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In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is
based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks.
Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the
image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best
FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments
on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of
dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.

1. Introduction

Many cities are shrouded in smog due to waste incineration,
construction dust, and automobile exhaust. Images taken in
smog weather are not clear due to contrast and color sat-
uration, which affects the use of target detection and traffic
monitoring. -erefore, there is an urgent theoretical and
practical need to improve the image quality of foggy days.
With the development of computer technology, image
dehazing technology is widely used in civil and military
fields, such as remote sensing, target detection, and traffic
monitoring. At present, image dehazing algorithms can be
mainly divided into three types. -e first type is an image
enhancement-based defogging algorithm. -is algorithm
does not consider the imaging mechanism of degraded
images and turns the image dehazing problem into a con-
trast-enhanced problem to highlight the details of the image
and enhance the overall contrast of the image. Commonly
used image enhancement-based defogging algorithms are
included in [1–3]. -e second type is an image dehazing
algorithm based on the physical model. -is algorithm
analyzes the causes of foggy image formation, establishes an

imaging model, and then performs inversion and calculation
according to the model to obtain the image before degraded.
-e image dehazing algorithm based on the physical model
is mainly included in [4–6]. In recent years, deep learning
techniques have been widely used in the field of image
processing, such as image classification, object recognition,
and face recognition.-e third type is that the existing image
dehazing algorithm in studies such as [7–9] based on deep
learning mostly estimates the transmittance of foggy images
through neural network model, then estimates the atmo-
spheric light value separately, and finally obtains the fog-free
image according to the atmospheric scattering model.
However, the estimation is not always accurate. In DCP [5],
the estimation of atmospheric illumination is based on prior
knowledge of dark channels. First, the pixel values of the
solved dark channel map are sorted, and the top one-
thousandth of the pixels in the sorted pixels are selected as
candidate points. -ese points are mapped to the response
positions in the original image, then the brightness values of
the corresponding positions in the original image are ob-
tained, and the largest of these candidate values is used as the
atmospheric light value. In DehazeNet [8] and MSCNN [9],
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the transmission map is estimated by a convolutional net-
work model, and the atmospheric light value is estimated
based on the prior knowledge of the dark channel. However,
when the colors of the objects in the image are close to the
atmospheric light, such as when the image contains a large
number of white objects or other light sources, the estimated
atmospheric illumination may be biased, making the image
after defogging overexposed. Moreover, the nonjoint esti-
mation of two critical parameters, transmission matrix and
atmospheric light, may further amplify the error when
applied together. Li et al. proposed an efficient end-to-end
dehazing convolutional neural network (CNN) model,
called all-in-one dehazing network (AOD-Net) [10]. AOD-
Net [10] is designed based on a reformulated atmospheric
scattering model. -e output of the model is a clean image,
rather than the transmittance map. Experiments demon-
strate the superiority of AOD-Net [10] over several state-of-
the-art methods.

With the development of cloud computing and Internet
of -ings technologies, convolutional neural network
models are widely used in various terminals and platforms,
including autonomous driving and augmented reality. -ese
application scenarios require high memory and training
speed of themodel, so the convolution needs to be developed
in a lightweight direction. At present, the classic lightweight
convolution has SqueezeNet [11], ShuffleNet [12], and
MobileNets [13]. SqueezeNet [11] adopts a different method
than the traditional convolution method, and the fire
module has two parts: the squeeze layer and the expand
layer. ShuffleNet [12] arbitrarily scrambles the channels of
the feature maps of each part to form a new feature map to
solve the problem of poor information flow caused by group
convolution. MobileNet [13] uses a convolution method
called depthwise separable convolution instead of the
standard convolution to achieve the purpose of reducing
network weight parameters. MobileNet [13] is a network
model that can be applied to the mobile side.

