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This paper proposes a multi-hive multi-objective bee algorithm (M2OBA) for optimal power flow (OPF) in
power systems. The proposed M2OBA extend original artificial bee colony (ABC) algorithm to
multi-objective and cooperative mode by combining external archive, comprehensive learning, greedy
selection, crowding distance, and cooperative search strategy. Our algorithm uses the concept of Pareto
dominance and comprehensive learning mechanism to determine the flight direction of a bee and main-
tains nondominated solution vectors in external archive based on greedy selection and crowing distance
strategies. With cooperative search approaches, the single population ABC has been extended to interact-
ing multi-hive model by constructing colony-level interaction topology and information exchange strat-
egies. With six mathematical benchmark functions, M2OBA is proved to have significantly better
performance than three successful multi-objective optimizers, namely the fast non-dominated sorting
genetic algorithm (NSGA-II), the multi-objective particle swarm optimizer (MOPSO), and the multi-objec-
tive ABC (MOABC), for solving complex multi-objective optimization problems. M2OBA is then used for
solving the real-world OPF problem that considers the cost, loss, and emission impacts as the objective
functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algo-
rithm. The simulation results, which are also compared to NSGA-II, MOPSO, and MOABC, are presented
to illustrate the effectiveness and robustness of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

In many real-world optimization applications, the decision
maker (DM) is always faced with the multiple noncommensurable
and often competing objectives [1–3]. The solutions to these multi-
objective optimization (MO) problems often result from both the
optimization and decision making process. Such as in real-world
power system operation and planning, many system operators
need to make decisions with respect to different objectives [4]. In
power system control, optimal power flow (OPF) is one of most
important MO issues, which in order to find the optimal adjust-
ments of the control variables to minimize the selected objective
function while satisfying various physical and operational con-
straints imposed by equipment and network limitations [5–7].

Many mathematical models and conventional techniques, such
as gradient-based optimization algorithms, linear programming,
interior point method, and Newton method, have been applied to
solve the OPF problem [8,9]. However, these methods suffer from
severe limitations in handling non-linear, discrete–continuous
functions, and complex constraints [10]. In order to overcome the
limitations of classical optimization techniques, a wide variety of
the heuristic methods have been proposed to solve OPF, such as ge-
netic algorithm (GA) [11,12], simulated annealing (SA) [13,14],
tabu search (TS) [15], differential evolution (DE) algorithm
[16,17], harmony search (HS) algorithm [18], and biogeography
based optimization (BBO) [19,20]. The reported results are promis-
ing and encouraging for further research in this field [7]. However,
all the mentioned mathematical techniques have some drawbacks
such as being trapped in local optima and they are only suitable for
considering a specific objective function in the OPF problem [21].

Swarm intelligence (SI) is an innovative artificial intelligence
technique for solving complex optimization problems. This disci-
pline is inspired by the collective behaviors of social animals such
as fish schools, bird flocks, ant colonies, and bee swarms. In recent
years, many algorithmic SI methods were designed to deal with
practical problems [22–25]. Among them, the artificial bee colony
(ABC) algorithm is a powerful search technique that drew inspira-
tion from the biological foraging behaviors observed in bee colony

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2014.02.017&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2014.02.017
mailto:perfect_chn@hotmail.com
http://dx.doi.org/10.1016/j.ijepes.2014.02.017
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


204 H. Chen et al. / Electrical Power and Energy Systems 60 (2014) 203–220
[26,27]. ABC is a population-based optimization tool, which has
been implemented and applied easily to solve multi-variable sin-
gle-objective problems. The main strength of ABC is its fast conver-
gence, which compares favorably with evolutionary algorithms
(EAs) and other global optimization algorithms [27]. Although
ABC is relatively new, its relative simplicity and population-based
feature have made it a high competitor in solving the MO prob-
lems. Several existing multi-objective ABC (MOABC) algorithms
can be found in [28,29]. However, compare to the huge in-depth
studies of other EA and SI algorithms, such as nondominated sort-
ing genetic algorithm II (NSGAII) [30], strength Pareto evolutionary
algorithm (SPEA2) [31], and multi-objective particle swarm opti-
mization (MOPSO) [32], how to improve the diversity of swarm
or overcome the local convergence of MOABC is still a challenging
to the MO researchers.

The purpose of this paper is to develop a multi-hives bee colony
foraging algorithm for solving the multi-objective OPF (MOOPF)
problem. This proposed multi-hive multi-objective bee algorithm
called M2OBA extends the single population ABC to interacting
multi-hive model by combing multi-objective handling strategies
and hierarchical interaction topologies. The advantages of the pro-
posed multi-swarm/population model can be listed as: (1) it can
improve the population diversity; (2) it can fasten the convergence
speed; and (3) it is easy to cooperate in hybrid with another search
technique/strategy. By incorporating this new degree of complex-
ity, M2OBA can accommodate a considerable potential for solving
more complex MO problem. Here we provide some initial insights
into this potential by evaluating M2OBA on a set of mathematical
benchmark functions that including four two-objective problems
and two three-objective cases, which have been widely employed
by other researchers to evaluate their MO algorithms [33–36].

In this paper, the OPF problem is formulated as a multi-objec-
tive optimization model which consists of three important terms,
namely the total fuel cost, the total emission, and the total real
power loss. In addition, a fuzzy-based mechanism is employed to
extract the best compromise solution. The 30-bus IEEE test system
is presented to illustrate the efficiency of the proposed M2OBA
model on MOOPF problem. The simulation results, which are com-
pared to three successful multi-objective optimizers, namely the
NSGA-II, MOPSO, and MOABC, are presented to illustrate the effec-
tiveness and robustness of the proposed method.

The rest of the paper is organized as follows. ‘Principle of multi-
objective optimization’ gives relevant MO optimization concepts.
In ‘Optimal power flow problem formulation’, the mathematical
formulation of the multi-objective OPF problem is presented. ‘Mul-
ti-hive multi-objective bee algorithm’ gives the detailed descrip-
tion of the proposed M2OBA. In ‘Benchmark test’, it will be
shown that M2OBA outperforms the other three MO optimizers
on six widely-used benchmark functions. In ‘Multi-objective opti-
mal power flow based on M2OBA’, implementation of the M2OBA
for the OPF problem is presented. Simulation results and compar-
ison on OPF with other approaches are given in ‘Simulation results’.
Finally, ‘Conclusions’ outlines the conclusions.
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Fig. 1. The possible relations of solutions in objective space.
Principle of multi-objective optimization

A multi-objective optimization problem can be stated as fol-
lows: A general multi-objective optimization problem consists of
a number of objectives to be optimized simultaneously and is asso-
ciated with a number of equality and inequality constraints [37]. It
can be formulated as follows:

Minimize
x

FðxÞ ¼ ðf1ðxÞ; . . . ; fmðxÞÞ

Subject to :
giðxÞ ¼ 0; i ¼ 1;2; � � � ;p
hjðxÞ 6 0; j ¼ 1;2; � � � ; q

� ð1Þ
where x = (x1, . . . , xn) is called decision (variable) vector, X � Rn is
the decision (variable) space, Rm is the objective space, F: X ? Rm

consists of m (m P 2) real-valued objective functions, and p and q
is the number of equality constraints and inequality constraints
respectively.

For Eq. (1), let a = (a1, . . . ,am), b ¼ ðb1; . . . ; bmÞ 2 Rm be two vec-
tors, a is said to dominate b if ai 6 bi for all i = 1, . . . , m, and
a – b. A point x� 2 X is called Pareto optimal if there is no x 2 X
such that F(x) dominates F(x*). Pareto optimal solutions are also
called efficient, nondominated, and noninferior solutions. The set
of all the Pareto optimal solutions, denoted by PS, is called the Par-
eto set (Fig. 1). The set of all the Pareto objectives vectors, denoted
by PF ¼ fFðxÞ 2 Rmjx 2 PSg, is called the Pareto front [38] (Fig. 2).

Due to the inherent conflicting nature among the different
objectives to be optimized, it is still a challenging to solve the
MO optimization problems (MOPs). Fortunately, caused by the pio-
neering effort of [39], many well-known evolutionary algorithm
(EA) and swarm intelligence (SI) techniques for the MOPs have
been proposed with remarkable success [40–42].

