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ABSTRACT
We propose a novel framework to detect false data injections in a
low-density sensor environment with heterogeneous sensor data.
The proposed detection algorithm learns how each sensor’s data
correlates within the sensor network, and false data is identified
by exploiting the anomalies in these correlations. When a large
number of sensors measuring homogeneous data are deployed, data
correlations in space at a fixed snapshot in time could be used as
as basis to detect anomalies. Exploiting disruptions in correlations
when false data is injected has been used in a high-density sen-
sor setting and proven to be effective. With increasing adoption
of sensor deployments in low-density setting, there is a need to
develop detection techniques for these applications. However, with
constraints on the number of sensors and different data types, we
propose the use of temporal correlations across the heterogeneous
data to determine the authenticity of the reported data. We also
provide an adversarial model that utilizes a graphical method to
devise complex attack strategies where an attacker injects coherent
false data in multiple sensors to provide a false representation of the
physical state of the system with the aim of subverting detection.
This allows us to test the detection algorithm and assess its perfor-
mance in improving the resilience of the sensor network against
data integrity attacks.
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1 INTRODUCTION
Wireless Sensor networks (WSNs) are an integral part of Cyber-
Physical Systems (CPS) where devices are used as interfaces to
sense and interact between the cyber and physical realm. Sensors
are deployed to collect data from the physical environment and
the information is represented in the cyber domain which could
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be used for further computational processing, analysis and deci-
sion making across many applications in public and private spaces.
In public areas, WSNs are used to monitor infrastructure usage
and surveillance such as smart energy meters for power grids and
sensors for water distribution networks. In personal spaces, WSNs
are used by individuals in smart homes for monitoring and control
of smart appliances, or for health and well-being such as activity
tracking and monitoring of physiological parameters. In addition,
these devices are fielded in unprotected environment, rendering
them vulnerable to physical tampering [9].

The data collected from deployed sensors in WSNs are critical
in the various applications of industrial automation, surveillance
and health analytics. Attacks that undermine data authenticity can
result in financial losses or events that result in loss of lives. Mali-
cious events can be instigated by tampering with sensor readings
resulting in industrial process upset in an Industrial Control System
or inaccurate administering of medicine dosage in an automated
drug delivery system [2, 7]. Therefore, it is important to ensure the
authenticity of the data collected by WSNs as the information is
processed by sense-making and decision-making engines, where
compromised data could potentially result in dire consequences.

The act of tampering (modifying or replacing) of sensor mea-
surements by an attacker is known as false data injections. Data
collected from WSNs are used to provide a depiction of the sensed
physical environment. Any deviations from the expected environ-
ment parameters would usually trigger a system response. As such,
the goals of an attacker when tampering with sensor measurements
can be to:

(1) Elicit an undesired system response. The goal of the at-
tacker is to cause an undesired system response by spoofing
a sensed system condition that the system would react to.

(2) Mask an undesired system condition. The goal of the
attacker is to hide an undesirable system condition to prevent
a system response.

Sensor data can be tampered with at various stages, from data
collection to data transmission phase. Thus, with the widespread
adoption of WSNs in critical applications, it is important to de-
velop detection mechanisms to secure and ensure these systems
are resilient to data integrity attacks [13].

1.1 Background and Related Work
In the research area of securingWSNs and CPSs, many studies focus
on ensuring the integrity of the data on the physical and network
level [18, 21]. However, it is possible for the sensor measurements
to be manipulated before or during transmission.
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Recent studies on detecting malicious data injections in CPSs
focus on identifying anomalous sensor measurements by leveraging
the physical behavior of the systems [27]. Physics-based attack de-
tection of sensor readings involves building a model of the physical
system and using models such as Auto-Regressive (AR) or Linear
Dynamical State-Space (LDS) to obtain a prediction of the sensor
value which will be compared to the reported sensor value [10].
Process Invariants based detection in CPSs [1] were also used to
detect attacks by inspecting deviations from the normal behavior
of the system. However, this approach of physics-based detection
requires knowledge and ability to model the physical behavior in
the specific deployment environment, which might be difficult in
some applications such as healthcare monitoring.

For anomaly detection in low density sensor networks, there
are studies that explore techniques to detect anomalous data from
the sensor measurements. In smart home sensor networks with
heterogeneous sensors, [20] explored using principle component
analysis (PCA) and canonical component analysis (CCA) to learn
relationships between sensor data for fault detection by identifying
anomalous data. Another approach taken by [25] employed ma-
chine learning techniques such as Support Vector Machine (SVM)
to model a classifier for detecting anomalous events in sensor data
and a linear regression model to learn to predict an event from
sensor data. These works focus on detecting single anomalous data
which are useful for fault detection but do not address the problem
when more than one sensor readings are anomalous.

Few works cover detecting false data injections in a scenario
where sensors collude, that is, they act in concert to provide a
false representation of the state of the physical environment. The
solutions proposed in these works exploit correlations between
sensor measurements to detect false data from genuine ones and
were able to identify sensors responsible for the anomalous events
[14–16]. The work in [16] proposed a general framework using a
combination of linear predictive model based on spatial correlations
across homogeneous sensors and were able to detect false data
injections with a collusion of more than half the sensors in a variety
of WSN settings.

In [14]’s work, the authors successfully used ContinuousWavelet
Transform (CWT) cross-scale analysis to distinguish between gen-
uine and false data reported by sensors in a collusion attack setting
applied on a wildfire data set. The approach was to use the parame-
ter scale as the inter-sensor distance and the parameter translation
as the centered position of the sensor. CWT on sensor readings for
varying scales and translations provide measurements of similarity
of a sensor data (centered sensor) relative to its neighbors. The
low-scale coefficient characteristic was learnt from historical sig-
nals which were used for analysis on the test signal. This approach
learns the spatial correlations at a fixed time, which was used for
analysis to detect any deviations from expected behaviour. The ap-
proach of using correlations is useful in settings where the physical
behavior is difficult to be explicitly modeled (i.e. how temperature
varies and diffuse across space in a wildfire scenario) and/or specific
to the deployment.

