
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Buzhinsky, Igor; Pakonen, Antti; Vyatkin, Valeriy
Synthesis-Aided Reliability Assurance of Basic Block Models for Model Checking Purposes

Published in:
Proceedings of the 2018 IEEE 27th International Symposium on Industrial Electronics, ISIE 2018

DOI:
10.1109/ISIE.2018.8433793

Published: 10/08/2018

Document Version
Peer reviewed version

Please cite the original version:
Buzhinsky, I., Pakonen, A., & Vyatkin, V. (2018). Synthesis-Aided Reliability Assurance of Basic Block Models
for Model Checking Purposes. In Proceedings of the 2018 IEEE 27th International Symposium on Industrial
Electronics, ISIE 2018 (Vol. 2018-June, pp. 669-674). [8433793] (Proceedings of the IEEE International
Symposium on Industrial Electronics). IEEE. https://doi.org/10.1109/ISIE.2018.8433793

https://doi.org/10.1109/ISIE.2018.8433793
/portal/igor.buzhinskii.html
/portal/valeriy.vyatkin.html
https://research.aalto.fi/en/publications/synthesisaided-reliability-assurance-of-basic-block-models-for-model-checking-purposes(e9f05112-1996-4d26-80a0-c9193c813ae3).html
https://research.aalto.fi/en/publications/synthesisaided-reliability-assurance-of-basic-block-models-for-model-checking-purposes(e9f05112-1996-4d26-80a0-c9193c813ae3).html
https://doi.org/10.1109/ISIE.2018.8433793

This is the accepted version of the original article published by IEEE.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Synthesis-Aided Reliability Assurance of Basic
Block Models for Model Checking Purposes

Igor Buzhinsky1, 2, Antti Pakonen3, Valeriy Vyatkin1, 4
1 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

2 Computer Technology Department, ITMO University, St. Petersburg, Russia
3 VTT Technical Research Centre of Finland Ltd., Espoo, Finland

4 Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden
igor.buzhinskii@aalto.fi, antti.pakonen@vtt.fi, vyatkin@ieee.org

Abstract—In the Finnish nuclear industry, model checking, a
formal verification technique, is used as an additional means of
safety assurance for instrumentation and control (I&C) system
design. Since the code of vendor-specific basic function blocks
used in I&C is commonly closed, these blocks need to be modeled
manually based on available specification. This modeling intro-
duces an additional source of human factor into the verification
process. To increase the reliability of the library of basic blocks
used in nuclear I&C verification, we apply formal synthesis
techniques, which can construct finite-state models of reactive
systems from behavior examples and temporal properties. Since
these techniques have computational limitations and synthesized
models are hard to understand even by an analyst, we do not
use them in the final verification process. Instead, in an iterative
process, behavioral differences between a synthesized model and
a manual model implementation are identified and used to create
a list of features of manual implementations which either violate
the specification or show that the specification is ambiguous.

Index Terms—model checking, formal verification, formal
synthesis, nuclear I&C systems.

I. INTRODUCTION

As safety-critical automation systems need to be proven to
be reliable before they are put in use, traditional verification
approaches such as testing and simulation are not sufficient.
Model checking [1], [2], a formal verification approach, is a
way to exhaustively explore the state space of the model of the
system in order to check whether certain functional require-
ments are satisfied. In particular, since 2008 model checking
has been applied in the Finnish nuclear industry for verifying
instrumentation and control (I&C) system designs [3].

Nowadays, a common activity related to model checking is
manual preparation of formal models of the system’s com-
ponents. This introduction of the human factor into model
checking reduces its reliability. One possible remedy is to
obtain formal models directly from the source code of the
system [4], but this is not possible (1) when the modeled
components describe the plant, not the controller, and (2) when
the source code is closed to the analysts [5]. An alternative
approach is to apply formal synthesis techniques [6]–[11], but
they have computational limitations which often make them
inapplicable in practice, and their output is difficult for a
human to understand.

In this study, we focus on the problem of reliability assur-
ance of basic function block models, a network of which is

the ultimate target for model checking. For many major I&C
system vendors, such blocks are proprietary, non-standard and
closed-source, and thus need to be modeled manually based on
available natural language specifications. On the other hand,
if such specifications are formalized, formal synthesis such
as LTL synthesis [7], [8] becomes possible. By performing
iterated equivalence checks of synthesized and manual im-
plementations, possible issues in the latter can be identified,
which comprise both alternative ways of implementing the
original specification (in the cases of specification ambiguity),
and situations where the original specifications is violated.

