetic algorithm and the
summarization parameters.

The results are presented using a simple string, consisting of: "The result is :" followed
by the topic of the documents and the resulting summary. There is nothing inherently
different between this version of the application deploying node and the version presented
in the previous chapter, see Section 5.4.2, aside from the addition of a data task queue.
It still hosts the web server and it is still responsible for the interactions between the
contributing nodes and the end-users.

Chapter 6. Case Study: MDTS using Genetic Algorithms 96

Figure 6.6: MDTS Application’s Web Interface

6.3.2 Data Node

Data nodes are responsible for persisting the data of the application, as shown in Fig-
ure 6.7, which is achieved by using a relational database, such as RethinkDB [Ope15].

We grouped all of the database functionalities into a single module named data pro-
cess, and thus if we would want to replace the implementation of the database, only some
of the functions need to be redefined in this module. It defines a DataProcess instance,
corresponding to a long-standing process created for the database server instance. The
DataProcess instance contains all the information necessary to access the database, such
as the client driver port and the authentication key. But it also provides the facilities to
start and stop the database server instance gracefully, through eponymous functions.

We created a simple database schema, to represent the data that needs to be persisted,
and we make a distinction between two types of data: files, shown in Figure 6.8, and
results, shown in Figure 6.9.

The task functionalities are implemented in the format defined in Section 5.2.1, using
a list of parameters and passing it alongside the task object. We defined three different
functions corresponding to the actions to be performed on the database.

The first function is saveFile, it consists of extracting a file’s content and name, from
a task object and storing it in the database. Each user has its own database, allowing to
store very large sets of related documents. If it is the first file to be stored, the database
and the table corresponding to the files table schema are created. Upon completion of
the task containing the saveFile function, a worker task is created to retrieve the file

Chapter 6. Case Study: MDTS using Genetic Algorithms 97

Figure 6.7: Data Node as part of the MDTS Application.

Figure 6.8: Files table schema.

from the database, to process it (generate a summary), and to commit the results back
to the database.

The second function is retrieveFile and it consists of retrieving a file from the database,
for a worker node, to be processed. The function logic formulates a query to retrieve a

Chapter 6. Case Study: MDTS using Genetic Algorithms 98

Figure 6.9: Results table schema.

file from the appropriate database, i.e., the document prescribed in the worker task.
The third function is resultsLookup and it consists of creating a trigger that monitors

the changes in the results table. It can be done using the primitives offered by RethinkDB,
such as the changes() function, which returns a stream of all the changes made to a table
or database [Ope15]. When all the results have been written to the database, the data
node creates a task indicating that the results are ready to be processed.

It is possible to distribute the database across a cluster of data nodes, and we can
leverage the clustering capabilities of the DBMS to do it. Sharding and Replication are
automatically taken care of by the DBMS, but can be configured to cater to different
requirements [Ope15]. To leverage the clustering capabilities, it is only required to specify
the argument –bind all when starting the database server instance of the first data node,
then any other data node can join the cluster by specifying that argument and the –join
argument with the IP address of the first data node. Thus, to augment the number
of data nodes of ANY application, simply specify the corresponding arguments when
instanciating the data nodes.

Data nodes are simply database servers, augmented to function within this archi-
tecture. Their functionalities oscillate around the Search-Create-Replace-Update-Delete
(SCRUD) operations. Augmenting availability of the data can be done effortlessly, on-
the-fly by recruiting new nodes and creating additional database server instances using
the proper arguments.

6.3.3 Worker Node

Worker nodes are the central components to the business logic of any application hosted
using this system, because they form the computational resources of the system. The

Chapter 6. Case Study: MDTS using Genetic Algorithms 99

re-factoring effort required to transform any function into a task function, is minimal.

Figure 6.10: Worker Node as part of the MDTS Application.

Similarly to the Calculator example, we have encapsulated all the application logic
into one single module, named worker process. As shown in Figure 6.10, this module
exposes two task functionalities4, again using the format defined in Section 5.2.1.

The first function, retrieveData, as it name implies is responsible for retrieving the
data from the database, to create a summary, and to write the results back into the
database. Our original summarization code required only one modification, and it was
to tailor the code to process only one document (instead of a directory). Ultimately, this
function contains the logic to retrieve a document from the database, and calls each of
the summarization functions in their respective order.

The second function, retrieveDataPostProcessing, retrieves the results from the database,
and applies the redundancy reduction algorithm, then sends the resulting summary back
to application deploying node to be presented back to the end-user.

4In all the figures containing a worker node in this case study, we changed the task function names
to better portray their functionalities and thus the function name for Process Document (GA) in the
module corresponds to retrieveData. Similarly, the function name for Redundancy Reduction Alg. in the
module corresponds to retrieveDataPostProcessing.

Chapter 6. Case Study: MDTS using Genetic Algorithms 100

6.4 Experimentation

In this section, we present the experimental setup used to test and develop the MDTS
application for this architecture. We conclude with a discussion of our evaluation and its
limitations.

Our experimental setup consists of:

• One laptop hosting two VMs, where the three are connected using the local loopback
adapter.

– The laptop is an Apple MacBook Pro (15-inch, 2.53GHz, 8GB of RAM, Mid
2009) running OS X Yosemite (10.10.2).

– We use Oracle VM VirtualBox version 4.3.12 to host the VMs on the laptop.

– Both VMs are identical, both were allotted 512MB of base memory, 12Mb of
video memory, 8 GB SSDs and are running Lubuntu 14.04.

As per our initial assumptions, we must have at least one application deployer node,
one woker node, and one data node. The VMs correspond to the contributing nodes, and
the laptop corresponds to the application deployer node. The contributing node’s copy of
the application differs from the application deployer copy, because they are not allowed
to instantiate (themselves as) application deploying nodes. The application deployer is
running a version of this application on MacOS X, whereas the contributing nodes are
running their applications inside a Docker container. We used valgrind instrumenta-
tion framework, more precisely massif, a tool to generate the heap memory profile of
applications, to profile the application running outside a container, when summarizing 9
documents.

n time(i) total(B) useful-heap(B) extra-heap(B) stacks(B)
0 0 0 0 0 0
1 160,800,345 2,789,560 2,722,880 66,680 0
2 319,964,709 4,559,048 4,464,383 94,665 0
3 432,207,257 4,655,904 4,567,228 88,676 0
4 580,771,287 6,908,216 6,740,605 167,611 0
5 711,952,664 9,685,952 9,479,920 206,032 0
6 800,083,101 10,210,536 9,999,586 210,950 0
7 934,281,944 15,176,552 14,942,006 234,546 0
8 1,111,714,521 16,942,128 16,704,676 237,452 0

Table 6.1: First 8 Snapshots: Heap Memory Usage Peaking at Snapshot 8.

Chapter 6. Case Study: MDTS using Genetic Algorithms 101

Figure 6.11: MDTS Application Heap Memory Profile.

Figure 6.11 shows the graphical representation of the memory profile, generated using
the ms_print tool from the valgrind framework. We can observe that this application
heap memory profile peaks at 16.94MB, shown in Table 6.1, and this is used as a baseline
to profile the memory usage of this application. We say baseline in this context, because
it is the smallest memory footprint for this application independently of the virtualization
technology used. Next, we identify how much memory is required to run this application
inside a container5 using the free Unix command to capture the amount of memory
used before and after the creation of the container, shown in Table 6.2 and Table 6.3
respectively.

We can now compute the delta between the memory used before and after, or 489096KB−
481064KB = 8032KB, then we extrapolate this result, naively, to deduce that it re-
quires 8032KB, or around 8MB of RAM to create and execute a idling Docker container
of Ubuntu 14.04. Thus, our guesstimation of the memory footprint of this application

5Docker was wrote using the emerging Golang (or Go) language, and it is not trivial to generate
memory profiles for Golang binaries because of the immaturity of the language. No tools are available
for memory profiling, thus we improvise this evaluation scheme, which consists of finding the heap
memory profile of the bare application and add the amount of memory used to create and run the
container to provide a very high-level guesstimation of the actual memory footprint.