One of the keys to image defogging in complex scenes is
to obtain global information about foggy images in complex
scenes. -e pyramid pooling module combines the features
of different pyramid scales to fully extract the global in-
formation of the foggy image, making the image after
defogging clearer and more natural. At present, the pyramid
pooling module is mainly included in [14, 15]. He et al.
proposed SPPnet [14], which solves the problem that the
input of the deep convolutional neural network must require
a fixed image size and improve the efficiency of extracting
features. Zhao et al. proposed a pyramid pooling module
(PSP) [15] that combines multiscale pooling features, which
can aggregate context information from different regions to
improve the ability to obtain global information.

-e contributions of this paper are summarized as
follows:

(1) We propose a new end-to-end network model called
FAOD-Net for image dehazing. -is model uses a
lightweight convolution depthwise separable con-
volution instead of the standard convolution in
AOD-Net [10]. Moreover, we analyze the advantages

of using depthwise separable convolution instead of
standard convolution.

(2) In order to aggregate the context information of
different areas of the foggy image, we added a
pyramid pooling module to FAOD-Net.-is module
combines the features of 4 different pyramid scales,
which can improve the ability of the network model
to obtain global information.

(3) We use the classic RESIDE training set [16] to train
FAOD-Net. -en, we test our proposed algorithm
on the synthetic objective testing set (SOTS) and
hybrid subjective testing set (HSTS) [16]. More-
over, we use the full-reference image quality
evaluation indicators PSNR and SSIM to measure
the algorithm’s defogging effect on the synthetic
foggy test set. For the real-world foggy test set, we
use the no-reference image quality assessment
indicators spatial-spectral entropy-based quality
(SSEQ) [17] and blind image integrity notator
using DCT statistics (BLIINDS-II) [18] to measure
the dehazing effect.

2. Background

2.1. Atmospheric Scattering Model. To describe the forma-
tion of a hazy image, the atmospheric scattering model is
first proposed by McCartney [19], which is further devel-
oped by Narasimhan and Nayar [20, 21]. -e atmospheric
scattering model can be formally written as

I(x) � J(x)t(x) + A(1 − t(x)), (1)

where I(x) is the observed intensity, J(x) is the intensity of
light coming from the scene objects and before getting
scattered, t(x) is the scene transmittance denoting the
amount of light that reaches the observer after getting
scattered, and A denotes the global environmental illumi-
nation. Moreover, t(x) is the middle transmission matrix
defined as

t(x) � e
− β(c)d(x)

, (2)

where β is the atmospheric scattering coefficient, and the
uniform concentration of the fog can be approximated as a
constant; c is the wavelength of the reflected light; and d(x)

is the depth of the scene, that is, the distance between the
corresponding object in the scene and the imaging device.

2.2. Deformation Formula of Atmospheric Scattering Model.
From the atmospheric scattering model, the key to re-
storing a fog-free image is to estimate the transmittance of
the fog map and the corresponding atmospheric light
value. Li et al. introduced a new variable K(x) by
deforming the atmospheric scattering model [10], so the
neural network model can directly estimate the joint value
of transmittance and atmospheric light. Formula (1) is
modified as follows:
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J(x) �
1

t(x)
I(x) − A

1
t(x)

+ A, (3)

J(x) � K(x)I(x) − K(x) + b, (4)

K(x) �
(1/t(x))(I(x) − A) +(A − b)

I(x) − 1
. (5)

By jointly estimating the transmittance and the atmo-
spheric light value, it is possible to avoid the problem that the
atmospheric light is estimated to be large due to the in-
fluence of the white area or the sky area.

