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ABSTRACT We introduce a simple and computationally efficient method for fitting the admixture model of genetic population
structure, called ALStructure. The strategy of ALStructure is to first estimate the low-dimensional linear subspace of the
population admixture components, and then search for a model within this subspace that is consistent with the admixture model’s
natural probabilistic constraints. Central to this strategy is the observation that all models belonging to this constrained space of
solutions are risk-minimizing and have equal likelihood, rendering any additional optimization unnecessary. The low-dimensional linear
subspace is estimated through a recently introduced principal components analysis method that is appropriate for genotype data,
thereby providing a solution that has both principal components and probabilistic admixture interpretations. Our approach differs
fundamentally from other existing methods for estimating admixture, which aim to fit the admixture model directly by searching for
parameters that maximize the likelihood function or the posterior probability. We observe that ALStructure typically outperforms
existing methods both in accuracy and computational speed under a wide array of simulated and real human genotype datasets.
Throughout this work, we emphasize that the admixture model is a special case of a much broader class of models for which
algorithms similar to ALStructure may be successfully employed.
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UNDERSTANDING structured genetic variation in human
populations remains a foundational problem in modern

genetics. Such an understanding allows researchers to correct
for population structure in GWAS studies, enabling accurate
disease-gene mapping (Knowler et al. 1988; Marchini et al.
2004; Song et al. 2015). Additionally, characterizing genetic
variation is important for the study of human evolutionary
history (Cavalli-Sforza et al. 1988; Esteban et al. 1998; Li
et al. 2008).

To this end, muchwork has been done to developmethods
to estimate what Alexander et al. (2009) term global ancestry.
In the global ancestry framework, the goal is to simulta-
neously estimate two quantities:

i. the allele frequencies of ancestral populations.
ii. the admixture proportions of each modern individual.

Many popular global ancestry estimation methods have
been developed within a probabilistic framework. In these
methods, which we will refer to as likelihood-based ap-
proaches, the strategy is to fit a probabilistic model to the
observed genome-wide genotype data by either maximizing
the likelihood function (Tang et al. 2005; Alexander et al.
2009) or the posterior probability (Pritchard et al. 2000;
Raj et al. 2014; Gopalan et al. 2016). The probabilistic model
fit in each of these cases is the admixture model, described in
detail in the Model and Theory section below, in which the
global ancestry quantities (i) and (ii) are explicit parameters
to be estimated.
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A related line of work relies on principal components
analysis (PCA) and other eigen-decomposition methods,
rather than directly fitting probabilistic models; as such, we
will refer to them collectively as PCA-based approaches. These
methods find many of the same applications as global ances-
try estimates while obviating a direct computation of global
ancestry itself. For example, the EIGENSTRAT method of
Patterson et al. (2006) and Price et al. (2006) uses the prin-
cipal components of observed data to correct for population
stratification in GWAS, avoiding altogether the estimation of
admixture proportions or ancestral allele frequencies. Simi-
larly, Hao et al. (2016) observe that many important applica-
tions of global ancestry really only require individual-specific
allele frequencies. In a sense, individual-specific allele fre-
quencies are simpler than global ancestry; while global
ancestry specifies all of the individual-specific allele frequen-
cies, the converse is not true. Therefore, Hao et al. (2016)
introduce a simple truncated-PCA method that accurately
and efficiently estimates individual-specific allele frequencies
alone.

Both likelihood-based and PCA-based approaches have
distinct merits and drawbacks. The PCA-based methods are
computationally efficient and accurate in practice. It is shown,
for instance, that the individual-specific allele frequencies
obtained by truncated-PCA are empirically more accurate
than those obtained by likelihood-based methods (Hao
et al. 2016). Another attractive feature of PCA-based meth-
ods is that they make minimal assumptions about the under-
lying data-generative model. However, as mentioned before,
PCA-based methods do not provide the full global ancestry
estimates that their corresponding likelihood-based methods
do. Most notably, they do not provide direct estimates of
admixture proportions, which are often of primary interest
in some applications. Additionally, PCA-based methods often
have weaker statistical justifications, as they are typically not
based on a probabilistic model. Although Tipping and Bishop
(1999) introduced a probabilistic interpretation of PCA for
multivariate Normal data, to our knowledge, no such inter-
pretation of PCA exists when the data are Binomial, as is the
case in the admixture model.

Recognizing the relative advantages of each approach,
several researchers have attempted to bridge the gap between
likelihood-based and PCA-based approaches. In spirit, this is
also the approach that we take in the present work, and so we
briefly review previous contributions to contextualize the
advances made by our own method. Engelhardt and
Stephens (2010) observed that fitting the admixture model
was related to PCA in the sense that both could be posed as
matrix factorization problems, which differ only in the con-
straints imposed on factors. They then introduced a third
matrix factorization problem, called Sparse Factor Analysis
(SFA), which encourages a sparsity through a particular
prior. However, since SFA does not enforce the probabilistic
constraints of the admixture model (nor the orthogonality
constraints of PCA), its output cannot be directly interpreted
as an estimate of global ancestry. Lawson et al. (2012)

provided further insight into the mathematical relationship
between admixture models and PCA and introduced a
method for the analysis of phased haplotype data. This
method, called fineSTRUCTURE, fits a version of the admix-
ture model in which each observed individual belongs to a
single (rather than admixed) population. Zheng and Weir
(2016) introduced a method called EIGMIX that leverages
PCA to infer admixture proportions from unphased genotype
data. While EIGMIX allows individual genomes to be derived
from a mixture of multiple ancestral populations (unlike
fineSTRUCTURE), it requires a set of sampled individuals
known to be derived from single ancestral populations. A
related line of work uses PCA-based approaches to fit models
of local ancestry, in which inferences about the ancestry of indi-
vidual genetic loci are desired (for example, Brisbin et al. 2012).

While the aforementioned literature illustrates that PCA
can be leveraged to provide information about population
structure, each approach falls short of providing complete
estimates of global ancestry under the general admixture
model. The method which we introduce in the present work,
called ALStructure, does precisely this. ALStructure re-
quires no additional assumptions (such as the existence of
unadmixed individuals in Zheng and Weir 2016), no special-
ized input (such as the unphased haplotypes of Lawson et al.
2012), and provides direct estimates of admixture propor-
tions (unlike Engelhardt and Stephens 2010). As such,
ALStructure is the only existing PCA-based method that
can provide a direct substitute to themost popular likelihood-
based approaches. As an additional important advantage, the
underlying mathematical theory that justifies ALStructure
is sufficiently general so as to apply to a class of models that
subsumes the admixture model. As such, we believe that
imitable algorithms to ALStructure could be useful be-
yond the present genetics application.

The basic strategy of ALStructure is to eliminate the
primary shortcomings of PCA-based methods while retaining
their important advantages over likelihood-based methods.
In particular, we extend the approach taken in Hao et al.
(2016) in two ways. First, we replace classical PCA with the
closely related method of Latent Subspace Estimation (LSE)
(Chen and Storey 2015). In so doing, we will make mathe-
matically rigorous the empirically effective truncated-PCA
method of Hao et al. (2016) for estimating individual-specific
allele frequencies. Second, we use the method of alternating
least squares (ALS) to transform the individual-specific allele
frequencies obtained via LSE into estimates of global ancestry.

We perform a body of simulations and analyze several
globally and locally sampled human studies to demonstrate
the performance of the proposed method, showing that
ALStructure typically outperforms existing methods both
in terms of accuracy and speed.We also discuss its implemen-
tation and the trade-offs between theoretical guarantees and
run-time. We find that ALStructure is a computationally
efficient and statistically accurate method for modeling ad-
mixture and decomposing systematic variation due to popu-
lation structure.
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The remainder of this paper is organized as follows.Model
and Theory introduces the admixture model and details the
mathematical underpinnings of our approach. The ALStruc-
ture Algorithm summarizes the ALStructure algorithm. A
reader primarily interested in a basic understanding of the op-
erational procedure of ALStructure and its applications may
proceed to The ALStructure Algorithm after reading The ad-
mixturemodel subsection, as the remainder ofModel andTheory
is more technical in nature. Results From Simulated Data and
Applications to Global Human Studies assess the performance
of ALStructure on a wide range of real simulated datasets.