Chapter 6. Case Study: MDTS using Genetic Algorithms 102

total used free shared buffers cached
Memory (KB) 501832 481064 20768 3020 76564 161628
-/+ buffers/cache (KB) 242872 258960
Swap (KB) 522236 348 521888

Table 6.2: Memory Statistics Before Container Creation and Execution.

total used free shared buffers cached
Memory (KB) 501832 489096 12736 3180 76672 162052
-/+ buffers/cache (KB) 250372 251460
Swap (KB) 522236 348 521888

Table 6.3: Memory Statistics After Container Creation with Active Container.

running in a Ubuntu 14.04 Docker container is computed by adding the peak value of the
heap memory profile to the memory required to create and execute the container, and is
equal to 8032KB + 16942KB = 24974KB.

Profiling the application footprint using this improvised scheme has its limitations,
and we resort to this methodology to provide a glimpse of the potential memory footprint
in a real application. Optimizations to the core of the architecture framework could defi-
nitely be made to augment the performance, and effectively reduce the memory footprint.
Further experimentations and tests are required to provide a more accurate memory pro-
file. One interesting test would remove the use of Docker altogether and resort to the
Linux containerization primitives directly, then we could profile the memory footprint
of minimal light virtualization technologies, effectively removing Docker’s overhead and
approach our 16942KB baseline.

6.5 Conclusions

By reasoning using the event-driven architecture approach, we were able to circumscribe
stateful dependencies in the event flows and mitigate them, enforcing the task proper-
ties of being stateless and persisting data to the database. This is a central aspect of
this approach used to translate monolithic applications into distributed applications in
accordance to our architecture. It also provides the tools necessary to divide the appli-
cation logic into meaningful atomic units of work. We have presented a way of dividing
an existing application into tasks, but it is not the only way to do so. As a matter of
fact, a developer has the ability to divide the application into many meaningful task,
spanning multiple modules, because tasks instances are dynamically linked to their func-
tionalities. Thus, it is possible to use different module names and function names for the

Chapter 6. Case Study: MDTS using Genetic Algorithms 103

functionalities of the Worker nodes and the Data nodes.
All the components of this case study were written using the Python programming

language. The amount of modifications and coding required to translate the application
was very small, only 99 additional lines of code to transform the summarization logic
into worker task functionalities and 164 lines of code for the DataProcess class and its
(data) task functionalities. The Web Protocol was written in 113 lines of code, and the
web server was written in 145 lines of code.

The Fellowship Protocol is application independent, and is written in 514 lines of code.
Similarly for the core components of this system totalizing 556 lines of code, including
all the logic pertaining to the nodes and the network interface to the Ring.

These numbers include the comments, and it showcases how minimal is the translation
from a monolithic application to a distributed application, incurring a total of 521 lines
of code for the application-dependent components.

Using a primitive experimentation environment, we profiled this application with a
baseline heap memory footprint of 16942KB and deduced that at least 8MB of additional
memory was required to execute this application in a container. Further experimentations
are required, and due to the immaturity of the toolset for Golang binaries it may be
necessary to revert to LxC, or to use directly the containerization primitives to gather an
accurate memory and performance profile of this application, but also of the architecture
in general.

Chapter 7

Discussion

In this chapter we present various musings about our architecture and the problems
we have encountered. We initiate the discussion by presenting the positioning of this
project amongst the wide landscape of distributed computing platforms. Then conclude
by presenting various open problems that were encountered along this research path,
including peer-to-peer networking primitives for collaborative systems, the state of the
current Internet infrastructure, and ethical problems inherent to public collaborative
systems.

7.1 Positioning of the System

In this section we present the positioning of this system amidst the sea of different
distributed computing platform and systems. It is necessary, because the purpose of
many of these systems gets conflated together, and it provokes a severe misunderstanding
of what they provide. This is especially true with cloud computing.

Cloud computing has become a buzzword nowadays, which implies that it becomes the
go-to solution for all problems. Even today, a majority of professionals are still kept in
the dark amidst all these promises and features, that very few are capable of providing a
concise definition of what cloud computing entails [JM14] [CS14]. We don’t blame them.
We agree that the information circulating around about this technology is, confusing, at
best.

On the other hand, many researchers have tried to devise a proper ontology for this
new paradigm, see [YBDS08]. This attempt made us realize that the definition of cloud
computing can be rationalized, and with the help of documents like [MG11] it is possible
to clearly define cloud computing. But if we attempt to complete this already expansive
definition, by defining what the end-product of cloud computing is, this term cloud

104

Chapter 7. Discussion 105

computing becomes an umbrella term and can be used to define any distributed system
[Cit12] [WR15].

Thus, we present this system as being part of a sub-class of cloud computing, referred
to as volunteer cloud computing, offering a PaaS-like computing platform. Notice how we
italicized the preposition like, we put emphasis on the fact that this system is not aimed
at providing a volunteer cloud computing PaaS service model, but rather a computing
platform akin to it. What sets them apart, is the environment in which they are intended
to operate.

Our system is meant to operate in a semi-trusted environment, in which the contrib-
utors (usually) knows (in)directly the application deployers, and thus there exist some
sort of trust relationship between the two. For example, if we refer to a medium to large
size secondary school, such an establishment could be the host of upwards to 200-300
computers. These computers are used during the day for pedagogical purposes, but re-
mains idling or off at night. The school IT administrator, could then use this system
to provide these 200-300 computers to academics from a local university wishing to run
scientific experiments. This example prescribes a semi-trusted environment, because the
academics are in a trust relationship with the IT administrator. We qualify this environ-
ment as semi-trusted, because both consumers and producers trust each others, but are
required to communicate using untrusted networks, such as the Internet.

Another example, in the context of local communities, could be a chess club, amongst
any other clubs. Given that the club contains a small community of members, in the
range of 100-150 members, this system could be used to host their web application. Such
a web application could contain the statistics about the players, recorded games, event
announcements, and any other desirable features to chess players. Then a subset of the
community, at the very least 10 members, could contribute their household computing
resources to host their web application, and to serve their community without incurring
any extra cost 1. Two or three nodes could host the database, to provide fault-tolerance
in terms of reliability, availability and consistency. Whereas one node could host the web
server, and delegate two other nodes to take over in case of failures, exposing only 3 IP
addresses. These nodes are not required to host a domain, and could simply connect
directly using the IP addresses, but for convenience sake’s lets assume that they register
a domain name to one of these IP addresses. The remaining 3-4 nodes can be used
as worker nodes, to respond to incoming requests from the web server. Again, this is a
semi-trusted environment because the producers and consumers have a pre-existing trust

1Given that their computers are usually turned on, if not then one should factor in the cost of
electricity.

Chapter 7. Discussion 106

relationship, but operates in a public environment. The only cost incurred by this chess
club would be the domain registration, and it is optional.

Consequently, we emphasizes that this computing platform caters to a specific niche
of potential users, but it empowers them to recycle currently available resources and to
re-factor these resources with a new purpose. All of this, while maintaining a focus on
providing an intuitive and rational way to port such applications, using the event-driven
programming model and the Python programming language.

7.2 Problems Encountered

We have encountered many problems while conducting this research effort, and we present
the problems that remains open and require further research.

Peer-to-Peer Networking Primitives and Collaborative Systems
The first problem we have encountered was related to the peer-to-peer networking prim-
itives and the collaborative systems, more precisely how well suited are the current net-
working primitives to be used in very-large scale collaborative systems. Networking prim-
itive in this context relates to overlay networks connecting all the peers in a collaborative
system.

One publication debated this question and the authors of this publication concluded
that there are no peer-to-peer networking primitive, out of the 12 investigated, that
caters to all the requirements of a peer-to-peer collaborative system, or in other words
a peer-to-peer networking primitive that addresses the resource collaboration problem
[BJ13]. We have presented these requirements, in Section 3.1, they encompass the
lifecyle of a contributing resource in a collaborative system, and present an adequate
starting point for the development of such systems. Out of the 12 peer-to-peer networking
primitives investigated, there were 4 unstructured overlay network-based solutions and 8
structured overlay network-based solutions. All of these solutions were mutually exclusive
with respect to their structure and functionalities. The authors are currently working
on a solution that would account for all their requirements and address the resource
collaboration problem, which has yet to be published.