2.3. Depthwise Separable Convolution. -e MobileNets pa-
per [13] proposed a depthwise separable convolution, which
is a form of decomposed convolution. It solves standard
convolution integrals into depthwise convolution and
pointwise convolution. -is decomposition has the effect of
greatly reducing calculations and model size. Figure 1(a)
shows the standard convolution. -e input of the standard
convolution is a feature map P of H × W × C. Among them,
H is the height of the input feature map, W is the width of
the input feature map, and C is the number of channels of
the input feature map. We use N filters with a convolution
kernel size k × k to perform standard convolution on the
input feature map P and use appropriate stride and padding
to ensure that the output feature map F is of size H × W × N.
Figure 1(b) shows a depthwise convolution, which groups
the same input feature map P according to the number of
channels and then convolves each group of feature maps,
where the convolution kernel size is k × k. -e output is a
depthwise feature map. Figure 1(c) shows the pointwise
convolution. It performsN convolutions with a kernel size of
1 × 1 on the depthwise feature map. -e final output is the
same as the output of the standard convolution.

3. The Proposed Method

-e key to defogging based on the atmospheric scattering
model is to estimate the transmission rate and atmospheric
illumination. However, accurately estimating the trans-
mission rate and atmospheric illumination value is a difficult
task. In the DCP [5], the atmospheric illumination value is
estimated through the dark channel prior knowledge. When
the image contains a large number of white objects or other
light sources, it will cause the estimated atmospheric light
value to be too high, making the image after defogging
overexposed. -is phenomenon was demonstrated in the
experiments in Section 4.3. It can be seen from Section 2 that
it is possible to recover fog-free images by building an end-
to-end model without having to estimate the transmission
rate and atmospheric illuminance values separately. In ad-
dition, image defogging is often used for advanced computer
vision tasks such as foggy target recognition and video
defogging. -erefore, the performance of the defogging
model has higher requirements on the calculations and
model size. To this end, based on the conversion formula of
the atmospheric scattering model, this paper uses the

depthwise separable convolution instead of the standard
convolution and increases the pyramid pooling model to
extract the global information. -e model (FAOD-Net) can
be divided into two parts: the first part is a neural network
model based on depthwise separable convolutions of dif-
ferent scales and pyramid pooling model. -e model can
estimate the joint value K(x) of transmittance and atmo-
spheric light from multiple channels; the second part sub-
stitutes the output of the first part into the atmospheric
scattering model deformation formula to recover corre-
sponding fog-free images. -e architecture of FAOD-Net is
shown in Figure 2.

3.1. FAOD-Net for Estimating K(x). -e task of this section
is to estimate the combined value K(x) of the transmittance
and atmospheric light of the input foggy image. -e model
includes input layer, depthwise separable convolution layers
(DS-Conv) of different scales, excitation layers, and different
combinations of connection layers, where the input layer is a
foggy image I(x), and the depthwise separable convolution
layer DS-Conv1 is divided into a depthwise convolution
(DW-Conv) and a pointwise convolution (PW-Conv).

-e depthwise convolution first divides the input image
I(x) into three groups according to the RGB color channel
and uses a Gaussian filter to convolve each group of channels
separately. -e result after depthwise convolution is Fc

1a:

Fc
1a � W1∗ I

c
+ B1, c ∈ [R,G,B], (6)

where Ic represents a matrix of pixel values representing a
color channel of the input image R, G, and B color spaces
and W1 and B1 represent the weight coefficient matrix and
the deviation matrix of the corresponding convolution
network, respectively.

-e pointwise convolution uses Gaussian filters to si-
multaneously convolve all channels of Fc

1a, where the
number of filters is k and the convolution kernel size is 1∗1.
-e result after pointwise convolution is F1b:

F1b � W2 ∗F1a + B2,

F1a � ∩ Fc
1a􏼈 􏼉, c ∈ [R,G,B],

(7)

where F1a represents a matrix of pixel values after fusion of
all color channels in Fc

1a andW2 and B2 represent the weight
coefficient matrix and the deviation matrix of the corre-
sponding convolution network, respectively.

