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Automatic emotion recognition is the process of identifying human emotion from signals

such as facial expression, speech, and text. Collecting and labeling such signals is

often tedious and many times requires expert knowledge. An effective way to address

challenges related to the scarcity of data and lack of human labels, is transfer learning.

In this manuscript, we will describe fundamental concepts in the field of transfer learning

and review work which has successfully applied transfer learning for automatic emotion

recognition. Wewill finally discuss promising future research directions of transfer learning

for improving the generalizability of automatic emotion recognition systems.
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1. INTRODUCTION

Emotion plays an important role in human-human or human-computer interaction. Emotionally-
aware systems enable the better understanding of human behavior and facilitate uninterrupted
and long-term interaction between humans and computers (Beale and Peter, 2008). The recent
development of laboratory and real-world sensing systems allows us to fully capture multimodal
signal information related to human emotion. This has resulted in a large amount of publicly
available datasets with high variability in terms of elicitation methods, speaker demographics,
spoken language, and recording conditions. Despite the high availability of such datasets, the
amount of data included in each dataset is limited and the emotion-related labels are scarce,
therefore prohibiting the reliable training and generalizability of emotion recognition systems. In
order to address this challenge, recent studies have proposed transfer learning methods to provide
reliable emotion recognition performance, even in unseen contexts, individuals, and conditions
(Abdelwahab and Busso, 2018; Lan et al., 2018; Latif et al., 2018; Gideon et al., 2019).

Emerging transfer learning methods can leverage the knowledge from one emotion-related
domain to another. The main premise behind such techniques is that people may share similar
characteristics when expressing a given emotion. For example, anger may result in increased speech
loudness and more intense facial expressions (Siegman and Boyle, 1993). Fear is usually expressed
with reduced speech loudness and may produce increased heart rate (Hodges and Spielberger,
1966). These emotion-specific characteristics might be commonly met among people, contributing
to the similarity among the various emotional datasets. Therefore, transfer learning approaches
can learn common emotion-specific patterns and can be applied across domains for recognizing
emotions in datasets with scarce or non-labeled samples. Such techniques can further result in
generalizable systems, which can detect emotion for unseen data.

The current manuscript discusses ways in which transfer learning techniques can overcome
challenges related to limited amount of data samples, scarce labels, and condition mismatch, and
result in robust and generalizable automated systems for emotion recognition. We first introduce
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basic concepts in transfer learning (section 2) and discuss
the development of major transfer learning methods and their
applications in conventional machine learning fields, such as
computer vision (section 3). We then review state-of-art work
in automatic emotion recognition using transfer learning for
speech, image, and physiological modalities (section 4). Finally,
we discuss potential promising research directions of transfer
learning for improving the generalizability of automatic emotion
recognition systems (section 5).

2. BASIC CONCEPTS IN TRANSFER
LEARNING

In this section, we will provide the basic definition of
transfer learning and discuss several ways to categorize transfer
learning methods.

2.1. Definitions
Domain in transfer learning generally refers to a feature space
and its marginal probability distribution (Pan et al., 2010). Given
a specific domain, a task includes a label space and an objective
function that needs to be optimized. Source domain usually refers
to a set of data with sufficient data samples, large amount of
labels, and potentially high quality (e.g., lab environment). In
contrast, the data from a target domain may include limited
number of samples and small amount or non-existent labels, and
potentially be noisy. Given a source and a target, transfer learning
approaches attempt to improve the learning of the target task
using knowledge from the source domain.

2.2. Association Metrics Between Source
and Target Domains
The selection of the source domain plays an important role in
the transfer learning process. A source domain sharing a lot of
similarities with the target, is more likely to yield efficient transfer
(Pan and Yang, 2009). Similarity can be quantified through the
distance between source and target with respect to their data
structure (e.g., feature or label distribution), recording conditions
(e.g., recording equipment, elicitationmethods), and data sample
characteristics (e.g., participants with similar demographics,
speech samples of same language).

Proposed transfer learning methods typically use a distance
metric to maximize the similarity between the source and
target domain. Commonly used distance metrics include the:
(a) Kullback-Leibler divergence (KL divergence), employing a
cross-entropy measure to calculate similarity in the probability
distribution between the source and the target domain; (b)
Jensen-Shannon divergence (JS divergence), a symmetric version
of the KL divergence; (c) Maximum Mean Discrepancy (MMD)
and multi-kernel MMD, creating an embedding of the source
and target domains on the Reproducing Kernel Hilbert Space
(RKHS) and comparing their mean difference; (d) Wasserstein
Distance, also known as Earth-Mover (EM)Distance, quantifying
the domain difference when there is very little or no overlap
between two domain distributions by computing the transport
map for every probability density between two domains.

2.3. Categorization of Transfer Learning
Techniques
The state-of-art application of transfer learning on automatic
emotion tasks can be categorized in two main approaches. The
first refers to the availability of labels in the target domain.
Supervised transfer learning includes information from labeled
data from both the source and target domain during the learning
task, while unsupervised learning includes information only
from the labels of the source domain (Pan and Yang, 2009).
Unsupervised transfer learning enables the design of reliable
machine learning systems, even for domains for which labeled
data are not available. The second categorization refers to the
availability of one or multiple datasets in the source. Single-
source transfer learning contains only one dataset, while multi-
source transfer learning leverages multiple sets of data in the
source domain (Ding et al., 2019).