Optimal power flow problem formulation

The purpose of the multi-objective OPF (MOOPF) problem is to
determine the optimal control variables for minimizing a number
of objective functions subject to a set of equality and inequality
constraints. The MOOPF problem can be formulated as:

Minimize
x

f iðx;uÞ i ¼ 1; . . . ;Nobj

Subject to : gðx;uÞ ¼ 0
hðx;uÞ 6 0

� ð2Þ

where fi is the ith objective function, Nobj is the number of objective
functions, g is a set of constrain equations, and h is a set of formu-
lated constrain in equations. x is the vector of dependent variables
such as the slack bus power PG1, the load bus voltage VL, generator
reactive power outputs QG, and the apparent power flow Sk. x can be
expressed as:

x ¼ ½PG1 ;VL1 ; . . . ;VLPQ
;Q G1

; . . . ;Q GNG
; SL1 ; . . . ; SLNL

� ð3Þ

where NPQ, NG and NL are the number of load buses, the number of
generator buses, and the number of transmission lines, respectively.

Here u is a set of the control variables such as the generator real
power output PG expect at the slack bus PG2, the generator voltages
VG, the transformer tap setting T, and the reactive power genera-
tions of var source QC. Therefore, u can be expressed as:

u ¼ ½PG2 ; . . . ; PGNG
;VG1 ; . . . ;VGNG

; T1; . . . ; TNT ;QC1
; . . . ;Q CNC

� ð4Þ
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Fig. 2. Illustrative example of Pareto optimality in objective space.
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where NT and NC are the number of regulating transformers and the
number of var compensators, respectively.

In this paper, the MOOPF problem is to minimize three compet-
ing objective functions, namely the fuel cost, emission, and real
power loss, while satisfying several equality and inequality
constraints. Generally the problem is formulated as follows.

Objective functions

Minimization of fuel cost
The generators cost curves are represented by quadratic func-

tions with sine components. The superimposed sine components
represent the rippling effects produced by the steam admission
valve openings [43]. The total $/h fuel cost of generating units con-
sidering the valve loading effects can be modeled as:

fcost ¼
XNG

i¼1

ai þ biPGi
þ ciP

2
Gi
þ di � sin ei � Pmin

Gi
� PGi

� �� ���� ��� ð5Þ

where ai, bi, ci, di, and ei are the cost coefficients of the ith generator,
and PGi

is the real power output of thermal unit i.

Minimization of emission
The total ton/h emission of the atmospheric pollutants such as

sulpher oxides SOx and nitrogen oxides NOx caused by fossil-fueled
thermal units can be expressed as [44]:

femission ¼
XNG

i¼1

ai þ biPGi
þ ciP

2
Gi

ð6Þ

where ai, bi, and ci are emission coefficients of the ith generating
unit.

Minimization of transmission loss
The power flow solution gives all bus voltage magnitudes and

angles. Then, the total MW active power loss in a transmission net-
work can be described as follows:

floss ¼
XNL

k¼1

gk V2
i þ V2

j � 2ViVj cosðdi � djÞ
� �

ð7Þ

where gk is the conductance of kth branch, Vi, Vj, di and dj are the
voltage magnitudes and phase angles of terminal buses of branch k.

Constraints

Equality constraints
The equality constraints are the nonlinear power flow equations

which are formulated as below:
0 ¼ PGi
� PDi

� Vi

XNB

j¼1

VjðGij cos hij þ Bij sin hijÞ ð8Þ
0 ¼ Q Gi
� Q Di

� Vi

XNB

j¼1

VjðGij sin hij � Bij cos hijÞ ð9Þ

where PGi
is the injected active power at bus i, PDi

is the demanded
active power at bus i, QGi

is the injected reactive power at bus i, QDi

is the demanded reactive power at bus i, Gij is the transfer conduc-
tance between bus i and j, Bij is the transfer susceptance between
bus i and j, hij is the voltage angle difference between bus i and j
and NB is the total number of buses.

The mechanism of handling the equality constraint related to
the equality of generation level with load level plus loss is that
whenever each output of generator is set to its maximum or min-
imum level the related velocity of the control vector for the next
iteration is declined. In this regard, a negative value is added to
the current velocity in order to change the direction of aforemen-
tioned element that is output power of the generator.
Inequality constraints
These constraints are the set of continuous and discrete con-

straints that represent the system operational and security limits
as follows:

Pmin
Gi
� PGi

� Pmax
Gi

i 2 NG

Q min
Gi
� Q Gi

� Qmax
Gi

i 2 NG

Vmin
Gi
� VGi

� Vmax
Gi

i 2 NG

Q min
Ci
� Q Ci

� Qmax
Ci

i 2 NC

Tmin
i � Ti � Tmax

i i 2 NT

Vmin
Li
� VLi

� Vmax
Li

i 2 NPQ

SLi
� Smax

Li
i 2 NL

ð10Þ

In this work, the penalty factor method is utilized for handling the
inequality constraints. In this regard, each control vector which vio-
lates constraints will be fined by these penalty factors. Therefore, in
the next step, this control vector will be deleted automatically.
Multi-hive multi-objective bee algorithm

The motivation

From Fig. 3 [27], we can understand the basic behavior charac-
teristics of bee colony foraging behaviors better. Assume that there
are two discovered food sources: A and B. At the very beginning, a
potential bee forager will start as unemployed bee. That bee will
have no knowledge about the food sources around the nest.

There are two possible options for such a bee:

i. It can be a scout and starts searching around the nest spon-
taneously for a food due to some internal motivation or pos-
sible external clue (‘S’ in Fig. 3).

ii. It can be a recruit after watching the waggle dances and
starts searching for a food source (‘R’ in Fig. 3).

After finding the food source, the bee utilizes its own capability
to memorize the location and then immediately starts exploiting it.
Hence, the bee will become an ‘‘employed forager’’. The foraging
bee takes a load of nectar from the source and returns to the hive,
unloading the nectar to a food store. After unloading the food, the
bee has the following options:
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Fig. 3. Behavior of honeybee foraging for nectar.

Table 1
Pseudocode for single hive algorithm.

1: cycle = 1
2: Initialize the food source positions (solutions)xi, i = 1 . . . SN
3: Evaluate the nectar amount (fitness fiti) of food sources
4: The initialized solutions are sorted based on nondomination
5: Store nondominated solutions in the external archive EA
6: repeat
7: Onlooker Bees’ Phase

For each onlooker bee
Randomly chooses a solution from EA
Produce new solution vi
Calculate the value fiti

Apply greedy selection mechanism in Table 3 to decide which solution
enters EA

EndFor
8: The solutions in the EA are sorted based on nondomination
9: Keep the nondomination solutions of them staying in the EA
10: If the number of nondominated solutions exceeds the allocated the size of

EA
Use crowding distance to remove the crowded members

11: cycle = cycle + 1.
12: until cycle = Maximum Cycle Number
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iii. It might become an uncommitted follower after abandoning
the food source (UF).

iv. It might dance and then recruit nest mates before returning
to the same food source (EF1).

v. It might continue to forage at the food source without
recruiting after bees (EF2).

As described in ‘Introduction’, the main objective of this paper is
to develop multi-objective optimization approaches based on
above bee colony foraging behaviors that improve the performance
without compromising the computational efficiency of the ABC
algorithm. Building on the success of preliminary work on bee for-
aging algorithms and multi-objective techniques, this work aims to
demonstrate convincingly that the multi-objective strategies and
multi-population cooperative mechanism are both effective strate-
gies and can be utilized to help scaling up the performance of bee
foraging algorithms for solving complex MO problems with high
dimensionality.

In the proposed model, several multi-objective strategies,
namely the external archive, comprehensive learning, greedy
selection, and crowding distance strategies are employed to evalu-
ate the fitness of the food source positions and select nondominat-
ed solutions. That is, all solutions in the external archive are
regarded as food source positions and all bees are regarded as on-
looker bees. Different from the original ABC algorithm, the pro-
posed M2OBA no longer exists employed bees and scout bees. At
the same time, M2OBA implements a hierarchical interaction
topology that consists of two levels (i.e. individual level and colony
level), in which information exchanges take place permanently.
That is, each artificial bee of the multi-hive model searches the
food source based on the information integration of its colony
members and its cooperative partners from other hives.