However, such an approach which uses only spatial correla-
tions works well only in high-density sensor networks where a
large number of deployed sensors are measuring the same physi-
cal parameter. In a low-density environment where the number of

sensors in the deployment area is limited and non-homogeneous
sensor measurements are collected, limited useful information can
be extracted from spatial correlations alone. Moreover, there is an
increasing adoption of deploying small numbers of sensors thatmea-
sure heterogeneous parameters due to constraints in deployment
environment and costs of deploying high-density sensor networks.
Examples include body sensor networks for healthcare analytics
and sensors for smart homes. Hence, there is a need to develop de-
tection algorithms that would be able identify false data injections
in low-density sensor environment with heterogeneous data.

1.2 Contributions
In a low density sensor setting, especially when sensor data is het-
erogeneous, the information redundancy is constrained and corre-
lations in a single domain (i.e. fixing time and analyzing spatial cor-
relation) might not yield much meaningful information. Hence, an
alternative would be to combine the analysis of correlations in
multiple domains such as temporal-attribute or temporal-spatial;
a novel approach that has not been explored by existing litera-
ture. In this work we present a general framework that exploits
anomalies in temporal-attribute correlations to detect false
data injection in a low-sensor density environment with collusion
in multiple heterogeneous sensors.

In order to systematically test the framework against possible
attacks, we provided an adversarial model which was used to con-
struct attack scenarios to evaluate its performance. The proposed
adversarial model utilizes a graphical method to represent
the sensor network based on data correlation and generate
attack strategies. This guides the attacker’s choice of subset of
sensors to inject coherent false data with the goal of subverting de-
tection through collusion. This would also solve the problem of lack
of adversarial data sets by allowing us to construct adversarial data
from genuine sensor data to test against the detection algorithm.

1.3 Organization of Paper
The rest of the paper is organized as follows. We first discuss the
definition of sensor data and the various types of correlations in
Section 2. Next, we describe the techniques and procedure used to
learn correlations across the various sensor data in Section 3. In
Section 4, we present our proposed detection framework for false
data injection in low density sensor networks. Next, we described
the adversarial model used to generate attack scenarios to test the
detection framework in Section 5.We then described the experiment
setup in Section 6 and present the analysis and evaluation of the
results in Section 7. Finally, we provide the conclusion and discuss
possible future works in Section 8.

2 SENSOR DATA MODELING
Sensor data refers to the measurements and readings of the sensed
physical parameters in the deployed environment. The sensor mea-
surement consists of the true value and an error term. Errors can
be categorized into Systemic and Random. Systemic errors have
non-zero mean and consistently shift the value away from the true
value. These can be attributed to sensor faults or false data injec-
tions. Random errors are errors that fluctuates about the true value
and can be attributed to noise and precision limitations of the sens-
ing device. For genuine sensor readings from dataset, we assume no



systemic error (i.e. no faults and false data injections) and model
the sensor measurement (ϕ) with the true value (γ ) and random
error (ϵ) as follows:

ϕ = γ + ϵ ,where ϵ ∼ N(0, σ 2) (1)
The only observable quantity is the sensor measurements, and

we are unable to observe the true values or errors. When systemic
errors are introduced (either through faults or false data injections),
the genuine sensormeasurements are obscured. For a reliable sensor
network, there is then a need to discern between genuine measure-
ments and measurements with systemic errors. In order to detect
false data by measurement inspections, there exist many anomalous
data detection techniques such as outlier detection and statistical
tests [12]. These techniques are unable to detect false data in the
event of collusion, however, this could be achieved by exploiting
relationships between observable sensor measurements.

2.1 Correlations between sensor data
Relationships between sensor measurements can be used to deter-
mine whether a particular sensor measurement is genuine. The
relationship between sensor measurements are called correlations
which can be derived on-line or modeled using historical data. In
the presence of anomalous data, the correlations between measure-
ments would be disrupted and through this observation we are able
to identify anomalous sensor data. In the data collected by WSNs,
the correlations of interest can be categorized into temporal, spatial
and attribute correlations [24].

2.1.1 Temporal Correlation. Temporal correlations arise from the
relationship of how a particular sensor’s measurement changes
with time. The changes of measurements with time are usually
constrained by the physical laws that governs these changes. Mea-
surements collected over a time-series that do not adhere to such
constraint suggest that there are disruptions to the temporal corre-
lations and potentially include maliciously injected data. Various
change-point detection algorithms can be used to detect changes in
time-series models, an example is the use of the CUSUM algorithm
that detects variations from the expected mean of the data across
time [4].

2.1.2 Spatial Correlation. Spatial correlations arise from the re-
lationship between sensor measurements across space at a given
point in time. At a fixed (interval) of time, the difference in sensor
measurements due to an event’s occurrence is the spatial correla-
tion of the sensors. One approach proposed for the detection of
false data injections in [13] assumes spatially homogeneous sensors
and using an expected distribution of the spatial measurements to
to detect anomalies.

2.1.3 Attribute Correlation. Attribute correlation explains how
different types of sensor measurements are inter-dependent, mod-
eling the relationships between different physical quantities in the
sensed environment (e.g. temperature and humidity). Attribute cor-
relations could be physical laws that explains how two physical
quantities relate to each other and change according to a domain of
analysis such as time or space. More complex attribute correlations
between sensor measurements can arise from composite analysis
of more than one correlation in the sensors’ data.

3 LEARNING CORRELATIONS
A collection of sensor data over a period of time is a time-series
signal. Analysis of time-series is a research area in which we can
find various techniques to extract information [11]. In our case, we
are interested in extracting relationships across various sensors that
could possibly measure different physical quantities (heterogeneous
sensor data) and we would like to extract correlations between two
signals by performing pairwise signal cross-correlation. Similari-
ties between signals can then be ascertained via cross-correlation
functions and the result can be used to quantify the relationship
between signals.