The major difficulty outlined, was the mutually exclusive characteristics of some re-
quirements. Such as the ability to perform deterministic queries and to perform MADQ,
which seems to be completely incompatible because they occur in different networking
primitives exclusively. Similarly for mutable object support and the deterministic query-
ing capabilities of structured primitives. Faced with this problem, we decided to create

Chapter 7. Discussion 107

an architecture focused on extensibility, to be able to supplant the underlying network-
ing primitive at any desirable point in time, whether because a new and more efficient
networking primitive has been devised or simply to port this system to a different envi-
ronment.

Collaborative systems imposes several design constraints, as a consequence of the
environment in which these systems operate, but also because of the collaborative nature
of these systems, which requires trust between the participants. We think that this is
why this problem is difficult, but also why it is interesting. This operating environment
is paradoxical, because it requires the participants to trust other participants to just the
right extent, for it to be still beneficial to offload the workload to the participants.

Consequently, novel peer-to-peer networking primitives are required for this specific
class of distributing systems, if not to fulfill all the requirements [BJ13] but to cater
to this semi-trusted computing environment, emerging out of peer-to-peer collaborative
systems.

Collaborative web hosting
As we already mentioned in Section 4.4.3, the current Internet infrastructure is not
adequate for collaborative web hosting. Furthermore, the authors of [AB14], present an
account of these deficiencies and propose a solution to mitigate them.

They outline the fact that these deficiencies arise from two characteristics inherent
to peer-to-peer systems. First, is the volatility of the resources and the dynamic nature
of the networking infrastructure in peer-to-peer system, whereas the current Internet
infrastructure is stable and somewhat static. The second characteristic emerges for the
constant migration of the data among peers to ensure availability and consistency, mean-
ing that one peer may have some data for some time, and then it goes offline, it no longer
hosts data and it delegates (indirectly) to another peer.

The naming scheme employed by the Internet infrastructure is the first deficiency
presented, it refers to the Domain Naming System (DNS). By definition DNS, operates
by resolving an IP address from a URL, using a map of URLs and IP addresses. This is
not adequate in the dynamic environment of peer-to-peer systems, because there are no
guarantee that the IP address associated with a specific URL corresponds to a live node,
possibly attempting to access this inaccessible resource.

The second deficiency presented relates to searching and indexing resources. It is
traditionally done using a centralized search engine that provides the service to locate any
resource on the web. Whereas, in peer-to-peer systems indexing is (usually) distributed
and done on a voluntary basis.

The last deficiency presented relates to the content availability. The current web

Chapter 7. Discussion 108

infrastructure relies on web servers to be online continuously. Whereas in peer-to-peer
systems, the nodes join and leave the system constantly. It is not easy to provide similar
availability guarantees using peer-to-peer systems and it is even worst in fully decen-
tralized systems. These guarantees are essential for the usability of a collaborative web
hosting infrastructure.

This provides a glimpse into the limitations of the current web infrastructure with
regards to collaborative web hosting, and again for a full and comprehensive account
followed by a candidate solution please refer to [AB14].

Ultimately, if an application needs to be accessible from the web, it must commit to
at least one static IP address for the DNS to include this application as a contactable
resource on the web. This effectively induces a single point of failure into this web-based
resource, namely its IP address, exposing the resource to potential Denial of Service
types of attacks. This showcases the immaturity of the Internet as a platform, and
how initial design decisions still transpires to this day by exposing the limitation of the
design. Although, we must acknowledge that collaborative web hosting is possible, using
technologies such as Dynamic DNS (DDNS), it is not as intuitive and it reduces usability.
DDNS also requires the web server to communicate with a 3rd-party using a client to
update the corresponding DNS entries, and thus it may incur a monthly fee for this
service. As a result it is more sensible when designing a system such as this one, to leave
these details to the application developer’s discretion.

Ethical use of Computational Resources
The last problem we have encountered is a criticism for providing open access to collec-
tions of computational resources.

One of the underlying factor that drove this research effort, was to explore the pos-
sibility for the consumer to emancipate himself from current cloud service providers and
rather, leverage resources from the Internet as a community. We were naively inspired
by this utopic vision of a computing platform that promotes: ecological awareness by
recycling rather than consuming new resources, censorship-resistance by resorting to de-
centralized topologies and community by sharing private resources.

Upon further investigation, and helpful comments from other researchers we were
faced with the reality that this vision was in fact utopic, because of which we reposition
ourselves to preserve our vision but in a more fitting context. We position our system
to operate in a semi-trusted or semi-private environment, which is more realistic and
provides the liberty to enact our vision. By resorting to whitelisting mechanisms we
are able to limit access to the system to only a subset of trusted peers. Again, as
stated in Section 7.1, this results in a semi-trusted environment, and reduces the risk

Chapter 7. Discussion 109

of malicious nodes harnessing the computational resources to commit malicious, even
illegal, actions. One example, applicable in a untrusted environment without whitelisting
mechanisms, is a node that contracts large amount of contributing nodes and rather
than using these resources to deploy legitimate application, this malicious node uses the
computational resources to raise a bot-net army to perform Distributed Denial-of-Service
(DDoS) attacks.

Thus, the question raised by this anecdote gravitates around the capacity for the
ethical use of freely available computational resources in an environment such as the
Internet. This relates to a field known as cyberethics, being highly debated in the early
days of the Internet, some guidelines were devised such as [NWG89] or [Bar92]. The
guidelines states that wasting computational resources, disrupting the functioning of the
Internet, gaining unauthorized access to resources, or violating privacy of the users are
all deemed unethical.

Now, after quarter-century of continuously presenting similar ethical guidelines to the
users, it seems that the state of the open Internet is more unethical than ever. What
gives?

This question is more akin to a philosophical inquiry, and its root cause as well as
its potential solutions digress too much for the scope of this thesis. Nonetheless, the im-
plications and consequences of this question are a real impeding factor when researching
and developing Internet related technologies. For more information on cyberethics, see
[Spi10] or [Tav10].

Chapter 8

Conclusion

This thesis presented a distributed computing platform, similar to the PaaS computing
platform offered by cloud service providers, which is composed of volunteered resources
rather than dedicated resources. We have illustrated how to provide such a platform
without introducing any additional resources, but rather by simply recycling the resources
that are available. As a consequence, the computing platform we have proposed is well
suited for a variety of devices including lower-end computational resources.

8.1 Requirements Fulfilled

In the context of this research effort, we focused our attention on two sets of requirements
simultaneously: (1) The evaluation requirements, see Section 3.1; and (2) The functional
requirements, see Section 1.2. The former set of requirements originates from [BJ13],
and contain the essential phases for a contributing resource in a collaborative system.
Whereas the latter set of requirements, are the functional requirements that we devised
for the intended application of this system.

We consider the five requirements to be fulfilled as follows:

Requirement 1 Was completely fulfilled by devising the Ring abstraction, which
provides the means to connect the participants and to manage the application
deployment. It effectively supports the deployment of multiple applications si-
multaneously.

Requirement 2 Was fulfilled, because the API proposed for the Application
layer does not introduce and/or force any third-party to provide any of the services
it encompasses. Opting for light virtualization, we enforced the self-containment
property, not only to the system-level but also to the application-level.

110

Chapter 8. Conclusion 111

Requirement 3 The security component of the proposed API covers very basic
threat models common to all web-based applications, including access control,
authentication and secure communication channels. Also, by choosing a DHT
as the networking primitive for the Ring abstraction, we obtain a decentralized
peer-to-peer networking topology.

Requirement 4 By design no extra hardware is required, rather it encourages
to recycle the resources available and enables lower-end and legacy resources to
participate. More specifically, we reduced the overhead incurred by traditional
(full) virtualization technologies by using light virtualization technologies, such as
containers.

Requirement 5 Dynamic membership is designed to be supported by this appli-
cation, using the autonomous PID controllers, but still requires to be implemented.
We provide scalability to the applications hosted using this architecture, through
these PID controllers and because this system is built around asynchronous task
queues.

We consider to have addressed the evaluation requirements, if not exhaustively, at least
sufficiently to ensure the proper functioning of this system as a collaborative system. We
demonstrate this claim as follows:

• We provide a way to represent resources based on a set of desirable attributes, and
means to Advertise and Discover these resources using the Ring abstraction.