-e excitation layer uses the modified linear unit ReLU
activation function to perform nonlinear regression on the
output result F1b of the depthwise separable convolutional
layer to obtain F1:

F1 � max 0, F1b( 􏼁. (8)

Similarly, F1 is used as the input of DS-Conv2, and the
output of DS-Conv2 is used as the input of the excitation
layer to obtain F2. Concat1 can be obtained by splicing F1
and F2 by channel dimension. Concat1 is used as the input of
DS-Conv3, and the output result is passed through the
excitation layer to obtain F3. Concat2 can be obtained by
splicing F2 and F3 by channel dimension. Concat2 is used as
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the input of DS-Conv4, and the output result is passed
through the excitation layer to obtain F4. Finally, F1, F2, F3,
and F4 are spliced by channel dimension to get Concat3.
Concat3 is used as the input of DS-Conv5.

-e output result of DS-Conv5 is the input to the
pyramid pooling module (PSP). -e PSP architecture is
shown in Figure 3. In this paper, the context information of
different regions is aggregated through four different scale
pooling layers. -e pooling kernel sizes are 4∗ 4, 8∗ 8,
16∗ 16, and 32∗ 32. In order to guarantee the weight of the
global features, if the pyramid has N levels, then using a 1∗ 1

convolution after each level will reduce the level channel to
the original 1/N. -en, by upsampling, the size before the
pool is obtained and is finally concat together.

Finally, the result of the output of the pyramid pooling
module is convolved, where the convolution kernel size is
3∗ 3 and the number of filters is three. -e result after
convolution is the estimated value of K(x).

3.2. FAOD-Net for Recovering Fog-Free Images J(x).
According to the atmospheric scattering model deformation
equation (4) mentioned in 2.2, the fog-free image can be
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Figure 1: (a) -e process of standard convolution. (b) -e process of depthwise convolution. (c) -e process of pointwise convolution. H,
W, and C are the height, width, and number of channels of the input feature map P, respectively. N is the number of filters, and k is the
convolution kernel size.
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restored by substituting the output result K(x) of FAOD-
Net in 3.1 into equation (4), as shown in Figure 2. Based
on the depthwise separable convolution and pyramid
pooling module, we designed an end-to-end image
dehazing neural network model with the input as foggy
images and the output as clear images. -rough extensive
experiments, the model has satisfactory performance in
the defogging effect.

3.3. Advantages and Innovation of FAOD-Net. -e FAOD-
Net model is based on depthwise separable convolution.-is
convolution divides the standard convolution into a
depthwise convolution and a pointwise convolution, con-
volving each channel of the foggy image. In this way, the
separation of the image channel and the image space region
is realized, and the fog characteristics in the image are better
extracted. Also, using a depthwise separable convolution
instead of a standard convolution can speed up the calcu-
lation. Acceleration calculation is mainly reflected in the
reduction of the parameter quantity. Assume that the
number of input image channels is 3. If the number of
output channels required is 240, there are two imple-
mentations. In the first method, the input image is con-
voluted using a filter with a convolution kernel size of 3∗ 3,
and the number of filters is 240, and the required parameter
amount for training is 3 × 3 × 3 × 240 � 6480. -e second
way uses depthwise separable convolution, divided into
depthwise convolution and pointwise convolution.
-e depthwise convolution does a 3∗ 3 convolution for
each channel of the input image. -e pointwise
convolution convolves the result of the depthwise convo-
lution with a convolution kernel size of 1∗ 1 and filter
number of 240. -e total required parameter amount is
3 × 3 × 3 + 3 × 1 × 1 × 240 � 747. From the comparison of

the required parameter quantities, it can be concluded that
the use of depthwise separable convolution instead of
standard convolution can greatly reduce the amount of
parameters. We test AOD-Net [10] and FAOD-Net on the
Pytorch 0.4.1 framework. We found that the number of
training parameters required for AOD-Net was 1761. After
using depthwise separable convolution instead of standard
convolution, the number of training parameters reduced to
717.