3. EMERGING WORK ON SUPERVISED
AND UNSUPERVISED TRANSFER
LEARNING

This section provides an overview of previously proposed
methods in the field of transfer learning, summarized into
three main categories: (a) statistical-based transfer learning;
(b) region selection through domain relevance; and (c) deep
transfer learning approaches. We will further discuss these three
categories in the following subsections.

3.1. Statistical-Based Transfer Learning
Three types of statistical approaches have been proposed for
transfer learning: (a) distribution alignment aims to minimize
the shift between the source and target domain to reduce the
domain difference; (b) latent space extraction recovers common
components between two domains; (c) classifier regularization
will increase the ability of regularization for the classifier to
predict labels in the target domain.

3.1.1. Alignment Between Source and Target

Distributions
The marginal alignment methods aim to find a mapping between
source and target distributions. This can be done by setting
pairwise constraints between the two domains (Saenko et al.,
2010; Kulis et al., 2011). Gopalan et al. (2011) utilized the
Grassmann manifold and the incremental learning to search a
transformation path between the domains. This method was
further improved by Gong et al. (2012), who proposed the
Geodesic Flow Kernel (GFK). The Grassmann manifold and
Maximum Mean Discrepancy (MMD) are also used in other
approaches such as the Domain Invariant Projection (DIP)
proposed by Baktashmotlagh et al. (2013). Marginal alignment
is one of the first methods appearing in the field of transfer
learning, which attempts to find a common distribution between
the source and target domains. Despite its promising results,
marginal alignment might not always fully align two completely
distinct domains to an entirely same distribution, especially
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when these include a high mismatch (e.g., different emotional
expressions or recording settings).

3.1.2. Latent Space Extraction
The shared subspace extraction methods assume that the feature
space of each domain consists of the domain-specific and the
domain-invariant components, and comprise one of the most
commonly used approaches in transfer learning. These methods
attempt to map both the source and target data to a subspace
which only keeps the common information between domains to
minimize the difference between them. In order to find such a
subspace, Pan et al. (2010) proposed the Transfer Component
Analysis (TCA) using the Maximum Mean Discrepancy (MMD)
and Reproducing Kernel Hilbert Space (RHKS), and significantly
reduced the distribution mismatch using a low-dimensional
subspace. Additional methods for achieving this goal include
boosting [Becker et al., 2013 and Domain-Invariant Component
Analysis (DICA); Muandet et al., 2013]. Due to inherent
similarities across emotions, the idea of extracting a common
latent space has been successfully applied to automatic emotion
recognition tasks (Deng et al., 2013; Zheng et al., 2015).

3.1.3. Classifier Regularization
Other approaches have attempted to utilize a regularized version
of the classifier trained on the source domain in order to
predict the labels in the target domain. Support Vector Machines
(SVM) have been widely explored in this process. Yang et al.
(2007) proposed the Adapting SVM (A-SVM) which learns
a difference function (also referred to as “delta function”)
between an original and adapted classifier using an objective
function similar to the one in the SVM. Other methods include
the Projective Model Transfer SVM (PMT-SVM), Deformable
Adaptive SVM (DA-SVM), Domain Weighting SVM (DWSVM)
(Aytar and Zisserman, 2011), which adapt the weights of a
source model to the target domain using various pre-defined
constraints (e.g., assign different weights for source and target
domain in DWSVM). Bergamo and Torresani (2010) also
explored the efficacy of transferring knowledge between different
SVM structures using feature Augmentation SVM (AUGSVM),
Transductive learning SVM (TSVM) and Domain Transfer SVM
(DT-SVM) (Duan et al., 2009). Other types of statistical models,
such as maximum entropy classifiers, have been also explored
in this process (Daume and Marcu, 2006). Due to its simplicity
and efficacy in small data samples, classifier regularization has
been applied on various emotion recognition tasks based on
physiological signals (Zheng and Lu, 2016).

3.2. Region Selection Through Domain
Relevance
The region selection approaches have been mostly introduced
in computer vision and rely on the concept of how humans
understand a given image. For example, instead of giving equal
attention to every part of an image, humans would concentrate
more on specific salient objects. Therefore, these approaches
aim to identify salient regions of an image by generating a
domainness map, and separate the image into a different level
of domainness (Tommasi et al., 2016). This domainness feature

is further utilized to promote knowledge transfer. Other studies
have proposed methods using sparse coding (Long et al., 2013) or
abstract auxiliary information (e.g., skeleton or color of an image)
(Motiian et al., 2016), which also simulate the way humans
comprehend an image as a whole. Hjelm et al. (2018) also
utilized the different domain relevance of each part of the image
to extract and maximize the mutual information. The region
selection methods are very close to the way humans perceive
information, and the domainness map makes the methods
straightforward and explainable. While similar ideas can also
be applied to non-image-related tasks, the determination of
domainness levels and validation of the extracted domainness
map can be less straightforward.

3.3. Deep Transfer Learning Methods
Deep learning methods are widely explored and applied on
transfer learning. Two main types of deep learning approaches
have demonstrated promising performance for knowledge
transfer: (a) domain adaptation using deep learning, which aims
to transfer the knowledge or mitigate the domain difference
between source and target with respect to the neural network
embedding; and (b) the adversarial and generative learning,
which aims to generate data embeddings that are least separable
between the source and the target.