We apply this approach on several function block models
taken from the Apros continuous simulator. The problem
of computational complexity of synthesis is overcome by
placing limitations on the input and output parameters of the
synthesized model. The results of our study show that even
with such limitations multiple issues of manual block model
implementations can be revealed.

The rest of the paper is structured as follows. Section II
introduces necessary concepts and used tools. Section III de-
scribes the proposed framework of synthesis-aided basic block
model reliability assurance. In Section IV, this framework is
applied on a number of basic block models. In Section V, it
is compared with model checking. The results are discussed
in Section VI.

II. PRELIMINARIES

A. Model checking

Model checking [1], [2] is a formal method of checking
(usually functional) requirements of various systems by means
of state space exploration. To enable model checking, a formal
model of the system must be prepared in either a graphical
or textual form, depending on the used verifier. For example,
popular model checkers NuSMV [12] and SPIN [13] utilize
textual notations.

For reactive systems, requirements to be checked are most
typically specified in linear temporal logic (LTL) or property
specification language (PSL). These languages utilize the
discrete time semantics. In LTL, which we use in this paper,
temporal operators such as X,F,G allow expressing the
desired behavior on the next time step of system execution,
eventually, or always, respectively. For example, LTL property

G(x→ X y) states that whenever predicate x (which is some
condition over the variables of the system) is satisfied, another
predicate y must be satisfied on the next time step.

B. Nuclear I&C verification

Model checking has been used to verify nuclear power plant
I&C systems in the Republic of Korea [14] and Hungary [15].
In Finland, VTT has verified I&C system designs related to
Olkiluoto 3 new-build, Loviisa 1&2 renewal, and the planned
Hanhikivi 1 nuclear power plants. Since 2008, VTT has
identified over forty design issues, leading to, e.g., design
changes in the Loviisa Reactor Power Control System and
Reactor Trip System [3].

VTT has also developed a graphical tool called
MODCHK [5] for verifying function block diagram based
application logics. Instead of relying on standard programming
languages like IEC 61131-3, MODCHK allows the user to
create vendor-specific basic function block libraries—also
supporting features like signal validity, commonly used in
the nuclear industry [16]. Having such a library, the user
can construct a modular, hierarchical block diagram with
a graphical editor, and generate the necessary input files
for NuSMV. MODCHK then visualizes counterexamples by
animating the modeled block diagram.

MODCHK currently requires the analyst to redraw the
block diagram instead of supporting direct transformation
from different I&C development and modeling tools. One
of such tools is Apros, a dynamic process simulator used—
among other domains—in the nuclear industry [17]. Apros also
provides a set of function blocks for modeling the plant I&C
systems. VTT and the Finnish utility Fortum have a common
project for integrating Apros with MODCHK, allowing direct
model transformation and verification. To that end, basic I&C
blocks of Apros have been modeled with NuSMV.

C. Basic block models

Let I and O be the sets of input and output variables. Each
of these variables can be either Boolean or integer. In the latter
case, we assume that the value set of the variable is bounded.
Informally, a basic block model is an entity which operates
in discrete steps and is able to keep memory between steps.
On each step, it deterministically relates given input values
with corresponding output values. Basic block models can be
specified in various formats, depending on the used model
checking tool, such as NuSMV or SPIN.

As an example, consider the unit delay block with Boolean
input and output variables. This block returns false on the
first step, and the previous input value on each next step.
Below, it is provided in the format of the NuSMV verifier:

MODULE UNIT_DELAY(INPUT)
VAR

last: boolean;
DEFINE

OUTPUT := last;
ASSIGN

init(last) := FALSE;
next(last) := INPUT;

Later, we will consider automatic synthesis of basic block
models. Synthesis tools commonly assume that they are
represented as finite-state machines. By v(I) and v(O) we
denote the sets of all possible value combinations of input
and output variables. Then, a finite-state machine (FSM) is
a tuple (S, s0, v(I), v(O), δ, λ), where S is a finite set of
states, s0 ∈ S is the initial state, v(I) and v(O) are defined
above, δ : S × v(I) → S is the transition function and
λ : S × v(I) → v(O) is the output function. On each step,
the FSM accepts input values, changes its state according to δ
and produces corresponding output values given by λ. Fig. 1
shows the unit delay block model as an FSM.