In the initialization phase, the ABC algorithm generates a ran-
domly distributed initial food source positions of SN solutions,
where SN denotes the size of employed bees or onlooker bees. Each
solution xi(i = 1, 2, . . . , SN) is a D-dimensional vector. Here, D is the
number of optimization parameters. And then evaluate each nectar
amount fiti. In ABC model, nectar amount is the solution value of
benchmark function or real-world problem.
The single hive algorithm

The generic steps of the single colony/hive algorithm are shown
in Table 1. The detail of all the key steps in Table 1 is elaborated in
the following sections.

External archive
As opposed to single-objective optimization, multi-objective EA

and SI techniques usually maintain a nondominated solutions set.
In multi-objective optimization, for the absence of preference
information, none of the solutions can be said to be better than
the others. Therefore, in the proposed algorithm, we use an exter-
nal archive to keep a historical record of the nondominated vectors
found along the search process [31,45].

In the initialization phase, the bee hive generates a randomly
distributed initial food source positions of SN solutions, namely
the size of onlooker bees. Each solution xi(i = 1, 2, . . . , SN) is a D-
dimensional vector. Here, D is the number of optimization param-
eters. After initializing the solutions and calculating the value of
every solution, they are sorted based on nondomination. We com-
pare each solution with every other solution in the population to
find which one is nondominated solution. We then put all non-
dominated solutions into external archive EA. The external archive
will be updated at each generation.

Comprehensive learning strategy
In order to ensure the diversity of population, the comprehen-

sive learning strategy [46] is embedded in M2OBA algorithm. In
our model, all solutions in the external archive are regarded as food
source positions and all bees are regarded as onlooker bees. In each
generation, each onlooker randomly chooses a food source from
external archive, and goes to the food source area, and then
chooses a new food source.

For each onlooker bee xi, it randomly chooses m dimensions and
learns from a nondominated solution which is randomly selected
from EA. The new solution is produced by using the following
expression:

v i;f ðmÞ ¼ xi;f ðmÞ þ /ðmÞðEAk;f ðmÞ � xi;f ðmÞÞ ð11Þ

where k 2 ð1;2; . . . ; pÞ is randomly chosen index, and p is the
number of solutions in the EA. f(m) is the first m integers of a ran-
dom permutation of the integers 1:n, and f(m) defines which xi’s
dimensions should learn from EAk. Here /(m) produce m random
numbers which are all between [0, 2]. And the m random numbers
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correspond to the m dimensions above. This mechanism makes the
potential search space around EAk. The potential search spaces on
one dimension are plotted as a line in Fig. 4.

The remaining each dimension in xi learns from the other
nondominated solutions by:

v ij ¼ xij þ /ijðEAlj � xijÞ ð12Þ

where l – k, j 2 ð1;2; . . . ; pÞ and j R f(m). That is, each bee xi

randomly chooses a dimension and learns from a nondominated
solution which is randomly selected from EA.
Greedy selection mechanism
In our algorithm, each individual will find a new solution in

each generation. If the new solution dominates the original indi-
vidual, then the new solution is allowed to enter the external
archive. On the other hand, if the new solution is dominated by
the original individual, then it is denied access to the external
archive. If the new solution and the original individual do not dom-
inate each other, then we randomly choose one of them to enter
the external archive. That is, after producing new solutions in each
generation, the greedy selection mechanism is applied to decide
which solution enters EA. The selection mechanism is shown in
Table 2.
Crowding distance
In the course of evolution, more and more new solutions enter

the external archive. Considering that each new solution will be
compared with every nondominated solution in the external
archive to decide whether this new solution should stay in the
archive, and the computational time is directly proportional to
the number of comparisons, the size of external archive must be
limited. In nondominated sorting phase of each generation, the
solutions in the EA are sorted based on nondomination and the
nondomination solutions are maintained in the EA. If the number
xij vij

EAkj

xij vij

EAkj

Fig. 4. Possible search regions per dimensions: 0 < /j < 1 (left); 1 < /j < 2 (right).

Table 2
Greedy selection mechanism.

1: If vi dominates xi

Put vi into EA
2: Else if xi dominates vi

Do nothing
3: Else if xi and vi are not dominated by each other

Put vi into EA
Produce a random number r drawn from a uniform distribution on the unit
interval

If r < 0.5
Then the original solution is replaced by the new solution as new food

source position.
I.e. xi is replaced by vi.

Else
Do nothing

EndIf
4: EndIf
of nondominated solutions exceeds the size of EA, the crowding
distance is used [30] to remove the crowded members.

Crowding distance is used to estimate the density of solutions
in the external archive. Usually, the perimeter of the cuboid formed
by the vertices (i.e. the nearest neighbors) is called crowding dis-
tance. In Fig. 5, the crowding distance of the ith solution is the
average side length of the cuboid (i.e. the dashed box in Fig. 5).

The crowding distance computation requires sorting the popu-
lation in the external archive according to each objective function
value in ascending order of magnitude. Then for each objective
function, the boundary solutions (solutions with smallest and larg-
est function values) are assigned an infinite distance value. All
other intermediate solutions are assigned a distance value equal
to the absolute normalized difference in the function values of
two adjacent solutions. This calculation is continued with other
objective functions. The overall crowding-distance value is calcu-
lated as the sum of individual distance values corresponding to
each objective and each objective function is normalized before
calculating the crowding distance.

Multiple hive cooperative mechanism

Original bee foraging algorithms use the analogy of a single-
species population and the suitable definition of the artificial bee
foraging behaviors reflect the social evolution in the population.
However, the situation in nature is much more complex than what
this simple metaphor seems to suggest. Indeed, in biological popu-
lations there is a continuous interplay between individuals of the
same colony (or species), and also interaction and cooperation of
various kinds with other colonies (or species) [47].

Recent advances in EA and SI show that the introduction of eco-
logical models and cooperative architectures are effective methods
to broaden the use of traditional EA and SI algorithms [48–52]. In
particular, multiple population cooperative techniques provide an
effective means of handling large and complex problems via a di-
vide-and-conquer strategy. Hence, this work combines the hierar-
chical multi-hive interaction topology and an according
information transfer strategy into the proposed multi-objective
optimizer. With the hierarchical interaction topology, a suitable
diversity in the whole population can be maintained. At the same
time, the information transfer strategy significantly improves the
convergence speed and robustness of the proposed method.

Interaction topology
For the multi-hive cooperative mode of M2OBA, the whole

population is divided into several colonies in different hives, and
each colony performs a canonical single hive algorithmic paradigm
described in ‘The single hive algorithm’. In this multiple colony
f1

f 2

i-1
Cuboid

i

i+1

Fig. 5. Crowding-distance. Points are all nondominated solutions in the external
archive.
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model, the interaction of bees occurred in a two-level hierarchical
topology. Fig. 6 illustrates two hierarchical interaction topologies,
which employed the ring and star topologies in colony level
respectively and both used the star topology in their individual le-
vel. It should be noticed that according to the own property of the
proposed algorithm, the topology in the individual level of M2OBA
is always using the stars.

In Fig. 6(a), different bee hives are arranged in a unidirectional
ring. That is, each colony can accept the sending list from an adja-
cent colony and the individuals of its own replacement list will be
replaced with the individuals of the received list. The latter topol-
ogy in Fig. 6(b) is a complete star graph, where each bee hive
broadcasts its sending list to the remaining hives. This complete
topology ensures a global synchronization of the best position
identified in the multi-hive. The dissemination of this global
incumbent is slower in the ring model, since it has to jump gradu-
ally from hive to hive.

Obviously, many patterns of connection can be used in different
levels of our model. The most common ones are grid, two-dimen-
sional and three-dimensional Von Neumann, small world, and
hypercubes [47].
Information transfer strategy
After some predefined generations of optimization, according to

the hierarchical interaction topology, each colony will select some
individuals with superior information for information transfer. The
selected individuals comprise a list and the list will be sent to an-
other colony. On the other hand, each colony prepares a replace-
ment list comprised of individuals which will be replaced by
individuals coming from other colonies. A selection strategy is
developed based on the comprehensive consideration of location
of food source near each beehive, nondomination rank, and crowd-
ing-distance instead of their objective values. The constant value
for the size of the sending list is predefined, and the sending list
will be filled in each colony. The sending list is prepared on the ba-
sis of the following rules.