3.3.1. Domain Adaptation Using Deep Learning
The large amount of publicly available datasets has yielded several
pre-trained deep learning models [e.g., VGG (Simonyan and
Zisserman, 2014), VGG-Face (Parkhi et al., 2015), VGG-M-2048
(Chatfield et al., 2014) and AlexNet (Krizhevsky et al., 2012)]
which have achieved good performance in image and speech
recognition tasks. To address the mismatch between different
domains, it is possible to utilize the parameter/structure of pre-
trained models to achieve knowledge transfer (e.g., using a model
with the same number of hidden layers and same weights learned
from the source data). A promising method for achieving this
is fine-tuning, which replaces and learns the last layers of the
model, while re-adjusting the parameters of the previous ones.
A challenge with fine-tuning lies in the fact that the parameters
learned on the source task are not preserved after learning the
target task. In order to address this “forgetting problem,” Rusu
et al. (2016) proposed the progressive neural network, which
keeps the network trained on the source data, based on which
it builds an additional network for the target. Jung et al. (2018)
also addressed this problem by keeping the decision boundary
unchanged, while also making the feature embeddings extracted
for the target close to the ones of the source domain. Utilizing
a pre-trained model on the source data includes the following
advantages: (a) it speeds up the training process; (b) it potentially
increases the ability of generalization, as well as the robustness
of the final model; (c) it automatically extracts high-level features
between domains.

Although neural network fine-tuning and progressive neural
networks can yield benefits to the training process in terms of
computational time and ability to generalize (Yosinski et al.,
2014), these methods sometimes fail to address the domain
difference and may have a poor performance when the source
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and target have small overlap. An alternative approach to this has
been proposed by Ghifary et al. (2014), who added adaptation
layers to the conventional deep learning models and used
the Maximum Mean Discrepancy (MMD) for minimizing the
domain distribution mismatch between the source and target
domains. Instead of making use of a well-trained model, the
source data are used in conjunction with the target data in
the training process to determine the domain distance. Further
research includes determining which layer to be used as the
adaptation layer, applying multiple adaptation layers in a model,
etc (Tzeng et al., 2014; Long et al., 2015). Moreover, the Joint
convolutional neural net (CNN) architecture or Joint MMD
(JMMD) (Tzeng et al., 2015; Long et al., 2017) aims to align
similar classes between different domains by taking into account
the structural information between them.

Various studies on deep transfer learning for automatic
emotion recognition have yielded promising results on speech
and image datasets (Gideon et al., 2017; Kaya et al., 2017;
Abdelwahab and Busso, 2018; Li and Chaspari, 2019. These
methods have been less explored for physiological signals,
potentially due to the small amount of available data for
this modality.

3.3.2. Adversarial and Generative Methods
The idea of adversarial learning for knowledge transfer was
proposed by Ganin and Lempitsky (2014) in the domain
adversarial neural network (DANN). DANN contains three parts:
a feature extractor, a domain classifier, and a task classifier.
The feature extractor attempts to learn feature representations
which minimize the loss of the task classifier and maximize
the loss of the domain classifier. Instead of modifying the
loss function based on the distance between two domains, the
DANN is able to automatically extract the feature which is
common for both domains while maintaining the characteristics
of each class (Ganin et al., 2016). Variants of DANNs have
further been widely explored. The Domain Separation Network
(DSN) proposed by Bousmalis et al. (2016), modified the feature
extractor into three encoders (i.e., one for the source, one
for the target, and one for both) in order to separate the
domain-specific from domain-invariant embeddings. DSN also
replaced the domain classifier with a shared decoder, to further
ensure that the domain-invariant embedding is useful and can
promote the generalizability of the model. According to the
multi-adversarial domain adaptation network proposed by Pei
et al. (2018), a separate task classifier is trained for every class,
which makes different classes less likely to have overlapping
distributions. As the number of available datasets increases,
networks which handle multiple sources of data are also explored
(Xu et al., 2018; Zhao et al., 2018). In order to further avoid the
negative transfer, partial transfer learning, which can be done via
Bayesian optimization (Ruder and Plank, 2017), is applied in the
adversarial neural networks in order to transfer knowledge from
large domains to more specific, smaller domains by selecting only
part of the source data in the training process (Cao et al., 2018).

Inspired by the two player game, the generative adversarial
nets (GAN) were further proposed by Goodfellow et al. (2014)
containing a generator and a discriminator. The generator

generates fake data from a random distribution and aims to
confuse the discriminator, while the discriminator focuses on
distinguishing between the real and generated data. In this
process, both models can learn from each other and fully explore
the patterns of data, since the informed generation of synthetic
samples can potentially overcome the mismatch between the
source and the target task. Modifications of GAN-based
networks are also proposed. For example, Radford et al. (2015)
introduced the Deep Convolutional Generative Adversarial
Networks (DCGAN) to combine the CNN with GAN. The
Wasserstein GAN (WGAN) integrated the Wasserstein distance
in the loss function and further improved the training stability
(Arjovsky et al., 2017).

The adversarial and generative adversarial neural networks
have been successfully applied to speech- and image-based
emotion recognition tasks (Wang and Zheng, 2015;Motiian et al.,
2017; Sun et al., 2018) with promising results.

4. TRANSFER LEARNING FOR AUTOMATIC
EMOTION RECOGNITION

In this section, we discuss the application of transfer learning
on three modalities commonly used in the automatic emotion
recognition task: (a) speech; (b) video (or image); and (c)
physiology. Sentiment analysis is not included in this manuscript,
since it is related to crowd-sourced data, which are beyond the
scope of the review.

