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Abstract: Hyperspectral images are becoming a valuable tool much used in agriculture, mineralogy,
and so on. The challenge is to successfully classify the materials founded in the field relevant for
different applications. Due to a large amount of data corresponding to a big number of spectral
bands, the classification programs require a long time to analyze and classify the data. The purpose
is to find a better method for reducing the classification time. We exploit various algorithms on
real hyperspectral data sets to find out which algorithm is more effective. This paper presents
a comparison of unsupervised hyperspectral image classification such as K-means, Hierarchical
clustering, and Parafac decomposition, which allows the performance of the model reduction and
feature extraction. The results showed that the method useful for big data is the classification of data
after Parafac Decomposition.

Keywords: tensor decomposition; parafac decomposition; hyperspectral images; block term
decomposition; k-means; hierarchical clustering

1. Introduction

Hyperspectral images are a challenging area due to unfavorable resolution of images,
high dimensionality, and insufficient ground truth data during training. Hyperspectral systems
acquire images in about a hundred or more continuous spectral bands [see Figure 1]. At different
wavelengths, the materials reflect and absorb differently. If the detection system has sufficient
spectral and spatial resolution, the materials can be identified from their spectral signatures [1].
The unsupervised classification discovers the information on its own and also leaves the number of
classes to be chosen by the user.

Hyperspectral image classification is very complex and difficult to obtain because of image noises,
complex background, various characters [2] or high dimensionality [3]. Each pixel is assigned to
a class, leaving the user to find the meaning for each class. Also, existing classifiers do not always offer
a better classification for all types of data, which is why studying the classification of hyperspectral
images can provide us general information about classification accuracy. Hyperspectral images are
an important tool for identifying materials spectrally unique, as it provides sufficient information for
classifying data from different areas. Furthermore, hyperspectral images could be used to caption the
different phases of the eruptive activity of volcanoes, to obtain a detailed chronology of the lava flow
emplacement and radiative power estimation [4].
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Figure 1. Remote sensing [5].

In Reference [6], unsupervised algorithms (means K and ISODATA) were applied to hyperspectral
images and, although both gave accurate results, K-means had better results. Another approach of
hyperspectral classification is described in Reference [7], where the authors used Maximum Likelihood
(ML), Spectral Angle Mapper (SAM), and Support Vector Machine (SVM), where SVM was more
effective than the others.

Studies such as those in Reference [8] proposed hierarchical SVM which achieved an acceptable
accuracy value [9], which experienced supervised and unsupervised methods of classification,
have concluded that the best result was obtained by the hierarchical tree [10] which presented
an approach by using principal component analysis (PCA), k-Means, and Multi-Class Support Vector
Machine (M-SVM), which achieved accuracy values over 77% confirms that hyperspectral images
classification is a challenging task.

Other approaches such as that in Reference [11], which proposed a compression-based
non-negative tensor canonical polyadic (CP) decomposition to analyze hyperspectral images,
and Reference [12], which proposed algorithms for extraction and classification which is based on
orthogonal or non-negative tensor decomposition and higher-order discriminant analysis, was realized
to gain the full potential of hyperspectral images.

An approach to analyze and process hyperspectral images is Cellular Nonlinear Network (CNN),
which could be mostly used in recognition problems to improve the run-time. The authors of the
paper [13] proved that CNN is an appropriate tool to discover recurrent patterns, to create a link
between circuits, art, and neuroscience. The hyperspectral analysis it is not an easy task due to high
dimensionality, spatial, and spectral resolution of hyperspectral images.

2. Results of Unsupervised Clustering

In this section, we explore the efficacy of the tensor decomposition, k-means, hierarchical
clustering and tensor decomposition classification. Ground truths available for the studied data
sets were provided by direct observation. To obtain the results, we used Python on a machine under
Windows 10 with 8 GB of memory. The data sets used in our study were taken from Grupo de
Inteligencia Computational [14]. The data set of the Danube Delta was acquired from U.S. Geological
Survey [15]. The tensor dimensions of data sets were: 103 × 101 × 204 (Set 1), 401 × 146 × 204 (Set 2),
181 × 111 × 103 (Set 3), 191 × 151 × 105 (Set 4) and 181 × 151 × 53 (Set 5). The geometric resolutions
for our images were 3.7 m for Set 1 and Set 2, 1.3 m for Set 3 and Set 4, and 30 m for Set 5.

We prepared the analysis by building the matricized tensor, which was constructed by reordering
the elements into a matrix. To compare the final results, we chose to classify the training data, and we
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build a matrix that contained only the spectral bands known for which we knew the class in which
belongs. We also classified the entire data set, taking into account the spectral bands whose class we
do not know. Before we applied the classifiers, the data were normalized and the values were between
0 and 1.