Model and Theory

In this section and the following we present the ALStruc-
turemethod and detail some of its mathematical underpin-
nings. In The admixture model, we define the admixture model:
the underlying probabilistic model assumed by ALStruc-
ture. Optimal model constraints describes the overall strategy
of ALStructure as an optimality search subject to con-
straints rather than navigating a complex likelihood sur-
face. Leveraging constraints to estimate F̂ describes how the
constraints can be used to estimate individual-specific allele
frequencies. In Latent subspace estimationwe present a math-
ematical result from Chen and Storey (2015) upon which
the ALStructure algorithm heavily relies. Leveraging con-
straints to estimate P and Q describes why estimating global
ancestry, given the individual-specific allele frequencies, is
equivalent to a constrained matrix factorization problem.
An efficient algorithm based on the method of ALS is also
provided in this section for performing the constrained ma-
trix factorization. The complete ALStructure algorithm is
then presented in The ALStructure Algorithm.

Throughout this work, we adhere to the following nota-
tional convention: for a matrix A, we denote the i row vector
of A by ai�, the j column vector of A by a�j, and the ði; jÞ element
of A by aij.

The admixture model

The observed data X is an m3 n matrix in which m (the
number of SNPs) is typically much larger than n (the number
of individuals). An element xij of X takes values 0, 1, or
2 according to the number of reference alleles in the geno-
type at locus i for individual j.

ALStructuremakes the assumption common to all like-
lihood-based methods that the data are generated from the
admixture model. Under this model, the genotypes are gen-
erated independently according to xijjfij � Binomialð2; fijÞ,
where F is an m3n matrix encoding all of the Binomial
parameters. Each element fij is an individual-specific allele
frequency: the frequency of allele i in individual j. F is further
assumed to be of rank d, where d � n � m. d may be
thought of as the number of ancestral populations from
which the observed population is derived. F then admits a
factorization F ¼ PQ; in which P and Q have the following
properties:

P 2 ℝm3 d  with  pij 2 ½0; 1�  "ði; jÞ

Q 2 ℝd3n  with  qij$ 0 "ði; jÞ  and 
X
i

qij ¼ 1 "j

The matrices P and Q have the following interpretations: (i)
each row pi� of P represents the frequencies of a single SNP for
each of the d ancestral populations, and (ii) each column q�j
ofQ represents the admixture proportions of a single individ-
ual. Together, P andQ encode the global ancestry parameters
of the observed population; the goal of existing likelihood-
based methods is to estimate these matrices. By contrast, the
truncated-PCA method of Hao et al. (2016) is focused on
estimating F and not its factors. Equation 1 summarizes the
admixture model.0BBBBBBBBBB@

F

1CCCCCCCCCCA
m3n

¼

0BBBBBBBBBB@
P

1CCCCCCCCCCA
m3 d

0@ Q

1A
d3n

(1)

The model introduced in Pritchard et al. (2000), which we
refer to as the PSD model, is an important special case of the
admixture model. It additionally assumes the following prior
distributions on P and Q:

pij � Balding-NicholsðFi; piÞ

q�j � DirichletðaÞ

The Balding-Nichols distribution (Balding and Nichols 1995)
is a reparameterization of the Beta distribution, in which Fi is
the FST (Weir and Cockerham 1984) at locus i, and pi is
the population minor allele frequency at locus i. Specifically,

Balding-Nichols ðF; pÞ ¼ Beta
�
12 F
F p; 12 F

F ð12 pÞ
�
. (Other

prior distributions can be used for P and Q (Pritchard et al.
2000), but here we refer to the PSD model as that using the
priors listed here.) Existing Bayesian methods (Pritchard
et al. 2000; Raj et al. 2014; Gopalan et al. 2016) fit the PSD
model specifically, while existing maximum likelihood (ML)
methods (Tang et al. 2005; Alexander et al. 2009) and
ALStructure require only the admixturemodel assumptions.

Although we focus on fitting the admixture model in the
present work, it is important to note that the general strategy
of the ALStructure algorithm is insensitive to the particu-
lar details of this model. The necessary features that the the-
oretical underpinnings of ALStructure require are: (i)
higher moments of xij are bounded, (ii) F is low rank, and
(iii) m � n. (For a precise statement of the theoretical as-
sumptions of LSE, see Chen and Storey 2015.) For example,
an imitable algorithm could be applied to high dimensional
data X where xijjfij � PoissonðfijÞ; and F is a low rank matrix
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whose factors P and Q potentially have natural constraints.
Because of its generality, we hope that the approach of
ALStructure will find useful application beyond the anal-
ysis of admixture.

Optimal model constraints

Most existingmethods forfitting the admixturemodel employ
various optimization techniques to search for the ML param-
eters (Pritchard et al. 2000; Alexander et al. 2009) or the
maximum a posteriori estimate (Raj et al. 2014; Gopalan
et al. 2016). Our approach has a fundamentally different
character: rather than searching through a rough likelihood
landscape in pursuit of an optimal solution, ALStructure
seeks a feasible solution to a set of optimal constraints. To be
more specific, we begin with the observation that any solution
satisfying a particular set of constraints is risk-minimizing
among a class of unbiased estimators. Because any feasible
solution is optimal, we can think of the constraints themselves
as being optimal. Notably, the need to maximize likelihood is
altogether obviated.

The challenge of this approach is twofold. First, the con-
straints themselves need to be estimated from the data: they
arenotdirectlyobservable.This isdone through themethodof
LSE detailed in Latent subspace estimation. Second, feasible
solutions to the estimated constraints will not typically exist.
For this reason, we seek solutions that approximately satisfy
the constraints, thereby converting a feasibility problem to a
least squares (LS) optimization problem. This procedure is
done through themethod of ALS and is detailed in Leveraging
constraints to estimate P and Q. Throughout the remainder of
the present subsection, we detail the constraints themselves.

There are several constraints that any reasonable estimate
of the parameters of the admixturemodelmust obey. The first
is simply that the parameter estimates F̂; P̂; and Q̂ obey the
relationship F̂ ¼ P̂Q̂. We will refer to this constraint as the
Equality constraint. The second obvious requirement is that
entries of matrices P̂ and Q̂ obey the probabilistic constraints
of the admixture model:

pij 2 ½0; 1� "ði; jÞ (2)

qij $ 0 "ði; jÞ (3)X
i

qij ¼ 1 "j (4)

As we will encounter these constraints frequently, we refer to
Equation 2 as the “h” constraint, and Equation 3 and Equa-
tion 4 as the “4” constraint. This is simply because the con-
straints on P demarcate the boundaries of a d-dimensional
unit cube (the generalization of a square), whereas the con-
straints on Q demarcate a d-dimensional simplex (the gener-
alization of a triangle). Together we refer to the h and 4
constraints as the Boundary constraints.

The final constraint we require is that the row vectors of F̂
lie in the linear subspace spanned by the rows vectors of Q. If

we denote hAi to be the rowspace of a matrix A, we can
summarize this condition as:

hF̂i ¼ hQi (5)

We will refer to Equation 5 as the LS (linear subspace) con-
straint. The LS constraint is the only nontrivial constraint that
ALStructure enforces. The fact that hFi ¼ hQi is a simple
consequence of the linearity of the admixture model; indeed,
all rows of F are linear combinations of rows of Q since
F ¼ PQ. The LS constraint thus requires the same property
for our estimate F̂. It is important to note that the LS con-
straint is not the same as requiring that hF̂i ¼ hQ̂i: this is
ensured by the Equality constraint. Rather, the LS constraint
requires that the row vectors of F̂ belong to the rowspace of
the trueQmatrix. The apparent challenge of enforcing the LS
constraint is that, a priori, one does not have access to hQi.
However, ALStructure takes advantage of a recent result
from Chen and Storey (2015) that hQi can be consistently
estimated directly from the data matrix X in the asymptotic
regime of interest, when the number of SNPs m grows large.
The result of Chen and Storey (2015) is, in fact, much more
general than is needed in our setting, and, therefore, will
likely be useful in many other problems. Because of its im-
portance to this work, we further discuss this result in the
context of the admixture model in Latent subspace estima-
tion, and show that a modified PCA of X consistently re-
covers hQi.