4.1. Transfer Learning for Speech-Based
Emotion Recognition
Because of the multi-faceted information included in the speech
signal, transfer learning has been widely applied in speech-based
emotion recognition (Table 1). Previously proposed approaches
attempt to transfer the knowledge between datasets collected
under similar conditions (e.g., audio signals collected by actors
in the lab) (Abdelwahab and Busso, 2015, 2018; Sagha et al.,
2016; Zhang et al., 2016; Deng et al., 2017; Gideon et al., 2017;
Neumann and Vu, 2019) or using the knowledge from acted
in-lab audio signals to spontaneous speech collected in-the-wild
(Deng et al., 2014b; Mao et al., 2016; Zong et al., 2016; Song, 2017;
Gideon et al., 2019; Li and Chaspari, 2019).

Different types of transfer learning architectures have been
explored in speech-based emotion recognition, including the
statistical methods (Deng et al., 2013, 2014a,c; Abdelwahab and
Busso, 2015; Song et al., 2015; Sagha et al., 2016; Zong et al., 2016;
Song, 2017), the adversarial or generative networks (Chang and
Scherer, 2017; Abdelwahab and Busso, 2018; Gideon et al., 2019;
Latif et al., 2019), and other neural network structures (Mao et al.,
2016; Deng et al., 2017; Gideon et al., 2017; Li and Chaspari, 2019;
Neumann and Vu, 2019; Zhou and Chen, 2019). A commonly
used input of the aforementioned approaches includes the feature
set proposed by the INTERSPEECH emotion challenge and
INTERSPEECH paralinguistic challenges (Schuller et al., 2009b,
2010, 2013), which typically contains the first 12 Mel Frequency
Cepstral Coefficients, root-mean-square energy, zero-crossing
rate, voice probability, and fundamental frequency (Deng et al.,
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TABLE 1 | Overview of previously proposed transfer learning methods for speech-based emotion recognition.

References Dataset In-lab/real-

world

transfer

learning

Acted/

spontaneous

transfer

learning

Emotional

labels

Cross-

linguistic

transfer

learning

Type of transfer

learning

Input features

Deng et al.,

2013

source:

TUM AVIC (Schuller et al., 2009a),

EMO-DB (Burkhardt et al., 2005),

eNTERFACE (Martin et al., 2006),

SUSAS (Hansen and Bou-Ghazale, 1997),

VAM (Grimm et al., 2008)

target: FAU AEC (Steidl, 2009)

In-lab; real-world Acted &

spontaneous

Valence English

German

Autoencoder for

aligning source to

target

SVM for

classification

INTERSPEECH

2009 emotion

challenge

Deng et al.,

2014b

source:

SUSAS (Hansen and Bou-Ghazale, 1997),

ABC (Schuller et al., 2007)

target: FAU AEC (Steidl, 2009)

source:

In-lab; real-world

target:

Real-world

source:

Acted;

spontaneous

target:

Spontaneous

Valence English

German

Adaptive denoising

autoencoder (DAE)

INTERSPEECH

2009 emotion

challenge

Deng et al.,

2014c

source:

SUSAS (Hansen and Bou-Ghazale, 1997),

ABC (Schuller et al., 2007)

target: FAU AEC (Steidl, 2009)

source:

In-lab; real-world

target:

Real-world

source:

Acted;

spontaneous

target:

Spontaneous

Valence English

German

Encoders trained

separately for

domains

one layer nn maps

subspace to target

INTERSPEECH

2009 emotion

challenge

Deng et al.,

2014a

source:

SUSAS (Hansen and Bou-Ghazale, 1997),

ABC (Schuller et al., 2007)

target: FAU AEC (Steidl, 2009)

source:

In-lab; real-world

target:

Real-world

source:

Acted;

spontaneous

target:

Spontaneous

Valence English

German

Shared-hidden-layer

autoencoder.

A common encoder

which also aims to

minimize

reconstruction error

INTERSPEECH

2009 emotion

challenge

Song et al.,

2015

source/target:

EMO-DB (Burkhardt et al., 2005),

eNTERFACE (Martin et al., 2006)

In-lab Acted Angry,

disgusted,

fear,

happy, sad

English

German

Transfer principal

component analysis

and sparse coding

based method

INTERSPEECH

2010

paralinguistic

challenge

Abdelwahab

and Busso,
2015

source:

IEMOCAP (Busso et al., 2008),

SEMAINE (McKeown et al., 2011)

target: RECOLA (Ringeval et al., 2013)

In-lab Acted &

spontaneous

Arousal

and

valence

English

French

Domain adaptation

for SVM

incremental

adaptation for SVM

INTERSPEECH

2011 speaker

state feature

Mao et al.,

2016

source:

EMO-DB (Burkhardt et al., 2005),

ABC (Schuller et al., 2007)

target: FAU AEC (Steidl, 2009)

source: In-lab

target:

Real-world

source: Acted

target:

Spontaneous

Valence English

German

Sharing priors

between related

source and target

classes

INTERSPEECH

2009 emotion

challenge

Sagha et al.,

2016

source/target:

EMO-DB (Burkhardt et al., 2005),

SAVEE (Haq et al., 2008),

EMOVO (Costantini et al., 2014),

Polish (Staroniewicz and Majewski, 2009)

In-lab Acted Valence English,

German,

Italian, Polish

Kernel canonical

correlation

analysis (KCCA)

INTERSPEECH

2009 emotion

challenge

Zhang et al.,

2016

source: RAVDESS (Livingstone and

Russo, 2018)

target: UMSSED (Zhang et al., 2015)

In-lab Acted Angry,

happy

neutral,

sad

No Multi-task learning INTERSPEECH

computational

paralinguistics

challenge 2013

Zong et al.,

2016

source/target:

EMO-DB (Burkhardt et al., 2005),

eNTERFACE (Martin et al., 2006),

AFEW (Dhall et al., 2012)