3.1 Cross Correlation Function
The cross correlation function (CCF) is defined as

Ry,x (k) = E[y(n)x(n + k)] =

n2∑
n1

y(n)x(n + k) (2)

where y(n) and x(n) are signals and and k is the amount of time
that signal x(n) is delayed with respect to y(n).

A more useful measure to work with is the normalized cross
correlation function (NCCF) which is defined as

ρy,x (k) =
Cy,x (k)

σyσx
= Cy,x (k)

1√
E(y)E(x)

(3)

where ρyx (k) has a value between -1 and 1 for negatively corre-
lated and positively correlated signals respectively and a value of 0
when the signals are uncorrelated [26].

3.2 Procedure for Cross-correlation Analysis
The following procedure outlines the steps required to estimate the
cross-correlation function between two signals.

(1) De-trending and Removal of Seasonality: Signals are ex-
amined for trends and seasonality. The measurements in
time series have seasonality removed and de-trended. Both
seasonality and trends can be removed by differencing of
measurements in the signal. For seasonality, by knowing
the seasonality component (i.e. recurring cyclic period), the
measurements can be differenced by the corresponding mea-
surement of a previous period.

x ′p (t) = xp (t) − xp−1(t) (4)

where p is the current period and p−1 is the previous period.
For trend removal in datasets with non-stationary mean, we
can perform first-order-differencing which is the difference
between the values at time t and t − 1:

x ′(t) = x(t) − x(t − 1) (5)
(2) Feature Normalization (for multi-variate signals): For

multi-variate signal analysis (i.e. analysis of time series with
measurements of different measurements), we perform fea-
ture normalization to standardize the scales of the signals
for analysis.

x ′t =
xt − x

σ
(6)



where t is time, x ′ is the new value, x is the raw value , x is
the signal mean and σ is the signal standard deviation.

(3) Alignment: Cross-correlations functions are computed for
various lags (delay of one signal with respect to the other)
and the dominant lag (if exists) that produces the greatest
correlation should be used to align the signals.

(4) De-noise: Generate residual signals (de-noised), if neces-
sary.

(5) Cross-correlation: Compute auto-correlation and cross-
correlation functions.

(6) Significance: Test the magnitude of correlation functions.
In amultiple sensor setting, performing pair-wise cross-correlation

analysis of N sensors, we would obtain an N × N matrix of cor-
relation. The diagonal of the matrix provides the auto-correlation
function.

3.3 Temporal Correlations
Pairwise cross-correlation is usually performed on the full signal to
determine the correlations between the entire signal wave. However,
our goal is to learn time variations of correlations between signals.

Our proposed approach to extract temporal variations in corre-
lations therefore involves the following two methods:

(1) IncreasingWindowCorrelation:Obtaining cross-correlations
of signals from start to the current time. This will provide
us with the information about long-time scale correlation
changes.

(2) SlidingWindowCorrelation:Obtaining cross-correlations
of signals within a fixed window time-frame that moves
across time. This will provide us with information on short-
time scale correlation changes.

The result of the above two methods is a time-series of cross-
correlation functions, which is how the correlation between two
signals changes with time. We are then able to achieve our goal to
analyze correlations in the temporal domain.

4 FALSE DATA INJECTION DETECTION
FRAMEWORK

In low-density sensor networks with heterogeneous data, we are
constrained by data density in the spatial and and attribute domains
at any single time snapshot. The use of correlations between sensor
measurements provides a form of information redundancy that we
can exploit. With limited data that are heterogeneous at any fixed
time, we propose combining temporal correlations and attribute
correlations as a time-series of changing attribute information to
increase the data density for analysis.

The proposed detection framework exploits disruptions in
temporal-attribute correlations when an attacker manipulates
the the sensor measurements in the subset of sensors under his/her
control. The detection is based on identifying changes in correla-
tions across various different sensor data types over a time period.The framework (Fig. 1) consists of a learning phase and the test-
ing phase. During the learning phase, we assume that the sensor
measurements are genuine and faultless, where we learn the sig-
nal statistics (signal mean and variance) and signal correlations
under this "normal state". The learnt correlation metrics are then
used to build a distribution to perform statistical anomaly detection.
With our built detection algorithm from the learnt distribution,
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Figure 1: Workflow of Proposed Detection Algorithm

the anomalous segments identified are tested against the statis-
tical anomaly detection algorithm and each of the sensors votes
on the degree of abnormality of the correlations within the time
segment. The votes are then aggregated to a final anomaly score for
classification of the segment. In the following sections, we explain
the implementation of the various components in the proposed
detection framework.

4.1 Pre-processing Signals
Before extracting time-series cross-correlations between the signals,
there is need for a pre-processing step for the following reasons:

(1) HeterogeneousData: The sensorsmeasures different phys-
ical parameters of the environment and hence, have signals
of different scales in magnitude and sampling frequency.
Therefore, there is a need to standardise the signals to uni-
form magnitude and time scale.

(2) Trends and Seasonality: The presence of trends and sea-
sonality results in non-stationary signals which may in-
troduce non-linearity. Consequently, the true signal cross-
correlations might not be obtained as the cross-correlation
function we adopt assumes linear systems. We employ dif-
ferencing methods on the time-series sensor measurements
to remove trends and seasonality.

(3) Noise: The presence of noise in the signals would corrupt
the informationwewould want to extract as the disturbances
introduced alter the true signal to varying extents. Noise in
signals can be reduced through application of filters and
de-noising techniques.

4.2 Extracting Time-series Correlations
We are not only interested in how the full signal waveforms are
correlated, but also in the temporal characteristics such as how
the correlations between signals changes with time. With a time-
series of correlations, we are able to detect temporal changes in
cross-correlations that suggests a possibility of an attack. In order
to extract the temporal changes in correlations, we perform both
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Figure 3: Learning signal cross-correlations distribution un-
der genuine sensor measurements

sliding window and increasing window sampling to extract short-
term and long-term correlation changes in the signal respectively.