2.1. Hierarchical Clustering

The Agglomerative Hierarchical clustering Technique assumes that each data point is an individual
cluster. Similar clusters merge with other clusters iteratively until all similar data points form a single
cluster [16].

The confusion matrix acquired for Set 1, Mi,j where an observation known to be in class i
was predicted in class j [see Table 1]. As we can see, the table demonstrates a good classification
[see Figure 2], except for class 4, which was classified as class 2. Figure 3 shows the output of
classification for Set 2.

Table 1. Confusion Matrix of Set 1 after Hierarchical classification.

1 2 3 4 5 6 7 Total

1 2291 0 0 0 0 29 6 2326
2 0 1772 2 0 0 0 0 1774
3 0 2 362 0 0 0 0 364
4 0 657 25 0 0 0 0 682
5 0 0 0 0 539 0 0 539
6 0 0 0 0 0 98 4 102
7 0 0 0 0 0 24 1258 1282
% 98.49 99.88 99.45 0 100 96.07 98.12

1—broccoli green weeds 2; 2—fallow; 3—fallow rough plow; 4—fallow smooth; 5—stubble; 6—celery;
7—grapes untrained.

Figure 2. Ground Truth (left) and Hierarchical classification for Set 1 (right).

Figure 4 depicts the output of Set 5, which is represented by Danube Delta, Romania, data for
which we do not have ground truth. By visual inspection of the classification results shown in Figure 4,
it can be seen that the classification is quite well defined.
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Figure 3. Ground Truth (left) and Hierarchical classification for Set 2 (right).

Figure 4. Original hyperspectral image (left) and Hierarchical classification for Set 5 (right).

2.2. K-Means Clustering

The K-means algorithm classifies the data by grouping the items into k different clusters.
The results are obtained by using the Euclidean distance [17].

As previously, the confusion matrix is shown Table 2. As we can see, the table demonstrates
a good classification [see Figure 5], except in class 4, which was classified as class 2. Figure 6 shows the
output of classification for Set 2.
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Figure 5. Ground Truth (left) and K-means classification for Set 1 (right).

Table 2. Confusion Matrix of Set 1 after K-means classification.

1 2 3 4 5 6 7 Total

1 2280 0 0 0 0 41 5 2326
2 0 1772 2 0 0 0 0 1774
3 0 2 362 0 0 0 0 364
4 0 656 26 0 0 0 0 682
5 0 1 0 0 538 0 0 539
6 0 0 0 0 0 100 2 102
7 2 16 0 0 0 29 1235 1282
% 98.02 99.88 99.45 0 99.81 98.03 96.33

1—broccoli green weeds 2; 2—fallow; 3—fallow rough plow; 4—fallow smooth; 5—stubble; 6—celery;
7—grapes untrained.

Figure 6. Ground Truth (left) and K-means classification for Set 2 (right).

Figure 7 shows the output of Set 5, which is represented by Danube Delta, Romania, data for
which we do not have ground truth. By visual inspection of the classification results shown in Figure 7,
it can be seen that the classification is quite well defined.



Symmetry 2020, 12, 277 6 of 13

Figure 7. Original hyperspectral image (left) and K-means classification for Set 5 (right).

2.3. Parafac Classification

Parallel Factor Analysis (Parafac) is a method to decompose multi-way data and analyze the data
using non-supervised classification tools. In Figure 8 are the mean of spectral bands for each class for
Danube Delta, Romania (Set 5). The number of Parafac components was 100, the algorithm converged
after 2 iterations, and the explained variation was 98.73.

Figure 8. The mean of Spectral bands after Parafac Decomposition.

Figure 9 shows the estimated abundance maps for each class, blue for low contribution to yellow to
high contribution. Also, we can observe that there are classes which do not distinguish very well and one
of the reasons for this could be the poor resolution of the hyperspectral image. On the fourth row in the
second image, it can be easily seen that the areas are very well delimited by analyzing Figure 7 (left).

The pseudo-code that describes the construction of an abundance map is presented in Algorithm 1.
Figure 9 shows the abundances maps for each class, constructed by using the algorithm described
previously. We used the same algorithm for all the data sets we discussed in this paper. In Section 5,
we discuss the results presented previously.



Symmetry 2020, 12, 277 7 of 13

Figure 9. The abundance map of Danube Delta.
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Algorithm 1: The construction of abundance map
Data: t -tensor; A,B,C - factor matrices after Parafac Decomposition; mc - the chosen class for

construction of abundance map; n - number of parafac decomposition; nc - number of
classes; T - the result of Kmeans classification of C in nc classes.