• We use a two-step best-effort mechanism to Select the most relevant resources
based on a consumer-defined query using a pub/sub messaging pattern. Then, in
the second step we provide means to evaluate the inter-resource relationships of
the tentative selection, effectively addressing the concerns expressed in the Match
phase.

• Using acknowledgments in the Select mechanism, we provide this system with the
ability to Bind the resources to a tentative consumer, thereby mitigating any
potential concurrent bindings of the same resources to two different applications.

• Resources are Used to execute tasks immediately after the initialization process is
completed.

• Release of the resources, is performed autonomously using Proportional-Integral-
Derivative controllers that continuously monitor the workload and performance of
each type of nodes in an application, and they release any superfluous resources.

Chapter 8. Conclusion 112

8.2 Contributions

In this thesis we introduced four contributions which are novel to the best of our knowl-
edge, see Section 1.3.

Fully-Decentralized Collaborative Web Computing Platform
Compared to the Cloud@Home system, which provides a full-fledged volunteer cloud com-
puting infrastructure and a business-model to entice contributions, we proposed to pro-
vide a fully-decentralized web computing platform, focusing on the PaaS service model.
Instead of devising a business model for a completely untrusted environment, we resort
to a whitelisting mechanism operating in a semi-trusted environment.

The Peer-to-Peer Cloud System focuses on a decentralized IaaS volunteer cloud com-
puting infrastructure, whereas our architecture focuses on a decentralized PaaS volunteer
cloud computing infrastructure operating in a semi-trusted environment. Our API con-
tains more features than the API they offered, but doesn’t aim to provide the same
service model.

Our platform is decentralized to the extent that is possible within the current infras-
tructure of the Internet, because it is not possible to associate a URL to a non-static IP
address, or simply impractical using the current Internet infrastructure. Consequently,
every Web-based application built for this system will have at most one single point of
failure, the web server. Thus, unless the application is not providing a point of access
through the web and resorts to a dedicated application communicating directly, this
problem remains open.

The computing platform is flexible enough to cater to a variety of applications, akin
to what current cloud service providers offer in terms of PaaS. We have demonstrated this
by implementing two proofs of concept, and have showed how intuitive it is to refactor
applications for this architecture using the event-driven programming model.

Candidate Minimal API Specification for Computing Platforms and/or
PaaS
The API devised, see Appendix A, is based on an investigation of the three major cloud
service providers: Google, Amazon and Microsoft. It circumscribes the essential services
and features provided in a computing platform and it is minimal, because it provides the
basic building blocks for any web applications. Given that a specific feature is missing,
it is easily extensible and can be incorporated into the API, as long as it is included as
an application-specific dependency in the container configuration file. Thus, this system
provides a computing platform that is minimal and does not impose any superfluous
features, because it is intended to be used with lower-end computing resources.

Chapter 8. Conclusion 113

Using Light Virtualization to Abstract and Isolate Contributors
To the best of our knowledge, we are the first to propose the use of light virtualization,
or containers, as an atomic unit composing the computing platform and also in the
context of PaaS. Since the start of this work, the technological landscape shifted and
now containers are gaining in popularity, especially with the support of major partners
like Microsoft.

Minimally Intrusive System Inducing Small Memory Footprint
Our system is minimally intrusive and intuitive, as shown in the case study of Multi-
Document Text Summarization using a Genetic Algorithm. By resorting to light virtu-
alization rather than full virtualzation, we have reduced the overhead induced by the
virtualization technologies to a minimum, while maintaining the desirable isolation and
abstractive properties of virtualization. However this observation is largely informal1,
and has yet to be precisely quantified, but from our early experimentation we have found
that the memory footprint of the container itself was around 8MB, which supports our
intuition.

8.3 Future Work

Several research issues were identified while investigating the research problems of this
thesis. We have identified five short-term research issues that pertain to the implemen-
tation of this system, and one long-term research issue pertaining to the environment
of the system. We have presented some open problems that we have encountered while
writing this thesis, see Section 7.2, but these problems are not specific to our system.

Short-term Research Issues

1. Implement the T-Man overlay network gossip-based protocol, [JMB09], to construct
the overlay network topologies in the Fellowships, rather than connecting the nodes
directly to each other.

2. Provide dynamic configuration support for nodes, enabling them to modify their
configuration at run-time rather than through the modification of configuration
files.

3. Implement PID controllers to provide dynamic membership capabilities, and test
how well it operates under various workloads. But also research what kind of

1See Section 2.4.2.

Chapter 8. Conclusion 114

parameters are suitable for these autonomic controllers, given that in some cases it
may not be trivial.

4. Investigate more elaborate access control schemes to evaluate how much change is
required to adapt this system to an enterprise environment, for it to operate as an
Enterprise Service Bus.

5. Perform exhaustive performance testing and accurate memory profiling of the ar-
chitecture, in order to identify possible memory leaks and to augment the perfor-
mance of the overall system. Additionally, performing these tests in a distributed
environment rather than locally would provide a realistic performance assessment.

Long-term Research Issues
The primary long-term research issue that rises out of this academic inquiry, is how can
we adapt (if possible) the current system to operate in a fully untrusted environment?
Researching this issue will enlighten us on how to provide a truly public volunteer cloud
computing infrastructure using a decentralized networking primitive. Multiple concerns
arises in a fully untrusted environment, security being the most obvious one but more
precisely how to prevent this system in such an environment to be used for malicious
intents, such as raising a bot-net army? Thus security concerns are supplemented with
ethical concerns in an untrusted environment, and is it possible to mitigate them using
this design?

Appendix A

API Specification

Functions/ Parameters Description
Database/Storage
create(authKey) This function is used to create a database

instance using a specific authentication key.

Returns a new DataProcess instance.

stop() This function is used to stop the database
server.
Returns a boolean indicating the outcome
of the function.

start() This function is used to start the database
server.
Returns a boolean indicating the outcome
of the function.

run(query) This function is used to run a query on the
database, sending it to the server.
Returns the result of the query.

Network/Communication
connect(node,list-of-ips) This function is used to connect the node,

bootstrapping it to the network using the list-
of-ips, which contains a list of contactable
nodes.

Continued on next page

115

Appendix A. API Specification 116

Continued from previous page
Functions/ Parameters Description

Returns a deferred when this function
completes.

set(key, value) This function is used to set a value for a cor-
responding key in the DHT.
Returns a deferred when this function
completes.

get(key) This function returns the valued correspond-
ing to the key passed in parameters, if it ex-
ists in the DHT.
Returns a deferred with the result.

Load Balancing/Scalability
workloadWN Configuration file parameter for the percent-

age of the desired utilization of the Worker
Nodes

workloadDN Configuration file parameter for the percent-
age of the desired utilization of the Data
Nodes

coeffP Configuration file parameter for the coef-
ficient of the P component of the PID
controller.

coeffI Configuration file parameter for the coef-
ficient of the I component of the PID
controller.

Continued on next page

Appendix A. API Specification 117

Continued from previous page
Functions/ Parameters Description
coeffD Configuration file parameter for the coef-

ficient of the D component of the PID
controller.

Security
checkCredentials(user, hashPW) This function takes a username and a hashed

password (SHA-2), and verifies them against
the credentials stored in the database.
Returns a boolean indicating whether the
credentials are verified or not.

Application Deployment/Management
resourceSpecification Configuration file parameters for the resource

specification to be stored in the template. Ex-
ample: cpuUsage, memUsage, cpuCapacity,
memCapacity, hddCapacity, ...

Concluded

Appendix B

Code Samples

Caveat lector: this implementation is still in pre-alpha stage, and some details were left
out in order to achieve a working prototype and to produce two proofs of concepts. It
includes, communicating directly between the two processes of the web server and the
Web Protocol, rather than using HTTP POST requests, because these processes were
residing on the same host.