With every iteration of the increasing-window or sliding-window
correlation extraction, we obtain anN×N matrix of cross-correlations.
At the end of iterating through the training set, wewill getT (N×N )

matrices, whereT is the length of the training set and N is the num-
ber of sensors in the network. We then construct time-series of
each element in the N × N matrix from t = 0 to t = T . (See Fig. 2)
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Figure 2: Extracting Time-series of signal cross-correlations

4.3 Variations in Temporal Correlations
After obtaining time-series of signals cross-correlations, we use a
change-point detection algorithm on these time-series to identify
abrupt changes in the cross-correlations, indicating a possibility of
an attack. Change point detection allows us to identify when the
distribution of the correlation changes. They can be tuned to trade
off accuracy for sensitivity in identification of the change point.

We adopted the use of CUSUM algorithm to detect changes in the
time-series cross-correlations obtained as it was found to produce
best trade-off between accuracy and computational complexity
[3], and is also widely adopted in attack detection algorithms. The
change-points detected for each cross-correlated signal were then
sequentially picked out in pairs to form time segments with in-
consistent correlations for further analysis (we call these segments
"inconsistent segments"). Aminimum run-length for the time
segment was set to prevent extremely short segments that would
result in high uncertainty in the cross-correlation obtained. The
minimum run-length is a parameter to be tuned to a desired sensi-
tivity.

This procedure of extracting "inconsistent segments" was applied
to both training and testing phases. For training phase, these seg-
ments were used to learn variations in correlations under "normal
state". During testing phase, the segments were used for anomaly
detection to identify attacks.
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Figure 4: Obtaining anomaly score for each "inconsistent
segment" identified for every sensor signal

4.4 Learning "Normal" Temporal Correlations
We use the set of "inconsistent segments" extracted from the train-
ing data set (sensor measurements free frommalicious data) to learn
the natural distribution of variations in the cross-correlations of
sensor measurements under genuine conditions (Fig. 3). These vari-
ations of pairwise cross-correlation are assumed to be independent
and identically distributed, which is reasonable as these variations
in correlations are expected to be caused by external independent
events. Therefore, we can fit correlation distribution of Cn,n from
the "inconsistent segments" into a Normal Distribution.

Cn,n ∼ N(µn,n , σ
2
n,n ) ∀n ∈ {1, 2, ...,N }

The set of normal distributions are characterized by the mean
µn,n and standard deviation σ 2

n,n which we can store in an (N ×N )

matrix each. The normal distribution allows us to perform statisti-
cal outlier anomaly detection by testing observations against the
distribution to obtain an anomaly score (i.e. Probability of Anomaly).

4.5 Testing Phase - Anomaly Detection
During testing, after identifying "inconsistent segments" for each
sensor, we proceed to extract pairwise cross-correlations with all
the other sensors. A statistical outlier test by calculating the Z-
score of the observed correlation using the Cumulative Distribution
Function to obtain an anomaly score (Fig. 4).

4.5.1 Voting on Anomaly Score. For each time segment, therewould
be N − 1 anomaly scores (pair-wise cross-correlation , ASn,i (ts , te ))
reported by each of the other sensor on the extent of observed
correlation being an outlier from learnt correlation distribution.

The final anomaly scores attributed to the particular time seg-
ment can be obtained by aggregating the individual anomaly scores
by majority voting. The following weighting scheme provides equal
weighting to all anomaly scores obtained for sensor n between time
ts and te :

ASn (ts , te ) =
N∑
i

ASn,i (ts , te )

N − 1
∀i ∈ {1, 2, ...,N }, i , n (7)

Similar to the work in [16], where majority voting was used to
aggregate sensor value prediction for comparison against reported
sensor measurement to detect anomaly, we used majority voting to
aggregate anomaly scores instead. Aggregation of anomaly scores



would allow us to use information from all sensors in the network
to rate the authenticity of the sensor data based on their correlation.

4.5.2 Temporal Anomaly Score. With a time period associated with
the aggregated anomaly score, we are able to rationalize how the
anomaly score changes with time by building a time-series of anom-
aly score for each sensor. For overlapping segments, the anomaly
score for the overlap region is averaged. Having a time-series of
anomaly scores provides resolution in time on the variation of
anomaly score which would be helpful in determining the time of
attack (if any).

4.5.3 Decision Threshold. A decision threshold value was used
to trigger an alert for anomalous data when the time-variation of
anomaly score for a particular sensor crosses a threshold value for
more than a continuous run-length of n time samples, where n is
the minimal run-length of extracted segments.

The decision threshold value is obtained by taking the anomaly
score that separates the top x% of anomaly score obtained from
running the anomaly detection on the training set sensor measure-
ments (where x is a tuning parameter for the model). Since the
training set data is assumed to be free from malicious data, the
anomaly scores obtained from the data is the result of model uncer-
tainty. Any anomaly score value that is greater than (100−x)% of the
anomaly score from genuine data would be used as a sentencing cri-
teria for detection trigger. This method of setting a threshold would
be more robust to noise from the learnt correlation as compared to
a threshold set at 50%, typically used for majority voting.

4.6 Summary
In all, the proposed detection algorithm first extract pairwise tem-
poral cross-correlations over all the sensors. It then learns the dis-
tribution of the variations of correlations under the "normal state"
without attack. During testing, the segments with inconsistent cor-
relations are similarly extracted and inspected against all the learnt
pairwise correlation distribution to obtain anomaly scores. The
anomaly scores are then aggregated using majority voting, the final
score that crosses above the threshold value indicates an attack.

5 ADVERSARIAL MODELING
Given the lack of adversarial data sets and the need to test anomaly
detection algorithms, an adversarial model was proposed to con-
struct attack strategies. The attack strategies were subsequently
used to generate adversarial data set from the genuine sensor data,
which allowed us to test the detection algorithm and evaluate its
performance against attacks of varying complexity.