Leveraging constraints to estimate F̂

The key step in ALStructure is to note that enforcing the LS
constraint provides us with an immediate estimate for F. To
motivate our estimator, first observe that the simple estimate
~F ¼ 1

2X is, in some sense, a reasonable approximation of F: it
is unbiased since fij ¼ 1

2 E½xij� under the admixture model.
However, this estimate leaves much to be desired—most im-
portantly, the estimate ~F will in general be of full rank (n)
rather than of low rank (d) and it will have a large variance.
Assuming, for now, that we are provided with the true row-
space hQi of F, a natural thing to try is to project the rows of
1
2X onto this linear subspace. Below, we show that this esti-
mator has some appealing properties.

Let us denote the operator ProjhSiðXÞ such that the rows of
thematrix X are projected onto the linear subspace hSi. (Note
that the notation ProjhSiðXÞ typically refers to projection of
the columns of X onto the linear subspace hSi, but here we
use this notation to denote projection of the rows of X onto
hSi.) If we are given an orthonormal basis fsig of the
d-dimensional linear subspace hSi, then:

ProjhSiðXÞ[X

 Xd
i¼1

sisTi

!

Lemma 1 below provides us a simple condition under which
estimators of F formed by such projections are unbiased.
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Lemma 1: For a rank d matrix F that admits a factorization
F ¼ PQ; and a random matrix X such that 1

2 E½X� ¼ F; any
estimator of F of the form F̂hSi [ 1

2ProjhSiðXÞ is unbiased if, and
only if, hQi4hSi.

Lemma 1 is proved in Appendix A.1. In particular we note
that

F̂[ F̂hQi (6)

is unbiased.
In addition to being unbiased, the estimator F̂ is optimal in

the following sense. Among all unbiased estimators con-
structed by projecting X onto a linear subspace, F̂ minimizes
a matrix equivalent of the mean squared error.

Lemma 2: For a rank d matrix F that admits a factorization
F ¼ PQ; and a random matrix X; such that 1

2 E½X� ¼ F, the
estimator F̂[ 1

2ProjhQiðXÞ is an unbiased estimator of F and
has the smallest risk among all unbiased estimators of the
form ~F[ 1

2ProjhSiðXÞ. We define the risk to be the expectation
of the squared Frobenius norm:

RðF̂; FÞ ¼ E
h���F̂2 F

���2i

¼ E

"X
ij
ðf̂ ij2fijÞ2

#

Lemma 2 is proved in detail in Appendix A.2; however, the
basic intuition is straightforward. Projecting X onto a linear
space hSi⊂hQi is biased (by Lemma 1). While projecting X
onto a space hSi⊃hQi will result in an unbiased estimate of F
(again, by Lemma 1), dimensions orthogonal to hQi fit noise,
increasing the variance (and therefore the mean squared er-
ror) of the estimate.

Wenote that this strategy is related to the strategy taken in
Hao et al. (2016), in which Fwas estimated by projecting 1

2X
onto the space spanned by the first d principal components.
In that work, it was observed that this simple strategy of
estimating F typically outperformed existing methods. We
will see in Latent subspace estimation that the space spanned
by the first d principal components is a good estimator for hQi
itself, but it can be improved practically and with theoretical
guarantees by performing a modified PCA. Therefore, Lemma
2 provides a theoretical justification for the empirically accu-
rate method put forward in Hao et al. (2016).

Latent subspace estimation

Wehaveshownthat the linear subspace hQi canbe leveraged to
provide a desirable estimate of F. However, as hQi is a linear
subspace spanned by latent variables, it is not directly observ-
able and must be estimated. Here, we show how a general
techniquedeveloped inChenandStorey (2015),whichwewill
refer to as Latent Subspace Estimation (LSE), can be used to
compute a consistent estimate of hQi from theobserveddataX.

LSE is closely related to PCA, a popular technique that
identifies linear combinations of variables that sequen-
tially maximize variance explained in the data (Jolliffe
2002). As PCA is commonly used to find low-dimensional
structure in high-dimensional data, a natural approach to
estimating hQi would be to employ SNP-wise PCA. More
specifically, we might consider the linear space spanned by
the first few eigenvectors of the n3 n matrix, 1

mX
TX as an

estimate of hQi.
The LSE-based estimate of hQi almost exactly matches this

PCA-based intuition. The only difference is that LSE accounts
for the heteroscedastic nature of the admixture model, as
detailed in Chen and Storey (2015). LSE has the theoretical
advantage of asymptotically capturing hQi in the high-dimen-
sional setting (i.e., asm/N). Theorem 1, as stated here, is a
special case of a more general theorem from Chen and Storey
(2015), rewritten here for the special case of the admixture
model.

Theorem 1: Let us define d̂j ¼ 1
m

P
i2xij 2 x2ij ; and let D be the

diagonal matrix with jth entry equal to d̂j. The d eigenvectors
fy1; . . . ; ydg; corresponding to the top d eigenvalues of the
matrix G ¼ 1

mX
TX2D; span the latent subspace hQi in the

sense that

lim
m/N

D
fv1; . . . ; vdg

E
4hQi ¼ ∅

with probability 1, where 4 denotes the symmetric set dif-
ference. Further, the smallest n2 d eigenvalues ofG converge
to 0 with probability 1.

Theorem 1 provides us with a simple procedure for esti-
mating hQi directly from data. One first computes d̂j and
constructs the n3 n matrix D. Next, an eigen-decomposition
of the adjusted matrix 1

mX
TX2D is computed. Finally, we

estimate hQi as

dhQi ¼ DVT
ð1:dÞ

E
(7)

where V1:d are the first d columns from the singular value
decomposition of G.

Westress that the general formofTheorem1 fromChenand
Storey (2015) makes LSE applicable to a vast array of models
beyond factor models and the admixture model discussed
here. As a further benefit to the LSE methodology, it is both
easy to implement and computationally appealing. The entire
computation of dhQi requires a single eigen-decomposition of
an n3 nmatrix, where the accuracy depends only on largem.

Leveraging constraints to estimate P and Q

Now that we have a method for obtaining the estimate F̂ by
leveraging the LS constraint, what remains is to find estimates
for P and Q. Since the estimate F̂ has several appealing proper-
ties, as outlined in Leveraging constraints to estimate F̂, the ap-
proach of ALStructure is simply to keep F̂ fixed and seek
matrices P̂ and Q̂ that obey the Equality and Boundary

Likelihood-Free Estimator of Structure 1013



constraints of the admixture model. Below we discuss some of
the general properties of this approach: namely the question of
existence and uniqueness of solutions. We will briefly discuss
the general problem of nonidentifiability in the admixture
model, and provide simple and interpretable conditions under
which the admixture model is identifiable. Finally, we will pro-
vide simple algorithms for computing P̂ and Q̂ from F̂ based on
the method of ALS.

Existence, uniqueness, and anchor conditions: First, we
develop some terminology. We will say that an m3 n matrix
A admits an admixture-factorization if the following feasibil-
ity problem has a solution:

find: ðB;CÞ (8)
subject to: A ¼ BC  and ðh;4Þ

In words, the feasibility problem in Equation 8 simply
seeks a factorization of A that obeys the Equality and
Boundary constraints from Optimal model constraints im-
posed by the admixture model. The smallest integer d for
which ðB;CÞ is a solution to Equation 8 with B an m3 d
matrix and C a d3 n matrix is the admixture-rank of A,
which we denote rankADMðAÞ. By seeking a rank d
admixture-factorization of F̂, ALStructure converts a
problem of high-dimensional statistical inference to a ma-
trix factorization problem.