B.1 Configuration Files

B.1.1 Architecture Configuration File

resource spec i f i ca t ion : cpuUsage , memUsage, cpuCapacity , memCapacity , hddCapacity , . . .
cpuUsage

number of db_nodes
db_nodes 1

NOT IMPLEMENTED − for PID Control lers
workloadWN 90

workloadDN 75

coeffP 75

coeffI 45

coeffD 55

118

Appendix B. Code Samples 119

B.1.2 Docker Configuration File

FROM ubuntu:14.04

MAINTAINER Dany Wilson <dwils098@gmail.com>

RUN apt−get update
RUN apt−get install −qy python−zmq
RUN apt−get install −qy python−pip
RUN apt−get install −qy python−dev
RUN apt−get install −qy python−gevent
RUN apt−get install −qy python−twisted
RUN pip install cherrypy

RUN apt−get update
RUN apt−get install −qy rethinkdb

Rethinkdb process
EXPOSE 28015

Rethinkdb admin console
EXPOSE 8080

Create the /rethinkdb_data dir structure
RUN /usr/bin/rethinkdb create

ENTRYPOINT ["/usr/bin/rethinkdb"]

ADD mtds /scripts/mtds

params : user_IP , DHT_port, appD, known_IP
RUN /scripts/mdts/mdts_core.py 192.168.56.1 5555 True 192.168.56.101

Appendix B. Code Samples 120

B.2 Calculator

B.2.1 Web Server

import cherrypy

class Calculator(object):

@cherrypy.expose

def index(self):

return file(’example/index.html’)

@cherrypy.expose

def add(self, op_1, op_2, ∗∗params):
print ’add’,op_1, op_2

import sys

result = sys.stdin.readline()

return result

@cherrypy.expose

def subtract(self, op_1, op_2, ∗∗params):
print ’sub’,op_1, op_2

import sys

result = sys.stdin.readline()

return result

@cherrypy.expose

def multiply(self, op_1, op_2, ∗∗params):
print ’mul’,op_1, op_2

import sys

result = sys.stdin.readline()

return result

@cherrypy.expose

def divide(self, op_1, op_2,∗∗params):
send the operands to through the pipe (to the webProtocol)
print ’div’,op_1, op_2

Appendix B. Code Samples 121

import sys

wait for the response . . .
result = sys.stdin.readline()

out = "The result is: " + result

return out

star t the web_server f i r s t
cherrypy.log.screen = None

bind to a l l IPv4 inter faces
cherrypy.config.update({’server.socket_host’: ’0.0.0.0’})

cherrypy.tree.mount(Calculator())

cherrypy.engine.start()

cherrypy.engine.block()

Appendix B. Code Samples 122

B.2.2 Web Protocol

from twisted.internet import stdio

from twisted.protocols import basic

#−−−−−−−−−−−−−−−−−−−− Task Functional i t ies −−−−−−−−−−−−−−−−−
def addition_function(task_obj , params):

result = params[0] + params[1]

task_obj.results = result

return result

def subtract_function(task_obj , params):

result = params[0] − params[1]

task_obj.results = result

return result

def multiply_function(task_obj , params):

result = params[0] ∗ params[1]

task_obj.results = result

return result

def division_function(task_obj , params):

result = params[0] / params[1]

task_obj.results = result

return result

#−−−−−−−−−−−−−−−−−−−−− End of Task Functional i t ies −−−−−−−−−

This c lass takes requests in from the webServer + process them into tasks
class WebProtocol(basic.LineReceiver):

from os import linesep as delimiter

def __init__ (self, app_obj):

self.app = app_obj

def connectionMade(self):

Appendix B. Code Samples 123

self.app._netHandle._log.info(’webProtocol −−> connectionMade = SUCCESS!’)

def lineReceived(self, line):

self.app._netHandle._log.debug(’wP −−> ’+line)

result = ""

operator ,op_1, op_2 = line.split()

#retr ieve the current f i l e name and s t r ip extension
import os

module=os.path.basename(__file__).split(’.’, 1)[0]

self.app._netHandle._log.debug(module)

from node_netHandle import Task

new_task = Task("WEB")

new_task.type = Task.Worker

if operator == ’add’:

new_task.create(module, ’addition_function’, [int(op_1), int(op_2)])

if operator == ’sub’:

new_task.create(module,’subtract_function’, [int(op_1), int(op_2)])

if operator == ’mul’:

new_task.create(module,’multiply_function’, [int(op_1), int(op_2)])

if operator == ’div’:

new_task.create(module,’division_function’, [int(op_1), int(op_2)])

self.app.addTask(new_task)

return result

Appendix B. Code Samples 124

B.3 Multi-Document Text Summarization

B.3.1 Web Server

import cherrypy

class MTDS(object):

@cherrypy.expose

def index(self):

if ’count’ not in cherrypy.session:

cherrypy.session[’count’]=0

cherrypy.session[’count’]+=1

to store a value in session
cherrypy.session[’Something’] = ’else...’

return file(’web/index.html’)

def create_tasks(self, args, data_files):

OP_RETRIEVE = ’ret’

OP_STORE = ’store’

OP_DATA = ’data’

count = 0

create the tasks to store the f i l e s in the db
for file_name , data in data_files.iteritems():

import sys, time, base64

#encode i t f i r s t
data_str = base64.b64encode(data)

output = OP_DATA + ’−’+file_name+’−’+data_str+’ \n’
size = len(output)

indicate that a f i l e i s incoming . . .
sys.stdout.write(OP_STORE +

’ ’ +str(cherrypy.session.id) +

Appendix B. Code Samples 125

’ ’ + file_name + ’ ’+ str(size))

sys.stdout.write(’\n’)

sys.stdout.write(output)

count+=1

sys.stdout.write(OP_RETRIEVE +’ ’ +str(cherrypy.session.id) +’ ’ + str(count))

sys.stdout.write(’\n’)

return ’Number of FIlES: ’ + str(count)

@cherrypy.expose

def upload(self,∗∗kwargs):
data_fi le d ic t
data_files={}

data_bytes=""

list_of_files = []

for myFile in kwargs[’myFiles’]:

return_str=""

data=""

while True:

data_chunk = myFile.file.read(8192)

if not data_chunk:

break

size += len(data)

data+=data_chunk

save the f i l e as bytes
saved = open(myFile.filename, ’wb’)

saved.write(data)

saved.close()

load bytes
loaded = open(myFile.filename, ’rb’)

data_bytes = loaded.read()

Appendix B. Code Samples 126

loaded.close()

to the db
data_files[str(myFile.filename)] = data_bytes

with open(’post_’+str(myFile.filename),’wb’) as fh:

fh.write(data_files[str(myFile.filename)])

c a l l task creation function
count = self.create_tasks(kwargs, data_files)

load bytes
import sys

result = sys.stdin.readline()

return result

star t the web_server f i r s t
cherrypy.log.screen = None

bind to a l l IPv4 inter faces
cherrypy.config.update({

’tools.sessions.on’ : True,

’server.socket_host’: ’0.0.0.0’

})

cherrypy.tree.mount(MTDS())

cherrypy.engine.start()

cherrypy.engine.block()

B.3.2 Web Protocol

from twisted.internet import stdio

from twisted.protocols import basic

#−−−−−−−−−−−−−−−−−−−− Task Functional i t ies −−−−−−−−−−−−−−−−−
def addition_function(task_obj , params):

result = params[0] + params[1]

Appendix B. Code Samples 127

task_obj.results = result

return result

def subtract_function(task_obj , params):

result = params[0] − params[1]

task_obj.results = result

return result

def multiply_function(task_obj , params):

result = params[0] ∗ params[1]

task_obj.results = result

return result

def division_function(task_obj , params):

result = params[0] / params[1]

task_obj.results = result

return result

#−−−−−−−−−−−−−−−−−−−−− End of Task Functional i t ies −−−−−−−−−

This c lass takes requests in from the webServer + process them into tasks
class WebProtocol(basic.LineReceiver):

delimiter=’\n’

def __init__ (self, app_obj):

self.app = app_obj

self.buffer = ""

def connectionMade(self):

self.app._netHandle._log.info(’webProtocol −−> connectionMade = SUCCESS!’)