INPUT / ¬OUTPUT

¬last last

¬INPUT / OUTPUT

INPUT / OUTPUT¬INPUT / ¬OUTPUT

Fig. 1. Unit delay basic block model represented as a state diagram of
an FSM. false and true values of Boolean variables are indicated by the
presence or absence of the negation operator “¬”

D. Controller model synthesis

Two common types of input data are used for formal
synthesis: behavior traces and LTL properties. A behavior
trace is a finite sequence e1, ..., ek, where each ei, 1 ≤ i ≤ k
is a pair ei = (ιi, ωi) of input ιi ∈ v(I) and output ωi ∈ v(O)
values. If a behavior trace is included into the input data, it
requires the synthesized model to produce ω1, ..., ωk when it
is started from s0 and fed with ι1, ..., ιk. For example, the
following trace is a partial specification for the unit delay block
(Fig. 1): (true, false), (false, true), (false, false).

Next, LTL properties are formal requirements which relate
the states of the model in different time instants. While
in model checking they are used as specifications to be
checked, in synthesis they postulate the desired behavior:
assuming that input values are freely chosen on each step,
the synthesized FSM needs to produce output values such that
all specified LTL properties are satisfied. For example, the
following LTL property is necessary and sufficient to specify
the input-output behavior of the unit delay block (Fig. 1):
¬OUTPUT ∧G(INPUT↔ X OUTPUT).

In the problem of LTL synthesis, input data is limited to
a set of LTL properties. The works [6]–[8] are among the
ones which propose solutions for this problem along with
the tools which implement them. Then, note that operator
X allows representing behavior traces in LTL, but for the
purpose of computational efficiency it is possible to consider
them separately [9]. Finally, there are approaches, such as [10],
which treat behavior traces as the only kind of input data.

III. PROPOSED FRAMEWORK

The proposed framework of synthesis-aided basic block
reliability assurance is based on iterating the following actions:
(1) preparation of formal specification, (2) formal synthesis
of basic block models which comply with this specification,
and (3) equivalence checking of the behaviors of synthesized
models with manually prepared models. All these actions need
to be performed by an analyst who is familiar with LTL.
The workflow of the framework is outlined in Alg. 1 and is
explained below.

A. Input data

The following entities are used as the input data:
1) S, the textual specification of the basic block. Ideally, it

is thorough and unambiguous, although these properties
are not always achieved in reality.

2) M , the manual implementation of the basic block model
in a formal language such as NuSMV. M has an
interface (I,O) composed of input and output variables,
which we assume to be correct, i.e. automatically syn-
thesized models will have the same interface.

B. Output data

The output data of the framework is the list of issues,
which is represented as a non-formalized text document. Each
issue is a particular feature of M which either violates S or
corresponds to a part of S which appears ambiguous. Each
issue originates from a difference of behavior between M
and a synthesized model. Its description is composed of an
example showing the difference between these behaviors, the
descriptions of a particular aspect of M ’s behavior which
raises concern, and the condition leading to this behavior.

C. Intermediate data

During the workflow of the framework, the following addi-
tional entities are maintained:

1) L, the formalized version of S. L is composed of the
interface (I,O, r) of the basic block to be synthesized,
and a set of LTL properties F . The interface is the same
as the one of M with the following difference: to enable
formal synthesis, integer variables need to be annotated
with their ranges, which are specified in the mapping
r : I ∪ O → Z2. Initially, r places strict constraints
on I and O, and then these constraints are weakened
gradually. The rationale behind this approach is to
allow formal synthesis computationally and simplify the
manual analysis of its outcome: rather than dealing with
multiple counterexamples related to multiple issues, the
analyst will work only with the ones possible with the
current r. Next, LTL properties within F are specified
over the variables from I and O. Finally, behavior traces
may be also included into L if they can be prepared
based on S. Although we do not consider behavior traces
further, their use will not alter the proposed framework.