3.4. Training of FAOD-Net. In the FAOD-Net, learning the
mapping relationship between hazy images and corre-
sponding clean images is achieved by minimizing the loss
between the training result Ji(x) and the corresponding
ground truth image J∗i (x). We use mean squared error
(MSE) as the loss function:

L Ji(x), J
∗
i (x)( 􏼁 �

1
n

􏽘

n

i�1
Ji(x) − J

∗
i (x)

����
����
2
, (9)

where n is the number of hazy images in the training set. We
minimize the loss function using the stochastic gradient
descent method with the backpropagation learning rule
[22–24]. By training the FAOD-Net, we can directly get clear
images corresponding to the foggy images.

4. Experiments and Results

In this section, the proposed FAOD-Net is tested with both
qualitative and quantitative analysis. -e full-reference
image quality evaluation indicators PSNR and SSIM and no-
reference image quality evaluation indicators SSEQ and
BLIINDS-II are considered for the quantitative analysis.
Furthermore, we compare it with the state-of-the-art
methods, including boundary constrained context
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Figure 3: -e architecture of PSP. DS-Conv is the depthwise separable convolution layers. k in k∗ k∗N is the size of the convolution
kernel, and N is the number of filters.
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regularization (BCCR) [25], dark-channel prior (DCP) [5],
color attenuation prior (CAP) [6],MSCNN [9], DehazeNet
[8], and AOD-Net [10].

4.1. TrainingData and Experimental Settings. It is difficult to
obtain a blurred image and its corresponding blurred image
in a natural environment. We use the classic RESIDE dataset
[16] to train and verify FAOD-Net. -e RESIDE training set
contains 13,990 synthetic foggy images. In this dataset, the
atmospheric light A of each channel is set between [0.7, 1.0],
and β is randomly selected at [0.6, 1.8]. Among them, the
number of samples used for training is 13,000, and the
number of samples used for verification is 990. -e RESIDE
testset [16] consists of synthetic objective testing set (SOTS),
hybrid subjective testing set (HSTS), and real-world task-
driven test set (RTTS) to support a wide range of
experiments.

We implement our model using Pytorch 0.4.1. De-
tailed configurations and main parameter settings of our
proposed FAOD-Net (as shown in Figure 2) are sum-
marized in Table 1, which includes 5 depthwise separable
convolutional layers, 5 ReLU activations for the back of
the convolutional layer, and 3 concat layers. -e FAOD-
Net is initialized with random weight parameters and
trained using stochastic gradient descent (SDG) back-
propagation algorithm and learning rate of 0.001. -e
weight parameters of FAOD-Net are updated in 10 epochs
on NVIDIA TITAN Xp 12 GB GPU and CUDA version:
10.0.

4.2. Results on Synthetic Objective Testing Set. To verify the
effectiveness of the proposed algorithm, we performed ex-
periments on SOTS synthetic dataset [16] to illustrate the
performance of our method compared to other state-of-the-
art methods. We use the synthesized fog image as the input
of FAOD-Net and compare the output of the ground truth
images. We have tested our method on SOTS indoor and
outdoor datasets [16], and Table 2 shows the results of
comparing algorithm [5, 6, 8–10, 25] based on the no-ref-
erence indicators SSEQ [17] and BLIINDS-II [18]. In order
to be consistent with the full-reference index PSNR and
SSIM, we reverse the result of the no-reference index so that
the larger the result, the better the effect. As can be seen from
Table 2, FAOD-Net and AOD-Net [10] have the best results
of no-reference indicators. -e effect of BCCR [25] is
suboptimal. By zooming in on the details, we can see from
Figure 4 that the effects of FAOD-Net on the desktop and the
background outside the window are more consistent with
human visual perception.