In-lab &

real-world

Acted &

spontaneous

Angry,

disgusted,

afraid

happy,

neutral,

sad

English

German

Domain-adaptive

least-

squares regression

(DaLSR)

INTERSPEECH

2009 emotion

challenge

Song, 2017 source/target:

EMO-DB (Burkhardt et al., 2005),

eNTERFACE (Martin et al., 2006),

FAU AEC (Steidl, 2009)

In-lab &

real-world

Acted &

spontaneous

Angry,

disgusted,

afraid,

happy, sad

English

German

Linear subspace

learning

INTERSPEECH

2010

paralinguistic

challenge

Deng et al.,

2017

source/target:

EMO-DB (Burkhardt et al., 2005),

GeWEC (Bänziger and Scherer, 2010)

In-lab Acted Categorical

emotions

German

French

Denoising

autoencoder

INTERSPEECH

2009 emotion

challenge

(Continued)
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TABLE 1 | Continued

References Dataset In-lab/real-

world

transfer

learning

Acted/

spontaneous

transfer

learning

Emotional

labels

Cross-

linguistic

transfer

learning

Type of transfer

learning

Input features

Valence

and

arousal

Shared-hidden-

layer

autoencoder

extreme learning

machine

autoencoder

Gideon et al.,

2017

source/target:

IEMOCAP (Busso et al., 2008),

MSP-IMPROV (Busso et al., 2016)

In-lab Acted Angry,

neutral,

sad, happy

No Progressive neural

network (PNN)

Geneva

minimalistic

acoustic

parameter set

(GeMAPS)

Chang and

Scherer, 2017

source: AMI (Carletta et al., 2005)

target: IEMOCAP (Busso et al., 2008)

source:

Real-world

target: In-lab

Acted &

spontaneous

Valence

and

activation

No Deep convolutional

generative

adversarial networks

(DCGAN)

Speech

spectrogram

Abdelwahab

and Busso,
2018

source: IEMOCAP (Busso et al., 2008),

MSP-IMPROV (Busso et al., 2016)

target: MSP-Podcast (Lotfian and Busso,

2017)

In-lab Acted &

spontaneous

Arousal,

valence,

dominance

No Domain adversarial

neural network

(DANN)

INTERSPEECH

computational

paralinguistics

challenge 2013

Gideon et al.,

2019

source/target:

IEMOCAP (Busso et al., 2008),

MSP-IMPROV (Busso et al., 2016)

PRIORI Emotion (Khorram et al., 2018)

In-lab &

real-world

Acted &

spontaneous

Valence No Adversarial

discriminative

domain

generalization

(ADDoG)

Mel Filter Bank

(MFB)

Li and

Chaspari,

2019

source:

IEMOCAP (Busso et al., 2008), CREMA-D

(Cao et al., 2014),

RAVDESS (Livingstone and Russo, 2018),

eNTERFACE (Martin et al., 2006)

target: IEMOCAP (Busso et al., 2008)

In-lab source: Acted

target:

Spontaneous

Angry,

happy,

sad, afraid

No Feedforward neural

network fine-tuning

progressive neural

network (PNN)

INTERSPEECH

2009 emotion

challenge

Neumann and

Vu, 2019

source/target:

IEMOCAP (Busso et al., 2008),

MSP-IMPROV (Busso et al., 2016)

In-lab Acted Angry,

happy,

sad,

neutral

No A latent feature

space was learned

on source domain

using an

encoder-decoder.

Such space was

added as feature

vector in

attentive

convolutional neural

network

MFCC feature

Latif et al.,

2019

source/target:

EMO-DB (Burkhardt et al., 2005), SAVEE

(Jackson and Haq, 2014),

EMOVO (Costantini et al., 2014), URDC

(Latif et al., 2018)

In-lab &

real-world

Acted &

spontaneous

Positive/

negative

valence

German, Urdu

Italian, English

Similar to GAN

structure

but source data was

used

instead of generated

fake data.

Geneva

minimalistic

acoustic

parameter set

(GeMAPS)

Zhao et al.,

2019

source: eGender (Burkhardt et al., 2010)

target: EMO-DB (Burkhardt et al., 2005),

IEMOCAP (Busso et al., 2008)

source:

Real-world

target: In-lab

source:

spontaneous

target: acted

Continuous

prediction

or

classification:

neutral,

happiness,

sadness,

anger

English

German

Learn age and

gender attributes

separately

then transfer these

knowledge by

feeding

such information to

emotion model.

INTERSPEECH

2010

configuration

(Continued)
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TABLE 1 | Continued

References Dataset In-lab/real-

world

transfer

learning

Acted/

spontaneous

transfer

learning

Emotional

labels

Cross-

linguistic

transfer

learning

Type of transfer

learning

Input features

Zhou and

Chen, 2019

source: Aibo-Ohm and Aibo-Mont (Steidl,

2009)

target: EMO-DB (Burkhardt et al., 2005)

In-lab source:

Spontaneous

target: acted

Binary

negative /

positive

No Data was relabeled

to reveal domain info

class-wise

adversarial domain

adaptation

two stages training:

train encoder,

predictor

fix predictor, train

encoder only

Geneva

minimalistic

acoustic

parameter set

(GeMAPS)

2013, 2014b, 2017;Mao et al., 2016; Sagha et al., 2016; Zhang et al.,
2016; Zong et al., 2016; Song, 2017; Abdelwahab and Busso, 2018;
Li and Chaspari, 2019; Zhao et al., 2019).