Result: M - abundance map for a chosen class
1 [d1,d2,d3]=size(t);
2 Af1=zeros(d1,n);Bf1=zeros(d2,n);
3 for i← 1 to length(T) do
4 if T(i)==mc then
5 Af(:,i)=A(:,i);
6 Bf(:,i)=B(:,i);
7 end
8 end
9 M=Af*Bf’;

3. Discussion

The results from three classifications methods are summarized in Tables 3–5. Because we started
with the assumption that the ground truth is unknown, we evaluated the classification using the
following measures—Silhouette Coefficient, and Davies-Bouldin Index. Further, we calculated the accuracy
and confusion matrix by using the ground truth.

Table 3. Results of Hierarchical clustering.

Set Sil. Score 1 DB 2 Exe. 3 Acc. 4 Cl. 5

1 0.701(7) 0.400 0.020 0.894 7
2 0.427(16) 0.731 0.094 0.847 16
3 0.539(11) 0.586 0.012 0.961 6
4 0.802 (6) 0.568 0.027 0.946 6
5 0.260 (7) 1.288 0.058 - -

1 Maximum value of Silhouette scores calculated, and the number of classes used, 2 Davies-Bouldin Index,
3 The execution time of classification expressed in seconds (s), 4 Accuracy (using ground truth), 5 Number of
classes from ground truth.

Tables 3 and 4 contain the evaluation results of classification. The good classification performance
is demonstrated by accuracy values which are higher than 84% for both K-means and Hierarchical
clustering. We can see that the number of classes from ground truth does not match with the number
of classes proposed by the Silhouette score for all data sets. One reason can be the resolution of images
and the quality of ground truth. In the case of Set 5—Danube Delta—because the ground truth is
missing, we do not have the accuracy value and number of classes.

Table 4. Results after K-means classification.

Set Sil. Score 1 DB 2 Exe. 3 Acc. 4 Cl. 5

1 0.700(7) 0.411 1.925 0.889 7
2 0.4462(17) 0.711 19.963 0.847 16
3 0.575(10) 0.520 0.707 0.969 6
4 0.806(6) 0.550 0.877 0.950 6
5 0.309(7) 1.154 3.854 - -

1 Maximum value of Silhouette scores calculated, and the number of classes used, 2 Davies-Bouldin Index,
3 The execution time of classification expressed in seconds (s), 4 Accuracy (using ground truth), 5 Number of
classes from ground truth.
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In Table 5, we have on the line number of sets, and on the column, we have the classes. For each
set, we calculated The Root Mean Squared Error between means of spectral bands for each class from
ground truth and the means of spectral bands for each class from classification result. In Table 5,
we highlighted the pairs with the lowest value of Root Mean Squared Error. Even though we classified
the spectral bands in 7 clusters for this data set, the RMSE associate one class resulted from Parafac
Decomposition with more than one class from the ground truth [see Table 5].

Table 5. Comparison of run time between K-means, Hierarchical clustering and Classification after
using Parafac decomposition and results after Parafac Classification.

Set 1 2 3 4 5

Execution Time
Parafac 1 4.23 12.03 3.63 4.27 3.25

Classification 2 5975 2880 2363 3603 1498
Class. K-means 3 0.030 36.47 0.048 0.069 0.059

Class. Hierarchical 4 2.448 3794 3.954 5.290 3.855
Class Class Distribution

1 6 14 4 5 -
2 5 5 3 2 -
3 6 16 4 1 -
4 4 5 1 2 -
5 7 1 3 2 -
6 6 8 5 3 -
7 4 14 - - -
8 - 1 - - -
9 - 7 - - -

10 - 16 - - -
11 - 5 - - -
12 - 6 - - -
13 - 16 - - -
14 - 9 - - -
15 - 7 - - -
16 - 14 - - -

1 The execution time expressed in seconds (s), 2. The execution time expressed in microseconds (µs),
3 The execution time expressed in seconds (s) using K-means for the entire data set, 4 The execution time
expressed in seconds (s) using Hierarchical clustering for the entire data set.

Also, Table 5 shows the execution time classification of spectral bands after Parafac decomposition,
K-means and Hierarchical clustering. Given that the run time after decomposition is noticeably shorter,
the run time sounds promising concerning big data analysis [see Tables 3 and 4].

4. Methods

Regarding the high dimensionality of hyperspectral images, dimension reduction is an important
step to process the hyperspectral information. Many techniques were tried to improve the performance
of dimension reduction to detect, recognize and classify the materials. Next, we describe the algorithms
addressed in this paper.

4.1. Parafac Decomposition

In practice, hyperspectral images are tensors of three-order [see Figure 10]. Give, a hypespectral tensor
T ∈ RN×M×P, N×M is the number of pixels and M is the spectral signature. A tensor T ∈ RI1×I2×...×IN

is a multidimensional array called Nth order tensor or N-way tensor, where N > 0 [18].
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Figure 10. Hyperspectral image tensor.