	 Rule-1: The first consideration in the selection of individuals is
nondomination rank. The individuals with the lower rank are
preferred.
	 Rule-2: If the number of individuals in the first rank is greater

than the predefined value of the size of the sending list, the
average hamming distance and the crowding distance between
each pair of individuals in the colony will be calculated. The
closest L individuals to the individual that has the largest aver-
age hamming distance from others will first enter the sending
list and then the individuals with larger crowding distance will
be selected. L is a value that depends on the size of the sending
list K and the exchange factor d (0 < d < 1):
(a)

Fig. 6. Hierarchical topologies o
L ¼ d� K
3
� 1 ð13Þ

	 Rule-3: If the number of individuals in the first rank is less than
the predefined value of the size of the sending list, the individ-
uals in the first rank will first enter the sending list and then the
remaining members of the sending list are chosen from subse-
quent nondominated fronts in the order of their ranking. If the
individuals are in the same rank, we will prefer those with lar-
ger crowding distance. This procedure is continued until no
more individuals can be accommodated in the sending list.
The replacement list that each swarm prepares is based on the

nondomination rank and crowding distance in the colony. The
replacement list is prepared on the basis of the following rules.

	 Rule-4: The individuals in the last rank will be replaced first and
then the remaining members of the sending replacement are
chosen from previous nondominated fronts in the reverse order
of their ranking.
	 Rule-5: If the individuals are in the same rank, the individuals

which are located in a lesser crowded region will be replaced
first.

It should be noticed that if a hive received several sending lists
from its neighbors, these sending lists can be combined in one, and
the rules 1–3 should be applied to it to produce a final list for this
hive. In this work, we employed the topology in Fig. 6(a). The flow-
chart of the M2OBA is presented in Fig. 7.

Benchmark test

Test function

According to the No Free Lunch theorem, ‘‘for any algorithm,
any elevated performance over one class of problems is exactly
paid for in performance over another class’’ [53]. To fully evaluate
the performance of the M2OBA algorithm without a biased conclu-
sion towards some chosen problems, we employed four 2-objec-
tive and two 3-objective benchmark functions. The formulas of
these functions are presented below.

1. ZDT1: This is a 30-variables (n = 30) problem having a convex
Pareto optimal set:
f the mu
ZDT1 :

Minimize f 1ðxÞ ¼ x1

Minimize f 2ðxÞ ¼ gðxÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=gðxÞ

p� �
gðxÞ ¼ 1þ 9

Xn

i¼2

xi

 !,
ðn� 1Þ

8>>><
>>>:

ð14Þ
(b)

lti-hive population.
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Fig. 7. The flowchart of the M2OBA.
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where all variables lie in the range [0, 1]. The Pareto optimal region
corresponds to 0 � x�1 � 1 and x�1 ¼ 0 for i = 2, 3, . . ., 30.
2. ZDT2: This is also an n = 30 variable problem having a noncon-

vex Pareto optimal set:
ZDT2 :

Minimize f 1ðxÞ ¼ x1

Minimize f 2ðxÞ ¼ gðxÞ½1� ðx1=gðxÞÞ2�

gðxÞ ¼ 1þ 9
Xn

i¼2

xi

 !,
ðn� 1Þ

8>>><
>>>:

ð15Þ
where all variables lie in the range [0, 1]. The Pareto optimal region
corresponds to 0 � x�1 � 1 and x�1 ¼ 0 for i = 2, 3, . . ., 30.
3. ZDT3: This is an n = 30 variable problem having a number of

disconnected Pareto optimal fronts:
ZDT3 :

Minimize f 1ðxÞ¼x1

Minimize f 2ðxÞ¼gðxÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=gðxÞ

p
� x1

gðxÞ sinð10px1Þ
h i

gðxÞ¼1þ9
Xn

i¼2

xi

 !,
ðn�1Þ

8>>>><
>>>>:

ð16Þ
where all variables lie in the range [0, 1]. The Pareto optimal region
corresponds to x�1 ¼ 0 for i = 2, 3, . . ., 30, and hence not all points
satisfying 0 � x�1 � 1 lie on the Pareto optimal front.
4. ZDT6: This is a 10-variable problem having a nonconvex Pareto
optimal set. Moreover, the density of solutions across the Pareto
optimal region is non-uniform and the density towards the Par-
eto optimal front is also thin:
ZDT6 :

Minimize f 1ðxÞ ¼ 1� expð�4x1Þ sin6ð6px1Þ
Minimize f 2ðxÞ ¼ gðxÞ½1� ðf1ðxÞ=gðxÞÞ2�

gðxÞ ¼ 1þ 9
Xn

i¼2

xi

 !,
ðn� 1Þ

" #0:25

8>>>><
>>>>:

ð17Þ
where all variables lie in the range [0, 1]. The Pareto optimal region
corresponds to 0 � x�1 � 1 and x�1 ¼ 0 for i = 2, 3, . . ., 10.
5. DTLZ2: This test problem has a spherical Pareto-optimal front:
DTLZ2 :

Minimize f 1ðxÞ¼ ð1þgðxMÞÞcosðx1p=2Þ � � �cosðxM�1p=2Þ
Minimize f 2ðxÞ¼ ð1þgðxMÞÞcosðx1p=2Þ � � �sinðxM�1p=2Þ

..

. ..
.

Minimize f MðxÞ¼ ð1þgðxMÞÞsinðx1p=2Þ
Subject to 06 xi61; for i¼1; . . . ;n
Where gðxMÞ ¼

X
xi2xM

ðxi�0:5Þ2

8>>>>>>>>><
>>>>>>>>>:

ð18Þ
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where the Pareto-optimal solutions corresponds to x�i ¼ 0:5
(x�i 2 xM) and all objective function values must satisfy thePM

m¼1ðf �mÞ
2 ¼ 1. As in the previous problem, it is recommended to

use k = |xM| = 10. The total number of variables is n = M + k � 1.
6. DTLZ6: This test problem has 2M�1 disconnected Pareto-opti-

mal regions in the search space:
f1

f 2

Pareto-optimal front Chosen Points

Fig. 8. Convergence metric � .
DTLZ6 :

Minimize f 1ðxÞ ¼ x1

Minimize f 2ðxÞ ¼ x2

..

. ..
.

Minimize f M�1ðxÞ ¼ xM�1

Minimize f MðxÞ ¼ ð1þ gðxMÞÞhðf1; f2; . . . ; fM�1; gÞ
Subject to 0 6 xi 6 1; for i ¼ 1; . . . ;n
Where gðxMÞ ¼ 1þ g

jxM j

X
xi2xM

xi

h ¼ M �
XM�1

i¼1

fi
1þg ð1þ sinð3pfiÞÞ
h i

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð19Þ
where the functional g requires k = |xM| decision variables and the
total number of variables is n = M + k � 1.

Performance measures

In order to facilitate the quantitative assessment of the perfor-
mance of a multi-objective optimization algorithm, two perfor-
mance metrics are taken into consideration: (1) convergence
metric � ; (2) diversity metric D [30].
Convergence metric
This metric measure the extent of convergence to a known set

of Pareto optimal solutions:

� ¼
PN

i¼1di

N
ð20Þ

where N is the number of nondominated solutions obtained with an
algorithm and di is the Euclidean distance between each of the non-
dominated solutions and the nearest member of the true Pareto
optimal front. To calculate this metric, we find a set of H = 10,000
uniformly spaced solutions from the true Pareto optimal front in
the objective space. For each solution obtained with an algorithm,
we compute the minimum Euclidean distance of it from H chosen
solutions on the Pareto optimal front. The average of these distances
is used as the convergence metric � . Fig. 8 shows the calculation
procedure of this metric.
f1

f 2

dr

Extreme Solution

Extreme Solution

Obtainted Solutions

d1

d2

dl
dn

Fig. 9. Diversity metric D.
Diversity metric
This metric measure the extent of spread achieved among the

obtained solutions. Here, we are interested in getting a set of
solutions that spans the entire Pareto optimal region. This metric
is defined as:

D ¼ df þ dl þ
PN�1

i¼1 jdi � �dj
df þ dl þ ðN � 1Þ�d

ð21Þ

where di is the Euclidean distance between consecutive solutions in
the obtained nondominated set of solutions and N is the number of
nondominated solutions obtained by an algorithm. �d is the average
value of these distances. df and dl are the Euclidean distances
between the extreme solutions and the boundary solutions of the
obtained nondominated set, as depicted in Fig. 9.
Experimental setting

To fully evaluate the performance of the proposed M2OBA algo-
rithm, three successful nature-inspired multi-objective optimiza-
tion algorithms were used for comparison:

	 the nondominated sorting genetic algorithm II (NSGA-II) [30];
	 the multi-objective particle swarm optimization (MOPSO) [32];
	 the multi-objective artificial bee colony algorithm (MOABC)

[29].