Statistical values of these descriptors, including maximum,
minimum, range, time position of the maximum and minimum,
average, standard deviation, skewness, kurtosis, as well as
the first- and second-order coefficient of a linear regression
model are extracted from the frame-based measures. Other
approaches also include the speech spectrogram as an input
to convolutional-based neural networks (Gideon et al., 2019).
Previously proposed transfer learning methods for speech
emotion recognition employ same classes for the source and
target data. Two commonly used baseline methods against
which the proposed transfer learning approaches are compared
include in-domain training and out-of-domain training (only
used data from source domain). The first performs training
and testing by solely using labeled data from target domain,
while the second trains the model on the source data
and tests on the target. Results indicate that the proposed
transfer learning methods outperform the out-of-domain
methods, and are equivalent to or sometimes surpass in-
domain training, indicating the potential of leveraging multiple
sources of emotion-specific speech data to improve emotion
recognition performance.

Besides speech data, audio signals from music clips have
been also applied for emotion recognition (Zhang et al., 2016).
However, because of the limited number of emotion-based
datasets with music signals, as well as the significant domain
mismatch betweenmusic and speech, this application is relatively
less explored.

4.2. Transfer Learning for
Video/Image-Based Emotion Recognition
Facial expressions convey a rich amount of information related
to human emotion. A variety of transfer learning techniques
have been explored for video/image-based automatic emotion
recognition (Table 2). The state-of-art transfer learning approach
to the video-based emotion recognition includes obtaining high-
level features using mainly a convolutional neural network
(CNN) trained on large sources of data (e.g., VGG; Simonyan

and Zisserman, 2014) (Kaya et al., 2017; Aly and Abbott, 2019;
Ngo and Yoon, 2019, or transfering the knowledge from higher-
quality auxiliary image datasets (e.g., skeleton or color of an
image, image with description text) (Xu et al., 2016). Source
datasets in this case might not necessarily contain the same
labeled classes as the target dataset. Occluded facial images, which
are common in daily life, are also utilized to help with the
generalization and robustness of the overall system (Xu et al.,
2015). More advanced transfer learning approaches, such as
adversarial methods, are less explored in this process. A possible
reason is that the high-level image features are relatively easier
to obtain and knowledge from other domains might not be able
to significant help. Another reason could be the selection of
source domain is more important for facial emotion recognition
(Sugianto and Tjondronegoro, 2019). In order to recognize
emotions from video clips, every frame of the clip is analyzed and
the final decision is made based on votingmethods, such as major
voting on the separate frames (Zhang et al., 2016). Face detection
methods, such as the deformable parts model (DPM) (Mathias
et al., 2014), may also be used to avoid the influence of irrelevant
regions of the video frame (Kaya et al., 2017).

4.3. Transfer Learning for Emotion
Recognition Based on Physiological
Signals
A small amount of previous work has attempted to perform
transfer learning on physiological signals for emotion recognition
(Table 3). Among the various physiological signals, the
electroencephalogram (EEG) is the most commonly used
in transfer learning, probably due to the rich amount of
information included in this signal. Because of the limited
number of datasets including physiological signals, as well as the
high variability across people, the knowledge transfer between
different datasets is less efficient and relatively less explored.
Commonly used transfer learning applications attempt to train
subject-specific (personalized) models by providing knowledge
learned from subjects similar to the one in the test (Lin and
Jung, 2017; Lin, 2019), or simply consider all the members
in the group by assigning different weights (Li et al., 2019).
Other methods include statistical approaches, such as Principal
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TABLE 2 | Overview of the previous work on transfer learning for video/image-based emotion recognition.

References Dataset In-lab/real-world

transfer learning

Acted/

spontaneous

transfer learning

Same labels

between

source & target

Emotional labels Type of transfer

learning

Ng et al., 2015 source:

VGG (Simonyan and Zisserman, 2014)

AlexNet (Krizhevsky et al., 2012),

FER-2013 (Goodfellow et al., 2013)

target:

EmotiW 2015 (Dhall et al., 2015)

Real-world Spontaneous No for

VGG/AlexNet

yes for

FER-2013

Neutral, angry,

disgusted, sad,

fear, happy, surprised

Two-stage fine-tuning

based on VGG/AlexNet

and the target data

Xu et al., 2015 source:

MSRA-CFW (Zhang et al., 2012)

target:

self-built database contains

CK+ (Lucey et al., 2010),

JAFFE (Lyons et al., 1999),

KDEF (Goeleven et al., 2008),

PICS (PIC, 2013)

Real-world Spontaneous No Neutral, angry,

disgusted, sad,

fear, happy, surprised

Feature transfer by

training two facial

Identification

convolutional networks

Xu et al., 2016 source:

Flickr (Borth et al., 2013)

target:

YouTube (Jiang et al., 2014)

Ekman-6 emotion dataset

Real-world Spontaneous Yes 8 Primary emotions

24 primary &

Secondary emotions

Auxiliary image transfer

encoding

Using auxiliary data

(e.g., image with

description text)

Kaya et al., 2017 source:

VGG-Face (Parkhi et al., 2015),

VGG-M-2048 (Chatfield et al., 2014)

FER-2013 (Goodfellow et al., 2013)

target:

EmotiW 2015 (Dhall et al., 2015),

EmotiW 2016 (Dhall et al., 2016),

CK+ (Lucey et al., 2010),

MMI (Valstar and Pantic, 2010),

RECOLA (Ringeval et al., 2013),

First impressions challenge

(Escalante et al., 2016)

Real-world Spontaneous Yes Neutral, angry,

disgusted, sad,

fear, happy, surprised

Fine-tuning during

convolutional

Neural network (CNN)

training

Ngo and Yoon,

2019

source:

ResNet-50(He et al., 2016)

target:

AffectNet (Mollahosseini et al., 2017)

Real-world Spontaneous No Neutral, happiness,

sadness, surprise,

fear, disgust, anger,

contempt

Fine-tuning on the

well-trained

ResNet-50 net

Aly and Abbott,

2019

source:

AlexNet (Krizhevsky et al., 2012),

JAFEE (Lyons et al., 1998)

CK+ (Lucey et al., 2010)

target:

VT-KFER (Aly et al., 2015),

300W (Sagonas et al., 2016)

VTKFER: in-lab

300W: real-world

VTKFER: acted

300W: spontaneous

Yes Happiness, sadness,

surprise,

disgust, fear, anger

Multi-stage Progressive

Transfer Learning

(MSPTL)

fine tune the AlexNet in

multiple

stages using different

data (simple to

more challenging or

non-frontal)

Sugianto and

Tjondronegoro,

2019

source:

ResNet-50(He et al., 2016)

MS-CELEB-1M(He et al., 2016)

VGGFace2(He et al., 2016)

CK+ (Lucey et al., 2010)

target:

AffectNet (Mollahosseini et al., 2017)

Real-world Spontaneous No Neutral, happiness,

sadness, surprise,

fear, disgust, anger,

contempt

Fine-tuning on CK+

(relevant domain)

lowers the performance

due to the

large knowledge gap.

General to specific

knowledge

transfer performs best.

Component Analysis (PCA) and adaptive subspace feature
matching (ASFM) (Chai et al., 2017). As the development
of wearable devices progresses and more physiological

data related to emotional experiences become available,
transfer learning methods appear to depict a great potential in
this domain.
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TABLE 3 | Overview of transfer learning methods for emotion recognition based on physiological signals.

References Dataset Elicitation

method

In-lab

Real-world

Emotional labels Type of transfer learning

Zheng et al., 2015 SEED (Zheng and Lu, 2015) Video In-lab Three emotions

(positive, neutral, and negative)

Personalized transfer learning

Transfer component analysis (TCA)

kernel principal component analysis (KPCA)

Chai et al., 2016 SEED (Zheng and Lu, 2015) Video In-lab Three emotions

(positive, neutral, and negative)

Subspace alignment auto-encoder

Zheng and Lu, 2016 SEED (Zheng and Lu, 2015) Video In-lab Three emotions

(positive, neutral, and negative)

Transductive parameter transfer (TPT)

Transductive SVM (T-SVM)

Transfer component analysis (TCA)

Kernel PCA (KPCA)

Lin and Jung, 2017 Oscar soundtrack

EEG dataset

(Lin et al., 2010)

Music In-lab Valence and arousal Conditional transfer learning framework to determine

How transferable is a model to a given individual

Chai et al., 2017 SEED (Zheng and Lu, 2015) Video In-lab Three emotions

(positive, neutral, and negative)

Adaptive subspace feature matching

Lan et al., 2018 SEED (Zheng and Lu, 2015)

DEAP (Koelstra et al., 2011)

Video In-lab Three emotions

(positive, neutral, and negative)

Transfer component analysis (TCA)

Geodesic flow kernel (GFK) Domain adaptation

Kernel principal component Analysis (KPCA)

Lin, 2019 MDME (Lin et al., 2015)

SDMN (Lin et al., 2010)

Music In-lab Binary valence and arousal Principal component analysis (RPCA)-embedded

transfer learning personalized cross-day model.

Use Riemannian distance and RPCA to

select similar samples within dataset

Li et al., 2019 SEED (Zheng and Lu, 2015) Video In-lab Three emotions

(positive, neutral, and negative)

Known objects have seperate classifiers

such classifiers were ensembled using

style transfer mapping (STM) method for a new object.

Zhang et al., 2019 SEED (Zheng and Lu, 2015) Video In-lab Three emotions

(positive, neutral, and negative)

A CNN is used as feature

extractor from Electrodes-frequency Distribution Maps.

Deep domain confusion (DDC) narrowed feature

difference

between domains. EFDMs and CNN are used for

classification.

TABLE 4 | Overview of current research.

Signal Common transfer

learning method

Overview

Speech Statistical-based

transfer learning

Deep transfer

learning methods

Speech signal has been widely

used for emotion recognition,

both statistical and deep learning

methods are widely explored.

Video/image Deep transfer

learning methods

Motivated by the wide adoption of

deep learning in image processing,

such methods are widely used for

emotion recognition in the last

years.

Physiological Statistical-based

transfer learning

Neural networks were not widely

used for physiological signals in

recent years,

but researchers have started to

apply deep transfer learning

methods.

5. DISCUSSION

In this section, we will provide a brief summary of the
current application of transfer learning on automatic emotion
recognition and outline potential aspects for future research.

5.1. Summary of Current Research
Previous work has explored transfer learning for automatic
emotion recognition in the three commonly used signals (i.e.,
speech, video, and physiology) (Table 4). Transfer learning
for speech aims to transfer the knowledge between the
different datasets using the state-of-art transfer learningmethods,
such as adversarial or generative networks. Image-based
transfer learning is mainly utilized to extract high-level
features from images or their auxiliary data (e.g., image
description text) using convolutional neural networks (CNN).
For physiological signals, transfer learning has promoted the
design of personalized models through statistical methods,
though the data scarcity and high inter-individual variability
yield highly variable results across subjects. Speech and video
signals allow for the design of sophisticated systems that
can detect multiple emotions (i.e., up to seven emotions),
while physiological data usually yield more coarse-grained
emotion recognition.