The goal of an attacker in the context of false data injections is
to elicit or mask events without triggering detection. Sensor data
used for event detection can be manipulated by the attacker in
order to either spoof events or mask events. These attacks can be
easily achieved without any anomaly detection algorithm, however
in the presence of an anomaly detection, collusion attacks where
more than one sensor measurements are tampered with to report
coordinated and coherent measurements can subvert these anomaly
detection algorithms.

5.1 Assumptions on the attacker
Our assumptions for the attacker’s resources and knowledge follow
closely with those described by Illiano [12]. The assumptions made
are the following:

(1) No time constraints to conduct attacks.
Having time constraints on attacks could possibly have ad-
verse impact on the quality of attacks conducted. Complex
attack strategies (such as those that exploit historical data
or requires chaining of multiple software / infrastructure
vulnerabilities) usually takes time, having time constraints
would severely affect an attacker’s capabilities to conduct
attacks. As such, we assume that the attacker has no time
constraints in strategising and conducting an effective attack
that maximizes the damage while staying undetected.

(2) Complete knowledge and access to historicalmeasure-
ments of all sensors.
Anomaly detection algorithms usually distinguish false data
from genuine ones by comparing the data against past be-
haviour of the system and its coherence with the other sensor
measurements. The assumption of complete access to all his-
torical measurements means that the attacker would have
access to the same data as the anomaly detection algorithms.
With this assumption, the attackers are not disadvantaged
and would be able to build attack signals that are coherent
where reported measurements support each other in a bid
to fool the anomaly detection algorithms.

(3) Has control of a subset of sensors in the network
The assumption that the attacker has full control of a sub-
set of sensors of his/her choice according to the attacker’s
strategy and is able to control the reported measurements of
these sensors. This means that the attacker has the ability to
conduct complex attacks across multiple sensors to collude
against the detection algorithm by reporting coherent sensor
measurements.

In all, the assumptions made about the attacker would provide
us with the worst-case attacker scenario where the attacker has full
capabilities and resources to conduct complex false data injection
attacks in any subset of sensors in network to subvert detection.

5.2 Multi-sensor Attacks
An attack on a single sensor would be easy to detect as it would
not be reporting measurements that are coherent with other sen-
sors. The discrepancies between the reported measurement by a
compromised sensor with other sensor measurements would be
more apparent with the presence of strongly correlated signals. In
order for the attacker to conduct a more convincing attack, signals
that are correlated should have coordinated changes and report
coherent values accordingly to their strength of correlation.

With access to historical and current sensor measurements, the
attacker would be able to obtain knowledge of the sensor behaviors
which would be helpful to orchestrate an attack where sensors
report coherent measurements that aims to subvert the detection
algorithm. The knowledge can be used to construct attack signals
off-line, and the prepared sensor measurements were then used to
replace online genuine sensor measurements.
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Figure 5: Naive Attacker’s Assumption of Signals Cross-
correlations

5.3 Learning Signal Cross-correlations
With historical sensor measurements of all the sensors in the net-
work, the attacker is able to obtain information of how various
sensor measurements correlate with each other over time. The at-
tacker learns theNormalized Cross-correlation Function of the sensor
historical data which provides a useful measure of relative signal
correlation strength in order to construct correlated attack signals
for collusion attacks.

5.4 Signal Construction
Correlated signals x and y can be constructed using learnt cross-
correlation from the parent node (signal y) by reversing the order
of normalizing, de-trending and/or seaonality removal :

xn (t) = yn (t) ×Cy,x to construct normalized signal (8)

x ′(t) = xn (t) × σ + x to reverse normalization (9)
x(t) = x ′(t) + x ′(t − 1) to reverse first-order differencing (10)

xp (t) = x ′p (t) + x
′
p−1(t) to reverse trend removal (11)

With a target attack signal (complete signal to achieve attacker’s
goal), the attacker is able to use the above procedure to construct a
suite of attack signals in the sensor network that correlates with
the target signal.

5.5 Naive Correlated Attack
For collusion attacks, the attacker has to a chose a subset of sensors
to manipulate in order to spoof coherent sensor measurements with
the target sensor. The choice of subset of signals to spoof is the
strategy of the attacker and there are various approaches that the
attacker can use to guide its choice.

5.5.1 Naive Assumption. This approach assumes that all other sig-
nals are correlated to the target signal and are independent from
one another, disregarding any inter-dependencies between the non-
target signals (Figure 5(a)). The attacker would focus on construc-
tion of attack sensor measurements based solely on the sensor’s
correlation strength to the target sensor, neglecting any other cross-
sensor correlations.

5.5.2 Using Naive Assumption to Guide Attack Strategy. A possible
strategy the attacker can employ is to choose accomplice sensor(s)
in priority of descending pairwise cross-correlation strengths and
manipulate the subset of sensor measurements to construct a suite
of coherent attack signals.
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Figure 6: Example of Naive Assumption

S2
(attack
Signal)

S1 S3 S4 S5

Naive 1 0.9 1 ∗ 0.4 = 0.4 0.75 0.86
Naive with
C1,3
ignoring C2,3

1 0.9 (1 ∗ 0.9) ∗ 0.7 = 0.63 0.75 0.86

Table 1: Example of updating sensor values based on corre-
lations considered

5.5.3 Disadvantages of Naive Approach. Cross-correlation func-
tions provides a measure of the linear relationship between two
signals. The naive approach describes how the target signal is re-
lated to the other signals in the network. The naive approach can be
extended to all the signals in the network to obtain a complete graph
that provides the inter-dependencies of all signals in the network
(Fig. 5(b)).

The naive approach approximation of the signal relationship in
a network works well when all the correlations to the target signal
are the maximal for the associated sensor. However, when the cor-
relations to the target signal are dominated by correlations between
other sensors, this approach to approximate the relationship fails.