2) f≡, the LTL formula which checks behavioral equiva-
lence of M and synthesized models {Mj}. Initially, f≡

is set to G
(∧|O|

i=1 (oi (Mj) = oi (M))
)

, where oi(Mj)

and oi(M) are the output variables of Mj and M ,
respectively.

D. Workflow

Initially, the analyst formalizes S into L (line 1). This
initial version of the LTL specification will be refined later.
After that, the iterative procedure (lines 2–19) starts. On each
iteration, the analyst first attempts to synthesize the models
which comply with L (line 3). Since multiple synthesis tools
are known [6]–[9], different tools can be used to obtain
different models. In this paper, we use the following tools:
Unbeast (https://www.react.uni-saarland.de/tools/unbeast),
G4LTL-ST (https://sourceforge.net/projects/g4ltl), BoSy
(https://github.com/reactive-systems/bosy), EFSM-Tools
(https://github.com/ulyantsev/EFSM-tools). We created
a wrapper tool (https://github.com/igor-buzhinsky/
synthesis-aided-basic-block-assurance) which is able to
run each of them assuming that the LTL specification is
represented in a unified format and to output the produced
state machine in NuSMV.

Each tool is run with a time limit. If such a time limit
is violated, this means either that the current version of L
is too complex for the tool, or that L is unrealizable, i.e.
the synthesis problem has no solution. Distinguishing these
cases can be done by running the tool in a mode which
proves unrealizability (if the tool supports such a mode) or
by disabling/changing some of the formulas in L.

If L is unrealizable (line 4), the analyst must understand
the causes of unrealizability and correct L before running
synthesis again (lines 5–7). Alternatively, when all the tools
time out (line 8), the iterative process stops (line 9). However,
if the analyst believes that some issues are not yet discovered,
the analyst may instead decide to increase the time limit.

Otherwise, the tools will produce FSMs {Mj} which com-
ply with L (the number of these models equals to the number
of tools which terminated within the time limit). In this case,
each of {Mj} is compared with M by combining them into
a NuSMV model where Mj and M execute independently
and input values are chosen freely, and then by checking
f≡ (line 11). The model checking algorithm can be chosen
freely among the available ones, although we recommend
using bounded model checking [18] as the one capable of
producing minimum counterexamples, which are easier for
manual analysis.

If all model checker executions report that f≡ is satisfied
(line 12), this means that no differences between input-output
behaviors of {Mj} and M were found. Hence, no issues can
be discovered. Still, more issues can be potentially discovered
with higher boundaries on input and output variables. For this
reason, L is refined (line 13) and the new iteration of the
framework starts.

Otherwise, a number of counterexamples are returned by
the model checker. These counterexamples are examined by
the analyst, who needs to understand their causes (line 15).
As a means of simplifying counterexample analysis, we

use the counterexample visualization tool (https://github.com/
igor-buzhinsky/nusmv counterexample visualizer) developed
by the authors based on the work [19]. Assuming that the
synthesis tools and the model checker work correctly, the
following situations are possible for each counterexample:

1) Mj shows behavior which violates the analyst’s under-
standing of S. This means that the analyst has made a
mistake while preparing L and this mistake needs to be
fixed (line 17).

2) The behavior of Mj seems justified given S, but the
behavior of M does not. In this case either a new issue
is added to the list of issues (line 16), or an instance
of an earlier created issue is recognized (this issue is
potentially generalized to include new input conditions).
This issue indicates the violation of S by M .

3) The behaviors of Mj and M are different, but the analyst
cannot conclude that either of them is incorrect. The
corresponding issue is created or updated (line 16). This
issue indicates the ambiguity of S.

In the last two cases, two solutions are possible regarding
exclusion of the current issue from consideration (if multiple
issues have been identified on the current iteration, then only
one issue is excluded before starting a new iteration):

1) Update L to match the discovered aspect of M ’s behav-
ior.

2) Modify f≡ to exclude situations causing the issue.
Such modifications can, for example, include omitting
checks of equality of particular output values, treating
certain different output values as equivalent, or adding
a condition on possible input/output value sequences
which weakens the equality check (if this condition is
represented by temporal formula c, then f≡ is changed
to c→ f≡).

Since solution (2) can potentially hide issues different from
the current one, solution (1) is preferred. However, if the logic
of M is too laborious to represent in L, solution (2) may be
a reasonable alternative.