This simple approach has two apparent shortcomings:

i. A rank d admixture-factorization of F̂ may not exist.
ii. If a valid factorization exists, it will not be unique.

Item (i) is a technical problem; though F admits a rank
d admixture factorization by assumption, the same is not true
for F̂ in general. Even though the rank of F̂ is d by construc-
tion, rankðF̂Þ 6¼ rankADMðF̂Þ in general. ALStructure avoids
this problem by changing the feasibility problem expressed in
Equation 8 to the following optimization problem:

minimize
ðB;CÞ

��A2BC
�� (9)

subject to: ðh;4Þ

It is important to note that (ii) is not a problem unique to
ALStructure, but is a fundamental limitation for any ML
method as well. This is because the likelihood function
depends on P̂ and Q̂ only through their product F̂; more
formally, the admixture model is nonidentifiable. One un-
avoidable source of nonidentifiability is that any solution
ðP̂; Q̂Þ to the matrix factorization problem in Equation 8
will remain a valid solution after applying a permutation to
the columns of P̂ and the rows of Q̂. A natural question to ask
is: “When is there a unique factorization F̂ ¼ P̂Q̂ up to per-
mutations?”

Two important types of sufficient conditions under which
unique factorizations exist up to permutations are anchor SNPs
and anchor individuals. We note that the concept of anchors has
been previously employed in the field of topic modeling, where

anchor words are of interest (Arora et al. 2013). We define an
anchor SNP as one that is fixed in all ancestral populations
except one. The anchor SNPs condition is then satisfied if
each of the d ancestral populations has at least one corre-
sponding anchor SNP. Analogously, we define an anchor
individual as one whose entire genome is inherited from a
single ancestral population. The anchor individuals condi-
tion is then satisfied if each of the d ancestral populations
has at least one corresponding anchor individual. The as-
sumption of anchor individuals is equivalent to the as-
sumption of “surrogate ancestral samples” required by
the EIGMIX method of Zheng and Weir (2016). The fact
that either a set of d anchor SNPs or d anchor individuals
makes the admixture model identifiable up to permuta-
tions follows from a simple argument found in Appendix
A.3. For the special case of d ¼ 3, Figure 1 graphically dis-
plays the anchor conditions. It is important to remember
that ALStructure does not require anchors to function.
Rather, anchors provide interpretable conditions under
which solutions provided by ALStructure, or any likeli-
hood-based method, can be meaningfully compared to the
underlying truth.

The anchor SNP and anchor individual conditions are not
necessarily the only sufficient conditions for ensuring identi-
fiability of the admixturemodel, and indeed, to the best or our
knowledge, there is not currently a complete characterization
of conditions for which the admixture model is identifiable.
We regard this as an important open problem. In practice,
ALStructure is capable of retrieving solutions remarkably
close to the underlying truth even in simulated scenarios far
from satisfying the anchor conditions, including conditions
that are challenging for existing methods.

Computation: Here, we present two simple algorithms for
solving the optimization problem:

minimize
ðP;QÞ

��F̂2PQ
�� (10)

subject to: ðh;  4Þ

Figure 1 Summary of sufficient conditions for a factorization F ¼ PQ to
be unique for d ¼ 3. Axes represent the components of the row vectors
of P and the column vectors of Q respectively. (left) Anchor SNPs: there is
at least one row of P on each of the red lines. (right) Anchor genotypes:
there is at least one column of Q on each of the red dots.
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Thefirst algorithm,whichwecall cALS (constrainedALS), has
the advantage that it is guaranteed to converge to a stationary
point of the nonconvex objective function in (10). While a
stationary point will not generally correspond to a globally
optimal solution, global optimization is seldom possible for
nonconvex problems.

Although theoretically appealing, this algorithm relies on
solving many constrained quadratic programming prob-
lems and is, consequently, potentially slow. To overcome this
problem, we introduce a second algorithm called tALS
(truncated ALS), which simply ignores the problematic
quadratic constraints in cALS. Though lacking a theoretical
guarantee of convergence, the increase in speed is signifi-
cant and the outputs of the two algorithms are often prac-
tically indistinguishable.

We note that the general method of ALS is not novel. In
particular, previous work has developed ALS methods for
the problem of nonnegative matrix factorization (NNMF)
(Paatero and Tapper 1994; Lee and Sebastian 1999). In
NNMF, one seeks a low-rank factorization, A ¼ BC; in
which all elements of the factors B and C are non-negative.
Algorithms analogous to cALS and tALS, but with non-
negativity constraints rather than theh and4 constraints,
have previously been considered (Berry et al. 2007;
Cichocki et al. 2007; Gillis and Glineur 2012; Kim et al.
2014).

An algorithm with provable convergence: While problem
(10) is nonconvex as stated, the following two subproblems
are convex:

minimize
P

���F̂2PQ
��� (11)

subject to: h

minimize
Q

��F̂2PQ
�� (12)

subject to: 4

That (11) and (12) are convex problems is clear; norms are
always convex functions, and h and 4 are convex con-
straints. In particular, (11) and (12) are both members of
the well-studied class of Quadratic Programs (QP), for which
many efficient algorithms exist (Boyd and Vandenberghe
2009). We propose the following procedure for factoring F̂,
which we call Constrained ALS.

Despite the original problem being nonconvex, Algorithm
1 is guaranteed to converge to a stationary point of the
objective function in (10) as a result of the following theorem
from Grippo and Sciandrone (2000).

Theorem 2: For the two block problem,

minimize
P;Q

f ðP;QÞ

if fPig and fQig are sequences of optimal solutions to the two
subproblems:

minimize
P

f ðP;QiÞ

minimize
Q

f ðPi;QÞ

Algorithm 1: Constrained ALS Algorithm

procedure cALSðF̂; dÞ.
Initialize P̂ arbitrarily.
repeat.

Solve (12) with P ¼ P̂ and return Q̂.
Solve (11) with Q ¼ Q̂ and return P̂.

until Convergence of P̂ and Q̂.
return ðP̂; Q̂Þ.

Figure 2 Biplots of the first two rows of Q (left), Q̂tALS (middle) and Q̂cALS (right). Blue points are provided as a visual aid and delineate a common subset
of individuals.
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then any limit point ðP;QÞ will be a stationary point of the
original problem. (Note that the result from Grippo and
Sciandrone (2000) is actually more general than this. We
reproduce the special case above in order to make clear the
connection to our problem.)

An efficient heuristic algorithm: Ifwe remove all constraints
on P and Q from Equation 11 and Equation 12, the resulting
optimization problems are simple linear LS.

minimize
P

��F2PQ
�� (13)

minimize
Q

��F2PQ
�� (14)

Our algorithm proceeds by alternating between solving the
unconstrained LS problems (13) and (14). After each step,
the optimal solution will not necessarily obey the constraints
of problem (10). To keep our algorithm from converging on
an infeasible point, we truncate the solution to force it into
the feasible set. More precisely, each element of the solution
P* to (13) is truncated to satisfy h and each column of the
solution Q* to (14) is projected to the closest point on the
simplex defined by the 4 constraint. Simplex-projection is
nontrivial; however, it is a well-studied optimization prob-
lem. Here we use a particularly simple and fast algorithm
from Chen and Ye (2011). This algorithm, which we call
the Truncated ALS Algorithm, is detailed in Algorithm 2.