As we are considering normalized cross-correlations, the values of
Cx,y are bounded such that −1 ≤ Cx,y ≤ 1. Thus as we travel along
any path starting from any vertice, the magnitude of the propagated
correlation can only remain the same or decrease. Therefore, it
would be theoretically ideal to use the naive attacker assumption if
all correlations with the target signal are of comparable magnitude
as any other paths from the would decrease the correlation.

In the toy example above (Fig. 6, Table 1), we choose the two
accomplice sensors to be S1 and S3. The correlation between target
signal S2 and signal S3 is low with value C2,3 = 0.4 and hence, the
update to the value of S3 will be proportionally low. The Naive
Attacker Assumption does not take into account dependencies
between other signals, disregarding the correlationC1,3. As shown,
we would expect the updated value of S3 from path S2 − S1 − S3 to
be larger than an update directly from S2 via S2 − S3. This could
possibly be detected as an anomaly in the correlation between
signals S1 and S3.



In all, the Naive Assumption may work well under some circum-
stances, but to devise a more effective attack strategy, the attacker
would require a better representation of the signal correlations.

5.6 Using MWST to Orchestrate Attacks
The modeling of linear relationships can also be extended to other
nodes in the network, resulting in a complete graph where edges
are weighted by their pair-wise signal cross-correlations.

While we strive to use all the inter-signal dependencies, consider-
ing all the signal cross-correlations (Fig. 5(b)) results in a complete
graph and any changes we decide to perform on the target attack
node and corresponding updates to the other nodes would result
in loopy propagation due to cyclic paths. Some of the problems in
loopy propagation are: 1) Failure to converge or convergence errors
2) Cycling errors where new information is treated as old informa-
tion [5]. While there are techniques for exact inference from loopy
propagation, these are usually computationally expensive.

Hence, we propose to use a Maximally Weighted Spanning
Tree (MWST) to approximate the signal dependencies in terms
of the strength of their cross-correlations (Fig. 7). A maximally
weighted spanning tree is a subgraph in the complete graph where
minimal number of edges are used to connect the edges and the sum
of the total edge-weights is maximal. The use of MWST is a good
trade-off between model accuracy and computational efficiency
as the tree structure averts the problem of message propagation
found in cyclic graphs and provides a model that maximizes the
total correlations strength in the network.

Constructing the maximally weighted spanning tree is a greedy
algorithm (Prim and Kruskal [19, 23]) that ensure that vertices
are connected such that the sum of the total correlations of in
the network is the maximal. The MWST can be used to guide the
attacker on which nodes to compromise and the order with which
the nodes should be updated accordingly against the reference
sensor node’s measurements. We can derive a hierarchical structure
when the attack target is chosen as the root node of tree, and
traversing down the tree provides a sequence to update the children
nodes. The tree structure can also be utilized by the attacker to
perform attack cost analysis, where the cost is the number of sensor
nodes to compromise. With the MWST and the attack signal chosen
as the root node, the updating of the values is simply traversing
down the tree and updating the nodes based on the edge values
(i.e. cross-correlation strength). The attacker is able to construct
a full set of attack signals where the target attack signal is first
constructed and the other signals are sequentially updated.
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Figure 7: Full Cross-correlation to a MWST

5.7 Using MWST for Optimising Attacks
With the tree-structure, the attacker is able to visualise the rela-
tionship of signals in terms of strength of cross-correlations. There
exists two extreme cases when:

(1) All signals are not correlated. This would result in a span-
ning forest where all the nodes in the graph are not con-
nected. For an attacker, this is the ideal case where changes
in any single signal would not have any correlated effects.

(2) All signals are equally correlated. For the assumedworst-
case attacker where the attacker is able to control the full set
of sensor signals, this would not pose a problem. However,
if the attacker has constraints on the subset of sensor he/she
controls, the attacker would not be able to build a complete
set of coherent signals and risk detection.

5.7.1 Optimising Cost of Attack: Lowest Cost of Attack. The MWST
of sensor cross-correlation strengths can be used by attackers to
determine vulnerable sensor nodes. We define vulnerable sensor
nodes as sensors whose signal is weakly correlated to the other
rest of the sensor signals, relative to the sensitivity of the corre-
lation detection algorithm (i.e. the correlations of the vulnerable
sensor nodes with the other sensors are too weak to provide useful
information to the detection algorithm).

The following is a proposed procedure to search for the minimal
subset of sensors to compromise to minimize cost:

(1) Begin from the singly connected node with the smallest edge
weight (root node: target sensor whose attack signal will be
the reference for accomplice signals)

(2) Traverse down the tree along the path of largest edgeweights.
This will ensure that we use sensor measurements that are
the most correlated.

(3) Terminate when the detection algorithm fails to detect the
attacks.

(4) The nodes visited will form the subset of nodes to compro-
mise that minimizes attack cost based on the MWST.

5.7.2 Optimising Cost of Attack Cost: Tree Pruning. An attacker
can also consider removing edges from MWST for the following
scenarios: 1) the original tree is large (in high-density sensor en-
vironment) and becomes computationally expensive to update all
nodes or 2) attacker does not have full control over the network
and wishes to exclude the uncontrolled nodes. The result will be a
spanning forest with trees that are not connected to the root node
(chosen target attack signal) and nodes in these trees would not be
updated. However, the attacker has to consider the detection risk
trade-off when pruning the tree.

6 EXPERIMENTAL SETUP
We applied the detection framework on the PhysioNet MIMIC
221n (Medical Information Mart for Intensive Care) Dataset, an
intensive care clinical dataset which contains various vital-signs
measurements of patients [22]. This dataset was chosen for its multi-
variate parameters and low sensor density limitations to evaluate
the effectiveness of our proposed framework under such settings.