IV. CASE STUDY

Although the ideal scenario of showing the applicability
of the proposed framework would have been to use vendor-
specific data, by now the authors faced difficulty with getting
required permissions from the vendors.

On the other hand, MODCHK has a library of function
block models (written in NuSMV) which correspond to the
basic blocks of Apros, a process simulator which is used
to model nuclear power plant I&C. For these basic blocks,
manuals are available in Apros which were used as specifica-
tions while preparing the models. These manuals, although
they are not as precise as industrial specifications, can be
formalized in LTL. Moreover, in the Apros case, the original
implementation of function blocks are available as Fortran
code, which enables additional analysis which is impossible
for closed-source blocks. Thus, we decided to use several
Apros blocks in the case study.

Algorithm 1: Workflow of the synthesis-aided model
reliability assurance framework
Data: textual specification S for the basic block, its

manual implementation M
Result: list of issues in M and S

1 create L, the initial version of the formal specification,
based on S;

2 while true do
3 attempt to synthesize block models M1, ...,Mk using

L as specification with available LTL synthesis
tools;

4 if L is unrealizable then
5 understand the causes of unrealizability;
6 correct L;
7 continue;
8 else if all synthesis tools timed out then
9 break;

10 end
11 check equivalence of M with each of {Mj} using

model checking with f≡;
12 if all equivalence checks passed then
13 update L to support higher parameter boundaries;
14 else
15 understand the causes of counterexamples;
16 potentially discover as issue in M and/or S;
17 correct L or f≡ to exclude such counterexamples;
18 end
19 end

A. Chosen basic block models

Among available Apros blocks, we focused on the ones
whose behavior is time-dependent (unlike, e.g., the one of
blocks implementing logical operations) since such behavior is
much more error-prone according to the industrial experience
of VTT. Four basic blocks were used in our study:

1) Flip-flop is a block capable of storing a single bit of
memory. This bit can be set to true or false by set

and reset signals respectively. This is the only used
basic block whose variables are limited to Boolean ones.

2) Binary delay applies a delay to its binary input signal.
However, the behavior of the block is not equivalent to
shifting the signal in time, but instead the pulses of the
input signal whose duration is less than the delay are
ignored. The delay can not only be constant, but also
can be specified with an additional continuous (integer
in the case of formal models) signal.

3) Pulse generates its output signal with pulses which hap-
pen during rising edges of the input signal. Additional
input signals define the behavior (with four distinct
modes) and the length of pulses.

4) Timer is a block which produces continuous (integer
in the case of formal models) output signals: the one
linearly increasing over time since the start of the timer,
and the one linearly decreasing and reaching zero when

the maximum specified time is reached. An additional
Boolean output signal indicates whether the timer has
elapsed. The timer can be reset or temporarily stopped
by input Boolean signals.

These blocks are visible in the left part of Table I, where the
numbers of their input and output variables are also provided.

B. Analysis

The framework was applied to each of the basic blocks
mentioned in Section IV-A. The time limit of synthesis tools
was set to five minutes, and their executions were performed
on the Intel Core i7-4510U CPU with the clock rate of 2GHz.

For flip-flop, the process terminated in around one person-
hour, and changes in L were limited to fixing the errors done
by the analyst. Once a realizable version of L was prepared,
the behavior of {Mj}4j=1 matched the behavior of M , and
hence no issues were identified. Since this block does not have
integer variables, line 13 of Alg. 1 was inapplicable.

During the analysis of binary delay, three issues were
identified, all of which were connected with the imprecision of
the manual. First, the manual did not specify the initial state.
Second, the manual did not specify the effect of changing
the delay value while the delay is being processed. Third, the
manual was ambiguous regarding whether input pulses with
length strictly equal to the delay value need to be visible in
the output. The workflow involved 11 major updates of L
(related to its generalization for larger delays and mimicking
the behavior of M) and took around 8 person-hours.

For pulse and timer blocks, the process involved 13 and 11
major updates of L respectively, and around 8 person-hours
were spent on each of these blocks. The analysis revealed
multiple issues of manual implementations. For this reason,
the second versions of these blocks were prepared based on the
Fortran code of Apros blocks, and the analysis was repeated.
Since the repeated analysis largely reused previously prepared
L and f≡, it required much less time.