def rawDataReceived(self, data):

self.app._netHandle._log.debug(str(self.exp_len))

self.buffer+=data

Appendix B. Code Samples 128

if len(self.buffer) >= self.exp_len:

buf = self.buffer[:self.exp_len]

rem = self.buffer[self.exp_len:]

operator , filename , data_o = str(buf).split(’−’,2)

from node_netHandle import Task

new_task = Task("DB_STORE")

new_task.type = Task.Data

new_task._job_data = data_o

new_task.create(’data_process’,

’save_file’,

[filename, ’data\binary’,

self.db_name,

[’worker_process’,’retrieveData’]])

create a task to save the f i l e , and as parameters
include any consequent actions . In th i s case we want
to generate a job for re tr iev ing the data :
from module = worker_process . py
function = retrieveData

self.app.addTask(new_task)

self.buffer = ""

self.setLineMode(rem)

return

def lineReceived(self, line):

result = ""

if ’store’ in line:

operator , session_id , filename ,size = line.split()

self.db_name = session_id

self.exp_len = int(size)

change mode to receive f i l e
self.setRawMode()

if ’ret’ in line:

Appendix B. Code Samples 129

operator , session_id , num = line.split()

self.db_name = session_id

from node_netHandle import Task

new_task = Task("DB_RETRIEVE")

new_task.type = Task.Data

new_task._job_data = num

new_task.create(’data_process’,

’result_lookup’,

[self.db_name, num,

[’worker_process’,’retrieveData_postprocessing’]])

self.app.addTask(new_task)

return result

Bibliography

[AAC+11] Rocco Aversa, Marco Avvenuti, Antonio Cuomo, Beniamino Di Martino,
Giuseppe Di Modica, Salvatore Distefano, Antonio Puliafito, Massimiliano
Rak, Orazio Tomarchio, Alessio Vecchio, et al. The cloud@ home project:
towards a new enhanced computing paradigm. In Euro-Par 2010 Parallel
Processing Workshops, pages 555–562. Springer, 2011.

[AB14] Reaz Ahmed and Raouf Boutaba. Collaborative Web Hosting: Challenges
and Research Directions. Springer, 2014.

[ABC+11] Rocco Aversa, Dario Bruneo, Antonio Cuomo, Beniamino Di Martino,
Salvatore Distefano, Antonio Puliafito, Massimiliano Rak, Salvatore Ven-
ticinque, and Umberto Villano. Cloud@ home: Performance management
components. In Euro-Par 2010 Parallel Processing Workshops, pages 579–
586. Springer, 2011.

[ACK+02] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@ home: an experiment in public-resource computing.
Communications of the ACM, 45(11):56–61, 2002.

[AF06] David P Anderson and Gilles Fedak. The computational and storage po-
tential of volunteer computing. In Cluster Computing and the Grid, 2006.
CCGRID 06. Sixth IEEE International Symposium on, volume 1, pages
73–80. IEEE, 2006.

[And03] David P Anderson. Public computing: Reconnecting people to science. In
Conference on Shared Knowledge and the Web, pages 17–19, 2003.

[And04] David P Anderson. Boinc: A system for public-resource computing and
storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on, pages 4–10. IEEE, 2004.

130

Bibliography 131

[APHB14] Maeva Antoine, Laurent Pellegrino, Fabrice Huet, and Françoise Baude.
A generic api for load balancing in structured p2p systems. In Computer
Architecture and High Performance Computing Workshop (SBAC-PADW),
2014 International Symposium on, pages 138–143. IEEE, 2014.

[ASK15] Mohammadfazel Anjomshoa, Mazleena Salleh, and Maryam Pouryazdan-
panah Kermani. A taxonomy and survey of distributed computing systems.
Journal of Applied Sciences, 15(1), 2015.

[Bar92] Ramon C Barquin. In pursuit of a ‘ten commandments’ for computer
ethics. Computer Ethics Institute, 1992.

[Bar01] David Barkai. Peer-to-Peer Computing: technologies for sharing and col-
laborating on the net. Intel Press, 2001.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177,
2003.

[BFH03] Fran Berman, Geoffrey Fox, and Anthony JG Hey. Grid computing: mak-
ing the global infrastructure a reality, volume 2. John Wiley and sons,
2003.

[BG09] Andrew Berns and Sukumar Ghosh. Dissecting self-* properties. In Self-
Adaptive and Self-Organizing Systems, 2009. SASO’09. Third IEEE Inter-
national Conference on, pages 10–19. IEEE, 2009.

[Bir07] Ken Birman. The promise, and limitations, of gossip protocols. ACM
SIGOPS Operating Systems Review, 41(5):8–13, 2007.

[BJ12] HMN Dilum Bandara and Anura P Jayasumana. Evaluation of p2p re-
source discovery architectures using real-life multi-attribute resource and
query characteristics. In Consumer Communications and Networking Con-
ference (CCNC), 2012 IEEE, pages 634–639. IEEE, 2012.

[BJ13] HMN Dilum Bandara and Anura P Jayasumana. Collaborative appli-
cations over peer-to-peer systems–challenges and solutions. Peer-to-Peer
Networking and Applications, 6(3):257–276, 2013.

Bibliography 132

[BMT12] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design and
implementation of a p2p cloud system. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, pages 412–417. ACM, 2012.

[CDP10] Vincenzo D Cunsolo, Salvatore Distefano, and Antonio Puliafito. Cloud@
home on top of reservoir. In Cloud Computing, pages 41–56. Springer,
2010.

[CDPS09a] Vincenzo D Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. Cloud@ home: Bridging the gap between volunteer and cloud com-
puting. In Emerging Intelligent Computing Technology and Applications,
pages 423–432. Springer, 2009.

[CDPS09b] Vincenzo D Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. Volunteer computing and desktop cloud: The cloud@ home
paradigm. In Network Computing and Applications, 2009. NCA 2009.
Eighth IEEE International Symposium on, pages 134–139. IEEE, 2009.

[CDPS10a] Vincenzo D Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. Applying software engineering principles for designing cloud@
home. In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, pages 618–624. IEEE, 2010.

[CDPS10b] Vincenzo D Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. From volunteer to cloud computing: cloud@ home. In Proceedings
of the 7th ACM international conference on Computing frontiers, pages
103–104. ACM, 2010.

[CDPS10c] Vincenzo D Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. Open and interoperable clouds: The cloud@ home way. In Cloud
Computing, pages 93–111. Springer, 2010.

[CDPS10d] Vincenzo D Cunsolo, Salvatore Distefano, Antonio Puliafito, and Marco
Scarpa. Open and interoperable clouds: The cloud@ home way. In Cloud
Computing, pages 93–111. Springer, 2010.

[Chi08] David Chisnall. The definitive guide to the xen hypervisor. Pearson Edu-
cation, 2008.

[Cit12] Citrix. Most american confused by cloud comput-
ing according to national survey, 2012. Taken from

Bibliography 133

https://www.citrix.com/news/announcements/aug-2012/most-americans-
confused-by-cloud-computing-according-to-national.html, Consulted:
June 4th 2015.

[CS99] Peter H Carstensen and Kjeld Schmidt. Computer supported cooperative
work: New challenges to systems design. In In K. Itoh (Ed.), Handbook of
Human Factors. Citeseer, 1999.

[CS14] O’Neil Software Christine Spisto. Cloud computing confusion – the
root cause?, 2014. Taken from https://www.oneilsoft.com/news-
portal/blogs/780-cloud-computing-confusion-the-root-cause, Consulted:
June 4th 2015.

[CW09] Abhishek Chandra and Jon Weissman. Nebulas: Using distributed volun-
tary resources to build clouds. In Proceedings of the 2009 conference on
Hot topics in cloud computing, pages 2–2. USENIX Association, 2009.

[Dar14] Sashank Dara. Multi-user protocols with access control for computational
privacy in public clouds. arXiv preprint arXiv:1406.1823, 2014.

[DCP10] Salvatore Distefano, Vincenzo D Cunsolo, and Antonio Puliafito. A tax-
onomic specification of cloud@ home. In Advanced Intelligent Computing
Theories and Applications. With Aspects of Artificial Intelligence, pages
527–534. Springer, 2010.

[Dev15] Google Developers. Google identity platform. https://developers.
google.com/identity/, 2015. Accessed: 12-05-2015.