6.1 Event Alarms
Threshold alarm values were referenced from medical literature [8,
17, 28] research in healthcare monitoring for patients in ICUs. The
threshold alarm values used for the respective health parameters
are summarized in Table 2.

Sensor Parameter Lower Threshold Upper Threshold
ABPmean (ABPm) 195 mmHg 60 mmHg
ABPsystolic (ABPs) 195 mmHg 90 mmHg
ABPdiastolic (ABPd) 110 mmHg 0 mmHg
HeartRate (HR) 120 Bpm 50 Bpm
PulseRate (PR) 120 Bpm 50 Bpm
RespiratoryRate (RESP) 28 Bpm 8 Bpm
Oxyдenation (SPO2) 100 % 90 %

Table 2: ThresholdAlarm for Parameters inHealthcareMon-
itoring Dataset. ABP is "Arterial Blood Pressure", Bpm for
heart rate and pulse rate is "Beats per minute" and Bpm for
respiratory rate is "Breaths per minute"

6.2 Model Parameters
The model parameters used for the Healthcare Monitoring Dataset
were summarized in the Table 3. These parameters were obtained
by manual grid search to achieve the required detection sensitivity.

Parameters Value
Sliding Window Size 35s
CUSUMWindow for
sliding window correlations 30s

CUSUMWindow for
increasing window correlations 15s

Minimum Run Length 20s
Decision Threshold (x) 10%

Table 3: Model Parameters for detection algorithm used on
Healthcare Monitoring Dataset

7 EVALUATION AND ANALYSIS
The MWST for the dataset was constructed using the attacker’s
learnt signal cross-correlations which were subsequently used to
devise attack strategies to perform evaluation and analysis of the
proposed detection framework.

From the MWST constructed (Fig. 8), we identified that the sen-
sor that measures the parameter ABPd having the most children,
suggesting that it would be the most difficult to attack. Hence, we
performed our analysis of the detection framework by conducting
various attack strategies with ABPd as the target signal to spoof.
In addition, we also performed the lowest cost of attack analysis
and conducted attacks on sensor nodes that are vulnerable. We
observed that there are 3 singly connected nodes in the MWST
namely: ABPs, RESP and PR. However, the edge weights for ABPs
and RESP are relatively high in the context of the whole network,
hence we would conduct attacks on HR to determine the smallest
subset of nodes to compromise.

ABPm

ABPs ABPd

RESP

SPO2 PR HR 

0.959 0.896

-0.083

0.214

0.396 0.0272

Figure 8: MWST for correlations of sensors

7.1 Attack on Single Sensor : ABPd
As the sensor that measures ABPd was identified using the MWST
as the most robust to attacks, we have chosen to conduct analysis
of our detection framework with various attack strategies (Single
Sensor and Collusion Attacks). The performance of our detection
framework would be evaluated based on how well it is able to de-
tect various complexity of attacks by systematically increasing the
number of accomplice sensors that spoof coherent measurements.

We first investigated how the detection algorithm performs un-
der the scenario where only the target sensor measurements (mea-
surements of ABPd) are manipulated. We perform a linear slow
increase of sensor measurements to exceed the threshold of 110
mmHg from t = 400s (boiling frog attack [6]). Figure 9 shows the
sensor measurements of the patient’s vital signs for 2000s and the
attack signal is in the first row where measurements were manip-
ulated to cross the upper threshold values. All other signals are
genuine sensor measurements.

The proposed detection algorithm was able to accurately de-
tect malicious data injection on a single sensor without collusion
(Fig. 10; row 1 anomaly score crosses threshold). A separate experi-
ment using the CUSUM algorithm was performed to detect abrupt
changes in the sensor measurements, however, no anomalies were
detected as the manipulated sensor measurement was incremented
slowly to subvert detection.

We can conclude that the proposed detection algorithm is mini-
mally able to detect false data injection in a single sensor without
collusion in an attack scenario where the attacker avoids anomaly
based detection. In addition it showed that the proposed detection
algorithm is superior compared to the CUSUM anomaly detection
method that performs sensor measurements inspection.

7.2 Collusion Attack: ABPd & ABPm
From the MWST (Fig. 8), with ABPd as the root node, the child
node that has the highest cross-correlation is ABPm, suggesting that
performing an attack on this sensor would be the next logical step
as a more strongly correlated signal would be expected to behave
more similarly to the target signal. If a weakly correlated signal
is chosen to be the accomplice, other strongly correlated signals
would be able to detect the anomaly. With ABPm chosen as an
accomplice signal, the attack signal for ABPmwas constructed using
the attacker’s learnt cross-correlation and the proposed procedure.
Figure 11 shows the sensor signals with the signals manipulated in
rows 1 and 2 respectively for ABPd and ABPm.

The detection algorithm managed to detect the attacks on both
ABPd and ABPm, although the detection time for both sensors was



longer and the attack period detected was considerably shorter than
the actual attack. We noticed that the time-series anomaly scores
during the period of attack were threading close to the threshold but
seldom crossed it to raise alarms. This could possibly be due to the
robustness of the learnt correlations and sensitivity of the detection
algorithm (threshold level). In addition to the two manipulated
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Figure 9: Sensor Measurements withmalicious data injected
for sensor ABPd (row 1) to increase sensor measurements
above its upper threshold level marked by the red line. At-
tack start time (t = 400s) is marked by magenta vertical dot-
ted line.
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Figure 10: Anomaly score (AS) of ABPd (row 1) is above the
threshold value after the start of attack, indicating that the
attackwas detected. AS crossed the threshold slightly before
attack as it was a look-ahead sliding window.
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Figure 11: Sensor Measurements with malicious data in-
jected for sensor ABPd (row 1) to increase measurements to
cross the upper threshold and ABPm (row 2) measurements
updated to reflect its correlation to ABPd. Attack start time
(t = 400s) is marked by magenta vertical dotted line.
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Figure 12: Anomaly scores of ABPd and ABPm (rows 1 and
2) both crosses the threshold at around t = 900s

signals, the detection algorithm also raised alarms for anomalies
in ABPs, HR and RESP. The false positives can be attributed to the
effect of collusion during the voting. Every sensor would have 6
sensors voting on the anomaly score, thus with 2 compromised
sensors, the voting would be skewed.