-e above part uses the no-reference image quality
evaluation index to compare our proposed algorithm with
the other state-of-the-art algorithm on the synthetic data set.
In this part, we use the full-reference image quality evalu-
ation index PSNR and SSIM to evaluate the algorithm in the
image. -e results of average PSNR and SSIM are shown in
Table 3. From Table 3, we can see that DehazeNet [8] has the
highest PSNR on the synthesized SOTS test set [16]. FAOD-
Net and AOD-Net [10] are suboptimal. FAOD-Net has a

slightly higher SSIM value than AOD-Net [10] and Deha-
zeNet [8]. From Figure 5, we can see that the traditional DCP
algorithm [5] is constrained by prior knowledge, and when
defogging the sky area, the sky area color of the defogged
image is too bright.

4.3. Results on Real-World Testing Set. In order to verify the
effectiveness of the FAOD-Net proposed in this paper in
the real world, we performed experiments on real-world
foggy images in the HSTS dataset [16]. We compare the
algorithm proposed in this paper with the other state-of-
the-art algorithms [5, 6, 8–10, 25]. Since we cannot obtain
the actual fog-free images corresponding to the real-world
foggy images, we cannot use the full-reference index PSNR
and SSIM to evaluate the dehazing effect. We use the no-
reference indicators SSEQ and BLIINDS-II to compare our
proposed algorithm with the other state-of-the-art algo-
rithms. Table 4 shows the average SSEQ [17] and
BLIINDS-II [18] obtained by defogging on real-world
foggy images in HSTS dataset [16]. Also, we reverse the
result of the no-reference index SSEQ and BLIINDS-II.
From Table 4, we can see that the results obtained by
FAOD-Net of the no-reference image quality evaluation
index are the best and the results obtained by AOD-Net
[10] are close to those of FAOD-Net. Because FAOD-Net
and AOD-Net are end-to-end models, the error between
the foggy image and the corresponding fog-free image is
directly minimized during the model training process. In
addition, the pyramid pooling module added in FAOD-
Net enables the network model to fully extract the global
information, so the fogging effect obtained using FAOD-
Net is better. Figure 6 shows the comparison of the
defogging effect on real-world foggy images in HSTS [16].
-e DCP algorithm [5] estimates the atmospheric illu-
mination value based on the prior knowledge of the dark

Table 1: -e parameter settings of the FAOD-Net model.

Type Input size (C∗H∗W) Kernel size Groups
DS-
Conv1 3∗ 460∗ 620 3∗ 3(DW-Conv) 1

1∗ 1(PW-Conv) —
ReLu 3∗ 460∗ 620 — —
DS-
Conv2 3∗ 460∗ 620 3∗ 3(DW-Conv) 1

1∗ 1(PW-Conv) —
ReLu 6∗ 460∗ 620 — —

Concat1 3∗ 460∗ 620
6∗ 460∗ 620 — —

DS-
Conv3 9∗ 460∗ 620 5∗ 5(DW-Conv) 1

1∗ 1(PW-Conv) —
ReLu 9∗ 460∗ 620 — —

Concat2 6∗ 460∗ 620
9∗ 460∗ 620 — —

DS-
Conv4 15∗ 460∗ 620 7∗ 7(DW-Conv) 1

1∗ 1(PW-Conv) —
ReLu 6∗ 460∗ 620 — —

Concat3 9∗ 460∗ 620
15∗ 460∗ 620 — —

DS-
Conv5 24∗ 460∗ 620 3∗ 3(DW-Conv) 1

1∗ 1(PW-Conv) —
ReLu 3∗ 460∗ 620 — —
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channel. From Figure 6(c), it can be seen that when the
scene color of the object is close to the atmospheric light,
such as when the picture contains a large number of white

objects or other light sources, it may cause the estimated
atmospheric light value to be too high and the image after
defogging to be over exposed.

Table 2: Quantitative results on SOTS in terms of no-reference image quality assessment.