The majority of identified issues were related to the follow-
ing implementation aspects:

1) initial memory (such as initial values of previous input
and output signals);

2) immediate vs. one-step-delayed reactions to input signal
changes;

3) behavior during runtime changes of input variables
whose runtime changes are unlikely and thus were not
accounted for during model development, e.g. block
modes and delays;

4) handling of clocks.
Table I summarizes the identified issues. While classifying

issues into the ones involving errors in manual NuSMV
modeling (12 issues) and the ones involving specification
ambiguity (8 issues), we assumed that the manuals are the
ground truth. This assumption is the only possible option in
the situation of closed-source blocks. In our case, however,
original implementations were available, although they were
not used to prepare the manual implementations. Using this

additional knowledge, we found that 3 of 12 issues classified
as specification violations were in fact related to incorrect
descriptions of the actual implementations in the manuals.

Another consequence of the availability of the original basic
block code is the possibility to prepare versions of block
models based on this code and not the manuals. As mentioned
above, we applied this approach to pulse and timer block
models since the numbers of implementation issues in them
were high. As visible from the table, the compliance of such
versions with the manuals was much higher. Yet, had these
models been used as initial targets of the framework, some of
specification ambiguity issues would have still been revealed.

V. COMPARISON WITH MODEL CHECKING

An alternative, more traditional quality assurance approach
is model checking. The models used in the case study were
already model-checked by their developer. A similar exami-
nation by a different analyst might have revealed some of the
issues mentioned in Section IV-B. Still, while being a much
simpler and faster approach, model checking of manually
developed models has limitations:

1) constructive examples of alternative behaviors are un-
available to the analyst, hence understanding issues
becomes more difficult;

2) the formal specification used in model checking may
be unrealizable, in which case discovered issues may
mention impossible behavior as desired or alternative;

3) the same specification may be incomplete, in which case
some ambiguity issues can be missed (the same limita-
tion of the synthesis-based approach is compensated by
exploring different synthesized models);

4) some temporal formulas used in model checking may
be incorrect and result into true instead of false, in
which case some issues can be missed;

5) the analyst is not forced to consider different formal-
izations of the textual specification, which reduces the
probability of discovering some issues.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a way to improve the
nuclear I&C formal verification methodology [5] wherein the
verified model is represented as a network of basic block
models, and each of such models is prepared manually based
on natural language specification due to the source code
being closed for the analysts. The suggested solution involves
iterated application of formal synthesis approaches to explore
behavioral differences between the manual and synthesized
basic block implementations.

Subtle ambiguity in the natural language block specifica-
tions is not an issue limited to the Apros block manuals that we
used in our research. In the practical industry projects carried
out by VTT, it has at times been necessary to ask for clarifica-
tion from the vendor. In particular, the specifications for time-
and/or signal validity dependent processing do not necessarily
describe—in explicit terms, or with sufficient accuracy—the
intended response in unlikely or unintuitive scenarios.

TABLE I
APROS BASIC BLOCK MODELS AND ISSUES IDENTIFIED IN THEM

Basic block |I| |O| Total issues Issues related to
specification ambiguity

Issues related to specification violation by
the initial model the updated model

Flip-flop 4 2 0 0 0 N/A
Binary delay 3 1 3 3 0 N/A
Pulse 3 2 7 2 5 0
Timer 5 3 10 3 6 1
All 20 8 11 1

Then, timing diagrams are a user-friendly way to describe
time-dependent blocks’ behavior, but it is challenging to draw
diagrams that include every possible combination of input
sequences and block parameters. They were not used in our
study. Yet, if they are present, they can be easily represented
as behavior traces or LTL properties of the form G(fi → fo),
where fi and fo are predicates over input and output variables
(possibly capturing several behavior steps).

As a by-product of the study, we have shown a practical
application of formal synthesis techniques, which are currently
not sufficiently developed to handle large industrial problem
instances. Namely, if a problem of model development cannot
be solved by formal synthesis due to the presence of integer
parameters, synthesis can still be utilized for reliability as-
surance of corresponding manually prepared models if these
integer parameters are made bounded. With such bounds,
in our study, G4LTL-ST [6] and EFSM-Tools [9] were the
tools which performed adequately when the number of LTL
properties in the input specification L was high.