7.3 Collusion Attacks : ABPd, ABPm & ABPs
With the attacker’s failure to subvert detection with an additional
compromised sensor, the MWST was used to determine the next
node to compromise. By traversing down the tree and choosing
the next node with the highest edge weight as the next accomplice
sensor to work in concert and fool the detection algorithm. The
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Figure 13: Anomaly Score (AS) for attack on single sensor
node: HR (row 4). AS crosses the threshold at t = 1700s, in-
dicating a delayed detection. Attack start time (t = 400s) is
marked by magenta vertical dotted line.
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Figure 14: Anomaly Score (AS) for attack on sensor nodes:
HR & PR (rows 3 & 4). AS did not cross threshold value for a
time longer than Minimum Run Length, indicating that the
detection algorithm failed to detect the attacks. Attack start
time (t = 400s) is marked by magenta vertical dotted line.

three sensors used in this attack were: ABPd, ABPm and ABPs. It
was found that with two additional compromised sensors providing
supporting spoofed measurements, a total of 3 out of 7 sensors
compromised was sufficient to spoof an event while subverting
detection from our proposed algorithm. This result was expected
as under equal weighting for majority vote where the correlations
of signals are perfect (no noise in signals), the ideal majority of 50%
(i.e. 3.5 sensors out of 6) would be required to "flip" the classifica-
tion. This highlights one of the shortcomings of the approach of
using majority voting as an aggregation technique. The detection
performance was comparable to that of [16]’s work on the same
data set.

7.4 Lowest Cost of Attack
With the sensor node HR identified as the node with the smallest
correlation strength, a single sensor attack was conducted by ma-
nipulating the sensor measurements to spoof an event by crossing
the upper threshold.

It was observed that attacking the single node HR (row 4 in Fig.
13) was insufficient to subvert detection, although the detection
time was severely delayed, crossing the threshold at (t = 1700s).
The detection algorithm identified that the reported sensor measure-
ments of Pulse Rate were anomalous, possibly due to disagreements
of sensors (with 1 out of 6 sensors compromised) during the voting
for aggregated anomaly score.

With the failure to subvert detection by just attacking a single
sensor node, we proceed to traverse down the tree on the path
of the largest edge weight (maximal correlation strength). With
HR as the root node, it only has one child (PR) which was used as
the accomplice sensor node for the next iteration of attack. It was
observed from the temporal anomaly scores (Fig. 14, rows 3 and 4
were below the threshold red dotted line), the detection algorithm
failed to detect attacks on both HR and PR sensors.

With only one compromised sensor, the attacker was unable
to hide from detection. Using the proposed graphical procedure
to determine the lowest cost of attack, the next additional sensor
node to compromise was identified. The use of the lowest cost of
attack procedure based on the graphical method was effective as
only a single extra sensor node was required to be compromised
as compared to the theoretical value of 2 more nodes to achieve a
majority to spoof the detection algorithm.

7.5 Performance Evaluation
A study of the performance of the preliminary detection model
obtained by manual search of model parameters yielded reason-
able results with fairly high false positive rates. Future work could
be done to tune the model, which we believe would improve the
performance.

In all, the detection framework was relatively effective in detect-
ing collusion attacks with the best performance in a single sensor
scenario (no collusion) andwith increasing number of colluding sen-
sors, we observe degrading performance (i.e. accuracy in detection
and identifying attack time).

8 CONCLUSION AND FUTUREWORK
Detecting false data injections in low-density WSNs is essential
for ensuring data integrity, especially with its increasing adoption



in many critical applications such as healthcare and infrastructure
monitoring. In low-density environments with heterogeneous sen-
sor measurements, detection is a challenge due to the limitations
in useful information that can be extracted. Moreover, presence of
collusion where attacker injects coherent sensor measurements in
more than one sensor exacerbates the problem.

We have proposed a detection framework that exploits anomalies
in temporal-attribute correlations between sensor measurements
to detect false data. This approach is effective in identifying attacks
where more than one sensor colludes to report coherent measure-
ments. However, with increasing number of colluding sensors, the
detection performance degrades and is limited to half the number of
total sensors due to the use of majority voting to aggregate anomaly
scores. With majority of the sensors colluding, the detection fails as
the sensor measurements which are spoofed are the majority and
would be classified as genuine data. Hence, there is merit to further
research in collusion-tolerant anomaly score aggregation. Future
work on the detection framework could also look into optimizing
the framework by exploring use of other anomaly detection tech-
niques (i.e. clustering-based anomaly detection) as well as applying
this framework on other combinations of correlation domains (i.e.
temporal-spatial correlations) for other deployment settings.

With a need to test the proposed detection algorithm and a lack
of adversarial data, we presented an adversarial model to devise
strategies and generate attack data. The adversarial model utilizes
a graphical based representation to devise attack strategies that
guide the attacker’s choice of subset of sensors to compromise for
collusion against the detection algorithm. A maximally weighted
spanning tree was constructed from pairwise cross-correlation
strengths across all the sensor measurements. A procedure to de-
termine the lowest cost of attack, which is the smallest subset of
sensors to compromise to subvert detection by collusion, was pro-
posed and tested. The procedure produced a strategy that required
only a single additional sensor to be compromised, which was lesser
than the maximal number of sensors to required be compromised.
The maximum number of sensors to compromised was derived
from the sensor identified using the graphical model as the most
difficult to spoof (therefore requiring the most number of colluding
sensors). In all, the adversarial model was effective in producing
targeted strategies to build collusion attacks based on sensor data
correlations, it also proves to be a useful in performing threat as-
sessment for a sensor network in context of correlation-based data
integrity attacks.
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