Metrics BCCR [25] DCP [5] DehazeNet [8] AOD-Net [10] MSCNN [9] CAP [6] FAOD-Net
SSEQ 65.78 64.89 65.43 67.62 65.27 64.71 67.71
BLIINDS-II 74.42 74.39 71.68 79.01 74.31 73.43 79.04

(a) (b) (c) (d)

(e) (f ) (g)

Figure 4: Result comparison between state-of-the-art methods and proposed FAOD-Net on indoor synthetic dataset in SOTS. (a) Sample
hazy images from SOTS indoor dataset [16]. (b) DCP [5]. (c) DehazeNet [8]. (d) AOD-Net [10]. (e) MSCNN [9]. (f ) CAP [6]. (g) Proposed
method (FAOD-Net).

Table 3: Quantitative results on SOTS in terms of full-reference image quality assessment.

Metrics BCCR [25] DCP [5] DehazeNet [8] AOD-Net [10] MSCNN [9] CAP [6] FAOD-Net
PSNR (dB) 16.95 16.61 21.23 19.14 17.48 19.12 19.21
SSIM 0.7927 0.8193 0.8495 0.8526 0.8105 0.8374 0.8529
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4.4. Run Time. In order to verify that the depthwise sepa-
rable convolution mentioned in Section 2.3 can speed up the
calculation and reduce the time of image defogging, we

compare the FAOD-Net proposed in this paper with other
advanced defogging algorithms [5, 6, 8–10, 25]. We per-
formed experiments on the SOTS indoor test set [16], and

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 5: Result comparison between state-of-the-art methods and proposed FAOD-Net on outdoor synthetic dataset in SOTS. (a) Sample
hazy images from SOTS outdoor dataset [16]. (b) BCCR [25]. (c) DCP [5]. (d) DehazeNet [8]. (e) AOD-Net [10]. (f ) MSCNN [9]. (g) CAP
[6]. (h) Proposed method (FAOD-Net).
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the input image size was 620 × 460. Table 5 shows the av-
erage time required for each method to process a single
image. As can be seen from Table 5, FAOD-Net has higher
efficiency in defogging a single image. Among them, all
algorithms run onMatlab, except AOD-Net and FAOD-Net,
which are run on Pytorch. Figure 7 shows the loss function

graphs of FAOD-Net and AOD-Net [10]. -e graph shows
the loss function value of 1/2 epoch. During the training
process, we found that the training parameters required to
train the AOD-Net model were 1761. After using depthwise
separable convolution instead of standard convolution, the
required training parameters were only 717.

Table 4: Quantitative results on the real-world images in HSTS in terms of no-reference image quality assessment.

Metrics BCCR [25] DCP [5] DehazeNet [8] AOD-Net [10] MSCNN [9] CAP [6] FAOD-Net
SSEQ 66.57 68.62 68.32 70.03 68.39 67.68 70.08
BLIINDS-II 68.51 69.31 60.33 74.71 62.64 63.58 74.73

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: Dehazing results evaluated on the real-world images in HSTS [16]. (a) Sample hazy images fromHSTS dataset [16]. (b) BCCR [25].
(c) DCP [5]. (d) DehazeNet [8]. (e) AOD-Net [10]. (f ) MSCNN [9]. (g) CAP [6]. (h) Proposed method (FAOD-Net).
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5. Conclusion

In this paper, we propose an image dehazing model based on
lightweight convolution-depthwise separable convolution.
-is model has the advantage of the AOD-Net model and
replaces the standard convolution with depthwise separable
convolution. -erefore, the model can avoid the estimation
of the error caused by the fog image transmission rate and
the atmospheric light value separately and can significantly
reduce the network model training parameters and running
time. We add a pyramid pooling module to the model to
improve the model’s ability to get global information. Ex-
tensive experiments demonstrate that the algorithm pro-
posed in this paper can achieve satisfactory results in both
the quality and efficiency of defogging. Moreover, the
lightweight features of the model make the model widely
applicable to mobile terminals, cloud computing, or deeper
network models.
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-edata supporting the research in this paper come from the
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downloaded from https://sites.google.com/view/reside-
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