In all experiments in this section, in order to compare the differ-
ent algorithms with a fair time measure, the number of function
evaluations (FEs) is used for the termination criterion. The other
specific parameters of algorithms are given below:
NSGA-II settings
The original NSGA-II algorithm uses Simulated Binary Crossover

(SBX) and Polynomial crossover. We use a population size of 100.
Crossover probability pc = 0.9 and mutation probability is pm = 1/
n, where n is the number of decision variables. The distribution
indices for crossover and mutation operators as gc l = 20 and gm

lm = 20 respectively.
MOPSO settings
MOPSO used a population of 100 particles, a repository size of

100 particles, a mutation rate of 0.5, and 30 divisions for the
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adaptive grid. The detailed implementation and parameters setting
for this MOPSO version can be refer to [32].

MOABC settings
For the MOABC proposed in [29], a colony size of 50, archive

size A = 100 was adopted.

M2OBA settings
For the proposed M2OBA, the number of hives N is set at 4, the

colony size and archive size of each hive is M = 20 and A = 40,
respectively.

Two objective functions

The experimental results found in 30 runs on each two objec-
tive benchmark, including the best, worst, average, median and
standard deviation of the convergence metric and diversity metric
values are proposed in Tables 3–6, respectively. Here all algorithms
are terminated after 10,000 function evaluations. Figs. 10–13 show
the optimal front obtained by three algorithms for each two objec-
tive function, respectively. The continuous lines represent the Par-
eto optimal front, while mark spots represent found nondominated
solutions by the algorithms.

On ZDT1 function, when given 10,000 function evaluations for
four algorithms, Table 3 shows that the performance of MOPSO
in convergence metric is one order of magnitude better than that
of NSGA-II and MOABC, but it is one order of magnitude worse than
that of M2OBA. For diversity metric, it can be observed that all
algorithms have almost the same performance on ZDT1. Fig 10
shows that M2OBA, MOPSO and MOABC can discover a well-dis-
tributed and diverse solution set for this problem. However,
NSGA-II only finds a sparse distribution, and it cannot archive
the true Pareto front for ZDT1.

On ZDT2 function, the results of the performance measures
show that M2OBA and MOABC have better convergence and diver-
sity compared to the MOPSO and NSGA-II. From Table 4, it can be
noticed that the performance of M2OBA and MOABC in conver-
gence metric and diversity metric are three orders of magnitude
better than that of MOPSO and NSGA-II after 10,000 function eval-
uations. We can see from Table 4 that M2OBA outperform MOABC
one order of magnitude in terms of diversity metric. Fig. 11 shows
that MOPSO and NSGA-II produces poor results on this test func-
tion and both of them cannot achieve the true Pareto front.

On ZDT3and ZDT6 functions, we can observe that the algo-
rithms achieve similar performance ranking as on ZDT1and ZDT2.

Three objective functions

Tables 7 and 8 show the optimization results of M2OBA, MOPSO,
MOABC and NSGA-II algorithms for three objective DTLZ series
problems. Figs. 14–17 show the true Pareto optimal front and the
optimal front obtained by four algorithms for DTLZ2 and DTLZ6.

On DTLZ2 function, we can observe from Table 7 that the per-
formances of all the algorithms in convergence metric have been
competitively good over this problem. However, we can see that
the performance of NSGA-II is one order of magnitude worse than
that of the other three algorithms in convergence metric, while the
performance of M2OBA is one order of magnitude better than that
of the other three algorithms in diversity metric. From Fig. 15, it
can be seen that the front obtained from M2OBA is found to be uni-
formly distributed on the true Pareto optimal front of DTLZ2.

DTLZ6 problem has 2M � 1 disconnected Pareto-optimal regions
in the search space. This problem will test an algorithm’s ability to
maintain subpopulation in different Pareto-optimal regions. From
Table 8, we can observe that the performance of M2OBA is better
than all the other algorithms in both convergence and diversity
metrics. From Fig 17, we can observe that the M2OBA is able to dis-
cover a well-distributed and diverse solution set for this problem.
However, the NSGA-II cannot archive the true Pareto front for
DTLZ6.

Multi-objective optimal power flow based on M2OBA

In this section, the details of proposed approach to solve the
multi-objective OPF problem are described.

Implementation of the M2OBA algorithm for the OPF problem

To apply the multi-objective algorithms to solve the OPF prob-
lem, the following steps should be taken and repeated.

	 Step 1: Input the parameters of power system, parameters of the
M2OBA algorithm, and lower and upper limits of each variable.
	 Step 2: Transfer the constraint multi-objective problem to an

unconstraint one as follows:
FðxÞ¼
F1ðxÞ
F2ðxÞ
F3ðxÞ

2
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ð22Þ
where Neq and Nueq are the number of equality and inequality con-
straints, respectively. gj(x) and hj(x) are the equality and inequality
constraints, respectively, and Z1 and Z2 are the penalty factors.
	 Step 3: Produce the initial M2OBA population.

N �M(N P 2, M P 2) individuals based on state variables
should be randomly generated as follows:
ð23Þ
where xijk (i = 1, 2,. . ., M, j = 1, 2,. . ., D, k = 1, 2,. . ., N) is the position of
the jth state variable in the ith individual of the kth colony, N, D, and
M are the number of initialized hives, control variables and bees in
each hive, respectively.
	 Step 4: Calculate the objective functions value for each bee in

each hive, sort them based on nondomination, and store non-
dominated solutions in the external archive EA of each hive.
	 Step 5: Update the position of each bee in each hive according to

comprehensive learning mechanism. If any element of each bee
breaks its limit then its position is fixed to the maximum min-
imum operating point.
	 Step 6: Update each EA of each hive according to greedy select-

ing strategy, sort the EA based on nondomination, and select the
nondomination solutions to stay in EA. If the number of non-
dominated solutions exceeds the allocated the size of EA, apply
crowding distance to remove the crowded members.



Table 3
Comparison of performance on ZDT1.

ZDT1 M2OBA MOABC NSGA-II MOPSO

Converge metric
Average 8.5264e�004 2.3149e�002 2.2278e�001 1.534e�003
Median 8.3455e�004 2.2455e�002 1.4410e�001 1.4512e�003
Best 7.5656e�004 1.8867e�002 7.2072e�002 8.4802e�004
Worst 1.0510e�003 2.7309e�002 8.7348e�001 2.2124e�003
Std 8.0445e�005 2.6057e�003 2.3806e�001 6.6747e�004

Diversity metric
Average 6.1502e�001 3.3061e�001 5.9362e�001 6.9775e�001
Median 6.0783e�001 3.3108e�001 5.2694e�001 6.8873e�001
Best 5.3456e�001 2.8898e�001 4.5810e�001 6.7851e�001
Worst 6.7678e�001 3.7446e�001 9.1451e�001 7.2602e�001
Std 4.4416e�002 2.4324e�002 1.5649e�001 2.5062e�002

Table 4
Comparison of performance on ZDT2.