Currently, the automation of the framework is only partial.
The following steps are automated: running multiple LTL
synthesis tools based on LTL specifications written in a
unified format, conversion of synthesized models from tool-
specific formats to NuSMV, visualization of counterexamples.
However, the overall workflow shown in Alg. 1 is not tool-
supported, which makes it laborious when multiple iterations
are needed. Such a tool support may be a direction of future
work. On the other hand, the workflow would be simplified
if some of the issues are known beforehand—specification
issues can be revealed already at the stage of manual model
development.

Furthermore, the framework should be applied on vendor-
specific function blocks, as this would correspond to its
actual domain of application in nuclear I&C verification. In
particular, signal validity processing is an important aspect of
systems used in industry (e.g. by Areva and Rolls-Royce).

ACKNOWLEDGMENT

This work has been funded by the Finnish Research Pro-
gramme on Nuclear Power Plant Safety 2015–2018 (SAFIR
2018), and by the Ministry of Education and Science of the
Russian Federation, project RFMEFI58716X0032.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] A. Pakonen, T. Tahvonen, M. Hartikainen, and M. Pihlanko, “Practical
applications of model checking in the Finnish nuclear industry,” in
10th International Topical Meeting on Nuclear Plant Instrumentation,
Control and Human Machine Interface Technologies (NPIC & HMIT
2017). American Nuclear Society, 2017, pp. 1342–1352.

[4] D. Darvas, I. Majzik, and E. B. Viñuela, “PLC program translation for
verification purposes,” Periodica Polytechnica. Electrical Engineering
and Computer Science, vol. 61, no. 2, pp. 151–165, 2017.

[5] A. Pakonen, T. Mätäsniemi, J. Lahtinen, and T. Karhela, “A toolset
for model checking of PLC software,” in 18th IEEE Conference on
Emerging Technologies & Factory Automation (ETFA 2013). IEEE,
2013, pp. 1–6.

[6] C.-H. Cheng, C.-H. Huang, H. Ruess, and S. Stattelmann, “G4LTL-ST:
Automatic generation of PLC programs,” in International Conference
on Computer Aided Verification. Springer, 2014, pp. 541–549.

[7] R. Ehlers, “Unbeast: Symbolic bounded synthesis,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2011, pp. 272–275.

[8] P. Faymonville, B. Finkbeiner, and L. Tentrup, “BoSy: An experimenta-
tion framework for bounded synthesis,” in International Conference on
Computer Aided Verification. Springer, 2017, pp. 325–332.

[9] V. Ulyantsev, I. Buzhinsky, and A. Shalyto, “Exact finite-state machine
identification from scenarios and temporal properties,” International
Journal on Software Tools for Technology Transfer, vol. 20, no. 1, pp.
35–55, 2018.

[10] G. Giantamidis and S. Tripakis, “Learning Moore machines from input-
output traces,” in Formal Methods: 21st International Symposium (FM
2016). Springer, 2016, pp. 291–309.

[11] I. Buzhinsky and V. Vyatkin, “Automatic inference of finite-state plant
models from traces and temporal properties,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 4, pp. 1521–1530, Aug 2017.

[12] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[13] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[14] J. Yoo, S. Cha, and E. Jee, “Verification of PLC programs written in
FBD with VIS,” Nuclear Engineering and Technology, vol. 41, pp. 79–
90, 2009.

[15] E. Németh and T. Bartha, “Formal verification of safety functions by
reinterpretation of functional block based specifications,” in Formal
Methods for Industrial Critical Systems (FMICS 2008). LNCS 5596.
Springer Berlin Heidelberg, 2009, pp. 199–214.

[16] A. Pakonen and K. Björkman, “Model checking as a protective method
against spurious actuation of industrial control systems,” in 27th Eu-
ropean Safety and Reliability Conference (ESREL 2017). Taylor &
Francis Group, London, UK, 2017, pp. 3189–3196.

[17] J. Näveri, T. Tahvonen, and P. Hakasaari, “Testing and utilization
of Loviisa full scope Apros model in engineering and development
simulator,” in International Youth Nuclear Congress (IYNC 2010), 2010.

[18] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[19] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler, “Explaining
counterexamples using causality,” Formal Methods in System Design,
vol. 40, no. 1, pp. 20–40, 2012.

	IEEE_set_phrase_2018
	article_5
	main-part (2)