CANDECOMP/Parafac Decomposition of a higher-order tensor is decomposition in a minimal
number of rank-1 tensors [see Equation (1)]. For a third order tensor T ∈ RI1×I2×I3 , the Parafac
decomposition is written as [see Figure 11] [12,19]:

R

∑
r=1

ar ◦ br ◦ cr + E ≈ JA, B, C, where A = [a1, a2, ..., aR], B = [b1, b2, ..., bR], C = [c1, c2, ..., cR]K. (1)

In Equation (1), A, B and, C are the loading matrices, R is a positive integer and, the symbol ◦
denotes the outer product of vectors.

Figure 11. The Parafac decomposition of a three order tensor [18].

Spectral unmixing assumes “the decomposition of the measured spectrum of a mixed pixel into
a set of pure spectral signatures (endmembers) and their corresponding abundances (fractional area
coverage of each endmember present in the pixel)” [20]. The mixed pixels contain a combination of
different materials. In Equation (2) is written the linear mixture model for each pixel:

x = Ms + e, (2)

where x ∈ RL×1 is the spectrum of the pixel and L is the number of bands, M ∈ RL×P is a matrix in
which each column corresponds to the spectrum of an endmember, P is the number of endmembers,
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s ∈ RP×1 contains the fractional abundances of the endmembers and, e is additive noise [20].
In Equation (3) is written the mixing model for N pixels:

X = MS + e, (3)

where the matrix X ∈ RL×N contains all pixels from hyperspectral data and S ∈ RP×N contains the
fractional abundances of all pixels on all endmembers [21].

Making a connection between Block Term Decomposition, and linear spectral mixture model
(LSMM), the previous equation can be seen as a problem of matrix factorization. According to LSMM,
it is expected to be the product between a matrix and a vector. The vector contains the endmembers,
and the matrix contains the abundances of the corresponding endmember for every pixel, and also the
spatial position of pixels [21].

The rank-(Lr, Lr, 1) block term decomposition approximates a tensor of order three in a sum of
R terms and, each term is an outer product of rank Lr matrix and, a nonzero vector [see Figure 12].
In Equation (4) is written the rank-(Lr, Lr, 1) BTD of a tensor T [22]:

T ≈
R

∑
r=1

(Ar · BT
r ) ◦ cr =

R

∑
r=1

Er ◦ cr, (4)

where Ar ∈ RI1×Lr , Br ∈ RI2×Lr are Lr ranks, Er is called abundance map representing the product
Ar · BT

r and nonzero cr ∈ RI3 . Spectral unmixing makes possible a decomposition of a hyperspectral
image to obtain the corresponding abundance map [23].

Figure 12. Rank-(Lr, Lr, 1) block term decomposition of a third order tensor [22].

4.2. K-means and Hierarchical Clustering

Hierarchical clustering and K-means are unsupervised classifiers that look for similarities among
data and, both use the same approaches to decide the number of clusters [24].

To evaluate the performance of the classification, we used the Davies-Bouldin Index, whose values
signify the average similarity between clusters. The similarity is a measure that compares the distance
between clusters with the size of the clusters themselves; a value closer to 0 or 0 indicates a better
partition. Also, we used the Silhouette Coefficient, where a higher Silhouette Coefficient score indicates
better-defined clusters [25]. Using the ground truth, we could calculate the contingency matrix and
accuracy value [25].

5. Conclusions

This study has addressed the problem of the classification of hyperspectral images using K-means,
Parafac Decomposition, and Hierarchical clustering. The following discussion implies a comparative
analysis of three different classification methods for hyperspectral images. The run-time is the total
time from when an algorithm starts to its finish [26]. Taking into account this challenge, the execution
time depends on many factors, but the most important is the memory used, the percentage of CPU
utilized by an algorithm and the data set dimensions. Considering these results, Parafac decomposition
is very useful for big data, because it is important to reduce the execution time and to use memory
efficiently. According to the results in Section 3, we can say that for small data, K-means or
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hierarchical classification can be used. For big data, Parafac decomposition can be used because
it reduces the data and becomes easy to interpret; the execution time will be considerably reduced.
Additionally, the abundance maps are very well defined, considering that the fraction of a pixel
class is estimated by an abundance map. In other words, the abundance map could be seen as
ground truth, noting that possible errors of human errors of the class assignment are non-existent.
Regarding K-means and Hierarchical clustering, we can see that it offered very good accuracy
values but, at the same time, we must take into account that, for big data, the execution time will
grow considerably.

By comparing the supervised and unsupervised classification, the supervised classification yielded
better results, but it forces us to have ground truth [27]. However, the results for unsupervised
classification are not so far from supervised classification. The unpleasant results of classification
after Parafac decomposition can be caused by spatial and spectral resolution. Finally, the studied
algorithms have been shown to be effective for our problems, are very useful in applications such as
model reduction, pattern recognition and classification.
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