An example dataset: Figure 2 displays the output of cALS and
tALS on a dataset from the PSD model with the parameters:
m ¼ 100; 000, n ¼ 500, d ¼ 3, a ¼ ð0:1; 0:1; 0:1Þ. As can be
seen, the output fits for Q provided by cALS and tALS are prac-
tically indistinguishable to the eye, and are both excellent
approximations of the ground truth. The cALS algorithm
performed slightly better than the tALS algorithm (8:53 1023

and 8:73 1023 RMSE, respectively). However, cALS took
3.5 hr to complete while tALS terminated in under 1.5 min.
Because of the significant gains in efficiency, we use tALS exclu-
sively throughout the remainder of this paper. The analyst who
requires theoretical guarantees can, of course, use the cALS al-
gorithm instead. Appendix B provides a more detailed compar-
ison between the tALS and cALS algorithms on simulated data.

The ALStructure algorithm

In this section, we briefly outline the entire ALStructure
methodwhose components weremotivated in depth inModel
and Theory. In order to fit the admixture model, we obtain
estimates F̂, P̂, and Q̂ from the SNP matrix X through the
following three-part procedure:

i. Estimate the linear subspace hQi from the data X.

ii. Project 1
2X onto the estimate dhQi to obtain an estimate

of F.
iii. Factor the estimate F̂ subject to the Equality and Bound-

ary constraints to obtain P̂ and Q̂.

For convenience, we detail the entire ALStructure algo-
rithm in Algorithm 3, and annotate each of the three steps de-
scribed above. We note that we have decided to use the tALS
function rather than the cALS function in our definition of the
ALStructure algorithm, valuing the speed advantage of tALS
over the theoretical guarantees of cALS. If desired, one could of
course choose to use the cALS function instead without making
any other alterations to the ALStructure.

We emphasize here that ALStructure’s estimate Q̂ is
ultimately derived from the LSE-based estimate of the latent

subspacedhQi. As the method of LSE is closely linked to PCA,

we consider ALStructure to be a unification of PCA-based

and likelihood-based approaches.
Perhaps the most striking feature of Algorithm 3 is its

brevity. One advantage of this simplicity is its ease of imple-
mentation. Although Algorithm 3 has been implemented in
the R package ALStructure, it can clearly be reimple-
mented in any language quite easily. Equally important is that
all of the operations in Algorithm 3 are standard. The only
two computationally expensive components are a single
eigen-decomposition if n is large, and QR decompositions
to find linear least squares (LLS) solutions in the tALS algo-
rithm. Both of these problems have a rich history and conse-
quently have many efficient algorithms. It is likely that the
ALStructure implementation of Algorithm 3 can be

Algorithm 3: ALStructure

procedure ALStructureðX; dÞ
for j ¼ 0  to  n  do (i)

d̂j)
1
m

Pm
i¼12xij 2 x2ij

D)diagðfd̂1; . . . ; d̂ngÞ
G)1

mX
TX2D

Compute eigen-decomposition G ¼ VWVT

F̂)1
2 ProjchQiðXÞ ¼ 1

2XVð1:dÞVT
ð1:dÞV

T
ð1:dÞ (ii)

ðP̂; Q̂Þ)tALSðF̂; dÞ (iii)

return ðF̂; P̂; Q̂Þ

Algorithm 2: Truncated ALS Algorithm

procedure tALSðF̂; dÞ
Initialize P̂ arbitrarily.

repeat
Solve (14) with P ¼ P̂, and return the simplex-pro-

jected solution Q̂.
Solve (13) with Q ¼ Q̂ and return the truncated solu-

tion P̂.
until Convergence of P̂ and Q̂

return ðP̂; Q̂Þ
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significantly sped up by utilizing approximate or randomized
algorithms for the eigen-decomposition and/or LLS computa-
tions. In its current form, ALStructure simply uses the base
R functions eigen() and solve() for the eigen-decomposition
and LLS computations, respectively. Despite this, the current
implementation ofALStructure is typically faster than exist-
ing algorithms as can be seen in Results From Simulated Data
and Applications to Global Human Studies below.

TheALStructuremethod is a nonparametric estimator in
the following ways. It makes no assumptions about the prob-
ability distributions of P or Q. Any random variable taking
values in f0; 1g is by necessity Bernoulli. In this vein, the as-
sumption that xij � Binomialð2; fijÞ is not a parametric assump-
tion per se, but rather an assumption about independence of
alleles. Finally, the likelihood function is not utilized in estimat-
ing P and Q, making ALStructure likelihood-free.

For choosing the dimensionality of the model d, we recom-
mend utilizing the recently proposed structural Hardy-Wein-
berg equilibrium (sHWE) test (Hao and Storey 2017). This test
can perform a genome-wide goodness of fit test to the assump-
tions made in the admixture model over a range of d. It then
identifies theminimal value of d that obtains the optimal good-
ness of fit. There are other ways to choose d, by using the
theory and methods in Chen and Storey (2015) or by using
other recent proposals (Patterson et al. 2006; Hao et al. 2016).

Results from Simulated Data

Simulated data sets

In this section,we compare the performance ofALStructure
to three existing methods for global ancestry estimation,
Admixture, fastSTRUCTURE and terastructure.
Admixture, developed by Alexander et al. (2009), is a pop-
ular algorithm that takes a ML approach to fit the admix-
ture model. Both fastSTRUCTURE (Raj et al. 2014) and
terastructure (Gopalan et al. 2016) are Bayesian
methods that fit the PSD model using variational Bayes
approaches. We abbreviate these methods as ADX, FS,
and TS in the figures. A comparison among these three
methods appears in Gopalan et al. (2016), so we will
focus on how they compare to ALStructure.

To this end, we first tested all algorithms on a diverse array
of simulated datasets. The bulk of our simulated data sets
come from the classical PSDmodel (defined in The admixture
model), in which columns of Q are distributed according to
the DirichletðaÞ distribution and the rows of P are drawn
from the Balding-Nichols distribution. We varied the fol-
lowing parameters in our simulated datasets: m, n, d,
and a. Of particular note is the variation of a. For this we
used four a-prototypes: a1 ¼ ð10; 10; 10Þ, a2 ¼ ð1; 1; 1Þ,
a3 ¼ ð0:1; 0:1; 0:1Þ, and a4 ¼ ð10; 1; 0:1Þ. These four proto-
types were chosen because they represent four qualitatively
different distributions on the Dirichlet simplex as shown in
Figure 3: a1 corresponds to points distributed near the center
of the simplex, a2 corresponds to points distributed evenly
across the simplex, a3 corresponds to points distributed
along the edges of the simplex, and a4 corresponds to an
asymmetric distribution in which points are concentrated in
one of the corners of the simplex.

When we produced datasets with d. 3, we extended the
prototypes in the natural way; for example for d ¼ 6, thea4 is
becomes ð10; 10; 1; 1; 0:1; 0:1Þ. Table 1 lists all of the param-
eters we used to generate data under the Dirichlet model, for
a total of 96 distinct combinations.

The parameters of the Balding-Nichols distributions from
which rows of the Pmatrix were drawn were taken from real
data, following the same strategy taken in Gopalan et al.
(2016). Specifically, Fi and pi were estimated for each SNP
in the Human Genome Diversity Project (HGDP) dataset
(Cavalli-Sforza 2005). Then, for each simulated dataset, m
random samples are taken (with replacement) from the
HGDP parameter estimates.

Figure 3 Examples of typical random samples from the four different a-prototypes. As can be seen, only a2 and a3 approximately obey the “anchor-
individuals” condition.

Table 1 Parameters of all simulated datasets

Parameters

m 105, 53105

n 53102, 103, 53 103, 104

d 3, 6, 9

a-prototypes (10, 10, 10)
(1, 1, 1)
(0.1, 0.1, 0.1)
(10, 1, 0.1)
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In addition to simulating Q matrices from the classical
DirichletðaÞ distribution with many different parameters a,
we also simulated data from the spatial model of admixture
developed in Ochoa and Storey (2016). We deliberately chose
to study this model because it is ill-suited for ALStructure;
while ALStructure relies on the estimation of the
d-dimensional linear subspace hQi, the columns ofQ produced
under the spatial model lie on a one-dimensional curve within
hQi. Despite this fundamentally challenging scenario, we see
that ALStructure is often capable of recovering an accurate
approximation.