ZDT2 M2OBA MOABC NSGA-II MOPSO

Converge metric
Average 8.2512e�004 1.0023e�003 2.9476e�001 1.620e�001
Median 8.3727e�004 9.5537e�004 1.8105e�001 8.5731e�002
Best 6.2466e�004 7.2183e�004 1.0668e�001 6.5277e�004
Worst 4.7223e�003 1.5690e�003 9.8218e�001 6.2114e�001
Std 1.4789e�001 2.5380e�004 2.6288e�001 6.6671e�001

Diversity metric
Average 6.7809e�002 2.9352e�001 7.6302e�001 6.3802e�001
Median 6.7379e�002 2.9185e�001 7.2999e�001 6.3801e�001
Best 6.1118e�002 2.5003e�001 4.6617e�001 5.2805e�001
Worst 7.5581e�002 3.3111e�001 1.0542e+000 7.2302e�001
Std 1.4541e�002 2.2147e�002 2.3567e�001 7.7498e�002

Table 5
Comparison of performance on ZDT3.

ZDT3 M2OBA MOABC NSGA-II MOPSO

Converge metric
Average 4.0779e�003 1.5551e�003 3.3642e+000 1.4321e�002
Median 4.0750e�003 1.5186e�003 3.9688e+000 3.5213e�003
Best 3.5541e�003 1.2901e�003 6.9186e�001 2.6342e�003
Worst 4.7440e�003 2.1061e�003 4.7179e+000 5.8521e�002
Std 3.2377e�004 2.2384e�004 1.4822e+000 2.4734e�002

Diversity metric
Average 6.3788e�002 6.6057e�001 1.1219e+000 6.960e�001
Median 6.4409e�002 6.6325e�001 1.1187e+000 7.0444e�001
Best 5.5876e�002 6.3194e�001 1.0231e+000 5.0995e�001
Worst 6.7171e�002 6.8535e�001 1.2849e+000 8.7371e�001
Std 1.3904e�002 1.8462e�002 8.8914e�002 1.4262e�001

Table 6
Comparison of performance on ZDT6.

ZDT6 M2OBA MOABC NSGA-II MOPSO

Converge metric
Average 5.0334e�004 3.9988e�003 3.3642e+000 5.052e�001
Median 1.0989e�005 2.8035e�005 3.9688e+000 8.2662e�004
Best 9.6425e�005 1.9642e�005 6.9186e�001 6.5963e�004
Worst 1.7650e�003 2.6604e�002 4.7179e+000 2.5230
Std 7.4049e�001 8.9540e�003 1.4822e+000 1.1280

Diversity metric
Average 7.9631e�002 6.0121e�001 1.1219e+000 6.637e�001
Median 7.6843e�002 4.7318e�001 1.1187e+000 6.751e�001
Best 6.0809e�002 4.3742e�001 1.0231e+000 5.974e�001
Worst 1.1885e�001 1.2171e+000 1.2849e+000 7.174e�001
Std 1.9418e�002 2.7989e�001 8.8914e�002 4.55e�002

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f (x1)

f (
x 2)

 

 

True Parato Front
M2OBA
MOABC
MOPSO
NSGA-II

Fig. 10. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II on ZDT1.
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Fig. 11. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II on ZDT2.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

f (x
1
)

f (
x 2)

 

 
True Parato Front

M2OBA
MOABC
MOPSO
NSGA-II

Fig. 12. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II on ZDT3.
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	 Step 7: If the current iteration number obtains the preordained
maximum iteration number, the algorithm is stopped, other-
wise go to step 4.

Best compromise solution based on fuzzy decision

Upon having the Pareto-optimal set of nondominated solution,
the proposed approach presents one solution to the decision maker
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Fig. 13. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II on ZDT6.

Table 7
Comparison of performance on DTLZ2.

DTLZ2 M2OBA MOABC NSGA-II MOPSO

Converge metric
Average 2.8571e�003 7.6836e�003 8.7363e�002 3.89231e�003
Median 2.8582e�003 6.7337e�003 8.9419e�002 3.81261e�003
Best 2.5627e�003 4.9233e�003 6.0319e�002 3.71302e�003
Worst 3.1086e�003 1.2708e�002 1.1310e�001 3.9421e�003
Std 1.5407e�004 2.4500e�003 1.6418e�002 8.1354e�005

Diversity metric
Average 4.3011e�002 4.1177e�001 6.0903e�001 4.1162e�001
Median 4.2726e�002 4.1107e�001 5.0881e�001 4.0565e�001
Best 3.9502e�002 3.5942e�001 3.7879e�001 3.9533e�001
Worst 4.6634e�002 4.7267e�001 7.3358e�001 4.4691e�001
Std 2.2715e�003 3.1091e�002 1.8498e�002 2.0232e�002

Table 8
Comparison of performance on DTLZ6.

DDTLZ6 M2OBA MOABC NSGA-II MOPSO

Converge metric
Average 1.5498e�002 2.9901e�002 6.6160e�001 1.6426e�002
Median 1.5033e�002 2.7952e�002 2.8640e�001 1.7221e�002
Best 1.2131e�002 1.9106e�002 1.6724e�001 8.3231e�002
Worst 2.0374e�002 3.7997e�002 3.1497e+000 2.9165e�002
Std 2.6337e�003 6.7314e�003 9.2366e�001 8.3412e�003

Diversity metric
Average 5.2003e�002 5.4715e�001 5.7305e�001 5.4362e�001
Median 5.1893e�002 5.5144e�001 5.5839e�001 5.4445e�001
Best 4.6557e�002 5.0172e�001 4.5813e�001 5.184e�001
Worst 5.9150e�002 6.0581e�001 7.0776e�001 5.6638e�001
Std 3.7954e�003 2.9597e�002 7.2624e�002 1.8843e�002
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Fig. 14. The true Pareto-optimal front on DTLZ2.
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in power system as the best compromise solution. In this work, a
fuzzy-based mechanism is employed to extract the best compro-
mise solution over the trade-off curve and assist the decision
maker to adjust the generation levels efficiently [54]. Due to
imprecise nature of the decision maker’s judgment, each objective
function of the ith solution is represented by a membership func-
tion li defined as flow:

li ¼
1 Fi �minðFiÞ

maxðFiÞ�Fi
maxðFiÞ�minðFiÞ

minðFiÞ 6 Fi �maxðFiÞ;
0 Fi 
maxðFiÞ

8<
: ð24Þ

where min (Fi) and max (Fi) are lower and upper bounds of ith
objective function. The higher the values of the membership func-
tion are, the greater the solution satisfaction is.
For each nondominated solution, the normalized membership
function lk is calculated as:

lk ¼
PNobj

i¼1 lk
iPM

k¼1

PNobj

i¼1 lk
i

; ð25Þ

where M is the number of nondominated solutions, and Nobj is the
number of object. The best compromise solution is the one having
the maximum of lk.
Simulation results

In order to verify the proposed approach, the IEEE 30-bus sys-
tem that illustrated in Fig. 18 is used as the test systems for
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Fig. 17. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II on DTLZ6.

Table 9
Characteristics of the generation units.

G1 G2 G3 G4 G5 G6

Generator limits
PCmax (MW) 150 150 150 150 150 150
PCmin (MW) 5 5 5 5 5 5

Cost coefficients
a 10 10 20 10 20 10
b 200 150 180 100 180 150
c 100 120 40 60 40 100

Emission coefficients
a 4.091 2.543 4.258 5.326 4.258 6.131
b �5.554 �6.047 �5.094 �3.550 �5.094 �5.555
c 6.490 5.638 4.586 3.380 4.586 5.151
n 2.0e�4 5.0e�4 1.0e�6 2.0e�3 1.0e�6 1.0e�5
k 2.857 3.333 8.000 2.000 8.000 6.667
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M2OBA, MOPSO, MOABC, and NSGA-II. The IEEE 30-bus test case
represents a portion of the American Electric Power System (in
the Midwestern US) as of December, 1961. IEEE is the acronym
for the Institute of Electrical and Electronics Engineers. The IEEE
30-bus system includes six generators, 41 transmission lines, 4
transformers with off-nominal tap ratio in the lines 6–9, 6–10,
4–12 and 27–28. The system data are given in [55]. The active
power generation limits are listed in Table 9. The limits of genera-
tor buses and load buses are between 0.95–1.1 p.u, and 0.9–
1.05 p.u, respectively. The lower and upper limits of transformer
taps are 0.9 p.u. and 1.05 p.u., respectively, and the step size is
0.01 p.u. The parameter settings for these four algorithms are the
same as in ‘Performance measures’.
Cost ($/h)

Fig. 19. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II for cost
and emission (f1–f2).
Case I: two-objective OPF optimization

In this case, the OPF model is handled as a multi-objective opti-
mization problem, where each two objective functions are opti-
mized simultaneously. According to the cost–emission, loss–cost,
loss–emission pairs, all obtained Pareto fronts by the M2OBA, MOP-
SO, MOABC, and NSGA-II algorithms are shown in Figs. 19–21,
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respectively. Tables 10–15 show the Pareto-optimal solutions
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dimensional Pareto front.
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Fig. 21. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II for
emission and loss (f2–f3).