5.2. Potential Future Directions
5.2.1. Multi-Modal Transfer Learning for Emotion

Recognition
Multi-modal sources of data have been widely used in automatic
emotion recognition tasks in order to supplement information
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from multiple modalities and reduce potential bias from one
single signal (Busso et al., 2004; Wöllmer et al., 2010). However,
transfer learning methods play a very limited role in this
process. Common knowledge transfer in multi-modal methods
include fine-tune well trained models to a specific type of
signal (Vielzeuf et al., 2017; Yan et al., 2018; Huang et al.,
2019; Ortega et al., 2019), or fine-tune different well-trained
models to both speech and video signals (Ouyang et al.,
2017; Zhang et al., 2017; Ma et al., 2019). Other usage of
transfer learning for multi-modal methods includes leveraging
the knowledge from one signal to another (e.g., video to
speech) to reduce the potential bias (Athanasiadis et al., 2019).
While these methods provide a promising performance, applying
the more recent transfer learning methods, or utilizing more
types of signals and leveraging knowledge between multiple
signals, is likely to improve transfer learning and boost emotion
recognition accuracy.

5.2.2. Transferring Emotionally-Relevant Knowledge

Between In-lab and Real-Life Conditions
Most of the current studies focus on transferring knowledge
between datasets collected in the lab, due to the relative less
availability of real-world dataset, especially for the speech or
physiological signals. (Abdelwahab and Busso, 2015, 2018; Zheng
et al., 2015; Chai et al., 2016, 2017; Sagha et al., 2016; Zhang
et al., 2016; Zheng and Lu, 2016; Gideon et al., 2017; Lin and
Jung, 2017; Lan et al., 2018; Li and Chaspari, 2019). While some
of these datasets try to simulate a naturalistic scenarios, they
are still very different from actual real-world conditions, since
they contain less noisy data, collected in high quality conditions
(e.g., no occluded video or far-field speech), and might not be
able to successfully elicit all possible emotions met in real-life
conditions (e.g., grief). Recently, there have been multiple efforts
to collect emotion datasets in the wild, such as the PRIORI
(Khorram et al., 2018) and the AVEC In-The-Wild Emotion
Recognition Challenge (Dhall et al., 2015). Exploring the ability
of transferring knowledge from data collected in the lab to
data obtained in real-life conditions can significantly extend
the applicability of emotion recognition applications in real-
life (e.g., quantifying well-being, tracking mental health indices;
Khorram et al., 2018).

5.2.3. Multi-Source Transfer Learning
With the advent of a large number of emotion recognition
corpora, multi-source transfer learning methods provide a
promising research direction. By leveraging the variability from
multiple data sources collected under different contextual and
recording conditions, multi-source transfer learning might be
able to provide highly robust and generalizable systems. Multi-
source transfer learning can also lay a foundation for modeling
various aspects of human behavior different than emotion
(e.g., mood, anxiety), where only a limited number of datasets
with a small number of data samples are available. Multi-
source transfer learning has not been explored for automatic
emotion recognition task, which also makes it a great future
research direction.

5.2.4. Distinct Labels Between the Source and Target

Domains
A potential challenge in automatic emotion recognition lies
in the fact that the various datasets might include different
types of emotional labels, which can introduce high mismatch
between the source and target domains. Especially in the case
where the source domain includes data collected in the lab,
the corresponding labels mostly only include basic emotions
(e.g., happy, anger, fear, surprise, and neutral). However, the
emotional classes in the target domain might be slightly different,
since they might include subtle real-world emotions, such
as frustration, disapproval, etc. Understanding and modeling
associations between primary and secondary emotions can
potentially contribute toward more accurate emotion inferences
in real-life.

5.2.5. Transfer Learning for Cross-Cultural and

Cross-Linguistic Emotion Recognition
Emotions can be expressed in different ways across different
cultures and languages. For example, emotions may be expressed
in a direct and noticeable way in Western countries, while
emotional expression tends to be more subtle in parts of
Asia (Davis et al., 2012; Gökçen et al., 2014). Even though
previous studies have explored the knowledge transfer across
European languages (e.g., German, French, Italian, and Polish)
(Sagha et al., 2016), indicating that languages are not a key
factor for automatic emotion recognition, extensive experiments
with non-Western languages/cultures might be able to provide
additional insights for advancing the field of transfer learning
in emotion recognition. At the same time, most emotional
datasets include Caucasian subjects, while a few samples of
collected data contain participants from different ethnicities and
races (Schuller et al., 2009a). It would be beneficial to examine
potential discrepancies related to the linguistic speaking style and
facial expressions for building generalizable emotion recognition
systems across cultures.

6. CONCLUSION

In this manuscript, we reviewed emerging methods in supervised
and unsupervised transfer learning, as well as successful
applications and promising future research directions of
transfer learning for automatic emotion recognition. We first
provided an overview of basic transfer learning methods
mostly used in image and speech processing, including
statistical approaches, deep transfer learning, and region
selection through domain relevance. We then expanded upon
transfer learning applications for emotion recognition studying
three mainmodalities of speech, image, and physiological signals.
Findings from previous work suggest the feasibility of transfer
learning approaches in building reliable emotion recognition
systems, yielding improved performance compared to in-domain
learning (i.e., training and testing models on samples from
the same dataset). Despite the encouraging findings, various
implications for future work exist by leveraging multiple sources
and modalities of emotional data, which have the potential
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to yield transferrable emotional embeddings toward novel
computational models of human emotion, and human behavior
in general.
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