Results from the PSD model

In order to give a representative picture of the relative per-
formance of ALStructure against existing algorithms, we
first plot the fits of all of the algorithms for two particular data
sets out of the total 96 model data sets: (i) the data set in
which ALStructure performs the best and (ii) the data set
in which ALStructure performs the worst, according to
mean absolute error (defined below).

On the left side of Figure 4, we see that all four algorithms
perform very well for the data set in which ALStructure
performs best, which comes from thea3-prototype. On the right
side of Figure 4, the dataset was generated from the a4-pro-
totype. We see that, while ALStructure certainly deviates
substantially from the truth, so does every algorithm. Both
fastSTRUCTURE and terastructure provide results that
are qualitatively very different from the truth; where fast-
STRUCTURE compresses all columns of Q onto a single edge
of the simplex, terastructure spreads them out through the

interior of the simplex. Both Admixture and ALStructure
provide solutions qualitatively similar to the truth. While the
points in the Admixture solution extend much further along
the edge of the simplex than the truemodel, the ALStructure
solution spreads into the interior of the simplex more than the
true model.

Figure 5 provides a comprehensive summary of the per-
formance of ALStructure against the existing algorithms
on all simulated datasets. The top panels of Figure 5 summa-
rize the accuracy of each of the four algorithms, according to
two metrics: root mean squared error (RMSE) and mean
absolute error (MAE).

RMSE [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
dn

Xd
k¼1

Xn
j¼1

ðq̂kj2qkjÞ2
vuut

MAE [
1
dn

Xd
k¼1

Xn
j¼1

����q̂kj 2 qkj

����
The bottom left panel of Figure 5 showsmean per observation
log-likelihood, 1

mn

Pm
i¼1
Pn

j¼1log  P
�
xij ĵf ij

�
, on all simulated

data sets. (To obtain full data log-likelihoods, multiple these
numbers by mn.) It is interesting to note that ALStructure
performs comparably to other methods from the likelihood
perspective despite the fact that it is the only method that
does not explicitly utilize the likelihood function. However, we
emphasize that likelihood is an imperfect metric of model fit for
two reasons. First, because of the highly nonidentifiable nature
of the admixture model as discussed inModel and Theory, many

Figure 4 Model fits by ALStructure,
Admixture, fastSTRUCTURE, and
terastructure on two particular
simulated datasets. The left panel
shows the fits corresponding to the
dataset on which ALStructure per-
formed the best. The right panel
shows the fits corresponding to the data-
set on which ALStructure performed
the worst. Each point represents a col-
umn of the Q matrix and is plotted by
the first and second coordinates. Blue
points are plotted as a visual aid and de-
lineate a common subset of individuals.
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models are equivalent from the likelihood perspective. There-
fore, if one is primarily concerned about the accuracy of admix-
ture estimates, the RMSE orMAEmetrics may bemore suitable.
Second, in high-dimensional models, it has been demonstrated
that high likelihood may yield far inferior estimates (Efron
2013). Startingwith Stein’s Paradox (Stein 1956), it has been
shown in many settings that the ML estimator for several
parameters may be uniformly worse in accuracy than meth-
ods that leverage shared information in the data.

The bottom right panel of Figure 5 shows the distribu-
tions of run times for each algorithm on all modeled data-
sets. Due to the size of the simulated datasets and our
computational constraints, each algorithm did not termi-
nate on each of the 96 datasets. In Figure 5, we plot only
the datasets for which all four algorithms successfully ter-
minated. See Appendix C for more details. It is clear that
ALStructure is competitive with respect to both model fit
and time. ALStructure outperforms all methods accord-
ing to both RMSE and MAE. With respect to time,

ALStructure is clearly favored (one should note that
the y-axis is on the log scale).

Results from the spatial model

As a challenge to ALStructure, we simulate data from a
model developed in Ochoa and Storey (2016), which we
will refer to as the spatial model. This model mimics an
admixed population that was generated by a process of
diffusion in a one-dimensional environment. There are
d unmixed ancestral populations equally spaced at positions
fx0; x0 þ 1; . . . ; x0 þ d2 1g on an infinite line. If all populations
begin to diffuse at time t ¼ 0 at the same diffusive rate, then
population i will be distributed as a Gaussian with mean
mi ¼ x0 þ i2 1 and SD s. Therefore, under the spatial model,
an individual sampled from position x will have admixture pro-
portions shown inEquation15,where fðm;sÞ denotes theGaussian
distribution with parameters ðm;sÞ.

Although this is just a special case of the admixture model,
one would expect the spatial model to be particularly

ðq1ðxÞ; q2ðxÞ; . . . ; qdðxÞÞ ¼
 

fðm1;sÞðxÞPd
i¼1 fðmi;sÞðxÞ

;
fðm2;sÞðxÞPd
i¼1 fðmi;sÞðxÞ

; . . . ;
fðmd;sÞðxÞPd
i¼1fðmi;sÞðxÞ

!
(15)

Figure 5 Summary of performance of ALStructure and existing algorithms. The points are colored by a-prototype.
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challenging for ALStructure because the admixture propor-
tions belong to a one-dimensional curve parameterized by x, and
ALStructure necessitates the estimation of a d-dimensional
linear subspace in ℝn. The challenge is much more pronounced
when the populations are highly admixed (large s). Figure 6
shows the model fits provided by ALStructure.

Indeed, for large values of s ðs ¼ 2Þ, ALStructure fails
to correctly capture the admixture proportions. However, for
smaller values of s ðs ¼ f1; 0:5gÞ, it can be seen that the fits
provided by ALStructure are excellent. In all simulations
m ¼ 105, n ¼ 103, and d ¼ 3.

We note that Gopalan et al. (2016) tested Admixture,
fastSTRUCTURE, and terastructure on data drawn
from the spatial model (which they refer to as “Scenario
B”). They showed this model posed a significant challenge
for all three methods, but found that terastructure
performed the best.

Applications to Global Human Studies

Here, we apply ALStructure and existing methods to
three globally sampled human genotype datasets: the
Thousand Genomes Project (TGP), HGDP, and Human Or-
igins (HO) datasets (Cavalli-Sforza 2005; Lazaridis et al.
2014; The 1000 Genomes Project Consortium et al. 2015).
Table 2 summarizes several basic parameters of each of the
datasets and Appendix D details the procedures used for
building each dataset. Although we recommend using
sHWE from Hao and Storey (2017) for choosing d, here we
take the number of ancestral populations d directly from
Gopalan et al. (2016) so that our results are easily comparable
to those of the latter study.

Figure 7 shows scatterplots of the first two rows of Q̂ for
each of the three datasets provided by each of the four fits. To
disambiguate the inherent nonidentifiability (see Model and
Theory), we ordered the rows of the fits Q̂ by decreasing varia-
tion explained: s2i ¼ ��Xq̂Ti���2. Perhaps the most striking aspect
of Figure 7 is the difference between the fits produced by each
method. With the notable exception that Admixture and
ALStructurehave similarfits for the TGPandHGDPdatasets,
every pair of comparable scatterplots (i.e., within a single row of
Figure 7) are qualitatively different. Figure 11 in the Appendix
displays the same data represented as stacked barplots of the
admixture proportions. In this representation too, qualitative
differences between the fits are also evident. Table 3 shows
the mean per observation log-likelihood of the fits provided
by each of the four methods. Figure 12 in the Appendix shows
that the distributions of per observation likelihood are nearly
indistinguishable across all methods.

Next we compare the performance of ALStructure to
existing methods both in terms of efficiency and accuracy. Un-
like in the case of simulated datasets where the ground truth is
known, here we cannot directly compare the quality of model
fits across methods. Instead, we assess the quality of each
method by its performance on data simulated from real data
fits.

Figure 6 ALStructure fits of datasets from the Spatial model. (left) Stacked barplots of ALStructure fits. (right) Biplots of ALStructure fits. The
parameter s was set to 0.5, 1, and 2 for the top, middle and bottom rows, respectively. Blue points are plotted as a visual aid and delineate
corresponding columns of Q and Q̂.