Table 11
The best compromise solutions for cost and emission (f1–f2) using different multi-
objective algorithms.

M2OBA MOABC NSGA-II MOPSO

PG1 24.4837 25.1875 36.1782 24.2855
PG2 39.0558 39.4798 55.3158 37.61433
PG3 56.9255 38.5551 49.5340 55.3510
PG4 71.1890 74.1921 46.0786 72.0443
PG5 50.5360 48.0866 56.8116 51.5658
PG6 44.6095 43.0481 44.1181 44.5503
f1 Fuel cost ($/h) 616.8621 615.5057 643.7436 616.6645
f2 Emission (ton/h) 0.2023 0.2035 0.1965 0.2024
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For all the results on three two-objective OPF problems, it is
clear that the proposed M2OBA algorithm is able to obtain well-
distributed Pareto-optimal fronts. It should be noted that in the
proposed approach the trade-off among the competing objectives
is obtained by emphasizing on non-dominated solutions and get-
ting a well-distributed set of solutions, respectively.

From Table 10, we can see that M2OBA get the best convergence
solutions for fuel cost and emission objective functions. Fig. 19
shows the Pareto-optimal front for fuel cost and emission objective
functions. From Fig. 19, it can be clearly observed that M2OBA can
discover a well-distributed and diverse solution set for this
problem, while the other three algorithms only find some sparse
Table 10
The best solutions for cost and emission (f1–f2) from the Pareto front based on four multi

M2OBA MOABC

Best f1 Best f2 Best f1

PG1 12.33 41.24 10.34
PG2 30.08 45.39 30.14
PG3 55.43 55.21 57.45
PG4 105.20 41.36 105.49
PG5 45.26 52.81 45.36
PG6 37.86 51.59 37.35
f1 (Fuel cost ($/h) 606.65 645.79 606.67
f2 Emission (ton/h) 0.2250 0.1902 0.2261
distributions. Table 11 shows the best compromise solutions for
fuel cost and emission objective functions using different algo-
rithms. For M2OBA, the best compromise solution is 616.86 $/h
and 0.202 ton/h. The fuel cost and emission values in the best com-
promise solution that are very close to their best values in Table 10,
then the truth of the aforementioned statement is clear in all Par-
eto fronts.

For cost–loss objective functions and emission–loss objective
functions, we can observe that the algorithms achieve similar per-
formance ranking as for fuel cost–emission objective functions.
Case II: three-objective OPF optimization

In this case, three competing objectives are optimized simulta-
neously by the proposed algorithm and the obtained results are
shown in Fig. 22. Table 16 shows the minimum values for each
objective in the three-dimensional Pareto front.

It is clear that cost, emission and loss cannot be further im-
proved without degrading the other two related optimized objec-
tives. Fig. 22 clearly shows the relationships among all presented
objective functions. Between the obtained Pareto-optimal solu-
tions, it is necessary to choose one of them as a best compromise
for implementation. As well as in the case I, the best compromise
results are also presented in Table 17.

From Tables 16 and 17, we can observe that the performance of
M2OBA is better than all the other algorithms in both best and
compromise solutions on fuel cost, emission and loss objectives.
From Fig. 22, we can observe that the M2OBA is able to discover
a well-distributed and diverse solution set for this three-objective
problem. However, the other three algorithms cannot archive the
true Pareto front for the three-objective OPF.

From the results, it can once again be proved that the proposed
method is giving well-distributed Pareto-optimal front for the
three-objective OPF optimization. The results confirm that the
M2OBA algorithm is an impressive tool for solving the real-world
multi-objective OPF problem where multiple Pareto-optimal solu-
tions can be obtained in a single run.
-objective algorithms.

NSGA-II MOPSO

Best f2 Best f1 Best f2 Best f1 Best f2

6.71 36.17 41.08 26.06 55.72
41.46 55.31 48.60 33.32 46.15
61.66 49.53 51.19 61.58 55.92
100.81 46.07 43.09 101.88 40.22
41.51 56.81 51.95 45.17 55.89
33.95 44.11 51.77 37.84 49.87
608.80 643.74 645.93 607.08 645.88
0.2241 0.1965 0.1953 0.2249 0.1952



Table 12
The best solutions for cost and loss (f1–f3) from the Pareto front based on four multi-objective algorithms.

M2OBA MOABC NSGA-II MOPSO

Best f1 Best f3 Best f1 Best f1 Best f3 Best f3 Best f1 Best f3

PG1 15.00 2.26 9.77 18.36 3.91 2.19 67.12 8.88
PG2 29.31 26.34 33.91 20.81 10.63 23.71 38.31 9.20
PG3 56.26 106.00 60.90 40.30 110.74 73.77 68.44 108.80
PG4 112.59 56.77 95.39 119.33 67.45 98.03 101.65 70.32
PG5 30.21 5.00 45.29 40.49 10.96 5.00 37.02 72.36
PG6 42.29 88.61 40.88 46.70 81.33 82.29 28.28 33.63
f1 (Fuel cost ($/h) 608.52 664.86 607.4267 611.67 656.80 637.30 609.33 660.21
f3 Loss (MW) 2.2924 1.6099 2.7710 2.6197 1.6407 1.6186 2.6137 2.2421

Table 13
The best compromise solutions for cost and loss (f1–f3) using different multi-objective
algorithms.

M2OBA MOABC NSGA-II MOPSO

PG1 4.4066 8.5482 3.1622 11.5906
PG2 24.5709 28.8145 12.4072 20.6855
PG3 80.6596 75.3171 87.9835 83.0087
PG4 106.0443 105.2485 92.0489 96.5241
PG5 7.7217 17.4874 27.8416 11.8301
PG6 61.6727 49.8543 61.8298 71.89055
f1 Fuel cost ($/h) 1.6761 1.8702 1.873572 1.62575
f3 Loss (MW) 622.5188 613.3222 623.2921 630.6447

Table 15
The best compromise solutions for emission and loss (f2–f3) using different multi-
objective algorithms.

M2OBA MOABC NSGA-II MOPSO

PG1 20.9113 69.3327 30.4071 22.4024
PG2 33.6887 22.0615 32.0927 25.0679
PG3 77.5503 31.1704 76.1658 102.4471
PG4 65.1039 66.8127 66.2653 63.925
PG5 17.4135 77.6187 33.3860 6.4725
PG6 70.7418 18.4182 47.7291 86.267
f2 Emission (ton/h) 2.0098 2.0144 2.6463 1.5965
f3 Loss (MW) 0.21348 0.2134 0.2051 0.2445
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Statistical test

In this experiment, in order to further investigate the efficacy
and robustness of the proposed M2OBA on the real-world OPF
problem, the analysis of variance (ANOVA) test was conducted to
decide on the statistical significance of each of the four tested algo-
rithms over the others. The graphical statistics analyses are done
through box plot. A box plot is a graphical tool, which provides
an excellent visual summary of many important aspects of a distri-
bution. The box stretches from the lower hinge (defined as the 25th
percentile) to the upper hinge (the 75th percentile) and therefore
contains the middle half of the scores in the distribution. The med-
ian is shown as a line across the box. Therefore, one-fourth of the
distribution is between this line and the top of the box and one-
fourth of the distribution is between this line and the bottom of
the box.

The graphical analysis results of the ANOVA test for all
algorithms on both two and three-objective cases in 30 runs are
illustrated in Figs. 23–26. Looking at these box plots, the general
features of the distribution can be noticed.