[DFP11] Salvatore Distefano, Maria Fazio, and Antonio Puliafito. The cloud@ home
resource management system. In Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on, pages 122–129. IEEE,
2011.

[DKMyC04] Alan Dearle, Graham Kirby, Andrew McCarthy, and Juan Carlos Diaz
y Carballo. A flexible and secure deployment framework for distributed
applications. In Component Deployment, pages 219–233. Springer, 2004.

[DlRB14] Jose De la Rosa and Kent Baxley. Lxc containers in ubuntu server 14.04
lts. http://en.community.dell.com/techcenter/os-applications/
w/wiki/6950.lxc-containers-in-ubuntu-server-14-04-lts, June
2014. Accessed: 30-12-2014.

https://developers.google.com/identity/
https://developers.google.com/identity/
http://en.community.dell.com/techcenter/os-applications/w/wiki/6950.lxc-containers-in-ubuntu-server-14-04-lts
http://en.community.dell.com/techcenter/os-applications/w/wiki/6950.lxc-containers-in-ubuntu-server-14-04-lts

Bibliography 134

[Dol00] Shlomi Dolev. Self-stabilization. MIT press, 2000.

[DP80] IW Draffan and F Poole. Distributed data bases. CUP Archive, 1980.

[DP12] Salvatore Distefano and Antonio Puliafito. Cloud@ home: Toward a vol-
unteer cloud. IT Professional, 14(1):27–31, 2012.

[DPR+11] Salvatore Distefano, Antonio Puliafito, Massimiliano Rak, Salvatore Ven-
ticinque, Umberto Villano, Antonio Cuomo, Giuseppe Di Modica, and
Orazio Tomarchio. Qos management in cloud@ home infrastructures. In
Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
2011 International Conference on, pages 190–197. IEEE, 2011.

[EK07] Pavel Emelyanov and Kir Kolyshkin. Pid namespaces in the 2.6. 24 kernel.
LWN. net, November, 2007.

[ES08] Agoston E Eiben and James E Smith. Introduction to evolutionary com-
puting. Springer Science & Business Media, 2008.

[Fit11] Brad Fitzpatrick. Memcached: a distributed memory object caching sys-
tem. Memcached-a Distributed Memory Object Caching System, 2011.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In ACM SIGOPS Operating Systems Review, volume 37, pages
29–43. ACM, 2003.

[GMCK00] Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz.
Multi-document summarization by sentence extraction. In Proceedings of
the 2000 NAACL-ANLPWorkshop on Automatic summarization-Volume
4, pages 40–48. Association for Computational Linguistics, 2000.

[Gol10] Dieter Gollmann. Computer security. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(5):544–554, 2010.

[GSL14] Ian Gergin, Bradley Simmons, and Marin Litoiu. A decentralized auto-
nomic architecture for performance control in the cloud. In Cloud Engi-
neering (IC2E), 2014 IEEE International Conference on, pages 574–579.
IEEE, 2014.

[GSRU07] Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu Upadhyaya.
Self-healing systems—survey and synthesis. Decision Support Systems,
42(4):2164–2185, 2007.

Bibliography 135

[Hyk14] Solomon Hykes. Dockercon. http://www.dockercon.com/, 2014. Ac-
cessed: 30-12-2014.

[Hyk15] Solomon Hykes. Docker. http://docs.docker.com/, 2015. Accessed:
16-02-2015.

[inc14a] Free Software Foundation inc. Free software foundation – working together
for free software. http://www.fsf.org, 2014. Accessed: 30-12-2014.

[Inc14b] Google Inc. Google app engine documentation. https://cloud.google.
com/appengine/docs, 2014. Accessed: 08-01-2015.

[Inc14c] Microsoft Inc. What is microsoft azure? https://azure.microsoft.
com/en-us/overview/what-is-azure/, 2014. Accessed: 30-12-2014.

[Inc15a] Amazon Web Services Inc. Amazon web services. http://aws.amazon.
com/, 2015. Accessed: 08-01-2015.

[Inc15b] Docker Inc. Docker security, v1.6, 2015. Taken from
http://docs.docker.com/articles/security/, Consulted: June 4th 2015.

[J+99] K Sparck Jones et al. Automatic summarizing: factors and directions.
Advances in automatic text summarization, pages 1–12, 1999.

[JC10] Xing Jin and S-H Gary Chan. Unstructured peer-to-peer network architec-
tures. In Handbook of Peer-to-Peer Networking, pages 117–142. Springer,
2010.

[Jel] Márk Jelasity. Gossip-based protocols for large-scale distributed systems.

[JH12] M Jones and Dick Hardt. The oauth 2.0 authorization framework: Bearer
token usage. Technical report, RFC 6750, October, 2012.

[JK06] Mark Jelasity and A-M Kermarrec. Ordered slicing of very large-scale
overlay networks. In Peer-to-Peer Computing, 2006. P2P 2006. Sixth IEEE
International Conference on, pages 117–124. IEEE, 2006.

[JM14] Forbes Joe MecKendrick. What cloud computing cus-
tomers want: Clarity, simplicity, support, 2014. Taken from
http://www.forbes.com/sites/joemckendrick/2014/07/19/what-cloud-
computing-customers-want-clarity-simplicity-support/, Consulted: June
4th 2015.

http://www.dockercon.com/
http://docs.docker.com/
http://www.fsf.org
https://cloud.google.com/appengine/docs
https://cloud.google.com/appengine/docs
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
http://aws.amazon.com/
http://aws.amazon.com/

Bibliography 136

[JMB05] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based ag-
gregation in large dynamic networks. ACM Transactions on Computer
Systems (TOCS), 23(3):219–252, 2005.

[JMB09] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-
based fast overlay topology construction. Computer networks, 53(13):2321–
2339, 2009.

[JOV05] Hosagrahar V Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton:
A balanced tree structure for peer-to-peer networks. In Proceedings of
the 31st international conference on Very large data bases, pages 661–672.
VLDB Endowment, 2005.

[JVG+07] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermar-
rec, and Maarten Van Steen. Gossip-based peer sampling. ACM Transac-
tions on Computer Systems (TOCS), 25(3):8, 2007.

[KC03] Jeffrey O Kephart and David M Chess. The vision of autonomic comput-
ing. Computer, 36(1):41–50, 2003.

[KC12] Nidhi Jain Kansal and Inderveer Chana. Existing load balancing tech-
niques in cloud computing: a systematic review. Journal of Information
Systems and Communication, 3(1):87–91, 2012.

[KL03] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and
monitoring service level agreements for web services. Journal of Network
and Systems Management, 11(1):57–81, 2003.

[LCP+05] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, Steven Lim,
et al. A survey and comparison of peer-to-peer overlay network schemes.
IEEE Communications Surveys and Tutorials, 7(1-4):72–93, 2005.

[Lef14] Original Author: Glyph Lefkowitz. Twisted matrix labs. https://www.
twistedmatrix.com/trac, 2014. Accessed: 30-12-2014.

[Lew11] Brian Lewis. Separation of responsibilities., 2011. Taken
from http://mythoughtsonit.com/2011/04/infrastructure-as-a-
service-platform-as-a-service-software-as-a-servicetake-a-look-at-the-
management-stack, Consulted: November 19th 2014.

https://www.twistedmatrix.com/trac
https://www.twistedmatrix.com/trac

Bibliography 137

[Lin76] James G Linders. Distributed data bases. Computers & Geosciences,
2(3):293–297, 1976.

[LLC11] Zhen Luo, Zhishu Li, and Biao Cai. A self-organized public-key certificate
system in p2p network. Journal of Networks, 6(10):1437–1443, 2011.

[Los15] Canonical Ltd. and open source. Linux containers. https://
linuxcontainers.org/, 2015. Accessed: 12-05-2015.

[Men11] Paul Menage. Linux kernel documentation/cgroups/cgroups. txt, 2011.

[MF13] Jessica McKellar and Abe Fettig. Twisted network programming essentials.
2013.

[MG11] Peter Mell and Tim Grance. The nist definition of cloud computing. x,
2011.