Table 2 Dataset parameters

Dataset m n d m3n

TGP 1,229,310 1815 8 � 2:23109

HGDP 550,303 940 10 � 5:23108

HO 372,446 2251 14 � 8:43108
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For concreteness, we briefly outline the process below:

i. Fit each dataset with each of the four methods to obtain
12 model fits.

ii. Simulate datasets from the admixture model using pa-
rameters obtained in the previous step.

iii. Fit each of the 12 simulated datasets with each of the four
datasets (48 fits) and compute error measures.

The process above treats each of the four methods symmet-
rically, evaluating each method based on its ability to fit data
simulated from both its own model fits as well as every other
methods’ model fits.

Figure 8 summarizes the performance of eachmethodwith
respect to both model fit and efficiency on data simulated
from the above described process. As with the results on simu-
lated datasets from Results from the PSD model, it is clear that
ALStructure is competitive with respect to both model fit
and time. Both Admixture and ALStructure outperform
fastSTRUCTURE and terastructure by all quality of fit
metrics. ALStructure far outperforms all methods with re-
spect to time (one should note that the y-axis is on the log scale).

In Appendix E, we compare the performance of
ALStructure to pre-existing methods on an additional
nonglobal dataset from Basu et al. (2016). In this dataset,
individuals are sampled from 18 modern Indian subpopu-
lations. India’s genetic admixture is of particular interest be-
cause of its long history of sociocultural norms promoting
endogamy. We find that each of the four methods produce ad-
mixture estimates qualitatively similar to each other for this
dataset (see Figure 10 in the Appendix). One possible explana-
tion for this observed similarity is that the genetic history of

India more closely mimics the admixture model than does
global genetic history, as suggested by Lawson et al. (2018).

Discussion

In this work, we introduced ALStructure, a newmethod to
fit the admixture model from observed genotypes. Our
method attempts to find common ground between two previously
distinct approaches to understanding genetic variation: likelihood-
based approaches and PCA-based approaches. ALStructure
features important merits from both. Like the likelihood-based
approaches, ALStructure is grounded in the probabilistic ad-
mixture model, and provides full estimates of global ancestry.
However, operationally the ALStructuremethod closely resem-
bles PCA-based approaches. In particular, ALStructure’s esti-
mates of global ancestry are derived from a consistent PCA-
derived estimate that captures the underlying low-dimensional
latent subspace. In thisway,ALStructure can be considered
a unification of likelihood-based and PCA-based methods.

Because ALStructure is operationally similar to PCA-
based methods, it is computationally efficient. Specifically,
the only computationally expensive operations required by
the ALStructure algorithm are singular value and QR de-
compositions. Both of these computations have been
extensively studied and optimized. Although ALStructure

Figure 7 Biplots of the first two rows ofQ (ranked by variation explained) of the fits of the TGP (top), HGDP (middle), and HO (bottom) datasets for each
algorithm. Individuals are colored by coarse subpopulation from which they are sampled.

Table 3 The mean per-observation log-likelihood of each dataset
under each method’s fit

Method Admixture
fast

STRUCTURE terastructureALStructure

TGP 20.7097 20.7136 20.7130 20.7100
HGDP 20.7494 20.7536 20.7608 20.7505
HO 20.7467 20.7515 20.7534 20.7477
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already performs favorably compared to preexisting algo-
rithms in computational efficiency, it is likely that, by apply-
ing more sophisticated matrix decomposition techniques,
ALStructure may see significant improvements in speed.
Although extremely simple, ALStructure typically outper-
forms preexisting algorithms both in terms of accuracy and
time. This observation holds under a wide array of datasets,
both simulated and real.

The usefulness of PCA-based approaches has been increas-
ingly recognized in related settings, such as the mixed mem-
bership stochastic block model (Rubin-Delanchy et al. 2017)
and topic models (Ke and Wang 2017). The basic approach
we have presented is quite general. In particular, the set of
models that satisfy the underlying assumptions of LSE is
large, subsuming the admixture model as well as many other
probabilistic models with low intrinsic dimensionality. Con-
sequently, we expect that the ALStructure method can be
trivially altered to apply tomany similar problems beyond the
estimation of global ancestry.
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Appendix A: Additional Mathematical Details

A.1 Proof of Lemma 1
First we show that F̂ is unbiased. Note that:

E½F̂� ¼ 1
2
E½ProjhQiðXÞ�

¼ 1
2
  ProjhQiðE½X�Þ

¼ ProjhQiðFÞ

¼ F

Between the first and second line, we note that the projection operator is linear and take advantage of linearity of expectation.
Between the second and third line, we used the observation that 1

2 E½X� ¼ F. Finally, ProjhQiF ¼ F since all rows of F belong to
hQi. From an identical argument one can see that for projection onto any other subspace hSi, the corresponding estimator
F̂hSi [ 1

2ProjhSiðXÞ will have the property that

E
h
F̂hSi

i
¼ ProjhSiðFÞ

It is clear that, if hQi4hSi, then E½F̂�hSi� ¼ ProjhSiðFÞ ¼ F; since the projection operator acts as the identity operator for vectors
belonging to the subspace hSi.

Next we show that the converse is true: E½ProjhSi� ¼ F implies hQi4hSi. To do this, we prove the contrapositive statement. If
hQi⊈hSi; then E½F̂S� 6¼ F. This can be seen by noting that each row in F̂ ¼ ProjhQiðFÞ is a vector in the linear subspace hQi
projected into the linear subspace hSi; rows of F̂ therefore belong to the linear subspace hQi \ hSi. Unless hQi4hSi, then the
dimension of hQi \ hSi is strictly less than d, the dimension of hQi and the rank of F. Therefore, if hQi⊈hSi, the rank of E½F̂S�will
be less than the rank of F, implying E½F̂S� 6¼ F.

A.2 Proof of Lemma 2
Note that we can write the squared Frobenius norm as follows:

LðF; F̂Þ[ kF̂2Fk2

¼ Tr
h
ðF̂2FÞTðF̂2 FÞ

i
¼ Tr

h
F̂
T
F̂
i
22Tr

h
F̂
T
F
i
þ Tr

h
FTF

i
(16)

First, let us compute the risk of our projection estimator F̂. Suppose we have an orthonormal basis fvig of hQi. Using the
definition of F̂ from Equation 6, and the fact that the rows of both F belong to hQi, we note that we can write any row of either
matrix in terms of the basis vectors fvig:

f i� ¼
X
j

	
f Ti� ; vj



vTj (17)

f̂ i� ¼
1
2

X
j

	
xTi� ; vj



vTj (18)
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By rewriting the matrices F̂ and F with respect to the basis fvig; and using Equation 17 and Equation 18, it is a straightforward
calculation to show that

Tr
�
FTF

� ¼Xm
i¼1

Xk
j¼1

	
fTi� ; vj


2

Tr
h
F̂
T
F̂
i
¼
Xm
i¼1

Xk
j¼1

*
1
2
xTi� ; vj

+2

Substituting this result into Equation 16 and taking expectations, we have the following expression for our loss function:

RðF; F̂Þ ¼ E½LðF; F̂Þ�

¼ E


Tr
h
F̂
T
F̂
i
2 2Tr

h
F̂
T
F
i
þ Tr

h
FTF

i�

¼ E


Tr
h
F̂
T
F̂
i
2Tr

h
FTF

i�

¼
Xm
i¼1

Xk
j¼1

E

	1
2
xTi� ; vj


2�
2
	
f Ti� ; vj


2

¼ 1
4

Xm
i¼1

Xk
j¼1

Var
h	
xTi� ; vj


i
(19)

By studying Equation 19, we can see the estimator F̂ has several favorable properties. First note that the risk is a sum of
m3 k nonnegative numbers since Var½Z�$ 0 for any random variable Z. If we were to project onto a larger subspace hSi, where
hSi⊃hQi, we would add terms to Equation 19 and consequently increase our risk. If we were to project onto a smaller subspace
hSi⊂hQi, then the risk may decrease; however, our new estimator will now be biased by Lemma 1. From these observations, we
conclude that F̂ is optimal in the sense described in the Lemma 2.