The box plots for the best compromise solutions of fuel cost and
emission (f1–f2) pair in Table 11 are shown in Fig. 23. From
Fig. 23(a), we can observe that M2OBA obtain the best variance dis-
tribution of compromise solutions, in which the fuel cost values are
ranged from 615 to 620. Then Fig. 23(b) illustrates the M2OBA
Table 14
The best solutions for emission and loss (f2–f3) from the Pareto front based on four multi-

M2OBA MOABC

Best f2 Best f3 Best f2

PG1 45.36 9.11 43.96
PG2 44.83 5.00 41.84
PG3 56.45 90.97 57.31
PG4 40.30 71.16 40.65
PG5 46.60 5.00 42.59
PG6 53.86 103.75 34.62
f2 Emission (ton/h) 0.1956 0.2592 0.2182
f3 Loss (MW) 4.0313 1.6026 4.6123
achieve both best variance and mean value in all algorithms, which
means that M2OBA provides more robust performance for the f1–f2

pairs optimization than that of the other three algorithms.
The box plots for the results presented in Tables 13 and 15 are

shown in Figs. 24 and 25, respectively. From the box plot represen-
tation in Figs. 24 and 25, it is clearly visible and proved that the
M2OBA p provides better results for each objective function in
the two-objective OPF cases, which implies that M2OBA provides
more stable searching ability for all the two-objective OPF cases
than that of the other three algorithms.

For the case of three-objective OPF optimization, Fig. 26 shows
similar ANOVA results according to Table 17. That is, M2OBA
obtains best results in three single-objective functions, namely
the cost, loss, and emission objectives, respectively.

From all the ANOVA results, it is very clear that the proposed
M2OBA yields optimal result in all four tested MO algorithms on
the real-world OPF problem.
Computation time analysis

For real-world optimization problems, we need not only the
high optimization accuracy and computation robustness, but also
a faster solution speed. Hence, in this experiment, the computation
time analysis was also carried out to validate the efficacy of the
proposed M2OBA.
objective algorithms.

NSGA-II MOPSO

Best f2 Best f3 Best f3 Best f2 Best f3

33.86 11.95 63.28 32.92 11.48
59.34 6.50 144.46 44.71 76.36
50.04 69.67 108.61 62.17 23.07
34.62 95.30 61.97 42.82 63.32
63.52 6.41 5.17 50.07 82.53
47.13 95.19 34.62 52.75 58.56
0.1974 0.2523 0.2732 0.1959 0.2823
5.1511 1.6475 2.1242 3.8294 1.7634
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Fig. 22. Pareto fronts obtained by M2OBA, MOPSO, MOABC, and NSGA-II for fuel cost, emission and loss (f1–f2–f3).

Table 16
The best solutions for cost, emission and loss (f1–f2–f3) based on four multi-objective algorithms.

M2OBA MOABC NSGA-II MOPSO

Best f2 Best f3 Best f2 Best f2 Best f3 Best f3 Best f2 Best f3

PG1 18.82 45.99 5.05 34.59 2.76 20.63 37.29 52.06
PG2 18.99 44.79 10.47 50.80 33.19 28.78 47.0140 50.56
PG3 71.31 62.78 107.93 63.02 92.06 61.62 58.2576 31.54
PG4 99.15 37.05 70.31 37.32 74.44 103.09 45.5714 45.1823
PG5 44.36 53.13 5.00 46.29 14.42 30.61 50.4057 41.4252
PG6 33.40 44.04 86.22 55.18 68.24 40.99 48.8634 66.9433
f1 Fuel cost ($/h) 609.85 650.88 661.03 648.48 631.68 608.79 640.0787 662.610
f2 Emission (ton/h) 0.2243 0.1960 0.2547 0.1963 0.2288 0.2232 0.195650 4.32359
f3 Loss (MW) 2.6526 4.4066 1.6051 3.8274 1.7422 2.3552 4.0067 0.2010

Table 17
The best compromise solutions for cost, emission and loss (f1–f2–f3) using different
multi-objective algorithms.

M2OBA MOABC NSGA-II MOPSO

PG1 18.7228 18.4350 36.1782 21.27403
PG2 32.9912 28.1939 55.3158 14.7574
PG3 67.4162 73.5849 49.5340 89.6146
PG4 83.1738 86.8403 46.0786 87.0153
PG5 31.9749 26.1992 56.8116 7.1517
PG6 51.4947 52.2758 44.1181 65.3095
f1 Fuel cost ($/h) 613.1135 613.9435 6.2302 631.3939
f2 Emission (ton/h) 0.2118 0.2169 0.2022 0.2333
f3 Loss (MW) 2.3739 2.12932 3.2935 1.7228
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Fig. 23. The box plots of best compromise solutions obtained by M2OBA (A1), MOABC
comprised solutions sets of fuel cost (f1) and (b) comprised solutions sets of emission (f
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Since the time spent on each generation is different from one
algorithm to another, the iterations taken by various algorithms
do not mean the actual time they spent. For M2OBA, make a
hypothesis that the computation cost of one bee in M2OBA is Time-
Cost_i, the total computation cost for one generation is N*M*Cost_i.
However, due to the random and uncertainty of the heuristic algo-
rithms used, it is very difficult to give a theoretic computation
analysis for all algorithms involved. In order to straightforwardly
evaluate the algorithmic time response, we presented in Fig. 27
the computing times (average in 30 runs) of all algorithms on each
multi-objective OPF cases respectively.
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Fig. 24. The box plots of best compromise solutions obtained by M2OBA (A1), MOABC (A2), MOPSO (A3) and NSGA-II (A4) for fuel cost and loss (f1–f3) pairs for 30 runs: (a)
comprised solutions sets of fuel cost (f1) and (b) comprised solutions sets of loss (f3).

A1 A2 A3 A4

0.205
0.21

0.215
0.22

0.225
0.23

0.235

Algorithms

Fu
el

 c
os

t (
$/

h)

(a)

A1 A2 A3 A4

2

2.5

3

Algorithms

Lo
ss

(M
W

)

(b) 

Fig. 25. The box plots of best compromise solutions obtained by M2OBA (A1), MOABC (A2), MOPSO (A3) and NSGA-II (A4) for emission and loss (f2–f3) pairs for 30 runs: (a)
comprised solutions sets of emission (f2) and (b) comprised solutions sets of loss (f3).
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Fig. 26. The box plots of best compromise solutions obtained by M2OBA (A1), MOABC (A2), MOPSO (A3) and NSGA-II (A4) for fuel cost, emission and loss (f1–f2–f3) pairs for 30
runs: (a) comprised solutions sets of fuel cost (f1), (b) comprised solutions sets of emission (f2), (c) comprised solutions sets of loss (f3).
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From Fig. 27, it is visible that the M2OBA takes the most com-
puting time in all compared algorithms. This can be explained that
the multi-hive strategy employed by M2OBA enhanced the local
search ability at cost of increasing the computation amount.
Although the computing time spent on a run of optimization pro-
cedure for the other three algorithms was less than that for M2OBA,
M2OBA took smaller iterations to achieve more robust and precise
OPF solutions. Therefore, the absolute time required for a run of
M2OBA can be saved by reducing the maximum iterations.
Conclusions

In this paper, different multi-objectives, which consider the
cost, loss, and emission impacts, for OPF problem were formed.
These multi-objectives have been solved by the proposed M2OBA,
MOPSO, MOABC, and NSGA-II methods.

In the proposed M2OBA model, we use Pareto concept, external
archive, greedy selection and crowding distance strategies, and
comprehensive learning approach to make the algorithm converge
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to the true Pareto optimal front, and use multiple colony coopera-
tive coevolution to ensure the diversity of the whole population.
The M2OBA algorithm is conceptually simple and easy to
implement and has considerable potential for solving complex
multi-objective optimization problems. With a set of 6 mathemat-
ical benchmark functions (including both two and three-objective
cases), M2OBA is proved to have better performance than the MOP-
SO, MOABC, and NSGA-II.

Additionally, a fuzzy membership approach has been used to
identify the best compromise solution for the proposed
multi-objective OPF optimization model. The simulation studies,
which conduct on 30-bus IEEE test system, also show that the
M2OBA obtains statistical better than the MOPSO, MOABC, and
NSGA-II methods in terms of optimization accuracy and conver-
gence robust.
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