[MGLPPJ13] Rubén Mondéjar, Pedro García-López, Carles Pairot, and Lluis Pamies-
Juarez. Cloudsnap: A transparent infrastructure for decentralized web
deployment using distributed interception. Future Generation Computer
Systems, 29(1):370–380, 2013.

[Mic06] Brenda M Michelson. Event-driven architecture overview. Patricia Seybold
Group, 2, 2006.

[MKL+02] Dejan S Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim
Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer com-
puting, 2002.

[MM99] Inderjeet Mani and Mark T Maybury. Advances in automatic text sum-
marization, volume 293. MIT Press, 1999.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In Peer-to-Peer Systems, pages
53–65. Springer, 2002.

[Mul14] Brian Muller. Kademlia: A dht in python. http://findingscience.com/
python/kademlia/dht/2014/02/14/kademlia:-a-dht-in-python.
html, 2014. Accessed: 30-12-2014.

https://linuxcontainers.org/
https://linuxcontainers.org/
http://findingscience.com/python/kademlia/dht/2014/02/14/kademlia:-a-dht-in-python.html
http://findingscience.com/python/kademlia/dht/2014/02/14/kademlia:-a-dht-in-python.html
http://findingscience.com/python/kademlia/dht/2014/02/14/kademlia:-a-dht-in-python.html

Bibliography 138

[NO95] Matunda Nyanchama and Sylvia L Osborn. Modeling mandatory access
control in role-based security systems. In DBSec, pages 129–144. Citeseer,
1995.

[NWG89] Internet Activities Board Network Working Group. Rfc 1087: Ethics of
the internet, 1989.

[Olk06] Timo Olkkonen. Generic authentication architecture. In Security and
Privacy in Pervasive Computing, Seminar on Network Security, Espoo,
2006.

[Ope15] Opensource. Rethinkdb: The open-source database for the realtime web.
http://rethinkdb.com/, 2015. Accessed: 12-05-2015.

[ÖV11] M Tamer Özsu and Patrick Valduriez. Principles of distributed database
systems. Springer, 2011.

[PD11] Harald Psaier and Schahram Dustdar. A survey on self-healing systems:
approaches and systems. Computing, 91(1):43–73, 2011.

[PG74] Gerald J Popek and Robert P Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412–421, 1974.

[PMRS14] Mathieu Pasquet, Francisco Maia, Etienne Rivière, and Valerio Schiavoni.
Autonomous multi-dimensional slicing for large-scale distributed systems.
In Distributed Applications and Interoperable Systems, pages 141–155.
Springer, 2014.

[QHH08] Vahed Qazvinian, Leila Sharif Hassanabadi, and Ramin Halavati. Sum-
marising text with a genetic algorithm-based sentence extraction. Inter-
national Journal of Knowledge Management Studies, 2(4):426–444, 2008.

[RCL09] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and
survey of cloud computing systems. In INC, IMS and IDC, 2009. NCM’09.
Fifth International Joint Conference on, pages 44–51. Ieee, 2009.

[RR08] Leonard Richardson and Sam Ruby. RESTful web services. " O’Reilly
Media, Inc.", 2008.

http://rethinkdb.com/

Bibliography 139

[RV11] Etienne Riviere and Spyros Voulgaris. Gossip-based networking for
internet-scale distributed systems. In E-Technologies: Transformation in
a Connected World, pages 253–284. Springer, 2011.

[sal15] inc. salesforce.com. Crm and cloud computing to grow your business: Sales-
force.com canada. http://www.salesforce.com/ca/, 2015. Accessed:
16-02-2015.

[Sar10] Siamak Sarmady. A survey on peer-to-peer and dht. arXiv preprint
arXiv:1006.4708, 2010.

[SMJ00] Rick Sturm, Wayne Morris, and Mary Jander. Foundations of service level
management, volume 13. Sams Indianapolis, IN, 2000.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. ACM SIGCOMM Computer Communication Review,
31(4):149–160, 2001.

[SPEW11] Amir Ali Semnanian, Jeffrey Pham, Burkhard Englert, and Xiaolong Wu.
Virtualization technology and its impact on computer hardware architec-
ture. In Information Technology: New Generations (ITNG), 2011 Eighth
International Conference on, pages 719–724. IEEE, 2011.

[Spi10] Richard Spinello. Cyberethics: Morality and law in cyberspace. Jones &
Bartlett Learning, 2010.

[Tav10] Herman T Tavani. Ethics and technology: Controversies, questions, and
strategies for ethical computing. John Wiley & Sons, 2010.

[Tav12] Djamshid Tavangarian. Virtual computing: The emperor’s new clothes?
In Software Service and Application Engineering, pages 53–70. Springer,
2012.

[Tea14] CherryPy Team. Cherrypy: A minimalist python web framework. http:
//www.cherrypy.org, 2014. Accessed: 30-12-2014.

[UPS11] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A survey of
dht security techniques. ACM Computing Surveys (CSUR), 43(2):8, 2011.

[Wat08] Jon Watson. Virtualbox: bits and bytes masquerading as machines. Linux
Journal, 2008(166):1, 2008.

http://www.salesforce.com/ca/
http://www.cherrypy.org
http://www.cherrypy.org

Bibliography 140

[Wik15] Wikipedia. Seti@home wikipedia article. http://en.wikipedia.org/
wiki/SETI@home, 2015. Accessed: 16-02-2015.

[WR15] Cloud Tech News William Rabis. The confusion around hybrid: Cloud
isn’t for everyone, but everyone can use a bit of cloud, 2015. Taken from
http://www.cloudcomputing-news.net/news/2015/jun/01/confusion-
around-hybrid-cloud-isnt-everyone-everyone-can-use-bit-cloud/, Con-
sulted: June 4th 2015.

[YBDS08] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified
ontology of cloud computing. In Grid Computing Environments Workshop,
2008. GCE’08, pages 1–10. IEEE, 2008.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-
art and research challenges. Journal of internet services and applications,
1(1):7–18, 2010.

http://en.wikipedia.org/wiki/SETI@home
http://en.wikipedia.org/wiki/SETI@home

	Abstract
	Acknowledgements
	Introduction
	Motivations
	Problem Definition
	Contributions
	Main Assumptions
	Outline

	Background
	Collaborative Systems
	SETI@Home
	BOINC: Berkeley Open Infrastructure for Network Computing

	Cloud Computing
	Deployment Models
	Service Models
	Volunteer Cloud Computing

	Peer-to-Peer Computing
	Overview
	Overlay Networks
	Structured Overlay Network
	Unstructured
	Slicing
	Comparison

	Virtualization Technologies
	Overview
	Full Virtualization vs. Light Virtualization
	Containers
	LxC
	Docker

	Related Work
	Evaluation Framework
	Cloud@Home
	Architecture
	Evaluation

	Peer-to-Peer Cloud System
	Architecture
	Evaluation

	Discussion

	Architecture
	Overview
	Network Layer
	The Ring
	The Fellowships

	Virtual Layer
	Application Layer
	Overview
	Databases and Storages
	Communication and Networking
	Load Balancing and Scalability
	Security
	Application Deployment and Management

	Component Interaction
	Discussion
	Collaborative Peer-to-Peer System Framework Implementation
	Research Requirements

	Implementation
	Technology Used
	Constructs
	Task
	ApplicationNode
	The Ring
	The Fellowships
	Conclusions

	Workflows and Protocols
	Initializing a Node
	Fellowship's Protocol
	Web Protocol
	Error-Handling

	Proof of Concept: Calculator
	Overview
	Application Deploying Node
	Contributing Node

	Conclusion

	Case Study: Multi-Document Text Summarization using Genetic Algorithms
	Problem at Hand
	Automatic Summarization
	Genetic Algorithms
	Extensions Proposed for MDTS

	Translation of the Problem for this Architecture
	Implementation Details
	Application Deploying Node
	Data Node
	Worker Node

	Experimentation
	Conclusions

	Discussion
	Positioning of the System
	Problems Encountered

	Conclusion
	Requirements Fulfilled
	Contributions
	Future Work

	Appendices
	API Specification
	Code Samples
	Configuration Files
	Architecture Configuration File
	Docker Configuration File

	Calculator
	Web Server
	Web Protocol

	Multi-Document Text Summarization
	Web Server
	Web Protocol