A.3 Proof of sufficiency of anchors
Here,we show that either a set of anchor SNPs or a set of anchor individuals is sufficient to specify a unique factorization F ¼ PQ
up to the nonidentifiability associated with row permutations.
Proposition 1. For a rank d matrix F with a factorization F ¼ PQ, if there is a set S of d rows of P such that for each
i 2 f1; 2; . . . ; dg there exists a row vector pi� 2 S such that pi� ¼ diei for di 6¼ 0, where ei is a vector of length n in which element
i is 1, and all other elements are 0, then the factorization is unique up to permutation.When such a set S exists, we say that we have
“anchor SNPs.”
Proof. Let us denote the matrix D ¼ diagðd1; d2; . . . ; ddÞ. Without loss of generality, let us assume that S is the first d rows of P
and are ordered such that

P ¼
�
D
A

�

for some ðm2 dÞ3 d matrix A. Then there is a unique Q for this F matrix (up to permutation) which is

Q ¼ D21F1:d

The matrix A is also uniquely determined by F once Q is fixed. To see this, note that

f j� ¼ pj�Q
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where f j� and pj� denote the j row of F and P respectively. Since f j� is fixed and Q is unique under the anchor SNP assumption,
there is a unique solution for pj� by the linear independence of the rows of Q.

The interpretation of the anchor SNPs assumption is that every ancestral population has at least one SNP that appears only in
it. The presence of such an SNP is therefore a guarantee that the individual is a member of a particular population. Note that an
identical argument could be made when we have a set S of d columns of Q that have exactly one nonzero entry at unique
locations. When such a set exists, we say that we have “anchor individuals.”Under the admixture model, the simplex constraint
requires that the nonzero entry of each anchor genotype is exactly one. In this scenario, there exists at least one individual from
each ancestral population whose entire genome was inherited by a single ancestral population. We summarize these results in
the following corollary and visualize the anchor SNP and anchor genotype scenarios in Figure 1.

Corollary 1. Whenever a rank d matrix F admits a factorization F ¼ PQ such that there are either a set of anchor SNPs or a set of
anchor genotypes, the factorization is unique up to permutation.

Appendix B: tALS and cALS Comparisons

Figure 9 displays the Q̂ estimates of the tALS and cALS algorithms on simulated data from each of the four a-prototypes
described in Simulated data sets. For each of these datasets, m ¼ 105, n ¼ 500, d ¼ 3. We see that estimates provided by the
tALS and cALS algorithms agree very well with each other for all a-prototypes. However, the run times are substantially
different between these two methods, as displayed in Table 4: tALS terminates in minutes while cALS terminates in hours.
Notably, the run times of the tALS algorithm also appear to be less sensitive to the a-prototype than the cALS algorithm. Most
notably, the cALS algorithm takes an order of magnitude longer to run on the a4 prototype than any of the other a-prototypes.
These observations support our preference for the tALS algorithm over the cALS algorithm.

Under a2 and a3, the estimates provided by tALS and cALS also agree very well with the trueQmatrices. This is not the case
under a1 and a4, where both algorithms provide substantially different results than the ground truth. However, because both
of these a-prototypes lack a complete set of anchor SNPs, the model may well be unidentifiable.

Appendix C: Simulation Details

Due to time and computational constraints, each algorithm did not terminate on each of the 96 datasets generated for the
simulations. Inall, 326of the384total simulations terminatedduring the1 week time limitwithabudgetof300 GB.Admixture

Figure 9 Biplots of the first two rows of Q (top), Q̂tALS (middle) and Q̂cALS (bottom) for each of the four a-prototypes.
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completed 81 simulations, fastSTRUCTURE completed 80 simulations terastructure completed 81 simulations, and
ALStructure completed 84 simulations. For the sake of comparison, Figure 5 only shows the datasets for which all algorithms
terminated.

Appendix D: HGDP, TGP, and HO Dataset Details

In Applications to Global Human Studieswe analyze human genotype data from globally sampled individuals. These data come
from three public sources: HGDP (Cavalli-Sforza 2005), TGP (The 1000 Genomes Project Consortium et al. 2015), and HO
(Lazaridis et al. 2014). The various preprocessing steps are detailed below for each dataset.

TGP: The1000GenomesProject dataset (TGP) samples globally from26populations and is availablehere: ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/. Related individuals and SNPs with minor allele frequency
, 5% are removed. The dimensions of this dataset are 1716 individuals and 520,036 SNPs.

Figure 10 Bi-plots of the first two rows of Q (ranked by variation explained) of the fits of the Basu et al. (2016) dataset for each algorithm. Individuals
are colored by the subpopulation from which they are sampled.

Figure 11 The admixture proportions of each globally sampled dataset as a stacked barplot. Because of the nonidentifiability of the model, the order of
the rows of Q are arbitrary. To disambiguate this, we order the rows of Q in each dataset by decreasing average admixture. The coloring in Figure 11 is
then done according to this ordering. As an aid to the eye, we also reorder the columns of Q according to decreasing proportion of the first row of Q of
the ALStructure fit. The choice to order all fits according to ALStructure is arbitrary; however, all fits must be ordered consistently to make
meaningful comparisons possible. As can be seen, each of the fits differ significantly from each other on every dataset.
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HGDP: The HGDP samples globally from 51 populations and is available here: http://www.hagsc.org/hgdp/files.html. Indi-
viduals with first- or second-degree relatives and SNPs with minor allele frequency , 5% are removed. The dimensions of this
dataset are 940 individuals and 550,303 SNPs.

HO: TheAffymetrixHOdataset samples globally from147populations and is available here: http://genetics.med.harvard.edu/
reich/Reich_Lab/Datasets.html. Nonhuman or ancient samples and SNPs with , 5%minor allele frequency are removed. The
dimensions of this dataset are 2248 individuals and 372,446 SNPs.

Table 4 RMSE between true and estimated Q matrices for each method and
each a-prototype (rows 1 and 2); RMSE between two estimated Q matrices (row 3);
run-time (rows 4 and 5).

a1 a2 a3 a4

RMSEðQ; Q̂tALSÞ 6:231022 1:431022 8:731023 1:93 1021

RMSEðQ; Q̂cALSÞ 6:331022 1:531022 8:531023 2:23 1021

RMSEðQ̂tALS; Q̂tALSÞ 4:231023 2:331023 5:731024 3:93 1022

tALS run time 2.6 min 1.4 min 1.5 min 2.8 min
cALS run time 4.1 hr 3.0 hr 3.5 hr 36.8 hr

Table 5 Mean log-likelihood from of each method applied to data set Basu et al. (2016)

Method Admixture fastSTRUCTURE terastructure ALStructure

Mean log-likelihood 20.7360 20.7369 20.7373 20.7365

Figure 12 Left panels: The distribution
of likelihoods for each element of X for
each method and dataset. Right panels:
The same as the left panels, except on a
log-scale.
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Appendix E: Application to a Nonglobal Dataset

In this appendix we apply ALStructure and preexisting methods to a dataset from Basu et al. (2016). In this dataset,
individuals from 18mainland Indian subpopulations are sampled. Following Basu et al. (2016), we set d ¼ 4 for each method.
Figure 10 plots the first two rows of Q output from Admixture, fastSTRUCTURE, terastructure, and ALStructure,
respectively. As in the results from Applications to Global Human Studies, rows of Q are ordered according to variation
explained.

As can be seen, the estimated admixture proportions produced by eachmethod are all qualitatively similar. Table 5 shows the
likelihood of the data from eachmethod, with eachmethod performing similarly. Themethods ranked by decreasingmean log-
likelihood are: Admixture, ALStructure, fastSTRUCTURE, terastructure.
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